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Abstract—Machine/deep-learning (ML/DL) based techniques are emerging as a driving force behind many cutting-edge technologies,
achieving high accuracy on computer vision workloads such as image classification and object detection. However, training these
models involving large parameters is both time-consuming and energy-hogging. In this regard, several prior works have advocated for
sparsity to speed up the of DL training and more so, the inference phase. This work begins with the observation that during training,
sparsity in the forward and backward passes are correlated. In that context, we investigate two types of sparsity (input and output type)
inherent in gradient descent-based optimization algorithms and propose a hardware micro-architecture to leverage the same. Our
experimental results use five state-of-the-art CNN models on the Imagenet dataset, and show back propagation speedups in the range
of 1.69× to 5.43×, compared to the dense baseline execution. By exploiting sparsity in both the forward and backward passes,
speedup improvements range from 1.68× to 3.30× over the sparsity-agnostic baseline execution. Our work also achieves significant
reduction in training iteration time over several previously proposed dense as well as sparse accelerator based platforms, in addition to
achieving order of magnitude energy efficiency improvements over GPU based execution.

Index Terms—Convolutional Neural Network, Sparsity, Accelerator, Training
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1 INTRODUCTION

Deep learning-based convolutional neural networks (CNNs)
have outperformed traditional rule-based algorithms and
have achieved state-of-the-art accuracy on vision workloads
such as image classification [1], [2], object detection [3],
and semantic segmentation [4], [5]. As these networks
grow deeper, wider and more sophisticated, training such
deep CNN-based models requires significant compute and
energy budget. Therefore, it is imperative to address the
ever-increasing computational demands of training such
networks.

A typical vision based CNN architecture, as depicted
in Fig. 1, can be abstracted as a connected set of n layers
L1, L2, .., Ln, where most of the layers are composed of
a weight layer followed by an activation layer. Here, a
convolution (CONV) acts as the weight layer (W), while a
Rectified Linear Unit (ReLU) is widely used as an activation
function [6]–[10]. A representative training step is shown in
Fig. 1, which transforms an input feature map (X) in the
forward pass (FP) and gradient values (dY) in the back-
ward pass (BP) using the weight parameters (W), and also
computes the weight gradients (dW) using the loss function
during Weight Gradient(WG) phase. Generalized matrix
multiplication (GEMM) is a key building block of such
transformations, and offers opportunities to take advantage
of regular compute and communication characteristics of
GEMM operation. Towards this end, several dedicated ac-
celerator designs have been proposed [11]–[15], including
Tensor Processing Units [16] and fixed function accelerator
for GPUs [17]. Such accelerators mainly target dense GEMM
kernels in which both the inputs to the GEMM kernel
(weight values and neuron activation values in a layer) are

Fig. 1: Within a training step, an input feature map (X) is
processed by a layer to generate the output feature map
(Y) in forward pass, and the input gradient map (dY) is
processed by the layer to produce the output gradient map
(dX) in backward pass, along with weight gradient (dW).

dense matrices and the output (activation for the next layer)
is also a dense matrix.

However, an important characteristic of all performant
CNN models is that they exhibit significant “sparsity” in
various data structures: sparsity in feature map activations
as well as in weights [18], [19]. Sparsity of neuron activation
is a well known phenomenon, which is present across all the
layers of ReLU-based CNNs [20]. Sparsity of weights, on the
other hand, is achieved by pruning weight values, which are
close to zero and is usually done in a post-training phase
as a fine-tuning step targeted for model compression [21],
[22]. Several hardware architectures have been proposed
in literature to take advantage of weight and activation
sparsity [23]–[26] in the forward pass (during inference).
These proposals exploit sparsity to reduce the number of
compute operations providing opportunities for improved
performance and lower energy consumption. As shown in
Fig. 1, Y = f(W,X) computation can be performed more
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Fig. 2: Forward propagation of feature maps and Backward
propagation of error gradients through different layers dur-
ing a neural network training step.

efficiently by considering sparsity in X .
Traditionally, CNNs have CONV-ReLU-CONV chains

(shown in Fig. 2), where the ReLU layer is the activation
layer. The input to the CONV(1) layer f1 can be sparse
or dense, depending on previous layer type. However, f2,
which is the output of CONV(1), is usually dense. When this
f2 is passed through the ReLU layer (computes max(0, x)),
the output f3 will consist of zero values that correspond to
the negative values of f2, and thus, it is sparse in nature.
When computing f4 using f3 as an input, we can leverage
sparsity of f3 to skip the zero-valued computation. We refer
to this type of sparsity as input sparsity, and most of the prior
works deal with exploiting such input sparsity.

It has also been observed that neuron gradients (dY )
can be sparse, and therefore, there exists opportunity for
utilizing input sparsity during output gradient computa-
tion. Thus, several prior works have also sought to exploit
gradient sparsity in the backward pass of training [27]–[30].
However, most of these prior works only rely on input spar-
sity technique, which limit their ability to exploit gradient
sparsity in the presence of batch normalization layer. Our
goal, in this work, is to leverage sparsity in the backward
pass of training during neuron gradient computation, not
only by exploiting the input sparsity, but also the output
sparsity of error gradients. This is achieved by leveraging
apriori information which neuron output locations are going
to be zero, further illustrated in Fig.2.

Thus, during back-propagation stage of error gradients,
g4 can be dense or sparse depending on the subsequent
layer. Now, g4 is used to compute g3, and this output is
usually dense. When g3 is passed through the ReLU layer,
we find that it generates a sparse output g2 with an identical
sparsity footprint as f3. In other words, sparsity at g2 can
be known irrespective of its input g3 (detailed theoretical
analysis in Section 3.2). Because the sparsity footprint of
f3 is already known during forward pass, we can leverage
this information to avoid any computation corresponding
to those output locations at g3. We refer to this type of
sparsity as output sparsity in the backward pass, and no prior
work has identified scope for exploiting this opportunity as
the high dimensional of tensors involved in CNNs make
it extremely difficult to identify such patterns. Note that if
g4 was sparse to begin with, we could also leverage input
sparsity of g4, in addition to exploiting output sparsity at
g3, as determined by sparsity at f3. This can lead to further
gains in both performance and energy efficiency.

After identifying opportunities to leverage sparsity in
the forward pass (input) and backward pass (output and/or
input), we propose a novel micro-architecture that is able
to skip computations based on sparsity type. The design
incorporates several principles to efficiently perform com-
putations: input double buffering to reduce lane level stall
cycles, weight blocking to achieve better memory band-
width utilization and a re-configurable adder tree to en-
hance utilization of compute building blocks. To account for
the asymmetry of sparsity distribution, we also propose a
work redistribution mechanism that efficiently handles load
imbalance at runtime.

Towards this end, the primary contributions of this
paper are the following:
• To the best of our knowledge, this is the first work that

identifies the symmetry of sparsity relationship between the
forward and backward passes and effectively exploits them in
the form of output sparsity in the backward pass, in addition
to input sparsity which can be leveraged at both forward
and backward passes. We provide qualitative reasoning
for the sources of such sparsity and also mathematically
formulate a relationship between activation sparsity and
neuron gradients.
• Based on the insights from the theoretical analysis,

we propose a novel hardware architecture to exploit both
types of sparsities. We provide the design principles of the
proposed architecture and incorporate necessary hardware
mechanisms to facilitate computation skipping.
• We evaluate five state-of-the-art CNN models (VG-

GNet [6], ResNet18 [8], GoogLeNet [7], DenseNet [9] and
MobileNet [10]) to demonstrate the benefits of our approach.
By exploiting sparsity in both the forward and backward
passes, speedup improvements range from 1.68× to 3.30×
over the sparsity-agnostic baseline execution. In addition,
we also show performance and energy-efficiency benefits
over several previously proposed dense as well as sparse
accelerator platforms, while also achieving order of magni-
tude energy efficiency over GPU based execution.

2 MOTIVATION AND RELATED WORK

This sections summarizes the motivation for our work fol-
lowed by a brief overview of related work that explores
sparsity in CNNs.

2.1 Motivation
Fig. 3a shows the inception (3b block) architecture from
GoogLeNet [7], a widely-used CNN model. Starting with
Pool1 layer as input, it has four parallel computation paths,
consisting of several 1x1, 3x3 and 5x5 CONV layers, output
from which finally gets concatenated. Fig. 3b represents the
sparsity associated with different layers across both feature
map and error gradients in GoogLeNet. Note that when
reporting sparsity of a layer, we consider the sparsity of
output of a layer in either the forward or backward pass. For
example, the (f2, g1) pair in Fig. 3c are the outputs of the
CONV layer in forward and backward passes. The sparsity
in f2 and g1 are reported as feature and gradient sparsity
for the CONV layer, respectively.

We derive the following two key insights : First, there ex-
ists significant sparsity in the feature maps and gradients
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Fig. 3: (a) Inception (3b block) from GoogLeNet. Solid arrows represent forward propagation, while broken arrows represent
backward propagation (b) Fraction of sparsity for feature and gradient at the output of different layers of Inception-3b
block (c) Network with Batch Normalization layer which prevents input sparsity in backward pass (d) Fraction of average
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which varies from ≈25% to ≈55% in our observed bench-
marks. Similar levels of sparsity have also been reported in
prior works [31]–[33]. In general, we observe that sparsity in
CNNs ranges from 30% to 70%, which is shown in Fig. 3d,
for the five CNNs. Second, sparsity is present only across the
ReLU layers and most importantly, the sparsity is identical
for the feature maps and error gradients. We analyze this
unique relationship in section 3 and provide mathematical
formulation behind the same.

Now, computing a single output neuron value (fea-
ture/gradient) can take several thousands of multiplica-
tions. For example, a layer with input dimension ([C,H,W ],
C: input channel, H:input height, W :input width), filter
dimension([M,C,R, S], M: #Filters, R: Filter Height, S: Filter
Width), and output dimensions([M,U, V ], U:O/p height,
V:O/p width) expressed as: [C,H,W ]

[M,C,R,S]−−−−−→ [M,U, V ]

consumes C × R × S number of Multiply and Accumulate
(MAC) operations to produce a single output value. The
total number of computations required is thus given by
M × U × V × C × R × S. In general, if output has a
sparsity fraction of sf1, total amount of computation nec-
essary is proportionally reduced by factor of (1−sf1). Also,
the proposed approach is complementary to input sparsity,
therefore, having a sparse input fraction of sf2 can further
reduce computation down to (1−sf1) × (1−sf2). Note that
the levels of sparsity observed is true for every single iteration of
the training step, for every single CONV-ReLU pair present in
the network. Since an ImageNet-scale network training can
span millions of steps, this presents a unique opportunity
for reducing the cost of training if the inherent sparsity is
exploited.

In addition, there are also certain network structures
that only allow for exploitation of output sparsity in the
backward pass. This is due to the introduction of batch-
normalization (BN) layers between CONV and ReLU pairs.
An example is shown in Fig. 3c. Here the input sparsity
is applicable when considering f1 as input to the CONV
layer (f1 is preceded by ReLU layer and is sparse). However,
input to the same CONV layer g2 in backward pass is not
sparse, as the gradient g3 gets re-normalized after passing
through the BN layer. However, computation of g1 can still
allow output sparsity, as g0 is sparse due to the ReLU layer.
Note that BN is a popular approach in network training
as it leads to faster convergence, and therefore, in such

scenarios straightforward way of adopting input sparsity in
the backward pass is not applicable. This further underlines
the importance of output sparsity and the need for efficiently
leveraging them during gradient computation stage.

It is also important to note that recently proposed Swish
[34] non-linearity (also used in EfficientNet [35]) tends to
provide slightly better accuracy than ReLU (within 1%).
However, Swish does not lead to a “direct” sparsity of ac-
tivation and gradient values, unlike ReLU. Therefore, ReLU
can still be treated as an efficient approximation of Swish,
involving trade-off between accuracy (<1%) and speed-up
(up to 2x). The proposed scope of this work is thus limited
to using ReLU based non-linearity as activation function.

2.2 Related Work
At a high level, sparsity exploitation techniques can be
classified mainly as input or output type. A given technique
is said to be input sparsity when it skips computation corre-
sponding to zero values of either or both the input operands.
Examples of input sparsity during forward pass include
Cambricon-X [36] which performs computation skipping on
zero valued weight parameters. CNVLUTIN [31] performs
dynamic skipping of neuron activation by run-time encod-
ing and skipping of zero valued input neurons. Recently
proposed SCNN [37] architecture jointly takes advantage of
weight and activation sparsity during inference phase.

The Backward Pass (BP) of neural network training can
be considered similar to Forward Pass (FP), with weight
parameters transposed and activation map replaced with
corresponding gradient values. Therefore, the above scope is
equally applicable in the backward pass of training, subject
to sparsity of involved operands. Several recent works have
been proposed in the context of training [27]–[29], [38]
leveraging sparsity in different phases of training (FP, BP
and WG). However, all such works are limited by using
only input sparsity during gradient back-propagation. This
also has an important implication for the networks with
batch normalization (BN) layer. With the BN layer included,
gradients are no longer sparse for input sparsity exploitation.
Thus, all prior works either use networks which appeared
before BN (Alex, VGG, Google as in [27], [28], [30]) or simply
assume that a BN layer is not necessary in the model to help
retain input gradient sparsity [29]. The novelty of our tech-
nique lies in its ability to leverage gradient output sparsity
despite the presence of a BN layer, and otherwise, jointly
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leverage input and output sparsity. Lee et al [39] proposes
to skip computation of gradient values for non-BN networks
based on ReLU activation, however it doesn’t consider input
sparsity of activation (during FP) or gradient values(in BP or
WG). Another closely related work [40] proposes to leverage
gradient output sparsity, however, it lacks key algorithmic
(i.e., why and what exactly makes gradients sparse) and
architectural insights (i.e., issues in designing a sparse ac-
celerator, load imbalance, retaining high PE utilization, data
reuse) to leverage input and output sparsity efficiently. Liu
et al. [41] propose to estimate critical neurons in the output
layer prior to their computation, thereby, constructing a
sparse network execution graph during each iteration of
training. Although this is akin to leveraging the notion of
output sparsity starting from FP itself, the scope of ReLU-
driven sparsity for gradients during BP still remains valid
for the set of retained neurons and our proposed technique
remains applicable.

Note that the scope of weight sparsity during train-
ing is the result of pruning, which introduces opportunity
for leveraging weights and activation (gradient) sparsity
simultaneously [38]. While pruning is an algorithm level
optimization and is orthogonal to our proposed approach,
it can still be supported by providing additional hardware
units. However, we limit the scope of this work to only
non-pruned training, and focus on the dynamic sparsity,
specifically, leveraging gradient output sparsity.

3 SPARSITY CHARACTERISTICS

In this section, we discuss two fundamental attributes as-
sociated with neural network sparsity. First, we discuss
why operands are sparse in a CNN network. Second, we
analytically show that a ReLU layer forces identical sparsity
footprints for the gradients in the backward pass as the
output feature map sparsity in the corresponding (previous)
forward pass.

3.1 Types and Sources of sparsity in CNNs

Sparsity in deep neural networks can be classified as static
or dynamic. Static sparsity is associated with weight pa-
rameters that are obtained by performing quantization or
thresholding as a post-training optimization step. On the
other hand, CNNs exhibit two types of dynamic sparsity
at run-time: Sparsity of the feature map values during FP
and sparsity of neuron gradients during BP. Two factors
which contribute to dynamic sparsity during a neural net-
work training step are weight distribution and input pre-
processing. Typically, neural network weight parameters
are initialized following a normal distribution around zero
mean and the distribution remains so even for a fully trained
network. In addition, neural networks require raw data to
be pre-processed via input normalization, which essentially
results in a zero mean distribution of input feature val-
ues, indicating the potential for pre-activation values to be
negative after performing weight multiplication and sum-
mation. Thus passing these pre-activation values through a
ReLU layer produces zero output for the negative activation
values. This effect ripples from layer to layer, continuing
until the end of network. Similar phenomenon also occurs

for the back-propagated gradient values. As we will see
next, sparsity of feature values directly influences sparsity of
gradient values passing backward through the ReLU layer
and sets up the premise for our proposed optimization.

3.2 Why Sparsity is identical across ReLU Layer during
a Forward and a Backward Pass?
In order to understand the unique characteristics of the
ReLU layer, we look at the execution of a sample train-
ing step consisting of forward and backward passes. For
simplicity, we use a simple MLP neural network shown in
Fig. 4, but the methodology used here can be extended to
CNNs as well. Our example MLP consists of an input layer,
a set of hidden layers and an output layer. Usually when
describing neural networks, it is common to describe the
weight and activation layers sandwiched together in the
same layer. However, to understand the identical sparsity
pattern in FP and BP, we will consider weight and activation
layers separately. We denote the activation of a neuron ′j′ in
layer ′l+1′ by al+1

j , which is obtained by applying a transfer
function σ to the accumulated sum zlj from the previous
layer. al+1

j is expressed as:

.
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Fig. 4: A simple MLP network to illustrate the notion of
backpropagation.

a
(l+1)
j = σ(z

(l)
j ), where z

(l)
j = Σ(w

(l)
ji a

(l−1)
(i) ),

where, wl
ji is the weight value connecting the output

neuron j of layer l to the input neuron i of layer l − 1.
The above equation is applied recursively from layer

l = 1 (first hidden layer) till the last layer l = L. For
a labeled dataset (X,Y ), we compute the error at the last
layer as a function of label output yj , and activation at the
last layer, aLj , which is denoted by a cost function C , where
C = f(yj , a

L
j )

The error gradient for the last layer is computed as
follows:

δ
(L)
j =

∂C

∂aLj
= f ′(yj , a

L
j ).

The error gradient for any layer l (except the last layer)
is computed by applying the chain-rule as below:

δ
(l+3)
j =

∂C

∂al+3
j

=
∂C

∂aLi
× ∂aLi
∂al+3

j

=
[
Σδ

(L)
i w

(L)
ij

]
.

Stepping back one more layer,

δ
(l+2)
j =

∂C

∂zl+2
j

=
∂C

∂al+3
j

×
∂al+3

j

∂zl+2
j

= δ
(l+3)
j � σ′(zl+2

j ).

As seen above, the error gradient at the output of transfer
layer is given by the Hadamard product (element-wise
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multiplication) of error gradient of the subsequent layer
and derivative of its own transfer function. In practice,
when ReLU (max(0, zlj)) is used as the transfer function,
the corresponding derivative is given by

σ′(zlj) =

{
1 if zlj ≥ 0

0 otherwise.

This means ReLU layer either retains (multiply with 1) or
zeros out (multiply with 0) the gradient from the subsequent
layer. Thus, the neuron location which will be zeroed out
can be known apriori, since it is dependent on the value
of the same neuron during the forward pass. Therefore, we
can save significant computation by not computing gradients
at those specific locations which will be zeroed out by ReLU in the
backward pass.

Fig. 5(a) describes this situation: We represent the com-
putations involving error gradient δ3 and weight W2 as a
simple matrix-matrix multiplication. Following along the
direction of green arrows, input matrices δ3 and W2 are
multiplied together to generate the output matrix δ2, which
is the output error gradient of the CONV 2 layer. Next,
a Hadamard (element-wise, point-to-point multiplication)
operation is performed between elements of δ2 and a′1 to

obtain δ1(δ1
a′
1←− δ2). Given that incoming gradient values

corresponding to δ3 can themselves be sparse (0s shown as
black squares in Fig. 5), we can exploit the notion of input
sparsity here by eliminating zero valued input operands
of δ3. Therefore, multiplying Row-0 of W2 with Column-
0 of δ3, we only perform 2 MAC operations, instead of 4,
to generate δ2(0,0), which is multiplied with a′1(0,0) = 1 to
finally generate δ1(0,0) (= δ2(0,0)).

Notice however that, unlike δ1(0,0), the entry at location
δ2(1,0) eventually gets zeroed due to multiplication with
a′1(1,0). Therefore, we can entirely avoid computing δ2(1,0)
based on the notion of output sparsity, as shown in Fig. 5(c),
thus leading to further savings in terms of MAC operations.
Thus, exploiting output sparsity offers significant opportu-
nity towards computation reduction, hence gain in perfor-
mance and/or energy efficiency of execution. In addition,

the flexibility of this approach leaves ample room for us
to jointly exploit input and output sparsity simultaneously
thus reducing the number of ineffective computations even
further.

Why an accelerator-centric approach? CPU/GPU based
SW implementations are capable of exploiting input sparsity
only at very high sparsity levels (90%) [33]. This is also
reported in recent accelerator based sparsity works [27],
[28], [31]. In addition, our optimization requires output
sparsity exploitation which is not supported by existing
library frameworks. Our own CPU and GPU implementa-
tions indicate that required break-even sparsity levels are
( 90%), significantly higher than actually observed in the
training context.

4 DESIGN OF THE PROPOSED ARCHITECTURE

In this section, we describe the design details of our pro-
posed hardware architecture.

4.1 Overall Organization & Operation
Fig. 6 shows a schematic of the proposed micro-architecture.
The basic building block of the unit is a Processing Element
(PE). A PE consists of specialized register array organized
in a number of lanes, each with a 16 bit floating point (FP)
multiply & accumulate unit and a re-configurable adder tree
shown in Fig. 6c. The register array also feeds a pool and
encoder unit (discussed later). The PE also contains a local
SRAM buffer for storing weights and neuron values pre-
fetched from memory and an input address generation unit.
As shown in Fig. 6b, a single node has a number of such
PEs, which interact with a Work Distribution Unit (WDU)
via an H-tree-based interconnect, located within a central
node controller unit.

4.2 Computation Placement and Mapping
Consider forward pass of a CONV layer given by: [C,H,W ]
[M,C,R,S]−−−−−→ [M,U, V ] (for notations, refer to Section 2). The

backward pass of the same layer can be given as [C,H,W ]
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.
[C,M,R,S]←−−−−− [M,U, V ]. Note that, FP and BP share the same

computational property of a CONV operation, with M and
C parameter interchanged. In the following discussion, we
will use the forward pass notation, but output sparsity is
applicable only during the backward pass. Also, we will be
using the terms filter, kernel or synapse interchangeably to
refer to the weight parameters of a layer.

Each of the PEs in our design is assigned to compute
a fragment of the output feature map given by the size
( U
Tx
× V

Ty
). To support this computation assignment, the

input feature map is tiled into Tx × Ty fragments, where Tx
and Ty refer to the number of PEs along the horizontal and
vertical dimensions, respectively. This is shown in Fig. 6 (a)
and (b). Thus, the size of each input tile fragment is given by
C×( H

Tx
+2×bR/2c)×(W

Ty
+2×bS/2c). The extra (R/2, S/2)

term is factored in towards input Halo resolution [37]. Simi-
larly, at the layer boundaries of execution, the extra amount
of data is exchanged between the neighboring tiles towards
resolving Output Halo condition. A single weight kernel
is streamed in from DRAM into the Node, and broadcast
to all the PEs. Once a filter has finished executing on the
input fragment, the next filter is loaded into the PEs and
the computation proceeds, until all the M filters of the
current layer have finished execution. For WG computation
stage, we follow similar partitioning strategy with respect
to activation and neuron gradient maps. However, the data-
access pattern is different as compared FP and BP stages,
which is performed accordingly.

(i, j, k)

i

j

k

(b) 3D Tensor H x W x 
C format

(c) Within Channel Sparsity : 
Slice showing location (i,j,0)  

(a) Through Channel Sparsity : 
Column showing (0,0,c) 

Fig. 7: Viewing sparsity from a multi-dimensional tensor
perspective (zero values are shown in black color).

Note that the proposed architecture takes advantage of
both input and output sparsities of feature maps and error
gradients. Before delving into the details of the architecture,
we revisit the concepts related to sparsity, which are essen-

tial to our design, with reference to a 3-dimensional feature
map representation (given by C ×H ×W ) discussed next.

Through Channel (TC) Sparsity: This is the sparsity that
is associated with every neuron location (Hi,Wj) in a 2D
feature map along the channel dimension. When working
with a 3D tensor representation of feature maps, RC×H×W ,
through channel sparsity can be defined as the set:

SHiWj∈H×W = {x|x = 0, x ∈ [Ck, Hi,Wj ] , ∀Ck ∈ C}

The notion of TC sparsity is important while we seek
to leverage the input sparsity of a CONV layer, where the
filter map (C × R × S) performs element-wise multiplica-
tion through the channel depth (C) of a R × S sized two
dimensional area.

Fig. 7a shows the concept of through channel sparsity.
One of the key requirements to translate sparsity into per-
formance improvement is to not spend computational cycles
in identifying zero values during execution. Therefore, this
necessitates an indexing stage that can identify non-zero
(NZ) neuron locations.

In our design, we perform NZ indexing of the generated
feature/gradient map at the end of completing all the kernel
execution of a given layer. This indexing is performed
through channel dimension of the output feature/gradient
map, for a length of 32 at a time, and its output represents
offset indices corresponding to the non-zero neuron loca-
tions, stored as an offset map. Notice that indexing only
needs to be performed once per layer, and the indexed
neuron values are heavily reused subsequently (O(M×k2))
which is 2-3 orders of magnitude, the latency and energy
cost of encoding is well amortized. We also retain the
memory access regularity by only indexing the neurons (not
compression).

Fig. 8a describes this idea for an example feature map
of size 3x3x3 and a synapse size of 3x2x2, by showing the
computation flow for the first output location denoted as
Z(0, 0). Note the memory ordering of the synapse values
and corresponding neuron values, which is stored according
to ”channel first” layout. For the neuron values, we also
extract the NZ index locations using the Encoder. The NZ
index values are used to index into the synapse field, and
thereby selective (only non-zero) neuron and synapse mul-
tiplication takes place and final sum is accumulated (Z(0,0)).
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(a) Input Sparsity with neuron indexing

Neuron Lane[0-31]

Filter#0 [0-31]

Filter#1 [0-31]

Filter#15 [0-31]

NZ Index[0-31]

Neuron Lane[0-31]

Filter#0 [0-31]

NZ Index[0-31]

Neuron Lane[480-511]

Filter#0 [480-511]

NZ Index[480-511]

.

..

...

(i) (ii)

(b) Filter Decoupling (c) Computation lanes with double buffer-
ing

Fig. 8: Architectural design considerations

Within Channel (WC) Sparsity: Within channel sparsity
is defined as the sparsity associated with each channel of
the feature maps, obtained by looking at all the H × W
2D neuron values that are zeros, contained in a particular
channel Ck. Mathematically, this can be defined as the set,

SCk∈C = {x|x = 0, x ∈ [Ck, Hi,Wj ], ∀(Hi,Wj) ∈ H ×W}

Fig. 7c shows a representative example of WC sparsity.
The notion of WC sparsity is important while exploiting
the concept of output sparsity . The sparsity within each
channel determines which output neurons can be skipped
during the backward pass of a training step. Therefore, as
shown in Fig 9, input address generator skips all the zero
valued bitmap locations and loads input only corresponding
to non-zero bitmap co-ordinate. Furthermore, if the input
was also sparse, it will also load the offset index values and
computation can proceed, taking advantage of TC sparsity.

Fig. 9: Supporting Output Sparsity: Address generator mod-
ule loads input only according to the non-zero output
bitmap co-ordinate.

Filter Decoupling: This leads us to another important
aspect of accelerator design choice, which is filter decou-
pling. In order to maximize the parallelism of the execution,
designs tend to couple multiple filter lanes with a shared
neuron lane. This is shown in Fig 8.(b) (i), where a single
neuron lane and it’s NZ offset index is broadcast to multiple
filter lanes and can effectively exploit input sparsity. How-
ever, for exploiting output sparsity, the same approach can-
not be adapted. This is because different channels of output
gradient map would have different sparsity footprints, the
corresponding filters need to process different output index
locations at any given point in time. Computing different
output index locations requires different region of input
neurons to be present on the computation lanes. Hence, it
is necessary to decouple filter lanes corresponding to indi-
vidual filters/gradient maps(either spatially or temporally).
Accordingly, all available lanes are dedicated to produce
o/p corresponding to same filter or gradient map at a
time, allowing for highly streamlined SRAM memory access
pattern and sustaining a high bandwidth. This is shown in

Fig.8b(ii). This decoupling is essential in exploiting output
sparsity jointly with input sparsity and is a distinguishing
architectural feature of our design.

4.3 Node Micro-architecture

Each PE in our node design consists of 16 computational
lanes, each consisting of 3 separate SRAM buffers and a
Multiply and Accumulate (MAC) unit. The three buffer
arrays correspond to the neuron lane, the offset lane and
the synapse lane, shown in Fig. 8c, which are again divided
into two groups (group 0 and group 1) for the purposes
of double buffering. Within a group, each buffer lane can
hold 32 entries, where each entry in the neuron and synapse
lanes is 2 Bytes in size and each offset lane entry is 5 bits to
hold the non-zero index values corresponding to 32 entries.
Thus, size of neuron and synapse lanes are 64B, and offset
lane has a size of 20B(5 bits x 32). At each cycle, the on-
chip SRAM memory needs to deliver 64B of neuron and
20B of offset values, thus required maximum bandwidth is
given by 84Bytes/cycle. After loading data onto the lanes,
offset lane is read sequentially and output of the offset lane
indexes into the neuron and synapse lane, to obtain the non-
zero neuron and corresponding weight value. The associ-
ated MAC unit receives the neuron and synapse values and
updates its accumulated sum after performing the multipli-
cation. The outputs from all the MAC units are connected to
a re-configurable adder tree where it can reduce its operands
from the 16 data lanes to a single value. The reduction
takes place once all the non-zero neuron values have been
processed in all the computation lanes in the current group.
Due to a possible un-even distribution of non-zero values in
each lane, there can be lane stall cycles where computation
in a lane cannot proceed and needs to wait for other lanes
to finish. This issue is addressed by double buffering inputs
to the computation lanes, through which probability of lane
stall is effectively reduced.

An important point to note here is that each PE can
hold a maximum of 1024 pairs of input entries (16 lanes
x 32 entries/group x 2 group) corresponding to the output
neuron value computation. This configuration is ideal if the
receptive field size (denoted as CRS = C × R × S) of a
given layer’s filter is exactly 1024. However, all real world
benchmarks have variable sizes of receptive fields within
different layers that are not equal to 1024, and therefore, it
has the following two consequences: first, memory band-
width utilization and second, in terms of overall PE lane
utilization. We discuss both the issues and corresponding
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optimizations that allow PEs to perform computation in a
more efficient manner.

4.4 Synapse Blocking for Improved Memory Bandwidth
Utilization (CRS > 1024)

When the receptive field size of a filter is greater than
1024, a straightforward approach to follow is by finishing
the entire required computation for each output in a single
pass. However, this leads to inefficiency as synapse (filter)
values have to be loaded and reloaded for every subsequent
neuron output computation. Here, we address this issue by
blocking the synapse values at 1024 element boundaries and
generating partial sum for each output neuron location. In
the next iteration, the remainder of the synapse values are
blocked and the partial sum from previous iteration gets
reduced with the computation currently being performed.
The number of iterations required per PE is thus given by
CRS/1024.

4.5 Hierarchical reconfiguration with Re-configurable
Adder Tree Structure (CRS < 1024)
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Stage-II 
Adder

Out register

Fig. 10: Re-configurable adder
tree to support smaller recep-
tive field sizes (< 1024).

In the case where re-
ceptive field size is less
than 1024, it can lead to
PE under-utilization e.g.
in the worst case scenario
when CRS <= 32, the
PE lane utilization drops to
1/16 or 6.25%.

To achieve an effi-
cient lane utilization, we
propose a re-configurable
adder tree that can selec-
tively reduce output from
the MACs (in powers of
2), and thus, enables mul-
tiple output neuron com-
putations to proceed simultaneously, as shown in Fig. 10
(for a lane count of 4). Similar to data flow control using
multiplexers, we insert de-multiplexers between successive
adder stages. The demuxes are pre-configured to either
forward input data to the next adder stage or re-route for
memory storage. Accordingly, multiple independent output
computation can proceed in parallel based on the size of the
receptive field, leading to higher PE utilization.

To further alleviate the issue of under-utilization when
lane occupancy is non-aligned (e.g., with occupancies such
as 3, 5, 9, etc.) we propose to block the filter kernels to it’s
nearest aligned size (smaller than the required occupancy),
and scheduling the remaining computations in the next
iteration. In each iteration, lane sizes are recursively aligned.
Thus, using hierarchical reconfiguration approach, we can
achieve full utilization of PE, ensuring high performance.

4.6 A Work Redistribution Strategy
As discussed earlier, each PE is assigned to compute a
region slice of U/Tx × V/Ty of the output tensor. During
the backward pass, each PE is also provided with the
corresponding output bitmap slice already stored in DRAM

from the forward pass. However, it is observed that there
exist variations within spatial sparsity distribution of a map,
leading to some of the PEs finishing early and remaining
idle. This limits the achievable speedup by the tile region
having maximum amount of work. In order to avoid such a
scenario, we propose to re-distribute work from a tile with
the maximum amount of work (maximum number of non-
zero neurons), to a tile which has just finished executing
all neuron locations. This maximizes the utilization of any
idle/available PEs, and helps to achieve higher throughput.

Work re-distribution is supported by a centralized work
re-distribution unit within a node, which tracks the progress
of any given PE-tile by a state tuple < iter, x, y >, where
iter represents the iteration value w.r.t. partial sum, and
(x,y) represents the co-ordinates of the output neuron cur-
rently being processed. Each PE contains its own boundary
condition for these parameters which act as the start and end
markers. WDU detects an idle tile(”source”) when all the
parameters have reached their end markers. To redistribute
work, it selects a tile(”target”) which has the lexicographi-
cally smallest value of state tuple signifying that this tile has
the maximum amount of remaining work.

Our approach divides the remaining work in two halves
and re-assigns the lower half to the target tile. During this
process, WDU sends commands to source tile to send the
pertinent input portion to target tile, and also updates the
start and end markers of both the tiles accordingly. This
redistribution comes at an additional overhead of sharing
input data between the PEs and merging output results,
therefore, it is useful to work-redistribute only when re-
maining work is above a certain threshold. In our evalu-
ation, we empirically identify a re-distribution threshold of
30% as a lower bound, although it is possible to dynamically
adjust this value for more optimal results.

5 EVALUATION METHODOLOGY

5.1 Neuron Activation and Gradient Traces:

To obtain the activation and gradient values of a neural
network training iteration, we use the publicly available
TensorFlow framework. We model 5 state-of-the-art CNNs
in TensorFlow, namely, VGGNet, ResNet18, GoogLeNet,
DenseNet and MobileNet, for training on the Imagenet
dataset consisting over a million training images. Note that,
to evaluate the performance of our proposed architecture,
we need to obtain the activation and gradient traces in a
layer-wise fashion. Therefore, we use Tensroflow training
framework to obtain layer-wise gradient and activation
values of the neurons which we use as input traces for our
accelerator simulation framework.

5.2 Proposed Design Configuration and Simulation
Framework:

The individual components of our proposed architecture is
modeled at the Register-Transfer level using Verilog and
synthesized using the Synopsys Design Compiler with the
Synopsys AED 32nm library. The components include a)
half-precision MAC units, b) the re-configurable adder tree,
c) the operand feeding register files, d) the non-zero ac-
tivation encoding unit, e) the PE controller and f) other
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Processing Element (PE)

Component Param Spec Power /
Energy

Area
(mm2)

Neuron/syn.
reg. file

count
size

64
4 KB 20.1 mW 0.3820

Non-zero
idx reg. file

count
size

32
0.625 KB 3.44 mW 0.0602

Mul-acc
(MAC) unit

count
size

16
16b FP 10.56 mW 0.1235

Reconfig.
adder tree

count
size

15
16-input 5.5127 mW 0.0803

Non-zero
encoder count 1 0.7714 mW 0.0113

Control - - 2.0955 mW 0.0313

SRAM buff.

bank size
bank count
access time
line size

32 KB
4
0.80787 ns
128B

0.035 nJ/rd
0.040 nJ/wr
25 mW (D)
8.1 mW (S)

0.3696

PE total - - 75 mW 1.0468
Proposed design node at 667 MHz at 32nm

PE count 16x16 = 256 19.2 W 266.24

TABLE 1: Component specifications for our design.
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(b) Inception 3b (from GoogLeNet).

Fig. 11: Layer-wise performance improvement results.

miscellaneous logic. The design specifications are reported
in Table 1. Note that we are using 16-bit floating point
computation, which has been recently shown to achieve
convergence on complex learning tasks using techniques
such as loss scaling [42]. We use CACTI [43] tool to model
and estimate the access parameters of on-chip SRAM buffers
that feed neuron activation and synapse weight values
to the 16 register lanes (Table 1). The area, power and
timing estimates of all on-chip components obtained were
then plugged in to our in-house cycle-accurate architectural
simulator to obtain the energy and latency estimates of
the different CNN workloads. The simulation infrastructure
models the events in terms of mapping and placement
of different kernels involved in a typical neural network
training process (i.e. activation forward pass, weight update
and gradient backward pass) as various compute, memory
and other on-chip transactions. The 256 unit PE clusters
with MAC and re-configurable adder tree units, provide a
peak throughput of 8192 half-precision FLOPs/cycle (5464
GFLOPs/s). The PEs communicate with each other through
an H-tree on-chip interconnect equipped with a broadcast
bandwidth of 512 GB/s.
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Fig. 12: Layerwise performance improvement results.

6 EXPERIMENTAL RESULTS

In this section, we discuss the effects of input sparsity (IN)
and output sparsity (OUT) exploitation in CNNs. We report
the overall results for both forward and backward propaga-
tion of CNN training to show the efficacy of our proposed
mechanism. We evaluate four different scenarios to analyze
and evaluate layer-wise performance, as shown in Fig. 11a.
In the baseline scenario, we evaluate a dense compute model
(DC) and report all other results normalized with respect
to the DC model. Next, we evaluate improvements due to
input sparsity, in which gradient sparsity of layer (l + 1)
is exploited for computing the error gradient of layer l
(referred to as IN). The third bar shows the results with both
the input and output sparsity exploited (IN+OUT) jointly.
The last bar shows the results for the IN+OUT sparsity along
with the work redistribution (IN+OUT+WR) technique in
place.

We discuss our application specific results under two
categories: Networks (i) with and (ii) without the BN layer.
Both VGG and GoogleNet are without BN layers, and enable
the joint exploitation of the input and output sparsities
simultaneously.

Fig. 11a shows that, each of the VGGNet layers gets
significant performance boost, ranging from 1.46× (layer 8)
to 7.61× (layer 7) when employing the proposed sparsity
exploitation and work redistribution schemes. Note that
output sparsity exploitation is not applicable to certain
layers (the 3rd, 5th, 8th and 11th bars in Fig. 11a). This
is because for these particular CONV layers, the imme-
diate preceding layer is a non ReLU layer (in this case, a
MaxPool layer). At a MaxPool − CONV layer boundary,
all the output gradient locations must be evaluated, which
is relayed back to the preceding layer. However, our design
can still take advantage of input sparsity and perform better
than the dense baseline.

GoogLeNet: We only show the results for the Inception-
3b module, for which the input and output sparsity exploita-
tion can be found in Fig. 3a. he As shown, in the figure
all the CONV layers within the block gets performance
improvement, particularly {ReLU33, CONV 33}(bar 4) and
{ReLU55, CONV 55}(bar 5) are direct candidates for both
types of sparsity exploitation, which also happens to be
the most compute-intensive CONV layers featuring 3x3 and
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Fig. 14: Residual block architecture.

5x5 filter layers (others are 1x1 types). Bar-6 represents
the interface between the maxpool and conv layers, and
therefore, the sparsity benefits are limited to input only.
The overall achieved performance gains range from 2.6×
to 12.6× for this block.

Networks with the BN layer: For networks with the
batch-normalization layers, it is important to note that the
error gradients at the input of CONV layer are not sparse.
Hence, the traditional input-sparsity techniques (which
have been exploited by prior works) are not applicable, and
only type of sparsity that is applicable is output sparsity,
since these CONV layers are still preceded by ReLU layers.
Therefore, this particular trend is observable in the results of
ResNet, DenseNet and MobileNet, as shown in Figures 13,
12a and 12b, respectively. Both ResNet and DenseNet consist
of repeating micro-blocks, and the results are shown for one
such representative block.
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Fig. 13: Residual Block2 (ResNet18)

ResNet:
consists of
multiple residual
blocks(Fig 14),
where the output
of the residual
function is added
to the shortcut
path. This process
of element-wise addition leads to reduced activation
sparsity (∼30%). This explains the relatively lower gains
observed for the 2nd and 4th bars (output of residual
function), as compared to 1st and 3rd bars where the
activation sparsity levels are higher (∼50%). Thus, the
overall performance gains vary from ∼16% to ∼73% for
this block (mean improvement of ∼45%, ref Fig 13).

DenseNet: It has similar block-based architecture, how-
ever, the output from the residual path is merged via concate-
nation instead of addition, which retains high sparsity levels.
The results corresponding to Denseblock1 of DenseNet121
are shown in Fig. 12a, which shows performance improve-
ment only after the application of IN+OUT+WR and the
range of improvement varies from ∼1.69 to 3.32× across the
layers.

MobileNet: It has a linear structure (similar to VGGNet);
however, it consists of depth-wise (dw) and point-wise (pw)
convolution layers. Note that our proposed techniques are
applicable to both dw and pw layer types. However, the dw
layers are not a compute bottleneck, therefore we only show
the results corresponding to the point-wise conv layers in
Fig 12b, which shows performance improvement ranging
from 1.25× to 2.1×, after applying output sparsity and work
re-distribution.

Fig. 15 shows the overall performance improvement
along with the breakdown of the contributions of the input
and output sparsity exploitation techniques, taking into
account both the forward and backward passes. Overall,
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Fig. 15: Normalized CNN execution time with breakdown
for forward and backward passes.

the networks that benefit the most are VGGNet(∼ 2x) and
GoogleNet( ∼ 2.18X) which is in line with our previous
discussions as they are amenable for exploiting both input
and output sparsity simultaneously in the backward pass.
For MobileNet, ResNet and DenseNet, significant gains are
still leveraged despite the presence of a BN layer, where only
one type of sparsity can be exploited - input sparsity during
the forward pass and output sparsity during the backward
pass. The end to end benefits is 2.13x for MobileNet, 1.7x for
DenseNet and 1.66x for ResNet. Note that for WG phase,
OUT+IN+WR still provides improvement, as work redistri-
bution helps in reducing the overall execution latency.

Impact of Reconfiguration: To highlight the
importance of reconfiguration, Fig. 16 shows two
types of CONV layers from Dense-block-1 from
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Fig. 16: Impact of Lane Recon-
figuration

DenseNet, with two dif-
ferent receptive field sizes.
The first one is [1x1x64] and
occupies only 2/16 lanes,
resulting in PE under-
utilization.

However, this under-
utilization is readily cap-
tured in the direct form of

reconfiguration, by replicating the computation 4x times.
However, in the case of [3x3x64] filter size, it occupies 9/16
lanes and replication is not trivial. However, our hierarchical
reconfiguration approach can schedule the computation to
make up for the lost utilization otherwise, and thus it
improves the performance (∼1.75x).

Impact on Node Utilization: Fig. 17 shows the mini-
mum, maximum and average execution latencies of differ-
ent tiles during GoogleNet inception 4d module execution.
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Fig. 17: Node latency variation under
different schemes.

As can be seen,
delay is governed
by the maximum
tile latency which
is highest for
the baseline
execution of both
the forward and
the backward
cases. In general,
closer the average

latency curve is to the maximum latency, higher is the
overall utilization and occupancy of the tile resources.
We observe that, without work re-distribution, the ratio
of average tile latency to maximum tile latency stays
∼70%; however, with WR applied, the utilization is further
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Platform\Spec Tech
(nm)

Freq.
(MHz)

Area
(mm2)

Power
(W)

Peak Thpt.
(GOps)

Energy Eff.
(GOps/W) Exec. Mode Iteration Latency

(ms)
VGG-16 Res-18

Dual Xeon E5 2560 v3 22 2400 - 85 614.4 7.22 CPU, Dense 8495 2195
NVidia GTX 1080 Ti 16 706 400 225 11000 48.8 GPU, Dense 128 32.78
DaDianNao [12] 65 606 67.3 16.3 4964 304 Acc, Dense 526 61.1
CNVLUTIN [31] 65 606 70.1 17.4 4964 304 Acc, Input Sparse 365 48.3
LNPU [44] 65 200 16 0.367 638* 25800* Acc, Input Sparse 4742 684
SparTANN [27] 65 250 4.32 0.59 380* 648* Acc, Input Sparse(BP & WG) 12831 1789
Selective Grad [39] 65 606 67.3 16.3 4964 304 Acc, Input Sparse(BP) 480 61.1
This Work 32 667 292 19.2 5466 325 Acc, In + Out Sparse 166.81 23.26

TABLE 2: Comparison with CPU, GPU and prior Accelerator based platforms(* denotes throughput considering sparsity)

improved to ∼82.9%, leading to the lowest execution time
and in turn savings in static energy dissipation.

DRAM considerations: While DRAM access pattern
varies from network to network and layer to layer, for
our design, we estimate that a 16 channel DDR3-1600
bandwidth (16x 12.6 GB/s) is sufficient without incurring
performance loss. For example, for a typical layer of fmap
sized at [128x28x28] and filter size of [128x128x3x3], the
ratio of communication to compute time is ∼15% (upto 30-
50% with sparsity). However, most of it can be overlapped
with pipelined execution and hidden due to the streaming
nature of data access. Main memory access also contributes
additional∼10% (for ResNet-18) upto∼ 35% (for DenseNet-
121) of total chip power.

Comparison with CPUs, GPUs and prior works: Table
2 shows relative design metrics of our proposed work
with reference to CPUs, GPUs and prior accelerator based
platforms. We choose DaDianNao [12] - a well known
Dense CNN accelerator and CNVLUTIN [31] (adapted for
training), which is an input sparse variant of DaDianNao
for our accelerator based comparison (both also feature
identical number of MAC units (4096) and on-chip buffer
size (32MB) for an apple to apple comparison with our
work), in addition to three recent accelerator based designs.
For CPU, we refer to Dual Xeon E5 2630 v3 (22nm) with
clock frequency of 2400 MHz, offering peak throughput
of 614.4 GOps. For GPU, we refer to NVidia GTX Titan
1080 Ti (16nm) with peak 11 TOps peak throughput. Also
as discussed previously, both CPU and GPU pipelines are
not equipped to exploit sparsity below a high threshold, we
therefore stick to the dense variant of the execution. The last
two columns in the same table shows the performance of
these different hardware as a per iteration latency(in ms)
during training using batch size of 16, for VGG-16 and
ResNet-18 networks. Note that CPU and GPU numbers are
taken from publicly available data at [45]. As seen from
the table, our design perform an order of magnitude bet-
ter than CPU based platform, while achieving competitive
performance as compared to GPU platform. Since the GPU
platform has ∼2x higher compute Flops and ∼10x more
power as compared to our design, we are still able to achieve
high energy efficiency(∼7x higher on the average) for the
two benchmarks.

Also note that, Dense variants of our proposed architec-
ture (without sparsity specific optimizations) perform 1.9x
and 1.7x better than DaDianNao, although both have similar
peak throughput. This is primarily due to efficient mapping
strategies leading to very high PE utilization, indicating

impact of micro-architectural optimizations. Our proposed
sparsity based (input and output) approach achieve 3.15x
for VGG-16 and 2.65x for ResNet-18(mean 2.9x) perfor-
mance improvement over DaDianNao. Over CNVLUTIN,
which can only support input sparsity, improvements are
in the range of 2.2x and 2.07x (mean 2.1x) over the two
benchmarks.

We also compare our work with three recent accelerator
based proposals designed for sparse training namely LNPU
[44], SparTANN [27] and Selective Grad [39]. LNPU is
designed as a fined grained mixed precision accelerator
using FP8-FP16 configurable MAC design and leverages
only input sparsity. Although it reported very high energy
efficiency (25.8 TFlop/W), it is considering FP8 operation
at 90% input sparsity. In addition, the design uses very
limited on-chip buffer size (320 KB) as compared to our
work (32MB), thus it cannot efficiently leverage the locality
& reuse properties (single weight access across input batch
and input reuse across layer weights), resulting in frequent
DRAM data access. This leads to an order of magnitude
drop in energy efficiency at an application level. Based on
our estimates, our is work is atleast 2-3x more energy effi-
cient compared to LNPU when considering application level
characteristics, and also offers 30x higher performance.

SparTANN [27], on the other hand proposes to exploit
threshold based sparsification for the gradient values, re-
sulting in higher levels of sparsity. Note this work only
supports input sparsity for the gradients during BP And
WG stages, which is already supported in our work and
doesn’t discuss the scope of output sparsity and also doesn’t
exploit activation input sparsity during FP. Also reported
energy efficiency of 648 GOps/W is considering sparse op-
erations, which effectively translates to similar dense energy
efficiency numbers as proposed in our work, while offering
14x less performance. Selective Grad [39] only exploits out-
put sparsity of gradients in the BP, while ignoring scope of
input sparsity altogether in FP, BP and WG stages. As such,
our design is able to outperform [39] by a factor of ∼ 2.6x.

7 CONCLUSIONS

While sparsity has been exploited in the forward & back-
ward passes of CNN inferences, it has been mainly in the
form of input sparsity. In this paper, we present a novel
insight exposing the scope of output sparsity in neuron
gradient computation stage, and propose a novel hardware
architecture for exploiting the same, alongside available
input sparsity. To the best of our knowledge, this is the first
work that jointly exploits input and output sparsity during
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the neuron gradient computation phase of neural network
training. Our evaluation of five state-of-the-art CNN models
shows that the proposed design can reduce the execution
time by up to ∼8.3× for the backward pass and overall by
∼1.81× for the CNN training step consisting of both the
forward and backward passes, over a dense-compute only
baseline, and achieves order of magnitude improvement in
energy efficiency over dense CPU and GPU based platforms.
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