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Abstract

We argue that the dominant approach to explainable Al for
explaining image classification, annotating images with
heatmaps, provides little value for users unfamiliar with deep
learning. We argue that explainable Al for images should
produce output like experts produce when communicating
with one another, with apprentices, and with novices. We
provide an expanded set of goals of explainable Al systems
and propose a Turing Test for explainable Al

Explaining Image Classification

Explaining the decisions of Al has emerged as an important
research topic. Considerable progress in image classifica-
tion using deep learning (Krizhevsky, et al., 2012; LeCun,
etal., 2015) has created significant interest in explaining the
results of image classification. Although there are many ap-
plications for explainable AI (XAI), this paper first focuses
on learning to classify images. We then discuss broader im-
plications for explainable Al.

Recent conferences include tutorials and workshops on
explainable Al There are several good surveys of XAI
(Chakraborty et al., 2017 & Dosilovi¢ et al., 2018). This is
not one of them. Instead, after working on problems with
experts in radiology and ophthalmology and on bird identi-
fication, we have concluded that existing techniques leave
much room for improvement. The field needs additional di-
rections and methodology, including clarifying XAI’s goals,
particularly with respect to users, experts, and image classi-
fication.

Although some of XATI’s original goals were to “explain
their decisions and actions to human users” (Gunning &
Aha, 2018) the current state-of-the-art is developer-centric
rather than user-centric. The dominant method for explain-
ing image classification is assigning an importance score to
pixels or regions on a saliency map or heatmap superim-
posed on an image, visualizing a region’s importance with
color scales (red, orange, yellow...). Methods developed for
creating heatmaps include occlusion sensitivity (Zeiler &
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Fergus 2014), LIME (Ribeiro, et al., 2016), LRP (Lapusch-
kin et al., 2016), GradCAM (Selvaraj et al., 2017) and
IGOS++ (Khorram et al., 2021). Figure 1 (left) shows
heatmaps generated by UCSD researchers for diagnosing
glaucoma with IGOS++ (top), identifying bird species with
LIME (middle), and diagnosing COVID-19 with GradCAM
(bottom). Although heatmaps unquestionably provide use-
ful information to developers (Anders et al., 2022) and per-
haps technical auditors (Adebayo et al., 2020), particularly
to indicate when the classifier mistakenly focuses on irrele-
vant regions of images (DeGrave et al., 2020 and Nourani et
al., 2019), we argue they do not match what experts natu-
rally produce nor what users expect.

We propose an expanded research agenda that includes:

1. investigating how people, particularly experts,

explain their conclusions to others,

2. investigating the preferences of users for different

types of explanations, and

3. developing systems that output the types of explana-

tions experts produce and users prefer.

Investigation of how people explain their conclusions
draws techniques from ethnography, anthropology, and cog-
nitive science. How do experts communicate their findings,
and what artifacts do they use to explain them? Surveys on
explanation from psychology (Miller, 2019, Hoffman et al.,
2018) and philosophy (Lu et al., 2020) have not emphasized
expert interpretation of images.

We argue that heatmaps have several problems:

1. Heatmaps are not typically what experts create
when they communicate with others.

2. Heatmaps do not appear to be what users prefer.

3. Despite many approaches to generating heatmaps,
alternatives are rarely compared quantitatively or
in psychology experiments with actual users.

4. A single deep net and heatmap finds one sufficient
way to classify but ignores other regions and
features considered important by experts.
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Figure 1. XAI annotates regions of interest (left) com-
pared to expert-created explanations (right).

Experts and Image Classification

In contrast to the left column of Figure 1, the right column
shows explanations produced by experts to communicate
with others. The left image describes an unusual glaucoma
case from Jonas et al. (1998) indicating “parapapillary atro-
phy (arrowheads) and rim notching (arrows).” The middle
image from Morcombe & Stewart (2010) describes im-
portant features of a bird, and the right image from Kliger-
man et al. (2020) addresses four different radiological fea-
tures as “small right pleural effusion (black arrowhead) and
septal thickening (white arrowhead) and subpleural portions
of lung (black arrows).”

After several years of reading radiology and ophthalmol-
ogy journals and bird guides, we have yet to encounter a
heatmap used to explain image classification except in the
developer-oriented context of describing deep learning. It is
as though image explanations in Al have access to a paint-
brush or a highlighter but lack arrows and text boxes.

In addition to looking at artifacts, we have interviewed
experts during video meetings about bird species identifica-
tion from photos or diagnosis from radiographs and then

analyzed the videos and transcripts. Figure 2 shows screen
captures from two sessions.

While experts do indicate regions of interest, in discus-
sion they also describe what it is about each region that
makes it informative. For the bird on the left, the description
includes “Looks to be a Bell’s Vireo. You can tellit’s a vireo
by the ... stronger and thicker legs than a lot of stuff like a
warbler. [circles legs] ... a thin but slightly thicker bill than
a warbler [circles bill] ... and then Bell’s vireo by it doesn't
have the bold spectacles here, just kind of some faint spec-
tacles and kind of a broken eye ring [circles eye area], kind
of weak wing bars [circles wing area), a kind of longish tail
[circles tail] ... and just kind of overall plain, gray, gray,
whitish with maybe a little bit of greenish tones, but not very
bright. I think the easiest confusion would be gray vireo. I
think that gray area tends to have more of just a broken
eyering... I don't think they have any of the greenish wash
to the back or the wings and tail either.”

For the radiograph on the right, the discussion includes
“There are multiple masses here. It’s some sort of metastatic
cancer... this is going to be probably an enlarged lymph
node [draws semi-circle]. The normal contour of the aorta
probably is this [draws vertical line] ... There are the
branch pulmonary arteries [draws horizontal lines] These
are nodules...[draws polygons]... Probably metastatic can-
cer you know they're dense and there are many and varying
in size.”

A complete analysis of these conversations is beyond the
scope of this paper, but it is obvious the birding expert is
describing the bird at multiple places in the hierarchy and
drawing contrast with likely confusions (vireo vs. warbler,
Bell’s vireo vs. gray vireo). The radiologist is highlighting
important features to justify his diagnosis. Most im-
portantly, they are describing what it is about the region of
interest that makes it interesting.

Figure 2. Screen captures from video interviews.

Of course, there has been some work in identifying inter-
mediate concepts in images that can serve as part of an ex-
planation. For example, TCAV (Kim et. al., 2018) can iden-
tify whether a deep net has used an intermediate concept but
does not identify where in a particular image that concept
appears. Concept bottleneck models (Koh, 2020) learn to



recognize whether features are present in images and then
use these features for an overall classification without iden-
tifying where in the image the features occur. Semantic seg-
mentation (Noh et al., 2015) divides an image into segments
but does not indicate how these segments lead to a classifi-
cation for the image. Similarly, image captioning (Vinyals
et al., 2015) identifies objects within an image but does not
indicate the location of objects or produce an overall classi-
fication of an image.

We now propose two goals that we believe expert-in-
formed user-centric explainable Al should achieve.

Explainable AI systems should have the goal of
producing explanations like those of experts.

This naturally leads to using Turing’s (1950) imitation game
to evaluate explainable Al systems.

Explainable AI systems should be evaluated
according to whether their explanations are
indistinguishable from those of human experts.

Biessmann & Treu (2021) have proposed a Turing Test
for transparency, though it lacks ecological validity. The
task was to have people distinguish positive from negative
movie reviews. However, rather than allowing people to ex-
plain concepts such as sarcasm, subjects had to perform like
Al systems, marking three words in the review as most rel-
evant for their decision. Instead of getting people to act like
Al systems, we propose to get XAls to act like human ex-
perts.

Users and Image Classification

We now turn our attention to what users want from an ex-
planation. Here we summarize two experiments performed
at UCSD. In the first, 21 expert bird watchers were recruited
from mailing lists that report rare bird sightings in Southern
California. Subjects were shown various annotations, such
as heatmaps and labeled arrows, and asked two questions on
a 7-point Likert scale ranging from “strongly disagree” to
“strongly agree.” Feedback was collected on “This explana-
tion emphasizes the areas of the bird that I think are im-
portant for identification” and “I would recommend using
this explanation to help identify this bird.” The heatmap an-
notations were produced by GradCAM to compare an estab-
lished XAI algorithm with annotations like those from bird
guidebooks. The subjects exhibited a significant preference
for labeled arrows (median ratings of 7 for “correct empha-
sis” and 6.5 for “helpful”) over heatmaps (median ratings of
3 and 2). This leads us to our third goal.

Explainable AI systems should meet the
expectations of users for helpful explanations.

We distinguish user-centric explainable Al (UCXAI) from
developer-centric explainable AT (DCXAI). A further exam-
ple illustrates the difference between DCXAI and UCXAL
We trained two deep nets on the same data, differing only
by the initial random weights. Figure 3 shows the areas each
net finds important as shown by the GradCAM heatmaps.
Each net has found only one of the two important field
marks birdwatchers use to distinguish this bird from similar
ones. This is not an issue with GradCAM but rather that
deep learnings find one sufficient way of distinguishing
classes, not all ways. However, we would argue that both
field marks should be reported to users who care more about
how to distinguish this bird from similar ones than how a
particular neural net operates.

Figure 3. Heatmaps on the same image from two deep nets.

In the second study, subjects were 336 UCSD undergraduate
students from psychology, cognitive science, or linguistics
courses who were not expert bird watchers. The task was to
learn to distinguish two similar bird species such as Western
Grebes and Clark’s Grebes. Subjects were asked to distin-
guish three pairs of similar bird species, one pair at a time.
Subjects were shown a bird, asked to guess its classification,
and then shown the correct classification. One group of sub-
jects received feedback with photos of the correct bird with
labeled arrows pointing to its distinguishing features. A sec-
ond group saw heatmaps that highlighted distinguishing fea-
tures. These heatmaps were drawn by hand as a best-case
scenario and corresponded to the features identified by ar-
rows. A third group saw no explanation, just feedback on
the correct class. We measured the number of trials until the
subject was able to correctly identify 9 out of 10 photos in a
running window of 10 trials before moving to the next bird
pair. There was no significant difference in the number of
trials taken for this task between the group that received a
heatmap explanation and the group that received feedback
without an explanation for any of the bird pairs. The labeled
arrow explanation emerged as the most useful type of feed-
back: the median number of trials to complete the task for
each bird pair in the group that received a labeled arrow ex-
planation was significantly lower than the number of trials
for the groups receiving heatmap or no explanations. The
results are summarized in Figure 4.
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Figure 4. Median number of trials by explanation type.

Our fourth goal for XAl involves both finding regions of in-
terest and describing these regions.

Explainable AI systems should be able to locate
and identify distinguishing features for users.

We have begun investigating whether XAI methods can be
used to identify and locate features. In addition to the class,
we label each image with additional features, such as
whether the wing has a solid color, has spots, or has a wing-
bar. Using multitask learning (Caruana, 1997), we simulta-
neously provide feedback on the species and features such
as wing pattern and bill size. Note that we do not train on
the location of the wingbar but let the deep learner determine
whether the bird has a wingbar and use existing XAI meth-
ods to find regions that are important for determining
whether there is a wingbar. Figure 5 (left) shows an example
of using GradCAM to visualize the important pixels for
wingbars. Figure 5 (right) shows an example using Grad-
CAM to find the most important pixels in determining that
the bill is large. Figure 5 is a first step toward labeling fea-
tures that experts use in explanations and that novices find
helpful in learning to classify.

Although we do not present evidence here, we agree with
Miller (2018) and Hoffman et al. (2019) that there is not a
one-size-fits-all explanation.

Explainable AI should adapt explanations to
the user’s knowledge and experience.

A special case of this involves novice users.

Explainable AI systems should help novices
learn to be experts.

We have taken a step toward this, but much more remains.
Again, using multitask learning, we learn separate concepts
for the family (e.g., hawk) and the species (red-shouldered
hawk). The heatmap (produced by LIME) for why the bird
is a hawk (Figure 6 left) focuses on the beak and eye, while

the heatmap for why it is a red-shouldered hawk also high-
lights the wing (Figure 6 right). Of course, this is just a small
step toward UCXAI We assume a novice would want to
know why it is a hawk and a more advanced person why it
is a red shouldered hawk. Multi-task learning has no
knowledge of the user’s mental model, nor can it have a di-
alogue where it determines that the user already knows that
the hawk has sharp beak but is not aware that the eyes are
close together.

Figure 6. Heatmap for hawk (left) and red-shouldered hawk
(right).

Quantitatively Evaluating XAI

We argued that explainable Al systems should produce ex-
pert-like explanations and be evaluated on how indistin-
guishable their explanations are from experts. However,
since most current systems identify the importance of pixels
and regions, as an intermediate step there should be quanti-
tative ways to determine regions that correspond to those
considered important by experts even if there is no label for
the region. Many papers show a few representative images
and argue why one method is better than another. To illus-
trate, Figure 7 shows heatmaps produced by GradCAM and
occlusion sensitivity (Zeiler & Fergus 2014) on the same
network trained to identify whether the bird has wingbars.
Adebayo et al. (2018) have proposed some coarse metrics
that explainable Al systems should meet, but these are not
detailed enough to evaluate slight differences in algorithms
that will result in incremental improvements to identifying
regions.



Figure 7. Heatmap for wingbars produced by occlusion
sensitivity (left) and GradCam (right).

A measure indicating that the region identified by one ap-
proach is better would allow developers to refine explana-
tion algorithms as they do for accuracy. One approach is to
have experts mark important regions and evaluate the expert
region overlap with XAl regions using a metric such as Dice
coefficient. Indeed, this approach is used for U-nets for med-
ical segmentation (Ronneberger et al., 2015). U-nets are a
form of image-to-image transformation with training data
containing images annotated with regions; the goal is to
identify regions on new images. We argue for this method-
ology for XAl systems, not by giving region annotations in
training, but only using them for evaluations. Such a study
evaluating how well XAI methods can identify important re-
gions on chest X-rays by Arun et al. (2021) concluded “A
variety of saliency map techniques used to interpret deep
neural networks trained on medical imaging did not pass
several key criteria for utility and robustness.” Recently, Ar-
ras et al. (2021) have provided metrics and a testbed based
on VQA for explainable Al.

Ultimately, user testing of approaches along the lines of
Turing’s imitation game will be fruitful. This may be prem-
ature, however, since current approaches are so far from
what experts produce and novices find useful. Current tech-
niques identify important regions without giving them
meaningful labels or identify meaningful features but not
their locations. We argue both are needed for UCXAL

Broader Implications

There is a long history of explanation in Artificial
Intelligence— much of it user-centered (e.g., Clancey,
1983; Buchanan & Shortliffe, 1984; Swartout & Moore,
1993; Pazzani et al., 1997; Pazzani & Bay, 1999; Herlocker
etal., 2000; Leake, 2014; Schank, 2013; Pearl & Mackenzie,
2018;). However, much of recent XAI for inscrutable
models (Weld & Bansal, 2019) such as deep learning has
used the intuitions of developers as a guide for creating
explanations. If the goal is to create explanations for
developers, then the developer’s intuition is appropriate.
Nonetheless, working without experts in a domain may
mislead developers into thinking their results will have real
world utility (Roberts et al., 2021). DCXALI has also resulted

in some types of “explanations” such as heatmaps we have
discussed extensively but also lists of words or features with
importance scores that had never been thought of as
explanations before in the philosophy or psychology of
explanation. Older methods such as the permutation method
for determining feature importance in “impenetrable”
random forests (Breiman, 2001) do the same task but do not
refer to them as explanations.

If UCXAL is the goal, investigating the explanations pro-
duced by experts, developing systems that replicate these
explanations and evaluating the reactions of users to these
explanations is the appropriate methodology. Instead of us-
ing Amazon Mechanical Turk to annotate videos of cars
driving as in Kim et al., (2018), we would suggest recording
driving instructors as they explain to new drivers why cer-
tain actions should be performed. Instead of an XAl system
explaining “the vehicle slowed down because the light con-
trolling the intersection is red,” one might get more useful
explanations such as “If you’re caught behind a brake-happy
driver, leave extra distance between your vehicle and theirs
so that you don’t end up rear-ending them” (from www.wik-
ihow.com/Drive-Defensively).

Conclusion

We argue that many existing explainable Al systems are de-
veloper centric. Expert-informed, user-centric explainable
Al introduces issues that require additional research: How
do we produce explanations like those of experts? How do
we help novices learn to be experts? We proposed using Tu-
ring’s imitation game to evaluate how indistinguishable ex-
plainable Al explanations are from those of experts.

Our argument that XAI needs to expand its research
agenda can be summarized as XAl needs to answer “what”
in addition to “where.” Ultimately, we believe causality and
“why” need to be addressed.
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