
New Approaches for Quantum Copy-Protection

Scott Aaronson1, Jiahui Liu1, Qipeng Liu3, Mark Zhandry2, and Ruizhe
Zhang1

1 The University of Texas at Austin
{aaronson, jiahui, rzzhang}@cs.utexas.edu
2 Princeton University & NTT Research, USA

mzhandry@princeton.edu
3 Princeton University, USA
qipengl@princeton.edu

Abstract. Quantum copy protection uses the unclonability of quantum
states to construct quantum software that provably cannot be pirated.
Copy protection would be immensely useful, but unfortunately little is
known about how to achieve it in general. In this work, we make progress
on this goal, by giving the following results:

– We show how to copy protect any program that cannot be learned
from its input/output behavior, relative to a classical oracle. This
improves on Aaronson [CCC’09], which achieves the same relative
to a quantum oracle. By instantiating the oracle with post-quantum
candidate obfuscation schemes, we obtain a heuristic construction of
copy protection.

– We show, roughly, that any program which can be watermarked can
be copy detected, a weaker version of copy protection that does not
prevent copying, but guarantees that any copying can be detected.
Our scheme relies on the security of the assumed watermarking, plus
the assumed existence of public key quantum money. Our construc-
tion is general, applicable to many recent watermarking schemes.

1 Introduction

Quantum copy-protection, proposed by Aaronson [Aar09], aims to use the
unclonability of quantum states to achieve programs that cannot be copied. That
is, the program f is given as a quantum state |ψf 〉. |ψf 〉 allows for computing f on
arbitrary inputs; meanwhile, it is infeasible to copy the state |ψf 〉, or even convert
|ψf 〉 into two arbitrary states that both allow for computing f . The quantum no-
cloning theorem shows that quantum states in general cannot be copied. Copy
protection takes this much further, augmenting the unclonable state with the
ability to evaluate programs. Copy-protection would have numerous applications
to intellectual property management, and to cryptography generally.

Progress on quantum copy-protection has unfortunately been slow. On the
negative side, copy-protection for general programs is impossible. As explained
by Aaronson, any learnable program—that is, a program whose description can



be learned from just it’s input/output behavior—cannot be copy-protected. In-
deed, an attacker, given the (copy-protected) code for the program can just query
the code on several inputs, and learn the original program from the results. The
original program can then be copied indefinitely. A more recent result of Ananth
and La Placa [AP20] shows, under certain computational assumptions, that even
certain contrived unlearnable programs cannot be copy-protected.

On the positive side, Aaronson demonstrates a quantum oracleiv relative to
which copy-protection exists for any unlearnable program. Due to the negative
result above, this scheme cannot be instantiated in the general. Worse, even
for programs that are not subject to the impossibility result, it remains unclear
how to even heuristically instantiate the scheme. Very recently, Ananth and La
Placa [AP20] build a version of copy protection which they call software leasing,
which guarantees a sort of copy detection mechanism: unfortunately, their work
explicitly allows copying the functionality and only guarantees that such copy-
ing can be detected. Also, their construction only works for a certain class of
“evasive” functions, which only accept a hidden sparse set of inputs. The work
of Ben-David and Sattath [BDS16] and more recently Amos et al. [AGKZ20] can
be seen as copy-protecting very specific cryptographic functionalities.

1.1 This Work

In this work, we give new general results for copy protection. Our two main
results are:

– Any unlearnable functionality can be copy-protected, relative to a classical
oracle.

– Any functionality that can be watermarked in a certain sense, can be copy-
detected assuming just the existence of public key quantum money.

Both of our results are very general, applying to a wide variety of learning
and watermarking settings, including settings where functionality preservation
is not required. Along the way to obtaining our results, we give new definitions
for security of copy-protection (as well as copy detection and watermarking),
which provide for much stronger guarantees.

Our first result improves Aaronson [Aar09] to use a classical oracle, which
can then heuristically be instantiated using candidate post-quantum obfuscation
(e.g. [BGMZ18, BDGM20]), resulting in a concrete candidate copy-protection
scheme. Of course, the impossibility of Ananth and La Placa [AP20] means the
resulting scheme cannot be secure in the standard model for arbitrary programs,
but it can be conjectured to be secure for programs not subject to the impossi-
bility.

Our second result complements Ananth and La Placa [AP20]’s positive result
for copy-detecting evasive functions, by copy-detecting arbitrary watermarkable
functions. For our purposes, watermarkable functions are those that can have a
publicly observable “mark” embedded into the program, such that it is infeasible

iv That is, an oracle that actually implements a quantum operation.
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to remove the mark without destroying the functionality. We note that the results
(and techniques) are incomparable to [AP20]. First, watermarkable functions
are never evasive, so the class of functions considered are disjoint. Second, our
security guarantee is much stronger than theirs, which we discuss in Section 1.2.

Taken together, we believe our results strongly suggest that watermarkable
functions may be copy-protectable. Concretely, the impossibility result of Ananth
and La Placa also applies to copy detection, and our second result shows that
watermarkable functions therefore circumvent the impossibility. Based on this,
we conjecture that our first result, when instantiated with candidate obfuscators,
is a secure copy-protection scheme for watermarkable functions. We leave proving
or disproving our conjecture as an interesting direction for future work.

1.2 Technical Overview

Definitional Work. We first look at one attempt of defining quantum copy-
protection. We say an adversary successfully pirates a quantum program for
computing function f , if it outputs two quantum programs σ1, σ2, each of them
able to compute f correctly with probability greater than some threshold. Con-
sider the following case. Let f be a signing algorithm with a particular signing
key hard-coded. Suppose that there are many valid signatures for each message.
Consider a hypothetical adversary which “splits” the program into two pieces,
each computing valid signatures, but neither computing the same signature that
f produces. Such programs are “good enough” for many applications, but this
adversary would not be ruled out by the usual security notions.

Another example is copy-protection of public key encryption. Let f be a de-
crypting algorithm with a particular decryption key hard-coded. Suppose the
split two program pieces only work correctly on a sparse set: namely they can
only decrypt correctly on ciphertexts of m0,m1; for ciphertexts of other mes-
sages, they output junk. This splitting attack does not violate the security notion
either, since both functions produced by the adversary differ from the original
program on most inputs. But again, such programs are “good enough” for some
applications.

Similar definitonal issues were discussed in [GKM+19], but in the context
of watermarking primitives. As we will see, watermarking is closely related to
copy-detection and copy-protection.

Our solution is to define “compute f correctly” by a relation. The relation
takes some random coins r, the function f (with some additional information
about f hard-coded in the circuit); it samples an input and runs the (quantum)
program on that classical input; finally, it checks the output of the quantum
program, testing in superposition if the output z together with f, r is in the
relation. As an example, if f is a signing circuit (with the verification key hard-
coded), the relation is defined as: use random coins r to generate a random
message m, run the quantum program on m and test in superposition if it is a
valid signature, by applying the verification algorithm Ver(vk,m, · ; r).

Unfortunately, formalizing these other definitions can still be tricky. For ex-
ample, we want that the adversary can not take a program for f and produce
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two programs that each computes f correctly on half inputs of the domain.
In this setting, we would naturally say that a program is good if it correctly
computes the function f with probability 1/2. However the definition becomes
problematic. Consider the adversary which takes its quantum program P and
simply produces 1√

2
(|P 〉 |D〉 |0〉+ |D〉 |P 〉 |1〉) where D is a dummy program that

outputs junk. Now, the two halves of this bipartite system each has probabil-
ity 1/2 of outputting the right answer on a random input. Thus, both halves
would naturally be considered to compute correctly, according to this definition.
Therefore, any security definition like this is trivially false.

For another example, consider the adversary produces 1√
3
|P 〉 |P 〉+

√
2√
3
|D〉 |D〉.

The two halves of this bipartite system each has probability 1/3 of outputting
the right answer on a random input. However, both halves can successfully an-
swer all inputs correctly at the same time, with probability 1/3. Thus, it is secure
under the security definition above, but the adversary actually perfectly pirates
the program with some constant probability.

Our solution will be to use recent ideas from Zhandry [Zha20], who considered
similar issues in the context of traitor tracing. At a high level, the issue above is
that we are trying to assign a property to a quantum state (whether the state
is a good program), but this property is non-physical and does not make sense
for mixed or entangled states. Instead, we want “a program is good” to be a
measurement that can be applied to the state. We would naturally also want the
measurement to be projective, so that if a program is once tested to be “good”,
it will always be “good”.

Let M = (M0,M1) be binary positive operator valued measures (POVMs)
that represents choosing random coins and testing if the quantum program com-
putes correctly with respect to the random coins. For a mixed quantum program
state σ, the probability the program evaluates correctly relative to this test is
given as Tr[M0σ] . LetM′ be the (inefficient) projective measurement {Pp}p∈[0,1],
projecting onto the eigenspaces of M0, where p ranges over the corresponding
eigenvalues of M0

v Zhandry showed that the measurement below results in an
equivalent POVM asM:

– Apply the projective measurementM′, and obtain p;

– Output 0 with probability p, and output 1 with probability 1− p.

Intuitively,M′ will project a state to a eigenvector with eigenvalue p, the state
computes correctly on p-fraction of all inputs.

Therefore, we say a quantum program σ is tested to be γ-good, if the mea-
surement M′ has outcome p ≥ γ. We say an adversary successfully pirates a
quantum program for computing f , if the two programs are both tested to be
γ-good with non-negligible probability. Using similar ideas, we define quantum
unlearnability of programs, and quantum copy-detection.

v Since M0 + M1 is the identity, M1 shares the same eigenvectors, with eigenvalue
1− p.
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Our Copy-Protection Scheme. We give a quantum copy-protection construc-
tion for all unlearnable functions based on (1) classical oracles, and (2) subspace
membership oracles, or more abstractly, any tokenized signature scheme [BDS16].

A tokenized signature generates a signature token |sig〉 which we call a signing
token. A signer who gets one copy of the signing token can sign a single bit b of
her choice. Sign(b, |sig〉) outputs a classical signature whose correctness guarantee
is the same as classical signatures: namely, verification will accept the result as a
signature on b. Importantly, the signing procedure is a unitary and will produce
a superposition of all valid signatures of b; to obtain a classical signature, a
measurement to the state is necessary which leads to a collapse of the token
state. Thus, a signature token |sig〉 can only be used to produce one classical
signature of a single bit and any attempt to produce a classical signature of the
other bit would fail. [BDS16] formalizes this idea and constructs a tokenized
signature scheme relative to a classical oracle (a subspace membership oracle).

The high-level idea of our copy-protection scheme is that it requires any
authorized user to query an oracle twice on signatures of bits 0 and 1. Let f be
the function we want to copy-protect. Define the following circuits:

O1(x, sig) =

{
H(x) if Ver(vk, 0, sig) = 1

⊥ otherwise

O2(x, sig) =

{
f(x)⊕H(x) if Ver(vk, 1, sig) = 1

⊥ otherwise

Here H is a random function. The copy-protected program of f is a signature
token |sig〉 and obfuscations of O1,O2, which we will heuristically treat as oracles
to O1,O2. We denote this program as (|sig〉 ,O1,O2).

To obtain f(x), a user has to query on signatures of both bits and get H(x)
and H(x) ⊕ f(x). Note that even if with token |sig〉 one can only produce one
of the classical signatures, a user can still query both oracles O1,O2 multiple
times. To obtain H(x), a user can simply compute the superposition of all valid
signatures of 0 by applying a unitary, and feed the quantum state together with
x to O1. It then measures the output register. The user never actually measures
the signature. Because the output register contains a unique output H(x), by
Gentle Measurement Lemma [Aar04], it can rewind the quantum state back to
|sig〉. Thus, our copy-protection scheme allows a copy-protected program to be
evaluated on multiple inputs, multiple times.

We next show how to prove anti-piracy security. Let σ1, σ2 be two (potentially
entangled) program states pirated by an adversary, which makes oracle access
to both O1,O2 and breaks the anti-piracy security. Let O⊥ be an oracle that
always outputs ⊥. If σ1 never queries the oracle O2, we know the two programs
(σ1,O1,O2) and (σ1,O1,O⊥) would have almost identical output distribution.
Moreover, (σ1,O1,O⊥) can be simulated even without querying f because O1 is
simply a random oracle (on valid inputs). Therefore, the program can be used
to break the unlearnability of f . Similarly, if σ2 never queries the oracle O1, the
program (σ2,O⊥,O2) can be used to break the unlearnability of f .
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Since f is unlearnable, the above two cases can not happen. We show under
this case, we can extract signatures of 0 and 1. Intuitively, since (σ1,O1,O2)
makes queries to O2, we can run the program on random inputs and measure a
random query to O2, thereby extracting a signature of 1. Similarly it holds for
(σ2,O1,O2) and one could extract a signature of 0. Unfortunately, this intuition
does not quite work since σ1 and σ2 are potentially entangled. This means there
can be correlations between the outcomes of the measurements producing the
two signatures: perhaps, if the measurement on (σ1,O1,O2) produces a valid
signature on 1, then the measurement on (σ2,O1,O2) is guaranteed to fail to
produce a signature. We show by a delicate argument that in fact adversaries
cannot cheat using such correlations.

Our Copy-Detection Scheme. We construct a copy-detection scheme for any
function family that can be watermarked. A watermarking scheme roughly con-
sists the following procedure: Mark takes a circuit and a message, and outputs a
circuit embedded with that mark; Extract takes a marked circuit and outputs the
embedded mark. A watermarking scheme requires: (1) the watermarked circuit
f̃ = Mark(f,m) should preserve its intended functionality as f ; (2) any efficient

adversary given a marked f̃ , can not generate a new marked circuit f̂ with a
different mark, while preserving its functionality. Watermarking primitives have
been studied in previous works including [CHN+18, KW17, QWZ18, KW19,
GKM+19].

Our construction also requires a public key quantum money scheme. It con-
sists two procedures: Gen and Ver. Gen takes a security parameter and outputs
a quantum banknote |$〉. Ver is public, takes a quantum money banknote, and
outputs either a serial number of that banknote or ⊥ indicating it is an invalid
banknote. The security requires no efficient adversary could use |$〉 to prepare
|$1〉 |$2〉 such that both banknotes pass the verification and their serial numbers
are equal to that of |$〉. We note that this version of quantum money corresponds
to a “mini-scheme” as defined by [AC12].

The copy-detection scheme takes a function f , samples a banknote |$〉 with
serial number s, lets f̃ ← Mark(f, s) and outputs the copy-detected program
as (f̃ , |$〉). To evaluate the function, it simply runs the classical program f̃ . To
check a program is valid, it extracts the serial number from the money state and
compares it with the mark of the program.

The security requires that no efficient adversary could produce f̃1, |$1〉 and
f̃2, |$2〉 such that two programs pass the check and both classical circuits preserve
the functionality. Let s be the serial number of |$〉, sb be the serial number of
|$b〉 for b = 1, 2. To pass the check, there are two possible cases:

– s1 = s2 = s. In this case, |$1〉 |$2〉 breaks the security of the quantum money
scheme because one successfully duplicates a banknote with the same serial
number.

– At least one of sb 6= s. Because the mark of f̃b is also equal to sb, one
of f̃b breaks the security of the watermarking scheme, as it preserves the
functionality, while having a different mark than s.

6



We show the above construction and proof apply to a wide range of watermarking
primitives.

Copy-Protection in the Standard Model? The security of our copy-protection
scheme requires treating the obfuscated programs as oracles. While we prove se-
curity for all unlearnable programs, we cannot expect such security to hold in the
standard model: as shown in [AP20], there are unlearnable functions that can
cannot be copy-protected, or even copy-detected. On the other hand, watermark-
able programs are a natural class of programs that are necessarily immune to the
style of counter-example of Barak et al. [BGI+01], on which the copy-protection
impossibility is based. Namely, the counter-example works by giving programs
that are unlearnable, but such that having any (even approximate [BP15]) code
for the program lets you recover the original program. Such programs cannot be
watermarkable, as the adversary can always recover the original program from
the (supposedly) watermarked program.

Thus, we broadly conjecture that all watermarkable functions can be copy-
protected. Our copy-detection result gives some evidence that this may be fea-
sible. Concretely, we conjecture that our copy-protection construction is secure
for any watermarkable program, when the oracles are instantiated with post-
quantum obfuscation constructions. We leave justifying either the broad or con-
crete conjectures as fascinating open questions.

1.3 Other Related Works

Quantum Copy Protection Quantum copy-protection was proposed by Aaron-
son in [Aar09]; this paper gave two candidate schemes for copy-protecting point
functions without security proofs and showed that any functions that are not
quantum learnable can be quantum copy-protected relative to a quantum oracle
(an oracle which could perform an arbitrary unitary).

[AP20] gave a conditional impossibility of general copy-protection: they con-
struct a quantum unlearnable circuit using the quantum FHE scheme and compute-
and-compare obfuscation [WZ17, GKW17] that is not copy-protectable once a
QPT adversary has non-black-box access to the program. [AP20] also gave a
new definition that is weaker than the standard copy-protection security, called
Secure Software Leasing (SSL) and an SSL construction for a subclass of evasive
functions, namely, searchable compute-and-compare circuits.

[BL19] introduced unclonable encryption. They construct schemes for en-
coding classical plaintexts into quantum ciphertexts, which prevents copying of
encrypted data. Unclonable encryption can be seen as copy-protecting a unit of
functional information simpler than a function. [GZ20] introduced another new
notion, unclonable decryption keys; in contrast to making the ciphertext unclon-
able as in [BL19], they construct schemes where the decryption key is unclonable,
therefore allowing only one decryptor to decrypt successfully at a time. A more
recent work is [CMP20], giving a construction for copy-protecting point func-
tions in the quantum random oracle model with techniques inspired by [BL19]
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and the construction can be extended to copy-protecting compute-and-compare
circuits.

Quantum Money Quantum money was first proposed by Wiesner in around
1970; [Wie83] gave a first private-key quantum money scheme based on conju-
gate coding. Aaronson [Aar09] gave a first public-key quantum money scheme;
he proved that it is possible to construct the secure public-key quantum money
relative to a quantum oracle. However, his explicit scheme was broken by Lu-
tomirski et al. [LAF+09]. Later, Aaronson and Christiano [AC12] proposed a
secure public-key quantum money scheme relative to a classical oracle. Zhandry
[Zha19] investigated a kind of collision-free quantum money called quantum
lightning and the win-win relationship between the security of signatures/hash
functions and quantum money; [Zha19] also instantiated the quantum money
scheme of [AC12] with quantum-secure indistinguishability obfuscation. Kane
[Kan18] showed a new approach for public-key quantum money using modular
forms. Ji et al. [JLS18] defined the pseudorandom quantum state (PRS) and
gave a private-key quantum money scheme based on PRS. Recently, Peter Shor
[Sho20] proposed a public-key quantum money scheme based on the hardness of
a lattice problem.

Another interesting circumstance to consider is classically verifiable quan-
tum money introduced in [Gav12]. [RS19] gave a construction for semi-quantum
money which can be verified with a protocol over classical channels.

One-time Programs and One-time Memory Another idea of copy-protecting
softwares is through one-time program, introduced in [GKR08]. One-time pro-
grams can be executed on only one single input and nothing other than the
result of this computation is leaked. Quantum one-time programs are discussed
in [BGS13], showing that any quantum circuit can be compiled into a one-time
program assuming only the same basic one-time memory devices used for clas-
sical circuits. [LSZ20] constructs one-time programs from quantum-accessible
one-time memories where the view of an adversary, despite making quantum
queries, can be simulated by making only classical queries to the ideal function-
ality.

1.4 Concurrent and Independent Work

Very recently, [KNY20] presents a secure software leasing for a subclass of evasive
functions and PRFs, using watermarking and two-tier quantum-lightning, which
can be built from the LWE assumption. Their main observation is that the full
power of public-key quantum money is not needed in the verification of SSL, and
they introduce a new primitive in between public-key and private-key quantum
money, which they call two-tier quantum lightning. While their construction can
be built from LWE alone, our construction aims at a more generalized definition
in terms of successful piracy and functionality-preserving; our copy detection
construction also works for other cryptographic functionalities such as encryption
and signature.
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2 Preliminaries

We use λ as the security parameter and when inputted into an algorithm, λ will
be represented in unary. We say a function ε(x) is negligible if for all inverse
polynomials 1/p(x), ε(x) < 1/p(x) for all large enough x. We use negl(x) to
denote a negligible function. We use QPT to denote quantum polynomial time.

2.1 Quantum Computation

We give some basic definitions of quantum computation and quantum informa-
tion in Appendix A. Here, we only state a key Lemma for our construction: the
Gentle Measurement Lemma proposed by Aaronson [Aar04], which gives a way
to perform measurements without totally destroying the state.

Lemma 1 (Gentle Measurement Lemma [Aar04]). Suppose a measure-
ment on a mixed state ρ yields a particular outcome with probability 1− ε. Then
after the measurement, one can recover a state ρ̃ such that ‖ρ̃− ρ‖tr ≤

√
ε.

2.2 Quantum Oracle Algorithm

In this work, we consider the quantum query model, which gives quantum circuits
access to some oracles.

Definition 1 (Classical Oracle). A classical oracle O on input query x is
a unitary transformation of the form Uf |x, y, z〉 → |x, y + f(x), z〉 for classical
function f : {0, 1}n → {0, 1}m. Note that a classical oracle can be queried in
quantum superposition.

In the rest of the paper, the word ‘oracle’ means a classical oracle. A quantum
oracle algorithm with oracle access to O is a sequence of unitary Ui and oracle
access to O (or Uf ). The query complexity of a quantum oracle algorithm is the
number of O access.

In the analysis of security of the copy-protection scheme in Section 5.2, we
will use the theorem from [BBBV97] to bound the change in adversary’s state
when we change the oracle’s input-output at where the adversary hardly ever
queries on.

Theorem 1 ([BBBV97]). Let |φi〉 be the superposition of quantum Turing
machine M with oracle O on input x at time i. Define Wy(|φi〉) to be the sum
of squared magnitudes in |φi〉 of configurations of M which are querying the
oracle on string y. For ε > 0, let F ⊆ [0, T − 1] × Σ∗ be the set of time-string
pairs such that

∑
(i,y)∈F Wy(|φi〉) ≤ ε2/T .

Now suppose the answer to each query (i, y) ∈ F is modified to some arbitrary
fixed ai,y (these answers need not be consistent with an oracle). Let |φ′i〉 be the
superposition ofM on input x at time i with oracle O modified as stated above.
Then ‖|φT 〉 − |φ′T 〉‖tr ≤ ε.
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2.3 Direct-Product Problem and Quantum Signature Tokens

In this section, we will define direct-product problem, which are key components
of quantum signature token scheme by Ben-David and Sattath [BDS16] and also
our quantum copy-protection scheme.

Definition 2 (Dual Subspace). Given a subspace S of a vector space V , let
S⊥ be the orthogonal complement of S: the set of y ∈ V such that x · y = 0 for
all x ∈ S. It is not hard to show: S⊥ is also a subspace of V ; (S⊥)⊥ = S.

Definition 3 (Subspace Membership Oracles). A subspace membership or-
acle for a subspace A ⊆ Fn, denoted as UA, on input vector v, will output 1 if
v ∈ A, v 6= 0 and output 0 otherwise.

Definition 4 (Subspace State). For a subspace A ⊆ Fn, the state |A〉 is
defined as 1√

|A|

∑
v∈A |v〉, which is a uniform superposition of all vectors in A.

Direct-Product Problem Our construction relies on the following problem
called the “Direct-Product Problem” in [AC12]: for any QPT adversary A, given
one copy of |A〉 and oracle access to UA, UA⊥ , the problem is to finds two non-
zero vectors such that u ∈ A and v ∈ A⊥.

The hardness of the direct-product problem was proved by Ben-David and
Sattath [BDS16], used for construction of quantum signature tokens. More pre-
cisely, a signature token is a subspace state |A〉 in their construction. All vectors
in A \ {0} are signatures for bit 0 and all vectors in A⊥ \ {0} are signatures
for bit 1. Therefore, to generate valid signatures for both 0 and 1, it is required
to solve the “Direct-Product Problem”. Our copy-protection scheme works for
general signature token schemes. To keep the statement and proof simple, we
focus on the construction in [BDS16].

Theorem 2 ([BDS16]). Let ε > 0 be such that 1/ε = o(2n/2). Let A be a
random subspace Fn, and dim(A) = n/2. Given one copy of |A〉 and access to
subspace membership oracles of UA and UA⊥ , an adversary needs Ω(

√
ε2n/4)

queries to output a pair of non-zero vectors (u, v) such that u ∈ A and v ∈ A⊥
with probability at least ε.

We will refer to the direct-product problem as a security game, which is
defined as follows:

Definition 5 (Direct-Product Game). A direct-product game consists of the
following steps:

Setup Phase: the challenger takes in a security parameter λ, samples a random
λ/2-dimensional subspace A from Fλ; then prepares the membership oracle
UA for A, UA⊥ for the dual subspace A⊥ and a quantum state |A〉.

Query Phase: the challenger sends |A〉 to the adversary; the adversary can
query UA, UA⊥ for polynomially many times.

Output Phase: the adversary outputs two vectors (u, v).
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The challenger checks if u ∈ A \ {0}, v ∈ A⊥ \ {0}. If this is satisfied, then the
adversary wins.

Theorem 2 shows that for any QPT adversary, the winning probability of the
direct-product game is negligible.

2.4 Measurement Implementation

The following definitions and lemmas are introduced by Zhandry [Zha20].

Definition 6 (Controlled Projection). Let P = {Pi}i∈I be a collection of
projective measurement over a Hilbert space H, where Pi = (Pi, Qi) for i ∈ I.
Let D be a distribution with a random coin set R. We define the controlled
projection, denoted CProjP,D = (CProj0P,D,CProj

1
P,D) as the follows:

CProj0P,D :=
∑

r∈R
|r〉 〈r| ⊗ PD(r) CProj1P,D :=

∑

r∈R
|r〉 〈r| ⊗QD(r)

In other words, CProjP,D uses the random coins r as a control and decides
which projective measurement to be applied on the system. That is, CProjP,D
implements the following mixed projective measurement, which is a POVM
PD = (PD, QD) where PD =

∑
i∈I Pr[i← D]Pi and QD =

∑
i∈I Pr[i← D]Qi.

For example, D generates a random message m and a random encryption c
of this message m. In this case, I = {(m, c)} for all messages and ciphertexts.
P(m,r) = (P(m,r), Q(m,r)) simply means trying to decrypt a ciphertext c and
check if the resulting message is equal to m.

Definition 7 (Projective Implementation). Let P = (P,Q) be a binary
outcome POVM. Let D be a finite set of distributions over outcomes {0, 1}.
Let E = {ED}D∈D be a projective measurement with index set D. Consider the
following measurement:

– Measure under the projective measurement E and obtain a distribution D
over {0, 1};

– Output a bit according to the distribution D.

We say the above measurement is a projective implementation of P if it is equiv-
alent of P, denoted as ProjImp(P).

Note that if the outcome is a distribution D = (d0, d1), the collapsed state is
an eigenvector of P corresponding to eigenvalue d0, and it is also an eigenvector
of Q corresponding to eigenvalue d1 = 1− d0.

Lemma 2 (A variation of Lemma 1 in [Zha20]). Any binary outcome
POVM P = (P,Q) has a projective measurement ProjImp(P).

In this work, we propose the following new definition corresponding to ProjImp.

11



Definition 8 (Threshold Implementation). A threshold implementation
with parameter γ of a binary POVM P = (P,Q) is a variant of projective im-
plementation ProjImp(P), denoted as (TIγ(P), I− TIγ(P)):
– Instead of measuring under the projective measurement E = {ED}D∈D and

obtain a distribution D over {0, 1}, TIγ(P) measures if the corresponding
distribution D = (d0, d1) has d0 ≥ γ.

– Output 0 with probability Tr[TIγ(P)ρ] and 1 with probability 1−Tr[TIγ(P)ρ],
for any quantum state ρ.

Therefore, TIγ(P) is a projection and the collapsed state is a (mixed) state in
the span of all eigenvectors of P whose eigenvalues are at least γ.

Remark 1. For a binary outcome measurement P = (P0, P1), we usually say
‘perform measurement P0 on ρ’ if P was performed on ρ. Since we only focus on
the case that outcome is 0 in the paper, it sometimes also denotes applying P
on ρ conditioned on that the outcome is 0.

Approximating Projective Implementation Before describing the theorem
of the approximation algorithm, we give two definitions that characterize how
good an approximation projective implementation is, which were first introduced
in [Zha20].

Definition 9 (Shift Distance). For two distribution D0, D1, the shift distance
with parameter ε is defined as ∆ε

Shift(D0, D1), which is the smallest quantity δ
such that for all x ∈ R:

Pr[D0 ≤ x] ≤ Pr[D1 ≤ x+ ε] + δ,

Pr[D1 ≤ x] ≤ Pr[D0 ≤ x+ ε] + δ.

For two real-valued measurementsM and N over the same quantum system,
the shift distance betweenM and N with parameter ε is defined as,

∆ε
Shift(M,N ) := sup

|ψ〉
∆ε

Shift (M(|ψ〉),N (|ψ〉)) .

Definition 10 ((ε, δ)-Almost Projective). A real-valued quantum measure-
ment M is said to be (ε, δ)-almost projective if for all quantum state |ψ〉, ap-
ply M twice in a row to |ψ〉, obtaining outcomes X and Y . Then we have
Pr[|X − Y | ≤ ε] ≥ 1− δ.
Theorem 3 (Theorem 2 in [Zha20]). Let D be any probability distribution
and P be a collection of projective measurements. For any 0 < ε, δ < 1, there
exists an algorithm of measurement APIε,δP,D that satisfies the followings:

– ∆ε
Shift(API

ε,δ
P,D,ProjImp(PD)) ≤ δ.

– API
ε,δ
P,D is (ε, δ)-almost projective.

– The expected running time of APIε,δP,D is TP,D ·poly(1/ε, log(1/δ)) where TP,D
is the combined running time of D, the procedure mapping i to (Pi, Qi) and
the run-time of measurement (Pi, Qi).

12



3 Learning Game Definitions

3.1 Unlearnability

Definition 11 (Quantum Program with Classical Inputs and Outputs).
A quantum program with classical inputs is a pair of quantum state ρ and uni-
taries {Ux}x∈[N ] (where [N ] is the domain), such that the state of the program

evaluated on input x is equal to UxρU
†
x. To obtain an output, it measures the

first register of UxρU
†
x. Moreover, {Ux}x∈[N ] has a compact classical description

which means applying Ux can be efficiently computed given x.

Notation-wise, the input and output space N,M are functions in λ.

Definition 12 (γ-Goodness Test with respect to f,D). Let (ρf , {Uf,x}x∈[N ])
be a quantum program for computing a classical function f : [N ] → [M ]. Let D
be a probability distribution over the input space [N ].

– Define (Pf,x, Qf,x) be a projective measurement that computes the quantum
program on input x, and checks in superposition that if the quantum circuit
outputs correctly. Let Vf,x be a projection that checks if in superposition, the
first register is equal to f(x). We have Pf,x = Vf,xUf,x and Qf,x = I−Pf,x.

– Let {Pf , Qf} be the controlled projection with respect to the distribution D,
as defined in Definition 6. Then, let {TIγ(Pf ), I−TIγ(Pf )} be the Threshold
Implementation for Pf with threshold value γ, as defined in Definition 8.

– We say a quantum program is tested γ-good for computing f with dis-

tribution D if the projective measurement {TIγ(Pf ), I − TIγ(Pf )} on ρf
outputs 0.

Definition 13 (Learning Game for F ,D). A learning game for a function
family F = {Fλ : [N ] → [M ]} , a distribution family D = {Df}, and an

adversary A is denoted as LGAF,D,γ(1
λ), which consists the following steps:

1. Sampling Phase: At the beginning of the game, the challenger takes a
security parameter λ and samples a function f ← Fλ;

2. Query Phase: A then gets oracle access to f ;

3. Output Phase: Finally, A outputs a quantum program (ρ, {Ux}x∈[N ]).

The game outputs 0 if and only if the program is tested to be γ-good with respect
to f,Df .

Definition 14 (Quantum Unlearnability of F with Testing Distribu-
tion D). A family of functions with respect to D is called γ quantum unlearnable
if for all λ, for any QPT adversary A, there exists a negligible function negl(·)
such that the following holds:

Pr
[
b = 0, b← LGAF,D,γ(1

λ)
]
≤ negl(λ)

13



3.2 Generalized Unlearnability

The γ-goodness test for quantum program (Definition 12) captures the intuition
that a quantum program’s behavior on classical inputs is γ-good comparing to
the input-output behavior of f with respect to the input distribution Df . For
cryptographic primitives, as discussed in the introduction, achieving a particular
cryptographic functionality does not necessarily mean to have the exact input-
output behavior. As an example, to sign a message, there are usually more than
one valid signatures and the intended functionality is preserved as long as any
valid signature is provided.

For a randomized function f , we denote the input x of f as the real input
taken by f as well as random coins used by f .

Definition 15 (Predicate). A classical predicate E(P, y1, · · · , yk, r) is a bi-
nary outcome function that runs a classical program P on a randomly sampled in-
put x to get output z, and outputs 0/1 depending on whether (z, y1, · · · , yk, r) ∈ R
for some binary relation defined by R. The randomness of input x, program P
all depends on randomness r. y1, · · · , yk are auxiliary inputs that specify the
relation.

Quantumly, it runs a quantum program on random classical input x and
measure if (z, y1, · · · , yn, r) ∈ R in superposition, where z is the first register of
the resulting state. In other words, it is a projective measurement indexed by r.

We use Samp,F to denote a cryptographic application. F denotes the in-
tended functionality that this cryptographic application should achieve.

Definition 16 (Cryptographic Application Samp,F ). Samp is a sampler
that takes a security parameter λ and interacts with an adversary A: f ← (A ⇔
Samp(1λ)) where f is a classical circuit that contains some secret information
sf which is unknown to A, and A can get some public information auxf from
the interaction.

F = {Fλ} and Fλ(P, f, r) is a predicate which takes a program, a circuit
f and randomness r. For all efficient A, all f sampled by Samp, there exists a
negligible function negl(·) such that, Pr [Fλ(f, f, r) = 0] ≥ 1− negl(λ).

This security of the cryptographic application is orthogonal to its correctness
and unlearnability. The definition of security varies a lot when different applica-
tions are given. Some examples include CPA security for public key encryption
schemes and signature unforgeability. However, the security should be easy to
prove, when we implement a copy protection/copy detection scheme using our
construction. In this paper, we only focus on its correctness and copy-protect
security/copy-detect security/unlearnability/unremovability.

Definition 17 (γ-Goodness Test with respect to f,E). Let a quantum
program for computing f be (ρf , {Uf,x}x∈[N ]).

– Quantumly, define (Pf,r, Qf,r) be a projective measurement that computes
the quantum program on input x (sampled according to r), and checks in
superposition that if the output of the quantum circuit satisfies the predicate
E(·, f, r) in superposition.
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– Let {Pf , Qf} be the controlled projection with respect to uniform distribution
on randomness r. Let {TIγ(Pf ), I−TIγ(Pf )} be the threshold implementation
for Pf with threshold value γ.

– A quantum program is tested γ-good with respect to f,E if the projective
measurement {TIγ(Pf ), I− TIγ(Pf )} on ρf outputs 0.

Note that Definition 12 fits into this general definition, where the predicate
E on a random input x (x is drawn depending on randomness r) and f , checks
if the output is equal to f(x).

We then generalize the learning game to the setting of cryptographic applica-
tions. Note that E may be not the same as F . In the game below, an adversary
tries to learn a more restricted functionality of f .

Definition 18 (Learning Game for Samp,E ). A learning game for a sam-
pler Samp (which samples a function in Fλ), a predicate E = {Eλ}, and an
adversary A is denoted as LGASamp,E ,γ(1

λ), which consists the following steps:

1. Sampling Phase: At the beginning of the game, A interacts with the chal-
lenger and samples f ← (A ⇐⇒ Samp(1λ)).

2. Query Phase: A then gets oracle access to f ;
3. Output Phase: Finally, A outputs a quantum program (ρ, {Ux}x∈[N ]).

The game outputs 0 if and only if the program is tested to be γ-good with respect
to f,Eλ.

It is easy to see that Definition 18 implies Definition 13. One example is
digital signature. Samp picks a pair of signing key and verification key (sk, vk)
and outputs a signing circuit f = Sign(sk, ·) which hard-wires sk and appends
vk with the circuit description. The predicate is defined as: sample m, rs, rv
according to randomness r, run the program with input m and randomness rs
to obtain outcome z, decode sk, vk from the circuit f and the predicate is 0 if and
only if Ver(vk,m, z; rv) = 1. In other words, the predicate checks if the program
outputs a valid signature on a random message.

Definition 19 (Quantum Unlearnability of (Samp,F ),E ). ((Samp,F ),E )
is called γ-quantum-unlearnable if for all λ, for any QPT adversary A, there
exists a negligible function negl(·) such that the following holds:

Pr
[
b = 0, b← LGASamp,E ,γ(1

λ)
]
≤ negl(λ)

3.3 Generalized Copy Protection

Definition 20 (Quantum Copy Protection). A quantum copy-protection
scheme for (Samp,F ),E consists of the following procedures:

Setup(1λ)→ (sk): the setup algorithm takes in a security parameter λ in unary
and generates a secret key sk.
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Generate(sk, f) → (ρf , {Uf,x}x∈[N ]): on input f ∈ Fλ and secret key sk, the
vendor generates a quantum program (ρf , {Uf,x}x∈[N ]).

Compute(ρf , {Uf,x}x∈[N ], x) → y: given a quantum program, a user can com-
pute the function f(x) on input x by applying Uf,x on ρ and measuring the
first register of the state.

Efficiency: Setup, Compute and Generate should run in poly(λ) time.
Correctness: For all λ ∈ N, all efficient A, every f ← (A ⇐⇒ Samp(1λ)), all

(ρf , {Uf,x}x∈[N ])← Generate(sk, f), there exists a negligible function negl(·)
such that,
unique output: for all x ∈ [N ], apply Uf,x on ρf and measure the first

register, with probability at least 1− negl(λ), the output is a fixed value
zf,x;

functionality preserving: (ρf , {Uf,x}x∈[N ]) are (1 − negl(λ))-good with
respect to f, Fλ with probability 1.

Security: It has γ-anti-piracy security defined below.

Note that the property “unique output” enables the copy-protected program can
be evaluated polynomially many times.

Definition 21 (γ-Anti-Piracy Security Game). An anti-piracy security game
for a sampler Samp, a predicate E and adversary A is denoted as AGASamp,E ,γ(1

λ),
which consists of the following steps:

1. Setup Phase: At the beginning of the game, the challenger takes a security
parameter λ and obtains secret key sk← Setup(1λ).

2. Sampling Phase: A interacts with the challenger and samples f ← (A ⇐⇒
Samp(1λ)).

3. Query Phase: A makes a single query to the challenger and obtains a copy
protection program for f : (ρf , {Uf,x}x∈[N ])← Generate(sk, f).

4. Output Phase: Finally, A outputs a (possibly mixed and entangled) state σ
over two registers R1, R2 and two sets of unitaries ({UR1,x}x∈[N ], {UR2,x}x∈[N ])
They can be viewed as programs P1 = (σ[R1], {UR1,x}x∈[N ]) and P2 = (σ[R2],
{UR2,x}x∈[N ]).

The game outputs 0 if and only if both programs P1,P2 are both tested to be
γ-good with respect to Eλ.

Similarly, we can define q-collusion resistant γ-anti-piracy security game
AG

q,A
Samp,E ,γ(1

λ), in which the adversaryA can make at most q queries in the query
phases and is required to output q + 1 programs {(σ[Ri], {URi,x}x∈[N ])}i∈[q+1]

such that each program is tested to be γ-good.

Definition 22 (γ-Anti-Piracy-Security). A copy protection scheme for Samp

and E has γ-anti-piracy security, if for any QPT adversary A, there exists a neg-
ligible function negl(·) such that the following holds for all λ ∈ N:

Pr
[
b = 0, b← AGASamp,E ,γ(1

λ)
]
≤ negl(λ) (1)
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3.4 Generalized Copy Detection

A copy detection scheme for (Samp,F ),E is very similar to the copy protection
scheme, except it has an additional procedure Check which applies a projective
measurement and checks if the quantum state is valid.

Definition 23 (Quantum Copy Detection). A quantum copy-detection scheme
for (Samp,F ),E consists of the following procedures:

Setup(1λ), Generate(sk, f) and Compute(ρf , {Uf,x}x∈[N ], x) are the same as those
in Definition 20.

Check(pk, auxf , ρf , {Uf,x}x∈[N ])→ b, ρ′: on input a public key pk, public infor-
mation auxf generated during Samp, a quantum program, it applies a binary
projective measurement P0, P1 on ρf that depends on pk, auxf , {Uf,x}x∈[N ];
it outputs the outcome b and the collapsed state ρ′.

Correctness (Generate): The same as the security of Definition 20.
Correctness (Check): For all λ ∈ N, all efficient A, every f ← (A ⇐⇒

Samp(1λ)), all (ρf , {Uf,x}x∈[N ]) ← Generate(sk, f), there exists a negligible
function negl(·) such that, Check(pk, auxf , ρf , {Uf,x}x∈[N ]) outputs 0 with
probability at least 1− negl(λ).

Security: It has γ-copy-detection security defined below.

Definition 24 (γ-Copy-Detection Security Game). A copy-detection se-
curity game for a sampler Samp, a predicate E and adversary A is denoted as
DGASamp,E ,γ(1

λ), which consists of the following steps:

1. Setup Phase: At the beginning of the game, the challenger takes a security
parameter λ and obtains keys (pk, sk)← Setup(1λ).

2. Sampling Phase: A interacts with the challenger and samples f ← (A ⇐⇒
Samp(1λ)). Let auxf denote the public information A obtains during the
interaction.

3. Query Phase: A makes a single query to the challenger and obtains a copy
detection program for f : (ρf , {Uf,x}x∈[N ])← Generate(sk, f).

4. Output Phase: Finally, A outputs a state σ over two registers R1, R2 and
two sets of unitaries ({UR1,x}x∈[N ], {UR2,x}x∈[N ]). They can be viewed as
programs P1 = (σ[R1], {UR1,x}x∈[N ]) and P2 = (σ[R2], {UR2,x}x∈[N ]).

The game outputs 0 if and only if

– Apply Check on input pk, auxf , Pi respectively and both outcomes are 0. Let
P ′i be the collapsed program conditioned on outcomes are 0.

– Both programs P′1,P
′
2 are both tested to be γ-good with respect to f,Eλ.

Similarly, we can define q-collusion resistant γ-copy-detection security game
DG
A,q
Samp,E ,γ(1

λ), in which the adversary A can perform at most q query phases
and output q + 1 programs Pi = (σ[Ri], {URi,x}x∈[N ]) for i ∈ [q + 1]. The game
outputs 0 if and only if for all i ∈ [q + 1], the outcome of applying Check on Pi
is 0, and the collapsed program P ′i is tested to be γ-good.
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Definition 25 (γ-Copy-Detection-Security). A copy detection scheme for
Samp and E has γ-security, if for any QPT adversary A, there exists a negligible
function negl(·) such that the following holds for all λ ∈ N:

Pr
[
b = 0, b← DGASamp,E ,γ(1

λ)
]
≤ negl(λ) (2)

3.5 Watermarking Primitives with Public Extraction

In this subsection, we give a unified definition that covers most of the defini-
tions in the previous works about watermarking primitives including [CHN+18,
KW17, QWZ18, KW19, GKM+19]. We will give several concrete examples of
watermarking schemes in Appendix C.

Definition 26 (Watermarking Primitives for (Samp,F ),E ). A watermark-
ing scheme for (Samp,F ),E consists of the following classical algorithms:

Setup(1λ): it takes as input a security parameter 1λ and outputs keys (xk,mk).
xk is the extracting key and mk is the marking key. We only consider publicly
extractable watermarking scheme. Thus xk is always public.

Samp(1λ): it takes a security parameter 1λ,

f ← (A ⇐⇒ Samp(1λ)).

We also denote auxf as the public information A obtains during the inter-
action.

Mark(mk, f, τ): it takes a circuit f and a message τ ∈ Mλ, outputs a marked

circuit f̃ .
Extract(xk, auxf , f

′): it takes the public auxiliary information auxf , a circuit
and outputs a message in {⊥} ∪Mλ.

Remark. In some watermarking schemes, Setup also outputs a watermarking
public parameter wpp and Samp takes this parameter to sample a function. Our
construction works in this setting. In sake of clarity, we use the above notion.
Extract may also take an aux that specifies its restricted functionality that f ′

should achieve. We assume f ′ contains a piece of information aux as a comment.

It satisfies the following properties.

Definition 27 (Correctness of Mark (Functionality Preserving)). For all
λ, for every efficient algorithm A, there exists a negligible function negl, for all
(xk,mk)← Setup(1λ), and every τ ∈Mλ,

Pr
[
Fλ(f̃ , f, r) = 0 : f←(A⇐⇒Samp(1λ))

f̃←Mark(mk,f,τ)

]
≥ 1− negl(λ).

Definition 28 (Correctness of Extract). For all λ, for every efficient algo-
rithm A, there exists a negligible function negl(·), for all (xk,mk) ← Setup(1λ),
and every τ ∈Mλ, every aux,

Pr
[
τ 6= Extract(xk, auxf , f̃ ||aux) : f←(A⇐⇒Samp(1λ))

f̃←Mark(mk,f,τ)

]
≤ negl(λ),
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where auxf is the public information given to A and f̃ ||aux is the program ap-
pended with aux.

Definition 29 (Meaningfulness). For all λ, for every efficient algorithm A,
there exists a negligible function negl(·), for every aux,

Pr
[
⊥ 6= Extract(xk, auxf , f ||aux) : (xk,mk)←Setup(1λ)

f←(A⇐⇒Samp(1λ))

]
≤ negl(λ).

where auxf is the public information given to A and f̃ ||aux is the program ap-
pended with aux.

Definition 30 (γ-Unremovability with respect to Samp,E ). Consider the
following game, denoted as WGASamp,E ,γ :

1. Setup: The challenger samples (xk,mk)← Setup(1λ). A then gets xk.
2. Sampling Phase: The challenger interacts with the algorithm A and sam-

ples f ← (A ⇐⇒ Samp(1λ)).
3. Query Phase: A has classical access to Mark(mk, f, ·) at any time. Define

Q be the set of messages that A has queried on.
4. Output Phase: Finally, the algorithm outputs a circuit f∗.

The adversary wins the game if and only if

Extract(xk, auxf , f
∗) 6∈ Q ∧ Pr

r
[Eλ(f

∗, f, r) = 1] ≥ γ

We say a watermarking scheme has γ-unremovability respect to Samp,E , if for
all QPT A, it wins the above game with negligible probability in λ. We say it
has q-collusion resistant γ-unremovability if the number of queries made in the
query phase is at most q.

4 Approximating Threshold Implementation

By applying API
ε,δ
P,D and checking if the outcome is greater than or smaller

than γ, we get a approximated threshold implementation ATI
ε,δ
P,D,γ . Here, we use

(ATIε,δP,D,γ , I− ATI
ε,δ
P,D,γ) to denote this binary POVM.

Theorem 3 gives the following corollary on approximating threshold imple-
mentation:

Corollary 1. For any ε, δ, γ,P, D, the algorithm of measurement ATIε,δP,D,γ that
satisfies the followings:

– For all quantum state ρ, Tr[ATIε,δP,D,γ−ε · ρ] ≥ Tr[TIγ(PD) · ρ]− δ.
– By symmetry, for all quantum state ρ, Tr[TIγ−ε(PD)·ρ] ≥ Tr[ATIε,δP,D,γ ·ρ]−δ.
– For all quantum state ρ, let ρ′ be the collapsed state after applying ATI

ε,δ
P,D,γ

on ρ. Then, Tr[TIγ−2ε(PD) · ρ′] ≥ 1− 2δ.

– The expected running time is the same as API
ε,δ
P,D.
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Intuitively the corollary says that if a quantum state ρ has weight p on eigen-
vectors with eigenvalues at least γ, the measurement ATIε,δP,D,γ−ε with probability
at least p − δ outputs outcome 0 and the collapsed state has weight 1 − 2δ on
eigenvectors with eigenvalues at least γ − 2ε. Also note that the running time
is proportional to poly(1/ε, 1/(log δ)), which is a polynomial in λ as long as ε is
any inverse polynomial and δ is any inverse sub-exponential function. The proof
of the above Corollary is in Appendix D.1.

We can also consider approximating the measurements on bipartite (possibly
entangled) quantum state. We will prove a similar statement as Corollary 1.

Lemma 3. Let P1 and P2 be two collections of projective measurements and
D1 and D2 be any probability distributions defined on the index set of P1 and P2

respectively. For any 0 < ε, δ, γ < 1, the algorithms ATI
ε,δ
P1,D1,γ

and ATI
ε,δ
P2,D2,γ

satisfy the followings:

– For any bipartite (possibly entangled, mixed) quantum state ρ ∈HL ⊗HR,

Tr
[(
ATI

ε,δ
P1,D1,γ−ε ⊗ ATI

ε,δ
P2,D2,γ−ε

)
ρ
]
≥ Tr

[(
TIγ(PD1

)⊗ TIγ(PD2
)
)
ρ
]
− 2δ.

– For any (possibly entangled, mixed) quantum state ρ, let ρ′ be the collapsed

state after applying ATI
ε,δ
P1,D1,γ

⊗ ATI
ε,δ
P2,D2,γ

on ρ (and normalized). Then,

Tr
[(
TIγ−2ε(PD1

)⊗ TIγ−2ε(PD2
)
)
ρ′
]
≥ 1− 4δ.

We defer the proof of the above Lemma to Appendix D.2.

5 Quantum Copy-Protection Scheme

Let λ be the security parameter. Let F = {Fλ}λ∈N be a class of circuits.
We assume F is quantum unlearnable with respect to D and can be com-
puted by polynomial-sized classical circuits. The construction for quantum copy-
protection of function class Fλ is defined in Fig. 1.

Note that this construction works for general quantum unlearnable function
families as well. By simply changing the notation in the proof to that in the gen-
eral quantum unlearnability case, we prove it for general quantum unlearnable
function families. More discussion will be given at the end of this section.

Oracle Heuristics In practice we use a quantum-secure PRF [Zha12] to im-
plement function g; and we use quantum-secure (classical) VBB obfuscation to
implement each of (O1,O2, UA, UA⊥). We can replace VBB obfuscation programs
with oracles that only allow black-box access by the security of VBB obfusca-
tion; afterwards, we can also replace PRF g with a real random function by the
property of PRF. The heuristic analysis is straightforward and we omit them
here.
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Setup(1λ) → sk: The setup algorithm takes in security parameter 1λ.
– Pick a uniformly random subspace A ⊆ Fλ of dimension λ/2.
– Output sk = A, where A is described by a set of orthogonal basis

vectors.
Generate(sk, f ∈ Fλ): The Generate algorithm receives sk = A and a

function f from Fλ.
– Prepare a subspace state on n qubits corresponding to A, |A〉 =

1√
|A|

∑
v∈A |v〉.

– Generate oracles UA, UA⊥ which compute subspace membership
functions for subspace A and its dual subspace A⊥ respectively.

– Generate oracles O1,O2 such that

O1(x, v) =

{
f(x)⊕ g(x) if v ∈ A and v 6= 0,

⊥ otherwise.

O2(x, v) =

{
g(x) if v ∈ A⊥ and v 6= 0,

⊥ otherwise.

where g is a uniformly random function, with the same input and
output length as f .

– Finally, the Generate algorithm outputs ρ = |A〉 〈A| and {Ux}x∈[N ]

describes the following procedure:
• On input x, prepare the state |0〉 〈0| ⊗ |x〉 〈x| ⊗ ρ and make

an oracle query UA and measure the first register (output
register) to get y1; the remaining state is |x〉 〈x| ⊗ ρ′.

• Apply QFT on the third register ρ′ to get ρ′′.
• Prepare the state |0〉 〈0| ⊗ |x〉 〈x| ⊗ ρ′′ and make an oracle

query UA⊥ and measure the first register to get y2.
• Output y1 ⊕ y2.

The description of {Ux}x∈[N ] requires the oracle of UA, UA⊥ (or the
VBB obfuscations).

Fig. 1. Quantum copy-protection scheme.
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5.1 Correctness and Efficiency

Correctness Given ρ = |A〉 〈A| and {Ux}x∈[N ], it performs the following com-
putation:

1. Make an oracle query O1 on the state |0〉 |x〉 |A〉, the resulting state is sta-
tistically close to |y1〉 |x〉 |A〉. Note that |A〉 with overwhelming probabil-
ity 1 − 1/|A| contains a non-zero vector in A. It measures y1, which is
y1 = f(x)⊕ g(x).

2. It then prepares a state by applying QFT on the third register and the
resulting state is is statistically close to |0〉 |x〉

∣∣A⊥
〉
. It makes an oracle

query O2 on the state |0〉 |x〉
∣∣A⊥

〉
, the resulting state is statistically close to

|y2〉 |x〉
∣∣A⊥

〉
where y2 = g(x).

Therefore, with overwhelming probability, the output is y1 ⊕ y2 = f(x).

Efficiency In Generate algorithm, as shown in [AC12], given the basis of A,
the subspace state |A〉 can be prepared in polynomial time using QFT. For the
oracles O1,O2, it only needs to check the membership of A and A⊥ and compute
functions f and g. f can be prepared in polynomial time by definition. As we
discussed above, we can prepare function g as a PRF. Therefore, the oracles
O1,O2 can be generated in polynomial time. The Compute algorithm is clearly
efficient.

5.2 Anti-Piracy Security

We show that for a quantum unlearnable families of functions F with respect to
D defined in Definition 14, the quantum copy-protection scheme has anti-piracy
security against any quantum polynomial-time adversaries. More formally:

Theorem 4 (Main Theorem). Let F be a function families that is γ-quantum-
unlearnable respect to distribution D (γ is a non-negligible function of λ). The
above copy protection scheme for F ,D has (γ(λ) − 1/poly(λ))-anti-piracy secu-
rity, for all polynomial poly.

In order to describe the quantum query behavior of quantum programs made
to oracles, we give the following definitions and notations.

We recall that in Definition 12, a QPT adversary A in the anti-piracy secu-
rity game AGAF,D,γ(1

λ), will produce a state σ over registers R1, R2 and unitaries
{UR1,x}x∈[N ], {UR2,x}x∈[N ], the challenger will then perform γ-goodness test on
σ using threshold implementations TIγ(PR1,f ) and TIγ(PR2,f ). For simplicity
we will describe the unitary ensembles {UR1,x}x∈[N ], {UR2,x}x∈[N ] as UR1

, UR2

and describe threshold implementations TIγ(PR1,f ), TIγ(PR2,f ) as TIR1,γ ,TIR2,γ .
Similarly, let ATIR1,γ−ε and ATIR2,γ−ε denote the approximation threshold im-

plementation ATI
ε,δ
R1,γ−ε and ATI

ε,δ
R2,γ−ε respectively, for some inverse polynomial

ε and inverse subexponential function δ (in other words, log(1/δ) is polynomial
in λ).
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In this particular construction, A’s behavior can be described as follows:
A “splits” the copy-protection state ρ into two potentially entangled states
σ[R1], σ[R2]. A prepares (σ[R1], UR1

) with oracle access to (O1,O2) as pirate
program P1; and prepares (σ[R2], UR2

) with oracle access (O1,O2) as pirate pro-
gram P2. Therefore, TIRb,γ and ATIRb,γ−ε both make oracle queries to O1,O2.

We can assume the joint state of R1, R2 has been purified and the overall
state is a pure state over register R1, R2, R3 where P1 has only access to R1 and
P2 has only access to R2.

Quantum Query Weight Let σ be any quantum state of R1, R2, R3. We
consider the program P1. P1 has access to register R1 and oracle access to O =
(O1,O2). We denote |φi〉 to be the overall state of registers R1, R2, R3 before P1

makes i-th query to O1, when it applies ATIR1,γ−ε on σ[R1].

|φi〉 =
∑

x,v,z

αx,v,z |x, v, z〉 .

where (x, v) is the query to oracle O1 and z is working space of P1, the registers
of R2, R3. Note that when ATIR1,γ−ε is applied on σ[R1], it in fact applies some
unitary and eventually makes a measurement, during which the unitary makes
queries to oracles O1,O2. Therefore such a query weight is well-defined.

We denote by W1,A,i to be the sum of squared amplitudes in |φi〉, which are
querying O1 on input (x, v) such that v ∈ A \ {0}:

W1,A,i =
∑

x,v,z:v∈A\{0}
|αx,v,z|2

Then we sum up all the squared amplitudes W1,A,i in all the queries made
by P1 to O1, where v ∈ A \ {0}. We denote this sum as W1,A =

∑
i∈[`1]W1,A,i,

where `1 = `1(λ) is the number of queries made by P1 to O1.

Similarly, we writeW1,A⊥ =
∑
i∈[`2]W1,A⊥,i =

∑
i∈[`2]

∑
x,v,z:v∈A⊥\{0} |αx,v,z|

2

to be the sum of squared amplitudes in |φi〉 where v ∈ A⊥ \{0}, in the `2 queries
made by P1 to O2.

Accordingly for the other program P2 and threshold implementation ATIR2,γ−ε,
we denote these sums of squared amplitudes as W2,A =

∑
i∈[m1]

W2,A,i and

W2,A⊥ =
∑
i∈[m2]

W2,A⊥,i, where m1,m2 are the number of queries made by P2

to oracles O1,O2 respectively.

Case One. Fixing a function f , let (σ, UR1
, UR2

) be the two programs output
by the adversary which are both tested γ-good respect to f,Df with some non-
negligible probability.

Let O⊥ be an oracle that always outputs ⊥. We hope one of the following
will happen:

1. The program (σ[R1], UR1
) with oracle access toO1,O⊥ is tested (γ−2ε)-good

respect to f,Df , with non-negligible probability.
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2. The program (σ[R2], UR2
) with oracle access toO⊥,O2 is tested (γ−2ε)-good

respect to f,Df , with non-negligible probability.

Let ÃTIR1,γ−ε be the same as ATIR1,γ−ε except with oracle access to O1,O⊥
and ÃTIR2,γ−ε be the same as ATIR2,γ−ε except with oracle access to O⊥,O2.

Similarly, let T̃IRb,γ−2ε be the same threshold implementation as TIRb,γ−2ε except
with oracle access to O1,O⊥ and O⊥,O2 respectively.

Since (σ, UR1
, UR2

) are both γ-good respect to f,Df with non-negligible prob-
ability, for some non-negligible function β(·),

Tr[(TIR1,γ ⊗ TIR2,γ) · σ] ≥ β(λ)

From the property of the approximated threshold implementation (Lemma 3),

Tr[(ATIR1,γ−ε ⊗ ATIR2,γ−ε) · σ] ≥ β(λ)− 2δ

Thus, for any b ∈ {1, 2}, we have Tr[ATIRb,γ−ε · σ[Rb]] ≥ β(λ) − 2δ. Since δ is
negligible, both probabilities are still non-negligible.

Let E1 be the event denotes Tr[ÃTIR1,γ−ε · σ[R1]] is non-negligible. If E1

happens, by Corollary 1,

Tr[T̃IR1,γ−2ε · σ[R1]] ≥ Tr[ÃTIR1,γ−ε · σ[R1]]− δ

which is still non-negligible. In other words, (σ[R1], UR1
) with oracle access to

O1,O⊥ is tested (γ − 2ε)-good respect to f,Df with non-negligible probability.
Similarly, define E2 as the program (σ[R2], UR2

) with oracle access to O⊥,O2 is
(γ − 2ε)-good respect to f,Df with non-negligible probability.

Case Two. Fixing a function f , let (σ, UR1
, UR2

) be the two programs output
by the adversary which are both γ-good respect to f,Df , with non-negligible
probability.

If E1 ∨ E2 does not happen, we are in the case Ē1 ∧ Ē2. By definition, there
exist negligible functions negl1, negl2 such that

Tr[ÃTIR1,γ−ε · σ[R1]] ≤ negl1(λ) Tr[ÃTIR2,γ−ε · σ[R2]] ≤ negl2(λ)

We look at the following thought experiments:

1. We apply ATIR1,γ−ε ⊗ ATIR2,γ−ε on σ, by Lemma 3, there exists a non-
negligible function β(·) such that

Tr [(ATIR1,γ−ε ⊗ ATIR2,γ−ε) · σ] ≥ β(λ)− 2δ.

2. We apply ATIR1,γ−ε ⊗ ÃTIR2,γ−ε on σ. We have,

Tr
[
(ATIR1,γ−ε ⊗ ÃTIR2,γ−ε) · σ

]
≤ Tr

[
(I ⊗ ÃTIR2,γ−ε) · σ

]
≤ negl2(λ).
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3. Note that in 1 and 2, the only difference is the oracle access: in 1, it has oracle
access to O1,O2; in 2, it has oracle access to O⊥,O2. Let σ

′ be the state
which we apply (ATIR1,γ−ε⊗I) on σ and obtain a outcome 0, which happens
with non-negligible probability. LetW2,A be the query weight defined on the
state σ′. We know that W2,A can not be negligible otherwise by Theorem 1
(BBBV), the probability difference in 1 and 2 can not be non-neglibile.
Define MR2

be the operator that measures a random query of ATIR2,γ−ε to
O1 and the query (x, v) satisfies v ∈ A \ {0}. By the above discussion, there
exists a non-negligible function β1(·),

Tr [(ATIR1,γ−ε ⊗MR2
) · σ] ≥ β1(λ).

4. We apply ÃTIR1,γ−ε ⊗MR2
on σ. We have,

Tr
[
(ÃTIR1,γ−ε ⊗MR2

) · σ
]
≤ Tr

[
(ÃTIR1,γ−ε ⊗ I) · σ

]
≤ negl1(λ).

5. By a similar argument of 3, letMR1
be the operator that measures a random

query of ATIR1,γ−ε to O2 and the query (x, v) satisfies v ∈ A⊥ \ {0}. There
exists a non-negligible function β2(·),

Tr [(MR1
⊗MR2

) · σ] ≥ β2(λ).

Thus, in the case, one can extract a pair of vectors (u, v) ∈ (A\{0})×(A⊥ \{0})
with non-negligible probability. To conclude it, we have the following lemma,

Lemma 4. Fixing a function f , let (σ, UR1
, UR2

) be the two programs output by
the adversary which are both γ-good respect to f,Df , with non-negligible proba-
bility. If E1 ∨ E2 does not happen, by randomly picking and measuring a query
of ATIR1,γ−ε to O2 and a query of ATIR2,γ−ε to O1, one can obtain a pair of
vectors (u, v) ∈ (A \ {0})× (A⊥ \ {0}) with non-negligible probability.

By averaging over all randomness, we have the following lemma:

Lemma 5. Let Pr[E1] be the probability of E1 taken over all randomness of
AGAF,D,γ(1

λ). If Pr[E1] is non-negligible, there exists an adversary A1 that wins

LGA1

F,D,γ−2ε(1
λ) with non-negligible probability.

Proof. The challenger in the copy protection security game plays as the quantum
unlearnability adversary A1 for function f ← F , given only black-box access to
f ; we denote this black box as oracle Of , which on query |x, z〉, answers the
query with |x, f(x) + z〉.

Next, we show that A1 can simulate the copy protection security game for
A using the information given and uses A to quantumly learn f . A1 samples
random λ/2-dimensional subspace A over F and prepares the membership oracles
(two unitaries) UA, U

⊥
A as well as state |A〉.

Using UA, U
⊥
A and given oracle access to f in the unlearnability game, A1

simulates the copy protection oracles O1,O2 for A in the query phase of anti-
piracy game.
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There’s one subtlety in the proof: A1 needs to simulate the oracles in the
anti-piracy game slightly differently: A1 simulates the oracles with their func-
tionalities partially swapped:

O′1(x, v) =
{
g(x) if v ∈ A and v 6= 0,

⊥ otherwise.

O′2(x, v) =
{
f(x)⊕ g(x) if v ∈ A⊥ and v 6= 0,

⊥ otherwise.

That is, a random function g(x) is output when queried on u ∈ A \ {0}, and
f(x)⊕ g(x) is output when queried on u ∈ A⊥ \{0}. The distributions of O1,O2

and O′1,O′2 are identical. Note that g(x) can be simulated by a quantum secure
PRF or a 2t-wise independent hash function where t is the number of oracle
queries made by A [Zha12].

In the output phase, A outputs (σ, UR1
, UR2

) and sends to A1. A1 simply
outputs (σ[R1], UR1

) with oracle access to O′1,O⊥. The program does not need
access to oracle f because O′1 is only about g(·) and O⊥ is a dummy oracle. If
E1 happens, the program is a (γ − 2ε)-good with non-negligible probability, by
the definition of E1. Because Pr[E1] is also non-negligible, A1 breaks (γ − 2ε)-
quantum-unlearnability of F ,D. ut

Lemma 6. Let Pr[E2] be the probability of E2 taken over all randomness of
AGAF,D,γ(1

λ). If Pr[E2] is non-negligible, there exists an adversary A2 that wins

LGA2

F,D,γ−2ε(1
λ) with non-negligible probability.

Proof (Proof Sketch). The proof is almost identical to the proof for Lemma 6
except oracles O1,O2 are simulated in the same way as that in the construction.
O1(x, v) outputs f(x)⊕ g(x) if v ∈ A \ {0}, and otherwise outputs ⊥. Similarly,
O2(x, v) outputs g(x) if v ∈ A⊥ \ {0}, and otherwise outputs ⊥ ut

As discussed above, if Pr[E1∨E2] is non-negligible, we can break the quantum
unlearnability. Otherwise, Pr[Ē1∧ Ē2] is overwhelming. We show that in the case,
one can use the adversary A to breaks the direct-product problem Theorem 2.

Lemma 7. Let Pr[Ē1∧Ē2] be the probability taken over all randomness of AGAF,D,γ(1
λ).

If Pr[Ē1∧Ē2] is non-negligible, there exists an adversary A3 that breaks the direct-
product problem.

Proof. The challenger in the copy protection security game plays as the adver-
sary in breaking direct-product problem, denoted as A3. In the reduction, A3 is
given the access to membership oracles UA, U

⊥
A and one copy of |A〉.

Next, we show that A3 can simulate the anti-piracy security game for A using
the information given and uses A to obtain the two vectors. A3 samples f ← F ,
and simulates a γ-anti-piracy game, specifically simulating the copy protection
oracle O1,O2 for adversary A. In the output phase, A outputs (σ, UR1

, UR2
).
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A1 upon taking the output, it randomly picks and measures a query of
ATIR1,γ−ε to O2 and a query of ATIR2,γ−ε to O1, and obtain a pair of vec-
tors (u, v). If Ē1 ∧ Ē2 happens. By Lemma 4, (u, v) breaks the direct-product
problem with non-negligible probability. Since Pr[Ē1 ∧ Ē2] is non-negligible, the
overall probability is non-negligible. ut

Note that the proof does not naturally extend to q-collusion resistant anti-
piracy. We leave this as an open problem.

The General Case. The above proof works for the general case, by simply
doing the followings: 1. TI,ATI are now defined as the (approximated) projective
measurement corresponding to the predicate Eλ; 2. In Lemma 5, 6 and 7, the
randomness is taken over the general unlearnability game and copy-protection
game.

6 Quantum Copy-Detection

6.1 Construction

Now we construct a copy detection scheme for Samp,F ,E . Let QM and WM be
a public key quantum money scheme and a publicly extractable watermarking
scheme for Samp,F ,E , whose serial number space Sλ of QM is a subset of the
message spaceMλ of WM. We construct a copy detection scheme in Fig. 2.

Setup(1λ): it runs WM.Setup(1λ) to get xk,mk, let sk = mk and pk = xk.
Generate(sk, f):

– it runs QM.Gen(1λ) to get a money state |$〉 and a serial number
s (by applying QM.Ver to the banknote);

– let f̃ = WM.Mark(mk, f, s) which is classical;

– it outputs the quantum state ρf = (f̃ , |$〉), and {Uf,x}x∈[N ];
– let {Uf,x}x∈[N ] describe the following unitary: on input a quantum

state ρ, treat the first register as a classical function g, compute
g(x) in superposition.

Check(pk, auxf , (ρf , {Uf,x}x∈[N ])):
– it parses and measures the first register, which is (f ′, |$′〉);
– it checks if QM.Ver(|$′〉) is valid and it gets the serial number s′;
– it then checks if s′ = WM.Extract(pk = xk, auxf , f

′);
– if all the checks pass, it outputs 0; otherwise, it outputs 1.

Fig. 2. Quantum copy detection scheme.
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6.2 Efficiency and Correctness

First, for all λ ∈ N, all efficient A, every f ← (A ⇐⇒ Samp(1λ)), the program
output is (ρf , {Uf,x}x∈[N ]), we have Compute(ρf , {Uf,x}x∈[N ], x) = f̃(x), where

f̃ = WM.Mark(mk, f, s) for some serial number s. From the correctness of WM,
it satisfies unique output and functionality preserving (with respect to F ).

The correctness of Check comes from the correctness of WM.Extract and
unique serial number property of QM. Check is a projection since QM.Ver is
also a projection. Efficiency is straightforward.

6.3 Security

Theorem 5. Assume QM is a quantum money scheme and WM is a q-collusion
resistant for Samp,E with γ-unremovability, the above copy-detection scheme for
Samp,F ,E has q-collusion resistant γ-copy-detection-security.

Proof. We prove the case for q = 1. Let A be a QPT algorithm that tries to
break the security of the copy detection scheme. Let (σ, UR1

, UR2
) be the program

output by A which wins the game DGASamp,E ,γ .

To win the game, the program (σ, UR1
, UR2

) should pass the following two
tests:

1. Apply the projective measurement (defined by Check(pk, auxf , ·)) on both
σ[R1] and σ[R2], and both outcomes are 0.

2. Let σ′ be the state that passes step 1. Then both programs (σ′[R1], UR1
),

(σ′[R2], UR2
) are tested to be γ-good with non-negligible probability.

In our construction, Check first measures the program registers. The resulting
state is f̃1, f̃2, σ, where f̃1, f̃2 are supposed to be classical (marked) circuits
that computes f and σ are (possibly entangled) states that are supposed to be
quantum money for each of the program.

Next, Check applies QM.Ver on both registers of σ and computes serial num-
bers. Define Sb be the random variable of QM.Ver applying on σ[Rb] representing
the serial number of ρb. Define S be the random variable of QM.Ver(|$〉) repre-
senting the serial number of the quantum money state in the Generate procedure.

Define E be the event that both WM.Extract(xk, auxf , f̃b) = Sb and at least
one of S1, S2 is not equal to S. Define E′ be the event that both S1, S2 are
equal to S and both WM.Extract(xk, auxf , f̃b) = Sb. If f̃1, f̃2, σ passes the step 1,
exactly one of E and E′ happens.

In step 2, it simply tests if f̃1 and f̃2 are γ-good with respect to f,Eλ. Since
f̃1, f̃2 are classical circuits, it is equivalent to check whether they work correctly
on at least γ fraction of all inputs. If it passes step 2, we have for all b ∈ {1, 2},
Prr[Eλ(f̃b, f, r) = 0] ≥ γ.
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Therefore, the probability of A breaks the security game is indeed,

Pr
(f̃1,f̃2,σ)

[
∀b,Pr

r
[Eλ(f̃b, f, r) = 0] ≥ γ

]

= Pr
(f̃1,f̃2,σ)

[
(E ∨ E′) ∧ ∀b,Pr

r
[Eλ(f̃b, f, r) = 0] ≥ γ

]

≤ Pr
(f̃1,f̃2,σ)

[
E ∧ ∀b,Pr

r
[Eλ(f̃b, f, r) = 0] ≥ γ

]
+ Pr

(f̃1,f̃2,σ)
[E′]

Note that the probability is taken over the randomness of DGASamp,E ,γ . Next we
are going to show both probabilities are negligible, otherwise we can break the
quantum money scheme or watermarking scheme.

Claim 1. Pr(f̃1,f̃2,σ)[E
′] ≤ negl(λ).

Proof. It corresponds to the security game of the quantum money scheme. As-
sume Pr[E′] is non-negligible, we can construct an adversary B for the quantum
money scheme with non-negligible advantage. Given a quantum money state
|$〉, the algorithm B does the following (it simulates the challenger for the copy-
detection scheme):

– It first runs WM.Setup(1λ) to get xk,mk and let sk = mk and pk = xk.
– It interacts with A and samples f .
– Instead of sampling a new quantum money state, it uses the state |$〉. Let
s = Ver(|$〉) and f̃ ←WM.Mark(mk, f, s). It gives the instance ρf = (f̃ , |$〉).

– When A outputs (f̃1, f̃2, σ), B outputs σ.

Thus Pr[E′] is exact the probability that both verification gives s. ut

Claim 2. Pr(f̃1,f̃2,σ)

[
E ∧ ∀b,Prr[Eλ(f̃b, f, r) = 0]

]
≤ negl(λ).

Proof. It corresponds to the security game of the underlying watermarking
scheme. Since if E happens, at least one of the circuit has different mark than s
and it satisfies the correctness test F . The reduction is the following (B simulates
the challenger for the copy-detection scheme):

– Given xk, auxf in the watermarking security game, B prepares a quantum

money state |$〉 with serial number s and gets the marked circuit f̃ whose
marking is s.

– It prepares ρf = (f̃ , |$〉) and feeds it to A.
– When A outputs outputs (f̃1, f̃2, σ), B outputs f̃b whose mark is not s, i.e,

Extract(xk, auxf , f̃b) 6= s.

When A succeeds, B breaks the security of the watermarking scheme. ut
Thus, the probability of A breaks the game is negligible. ut
It is natural to extend the proof to q-collusion resistance. We put the proof

sketch in Appendix D.3.
Combining with the watermarking primitives (see examples in Appendix C),

we can get the corresponding copy-detection schemes.
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BL19. Anne Broadbent and Sébastien Lord. Uncloneable quantum encryption via
random oracles. IACR Cryptology ePrint Archive, 2019:257, 2019.

BP15. Nir Bitansky and Omer Paneth. On non-black-box simulation and the
impossibility of approximate obfuscation. SIAM Journal on Computing,
44(5):1325–1383, 2015.

CHN+18. Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and
Daniel Wichs. Watermarking cryptographic capabilities. SIAM Journal on
Computing, 47(6):2157–2202, 2018.

30



CMP20. Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum
copy-protection of compute-and-compare programs in the quantum random
oracle model, 2020.

Gav12. D. Gavinsky. Quantum money with classical verification. In 2012 IEEE
27th Conference on Computational Complexity, pages 42–52, June 2012.

GKM+19. Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J Wu.
Watermarking public-key cryptographic primitives. In Annual International
Cryptology Conference, pages 367–398. Springer, 2019.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. One-time
programs. In Annual International Cryptology Conference, pages 39–56.
Springer, 2008.

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 612–621. IEEE, 2017.

GZ20. Marios Georgiou and Mark Zhandry. Unclonable decryption keys. Cryptol-
ogy ePrint Archive, Report 2020/877, 2020. https://eprint.iacr.org/2020/
877.

JLS18. Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum states.
In Annual International Cryptology Conference, pages 126–152. Springer,
2018.

Kan18. Daniel M Kane. Quantum money from modular forms. arXiv preprint
arXiv:1809.05925, 2018.

KNY20. Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure software
leasing from standard assumptions, 2020.

KW17. Sam Kim and David J Wu. Watermarking cryptographic functionalities
from standard lattice assumptions. In Annual International Cryptology
Conference, pages 503–536. Springer, 2017.

KW19. Sam Kim and David J Wu. Watermarking prfs from lattices: Stronger se-
curity via extractable prfs. In Annual International Cryptology Conference,
pages 335–366. Springer, 2019.

LAF+09. Andrew Lutomirski, Scott Aaronson, Edward Farhi, David Gosset,
Avinatan Hassidim, Jonathan Kelner, and Peter Shor. Breaking and mak-
ing quantum money: toward a new quantum cryptographic protocol. arXiv
preprint arXiv:0912.3825, 2009.

LSZ20. Qipeng Liu, Amit Sahai, and Mark Zhandry. Quantum immune one-time
memories, 2020.

NC02. Michael A Nielsen and Isaac Chuang. Quantum computation and quantum
information, 2002.

QWZ18. Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking prfs under
standard assumptions: Public marking and security with extraction queries.
In Theory of Cryptography Conference, pages 669–698. Springer, 2018.

RS19. Roy Radian and Or Sattath. Semi-quantum money. In Proceedings of the
1st ACM Conference on Advances in Financial Technologies, AFT ’19, page
132–146. Association for Computing Machinery, 2019.

Sho20. Peter Shor. Quantum money based on lattices. In Simons Insti-
tute for the Theory of Computing. https://simons.berkeley.edu/talks/
quantum-money-based-lattices, 2020.

Wie83. Stephen Wiesner. Conjugate coding. ACM Sigact News, 15(1):78–88, 1983.
WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare pro-

grams under lwe. In 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), pages 600–611. IEEE, 2017.

31



Zha12. Mark Zhandry. How to construct quantum random functions. In 2012
IEEE 53rd Annual Symposium on Foundations of Computer Science, pages
679–687. IEEE, 2012.

Zha19. Mark Zhandry. Quantum lightning never strikes the same state twice. In
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 408–438. Springer, 2019.

Zha20. Mark Zhandry. Schrödinger’s pirate: How to trace a quantum decoder.
Cryptology ePrint Archive, Report 2020/1191, 2020. https://eprint.iacr.
org/2020/1191.

A Basics of Quantum Computation and Quantum

Information

For completeness, we provide some of the basic definitions of quantum computing
and quantum information, for more details see [NC02].

Quantum states Let H be a finite Hilbert space. Quantum states over H are
positive semi-definite operators from H to H with unit trace. These are called
density matrices, denoted by ρ or σ in this paper.

A quantum state over H = C2 is called qubit, which can be represented
by the linear combination of the standard basis {|0〉 , |1〉}. More generally, a
quantum system over (C2)⊗n is called an n-qubit quantum system for n ∈ N+.

A pure state can be represented by a unit vector in Cn. The standard basis of
the Hilbert space of n-qubit pure states is denoted by {|x〉}, where x ∈ {0, 1}n. If
a state |φ〉 is a linear combination of several |x〉, we say it is in “superposition”.

A mixed state is a collection of pure states |φi〉 for i ∈ [n], each with asso-
ciated probability pi, with the condition pi ∈ [0, 1] and

∑n
i=1 pi = 1. A mixed

state can also be represented by the density matrix: ρ :=
∑n
i=1 pi |φi〉 〈φi|.

Partial Trace. For a quantum state σ over two registers R1, R2 (i.e. Hilbert
spaces HR1

,HR2
), we denote the state in R1 as σ[R1], where σ[R1] = Tr2[σ] is

a partial trace of σ. Similarly, we denote σ[R2] = Tr1[σ].
Purification of mixed states. For a mixed state ρ over HA, there exists another

space HB and a pure state |ψ〉 over HA ⊗HB such that ρ is a partial trace of
|ψ〉 〈ψ| with respect to HB .

Definition 31 (Trace distance). Let ρ, σ ∈ C2n×2n be the density matrices of
two quantum states. The trace distance between ρ and σ is

‖ρ− σ‖tr :=
1

2

√
Tr[(ρ− σ)†(ρ− σ)],

Quantum Measurements In this work, we will use the following general form
of measurements.

Definition 32 (Positive operator-valued measure, POVM). A positive
operator-valued measure (POVM)M is specified by a finite index set I and a set
{Mi}i∈I of Hermitian positive semi-definite matricesMi such that

∑
i∈IMi = I.

When applying M to a quantum state ρ, the outcome is i with probability
pi = Tr[ρPi] for all i ∈ I.
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To characterize the post-measurement states, we define the quantum mea-
surements as follows.

Definition 33 (Quantum measurement). A quantum measurement E is spec-
ified by a finite index set I and a set {Ei}i∈I of measurement operators Ei such

that
∑
i∈I E

†
iEi = I.

When applying E to a quantum state ρ, the outcome is i with probability
pi = Tr[ρE†iEi] for all i ∈ I. Furthermore, conditioned on the outcome being i,

the post-measurement state is EiρE
†
i /pi.

Note that POVM M and quantum measurement E are related by setting
Mi = E†iEi. In this case, we say that E is an implementation ofM. The imple-
mentation of a POVM may not be unique.

Definition 34 (Projective measurement and projective POVM). A quan-
tum measurement E is projective if for all i ∈ I, Ei is a projection, i.e., Ei is
Hermitian and E2

i = Ei.
Similarly, a POVMM is projective if each Mi is projection for i ∈ I.

B Cryptographic Primitives

B.1 Public-key Quantum Money

Definition 35 (Public Key Quantum Money). A public-key (publicly-
verifiable) quantum money consists of the following algorithms:

– KeyGen(1λ) : takes as input a security parameter λ, and generates a key pair
(sk, pk).

– GenNote(sk) : takes a secret key sk and generates a quantum banknote state
|$〉.

– Ver(pk, |$′〉) : takes a public key pk, and a claimed money state |$′〉, and
outputs either 1 for accepting or 0 for rejecting.

A secure public-key quantum money should satisfy the following properties:

Verification Correctness: there exists a negligible function negl(·) such that
the following holds for any λ ∈ N,

Pr
(sk,pk)←KeyGen(1λ)

[Ver(pk,GenNote(sk)) = 1] ≥ 1− negl(λ)

Unclonable Security: Suppose a QPT adversary is given q = poly(λ) number
of valid banknotes {ρi}i∈[q] and then generates q′ = q+1 banknotes {ρ′j}j∈[q′]
where ρ′j are potentially entangled, there exists a negligible function negl(·),
for all λ ∈ N,

Pr
(sk,pk)←KeyGen(1λ)

[
∀i ∈ [q′],Ver(pk, ρ′j) = 1 : {ρ′j} ← A(1λ, {ρi}

]
≤ negl(λ)
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Remark 2. In rest of the paper, q is set to be 1 for simplicity, and the scheme
satisfies unclonable security if A cannot produce two banknotes that pass ver-
ification. [AC12] shows that any public-key quantum money scheme that satis-
fies security when q = 1, can be generalized to a scheme that is secure when
q = poly(λ), using quantum-secure digital signatures.

A non-perturb property is also required. That is, one can verify a quantum
banknote polynomially many times and the banknote is still a valid banknote.
Since Ver is almost a deterministic function, by Gentle Measurement Lemma
(Lemma 1), the above definition implies the non-perturb property.

In some settings, instead of outputting 0/1, Ver is required to output either
⊥ which indicates the verification fails, or a serial number s ∈ Sλ if it passes
the verification. In this case, the scheme should satisfy the following correctness
(unique serial number property) and unclonable security [Zha19]:

Unique Serial Number: For a money state |$〉, letH∞(|$〉) = − logmins Pr[Ver(|$〉) =
s]. We say a quantum scheme has unique serial number property, if E[H∞(|$〉)]
is negligible for all λ, (sk, pk)← KeyGen(1λ) and |$〉 is sampled from GenNote(sk).

Unclonable Security: Consider the following game with a challenger and an
adversary,

1. The challenger runs (sk, pk) ← KeyGen(1λ) and |$〉 ← GenNote(sk), it
then runs Ver to get a serial number s.

2. A is given the public key pk, the banknote |$〉 and the serial number s.
3. A produces σ∗ (which contains two separate registers, but they may be

entangled) and denotes σ1 = Tr2[σ
∗] and σ2 = Tr1[σ

∗].
4. A wins if and only if Ver(σ1) = Ver(σ2) = s.

We say a public key quantum money scheme is secure, if for all QPT A, it
wins the above game with negligible probability in λ.

B.2 Obfuscation

Definition 36 (Virtual Black-Box Obfuscation, [BGI+01]). An obfusca-
tor O (with auxiliary input) for a collection of circuits C = ⋃λ∈N Cλ is a (worst-
case) VBB obfuscator if it satisfies:

– Functionality-Preserving: For every C ∈ C, every input x, Pr[O(C)(x) =
C(x)] = 1.

– Virtual Black-Box: For every poly-size adversary A, there exists a poly-
size simulator S, such that for every λ ∈ N, auxiliary input aux ∈ {0, 1}poly(λ),
and every predicate π : Cλ → {0, 1}, and every C ∈ Cλ:

∣∣∣∣ PrA,O[A(O(C), aux) = π(C)]− Pr
S
[SC(1λ, aux)) = π(C)]

∣∣∣∣ ≤ negl(λ)

where the probability is over C ← Cλ, and the randomness of the algorithms
O,A and S.
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C Examples of Watermarking Primitives

Let us look at how the definitions in [CHN+18, GKM+19] fit into our frameworks.

1. Watermarkable PRF in [CHN+18]:
– Setup(1λ) = (wpp, xk,mk);
– Samp(1λ,wpp) samples a PRF key k, f = PRF(k, ·), auxf = ⊥.
– Fλ(f̃ , f, r) is 0 if and only if it samples a random input x (according to
r), and f̃(x) = f(x).

– Unremovability is defined by Eλ = Fλ. γ = 1/2 + 1/poly(λ).
2. Watermarkable signature in [GKM+19]:

– Setup(1λ) = (wpp, xk,mk);
– Samp(1λ,wpp) samples a pair of keys vk, sk and we interpret f = Sign(sk, ·)||vk,

auxf = vk.

– Fλ(f̃ , f, r) is 0 if and only if Ver(vk,m, f̃(m)) = 1, where vk is decoded
from f and m is sampled by r.

– Unremovability: Eλ = Fλ. γ is inverse polynomial.
3. Watermarkable public key encryption in [GKM+19]:

– Setup(1λ) = (wpp, xk,mk);
– Samp(1λ,wpp) is defined below:
• It samples (pk, sk)← PKEGen(1λ,wpp);
• f = Dec(sk, ·)||pk, auxf = pk.

– Fλ(f̃ , f, r) is defined as:
• Decode pk from f , sample m according to r;
• Let ct = Enc(pk,m);
• It outputs 0 if and only if f̃(ct) = m.

– Unremovability: Eλ(f̃ , f, r) defined as:
• Decode pk from f , sample b according to r;
• Decode aux = (m0,m1) from f̃ ; if m0 = m1, outputs 1;
• Let ct = Enc(pk,mb);
• It outputs 0 if and only if f̃(ct) = mb.

And, γ = 1/2 + 1/poly(λ).

D Missing Details

D.1 Proof of Corollary 1

Corollary 2 (Corollary 1, restated). For any ε, δ, γ,P, D, the algorithm of

measurement ATIε,δP,D,γ that satisfies the followings:

– For all quantum state ρ, Tr[ATIε,δP,D,γ−ε · ρ] ≥ Tr[TIγ(PD) · ρ]− δ.
– By symmetry, for all quantum state ρ, Tr[TIγ−ε(PD)·ρ] ≥ Tr[ATIε,δP,D,γ ·ρ]−δ.
– For all quantum state ρ, let ρ′ be the collapsed state after applying ATI

ε,δ
P,D,γ

on ρ. Then, Tr[TIγ−2ε(PD) · ρ′] ≥ 1− 2δ.

– The expected running time is the same as API
ε,δ
P,D.
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We give the following fact before proving the corollary.

Fact 1. Let D0, D1 be two real-valued probability distributions with shift distance
∆ε

Shift = δ. Then, we have

Pr[D0 ≥ x− ε] ≥ Pr[D1 > x]− δ, and

Pr[D1 ≥ x− ε] ≥ Pr[D0 > x]− δ

Proof. We prove the first inequality. By the definition of shift distance, we have

Pr[D0 ≤ x− ε] ≤ Pr[D1 ≤ x] + δ.

Then, Pr[D0 ≥ x−ε] = 1−Pr[D0 ≤ x−ε] ≥ 1−Pr[D1 ≤ x]−δ = Pr[D1 ≥ x]−δ.
The second inequality can be proved in a symmetric way. ut

Now, we prove the Corollary 1 in below.

Proof. By Theorem 3, we know that there exists an algorithm API
ε,δ
P,D that

approximates the measurement of ProjImp(PD), i.e.,

∆ε
Shift(API

ε,δ
P,D,ProjImp(PD)) ≤ δ.

In particular, for any pure quantum state |ψ〉, let DA be the distribution of

API
ε,δ
P,D(|ψ〉) and DP be the distribution of ProjImp(PD)(|ψ〉).
Then, by Fact 1, we have

Pr[DA ≥ γ − ε] ≥ Pr[DP ≥ γ]− δ,

Hence, by the definition of threshold implementation (Definition 8) and the

construction of the algorithm ATI
ε,δ
P,D,γ , we can get

Tr
[
ATI

ε,δ
P,D,γ−ε |ψ〉 〈ψ|

]
≥ Tr

[
TIγ(PD) |ψ〉 〈ψ|

]
− δ.

Note that mixed state is just a convex combination of pure states. Hence, by
the linearity of trace, for any mixed state ρ, we have

Tr
[
ATI

ε,δ
P,D,γ−ε · ρ

]
≥ Tr

[
TIγ(PD) · ρ

]
− δ,

which proves the first bullet. The second bullet follows the same idea by sym-
metry.

For the third bullet, notice that the measurement algorithms ATI
ε,δ
P,D,γ and

API
ε,δ
P,D do the same thing to the quantum state. So, ρ′ is also the collapsed state

after the measurement of APIε,δP,D(ρ).

Since we assume that the outcome of ATIε,δP,D,γ(ρ) is 0, it implies the corre-

sponding outcome of APIε,δP,D(ρ) is at least γ.
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By Theorem 3, APIε,δP,D is (ε, δ)-almost projective, which means that if we

apply API
ε,δ
P,D (again) to ρ′, the outcome satisfies

Pr[APIε,δP,D(ρ
′) < γ − ε] < δ.

Theorem 3 also provides that the shift distance between ProjImp and API is
small, which means

Pr[ProjImp(PD)(ρ′) ≤ γ − 2ε] ≤ Pr[APIε,δP,D(ρ
′) < γ − 2ε+ ε] + δ ≤ 2δ.

Hence,

Tr[TIγ−2ε · ρ′] = 1− Pr[ProjImp(PD)(ρ′) ≤ γ − 2ε] ≥ 1− 2δ.

The third bullet easily follows from the construction. ut

D.2 Proof of Lemma 3

Lemma 8 (Lemma 3, restated). Let P1 and P2 be two collections of pro-
jective measurements and D1 and D2 be any probability distributions defined on
the index set of P1 and P2 respectively. For any 0 < ε, δ, γ < 1, the algorithms
ATI

ε,δ
P1,D1,γ

and ATI
ε,δ
P2,D2,γ

satisfy the followings:

– For any bipartite (possibly entangled, mixed) quantum state ρ ∈HL ⊗HR,

Tr
[(
ATI

ε,δ
P1,D1,γ−ε ⊗ ATI

ε,δ
P2,D2,γ−ε

)
ρ
]
≥ Tr

[(
TIγ(PD1

)⊗ TIγ(PD2
)
)
ρ
]
− 2δ.

– For any (possibly entangled, mixed) quantum state ρ, let ρ′ be the collapsed

state after applying ATI
ε,δ
P1,D1,γ

⊗ ATI
ε,δ
P2,D2,γ

on ρ (and normalized). Then,

Tr
[(
TIγ−2ε(PD1

)⊗ TIγ−2ε(PD2
)
)
ρ′
]
≥ 1− 4δ.

Proof. We use the hybrid argument to show that ATI
ε,δ
P1,D1,γ−ε ⊗ ATI

ε,δ
P2,D2,γ−ε

approximates TIγ(PD1
)⊗ TIγ(PD2

).

For brevity, let ATI1 denote ATIε,δP1,D1,γ−ε and ATI2 denote ATIε,δP2,D2,γ−ε. Sim-
ilarly, let TI1 denote TIγ(PD1

) and TI2 denote TIγ(PD2
). We first show that,

Tr[(TI1 ⊗ TI2)ρ] ≤ Tr[(TI1 ⊗ ATI2)ρ] + δ. (3)

Note that ρ is a bipartite quantum state in HL ⊗ HR. So, we can consider
TI1 ⊗ TI2 as a measurement performed by two parties L and R. In this way, we
can write the trace as the probability that L gets outcome 0 and R gets outcome
0:

Tr[(TI1 ⊗ TI2)ρ] = Pr[L ← 0 ∧R ← 0].
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We can see that from TI1⊗TI2 to TI1⊗ATI2, L performs the same measure-
ment. Hence, we can condition on the event that L gets outcome 0 and let ρ1
be the remaining mixed state that traced out the L-part. Then, we get that

Pr[L ← 0 ∧R← 0] = Pr[L ← 0] · Pr[R← 0|L ← 0]

= Pr[L ← 0] · Tr[TI2 · ρ1]
≤ Pr[L ← 0] · (Tr[ATI2 · ρ1] + δ)

≤ Tr[(TI1 ⊗ ATI2)ρ] + δ,

where the first inequality follows from Corollary 1 and the last step follows from
Pr[L ← 0] ≤ 1.

The next step is to show that:

Tr[(TI1 ⊗ ATI2)ρ] ≤ Tr[(ATI1 ⊗ ATI2)ρ] + δ. (4)

In this case, R performs the same measurement. We can condition on the
event that R gets outcome 0 and let ρ2 be the remaining mixed state traced out
the R-part.

Hence, by a similar argument, we get that

Tr[(TI1 ⊗ ATI2)ρ] = Pr[L ← 0 ∧R ← 0]

= Pr[R ← 0] · Pr[L ← 0|R ← 0]

= Pr[R ← 0] · Tr[TI1 · ρ2]
≤ Pr[R ← 0] · (Tr[ATI1 · ρ2] + δ)

≤ Tr[(ATI1 ⊗ ATI2)ρ] + δ.

Combining the Eq. (3) and Eq. (4) proves the first bullet of the lemma:

Tr[(TI1 ⊗ TI2)ρ] ≤ Tr[(TI1 ⊗ ATI2)ρ] + δ

≤ Tr[(ATI1 ⊗ ATI2)ρ] + 2δ.

For the second part of the lemma, the trace can also be written as

Tr
[(
TIγ−2ε(PD1

)⊗ TIγ−2ε(PD2
)
)
ρ′
]
= Pr[L ← 0 ∧R ← 0]

= Pr[L ← 0] · Pr[R ← 0|L ← 0],

where L and R are now performing measurements on ρ′.
We first rewrite the term Pr[L ← 0] as

Pr[L ← 0] = Tr[(TIγ−2ε(PD1
)⊗ I)ρ′].

We can see that this measure process is equivalent to the following process:

1. R first performs the measurement ATIε,δP2,D2,γ
on the R-part of ρ and gets a

state ρ1 such that TrL[ρ1] = TrL[ρ′].
2. L measures ATI

ε,δ
P1,D1,γ

on TrR[ρ1] and get the collapsed state ρ2 such that
ρ2 = TrR[ρ′].
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3. L measures TIγ−2ε(PD1
) on ρ2.

Hence, we have

Tr[(TIγ−2ε(PD1
)⊗ I)ρ′] = Tr[TIγ−2ε(PD1

) · ρ2],
By Corollary 1 (the third bullet),

Tr[TIγ−2ε(PD1
) · ρ2] ≥ 1− 2δ.

Hence, we get that Pr[L ← 0] ≥ 1− 2δ.
For the second term Pr[R ← 0|L ← 0], it can be written as

Pr[R ← 0|L ← 0] = Tr[(I⊗ TIγ−2ε(PD2
)) · ρ3] = Tr[TIγ−2ε(PD2

) · ρ4],
where ρ3 is the collapsed state conditioned on the outcome of L being 0 and
ρ4 = TrL[ρ3].

This measure process is equivalent to the followings:

1. L first performs two consecutive measurements ATIε,δP1,D1,γ
and TIγ−2ε(PD1

)
on the L-part of ρ, and gets the collapsed state ρ′′ such that TrR[ρ′′] =
TrR[ρ3].

2. R measures ATIε,δP2,D2,γ
on TrL[ρ′′] and gets ρ3.

3. R measures TIγ−2ε(PD2
) on ρ4.

By Corollary 1 again, we have

Pr[R ← 0|L ← 0] = Tr[TIγ−2ε(PD2
) · ρ4] ≥ 1− 2δ.

Therefore, we have

Tr
[(
TIγ−2ε(PD1

)⊗ TIγ−2ε(PD2
)
)
ρ′
]
≥ (1− 2δ)2 ≥ 1− 4δ,

which completes the proof of the second part of the lemma. ut
Notice that Lemma 3 can be easily generalized to the case of q-partite state.

We state the following corollary without proof:

Corollary 3. Let P1,P2, . . . ,Pq be q collections of projective measurements and
Di be any probability distributions defined on the index set of Pi for all i ∈ [q].

For any 0 < ε, δ, γ < 1, for all i ∈ [q], the algorithms ATI
ε,δ
Pi,Di,γ

satisfy the
followings:

– For any q-partite (possibly entangled, mixed) quantum state ρ ∈H1 ⊗ · · · ⊗
Hq,

Tr

[(
q⊗

i=1

ATI
ε,δ
Pi,Di,γ−ε

)
ρ

]
≥ Tr

[(
q⊗

i=1

TIγ(PDi
)

)
ρ

]
− qδ.

– For any (possibly entangled, mixed) quantum state ρ, let ρ′ be the collapsed

state after applying
⊗q

i=1 ATI
ε,δ
Pi,Di,γ−ε on ρ (and normalized). Then,

Tr

[(
q⊗

i=1

TIγ−2ε(PDi
)

)
ρ′
]
≥ 1− 2qδ.
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D.3 Proof Sketch of Theorem 5

We briefly sketch the proof for q-collusion resistance which is very similar to the
case q = 1. Let (f̃1, · · · , f̃q+1, σ) be the output of the adversary. Let s1, · · · , sq
be the serial numbers in the Generate procedure. Let s′1, · · · , s′q+1 be the serial
numbers corresponding to σ. If A succeeds, there are two cases:

1. {s′i}i∈[q+1] ⊆ {sj}j∈[q]: in this case, A successfully copies one of the money

state. Thus, we can use A to construct an adversary for the quantum money
scheme.

2. {s′i}i∈[q+1] ( {sj}j∈[q]: in this case, A successfully unmarks one of the

marked program. Thus, we can use A to construct an adversary for the
watermarking scheme.

Therefore, assuming the existence of q-collusion resistant quantum money
scheme and watermarking scheme, the construction above is a q-collusion resis-
tant copy-detection scheme.

E Public-key Quantum Money from Copy Detection

In this section, we show that we can use quantum copy detection and public-key
encryption to construct a public-key quantum money scheme. This implication
shows one more application of copy detection and further demonstrates the re-
lationship between copy detection and public-key quantum money.

We give the following the construction of the public-key quantum money.
Assume that we have an underlying public key encryption scheme called PKE =
(PKE.KeyGen,PKE.Enc,PKE.Enc) with message space M, and an underlying
copy detection scheme CD = (CD.Setup,CD.Generate,CD.Compute,CD.Check).
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KeyGen(1λ) → (pk, sk) :

– Take in security parameter λ
– Run PKE.KeyGen(1λ) → (PKE.pk,PKE.sk) and CD.Setup(1λ) →

(CD.pk,CD.sk).
– Output pk = (PKE.pk,CD.pk) and sk = (PKE.sk,CD.sk).

GenNote(sk) → |$〉 :
– Take in the secret key sk = (PKE.sk,CD.sk).
– Run CD.Generate(CD.sk, f = PKE.Dec(PKE.sk, ·) to generate a

copy detection program (ρf , {Uf,x}x∈[N ]) for the function f =
PKE.Dec(PKE.sk, ·).

– Output |$〉 = (ρf , {Uf,x}x∈[N ]).
Ver(pk, |$′〉) → 0/1 :

– Take in the public key pk = (PKE.pk,CD.pk) and a claimed
banknote state |$′〉, i.e. a claimed copy detection program for
f = PKE.Dec(PKE.sk, ·).

– Parse the claimed banknote |$′〉 as (auxf , ρ′f , {U ′
f,x}x∈[N ]).

– Run CD.Check(CD.pk, auxf , ρ
′
f , {U ′

f,x}x∈[N ])) → b; if b = 1, out-
put 1 (for reject).

– Test if the program (ρ′f , {U ′
f,x}x∈[N ]) is a γ-good program

with respect to f , Eλ, using the public information in pk =
(PKE.pk,CD.pk); if yes, output 0; else output 1.

Fig. 3. Public-key Quantum Money Scheme from Copy Detection

Security Analysis We now show that the public-key quantum money con-
struction has correctness and unclonable security, given a quantum copy detec-
tion scheme with correctness and γ-anti-piracy security. The proof is intuitive
and we omit some details.

Verification Correctness By the computation correctness of the underlying
copy detection scheme CD and decryption correctness of the underlying PKE, a
valid banknote |$〉 = (ρf , {Uf,x}x∈[N ]) for f = PKE.Dec(PKE.sk, ·) is supposed to
pass Check and be a γ-good program with respect to f,Eλ with all but negligible
probability. Therefore, verification correctness holds.

Unclonable Security We give a brief proof for the unclonable security of the
quantum money scheme, whose security definition is given in Definition 35.

Lemma 9. Assuming that the quantum copy-protection scheme CD has γ-anti-
piracy, then public-key quantum money scheme has unclonable security.

Proof. Suppose there is a QPT adversary A that breaks unclonable security,
then we can construct a QPT adversary B that breaks γ-anti-piracy security for
CD.
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The quantum copy detection challenger interacts with B in a copy detection
anti-piracy game: In the Setup phase, challenger runs the setup CD.Setup(1λ) to
generate the keys (CD.pk,CD.sk). In the Sampling phase, the challenger samples
f = PKE.Dec(PKE.sk, ·), where (PKE.pk,PKE.sk)← PKE.KeyGen(1λ); note that
it gives aux = PKE.pk to adversary B and sf = PKE.sk is kept secret. B then
gives (CD.pk,PKE.pk) to the quantum money adversary A as the public key. In
the Query phase, copy detection challenger generates one copy of copy detection
program (ρf , {Uf,x}x∈[N ]) ← CD.Generate(CD.sk, f) and gives to B. Then B
sends (ρf , {Uf,x}x∈[N ]) as a money state |$〉 to A. Finally, A output two claimed
money states {|$i〉} = {ρi, Ui}i∈[2] and sends to B. B uses them as its pirate
programs and passes to copy detection challenger. It is easy to see that if both
claimed money states {|$i〉}i∈[2] produced by A’s pass verification with non-
negligible probability, then B wins the copy detection anti-piracy security game
with non-negligible probability.
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