SmartOS: Towards Automated Learning and
User-Adaptive Resource Allocation in Operating
Systems

Sepideh Goodarzy
sepideh.goodarzy@colorado.edu
University of Colorado Boulder

Boulder, Colorado, USA

Eric Keller

eric.keller@colorado.edu
University of Colorado Boulder
Boulder, Colorado, USA

ABSTRACT

Today’s operating systems typically apply a one-size-fits-
all approach to resource management, such as applying a
scheduler that treats all processes of equal importance. The
goal of this paper is to explore a learning-based approach
to resource management in modern operating systems in
which the OS automatically learns what tasks the user deems
to be most important at that time and seamlessly adjusts
allocation of CPU, memory, I/O, and network bandwidth
to prioritize user preferences on demand. We demonstrate
an implementation of such a learning-based OS in Linux
and present evaluation results showing that a reinforcement
learning-based approach can rapidly learn and adjust system
resources to meet user demands.

CCS CONCEPTS

« Software and its engineering — Operating systems; ¢
Computing methodologies — Reinforcement learning; «
Human-centered computing — Human computer inter-
action (HCI).

KEYWORDS

Operating systems, Reinforcement Learning, Human Com-
puter interaction

CHoM

This work is licensed under a Creative Commons Attribution International 4.0 License.

APSys °21, August 24-25, 2021, Hong Kong, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8698-2/21/08.
https://doi.org/lo.l145/3476886,3477519

Maziyar Nazari
maziyar.nazari@colorado.edu
University of Colorado Boulder
Boulder, Colorado, USA

48

Richard Han

richard. han@mgq.edu.au
Macquarie University
Sydney, NSW, Australia

Eric Rozner
eric.rozner@colorado.edu
University of Colorado Boulder
Boulder, Colorado, USA

ACM Reference Format:

Sepideh Goodarzy, Maziyar Nazari, Richard Han, Eric Keller, and Eric
Rozner. 2021. SmartOS: Towards Automated Learning and User-
Adaptive Resource Allocation in Operating Systems. In ACM SIGOPS
Asia-Pacific Workshop on Systems (APSys °21), August 24-25, 2021,
Hong Kong, China. ACM, New York, NY, USA, 8 pages. https://doi.
org/10.1145/3476886.3477519

1 INTRODUCTION

Today’s user-facing operating systems (OS)s, such as lap-
top, mobile, and desktop OSs, are typically designed with a
one-size-fits-all approach to resource management. For ex-
ample, the Linux Completely Fair Scheduler (CFS) effectively
divides up the CPU equally among all processes, assigning
them essentially the same static priority [1, 13]. In contrast,
users interacting with an OS often move from task to task
and application to application, wanting sufficient resources
devoted to their current task, such as editing a document,
chatting via zoom, or listening to music. In addition, users
often have many applications open simultaneously, some
from previous tasks that may be resumed in the near future,
including multiple tabs in a browser persistently refreshing
their content, resulting in a landscape of many applications
continuing to consume system resources. In this context, the
current approach of static prioritization often fails to devote
sufficient resources to the applications that the user cares
most about at that moment, resulting in degraded perfor-
mance. For example, many users experience a slow down
on their computer when there are numerous open applica-
tions which collectively act as CPU hogs or memory hogs,
in some cases due to runaway processes, and interfere with
the tasks that the user deems most important. Other pro-
cesses occupy enough network bandwidth to interfere with
real-time audio/video, including software updates and cloud
synchronization. Anyone who has tried to conduct a Zoom

https://doi.org/10.1145/3476886.3477519
https://doi.org/10.1145/3476886.3477519
https://doi.org/10.1145/3476886.3477519
https://creativecommons.org/licenses/by/4.0/

APSys 21, August 24-25, 2021, Hong Kong, China

call while there is another local network-hogging applica-
tion understands this difficulty. Ideally, a next-generation
OS would benefit the user and alleviate these bottlenecks
by being able to learn what applications the user currently
considers to be most important and adaptively prioritizing
allocation of resources to those applications.

Limited performance in today’s operating systems has
become enough of a concern that machine learning (ML)
has begun to be applied to improve application execution.
Perhaps the most closely related to this work is the recent
Acclaim system that seeks to improve user experience in
the Android OS by predicting what memory pages are going
to be used next by employing machine learning [12]. Ac-
claim assumes that the most important applications are the
foreground application and audio/video apps, and statically
prioritizes page reclamation for these applications. As we
show later, static prioritization is not ideal in a variety of cir-
cumstances. In addition, machine learning has been applied
to improve Linux process scheduling [4, 19], I/O schedul-
ing [11, 14], and network cloud systems [5], but each only
considers one resource dimension, rather than jointly allo-
cating CPU, memory, networking and I/O, and also do not
learn user preferences for resource allocation.

Some previous work has combined machine learning with
control theory to preserve the quality of service while mini-
mizing energy consumption [16]. The issue with this method
is that conservative configuration is used until enough data
is gathered to do offline learning. Once training is finished,
the resource configuration is changed in their control system.
As a result, this method can not be used in an interactive
environment with the user due to the fact that despite the
user giving the system feedback, the system will not change
the configuration of resources in a computer until it has
enough data that it can do offline training. Other works in
the literature used control theory try to find the sweet spot
of accuracy and performance trade-off space in dynamic
environments [9, 10]. Still, their method is not suitable for
our problem space as the goal in our problem space is sub-
jective (user preference) and changes more frequently than
objective goals such as application performance and energy
consumption which are the focus of those works. This is due
to the fact that control theory is based on modeling the envi-
ronment, while reinforcement learning methods in machine
learning are also applicable to environments where there
is a lack of knowledge to be modeled perfectly (model-free
reinforcement learning).

Building upon this theme, this paper explores the role
of machine learning in the design and implementation of
next-generation operating systems, harnessing the explod-
ing interest in artificial intelligence and machine learning
to improve the user experience through automated learn-
ing and resource allocation in the OS. We investigate how

49

Goodarzy, et al.

the OS may be structured to accommodate learning-based
management of joint resource allocation for memory, CPU,
I/0, and network bandwidth in response to user behavior.
We consider which machine learning algorithms may most
effectively integrate and learn from user behavior. We also
seek to understand whether there is any net benefit in per-
formance to applying machine learning in OS design and if
so to quantify the benefits.

The challenges we face are significant. The context that
governs what the user values as most important at any given
time is complex and difficult to learn. For example, a user may
currently be engaged in editing a document, and would pre-
fer to have CPU and memory resources prioritized towards
editing. Adding complexity, the user may also be streaming
a music video from a cloud provider at the same time and
wish to listen to music while editing. This different modality
should also receive high priority in terms of CPU, memory,
and notably network bandwidth. Static prioritization poli-
cies become difficult to craft as we consider such increasing
complexity. Heightening the complexity, each application
may consist of multiple dependent communicating processes
who would as a group need to receive elevated allocation.

This paper proposes SmartOS, a learning-based operat-
ing system that takes the user interactions with the OS into
account to perform automated resource management. Smar-
tOS leverages reinforcement learning to continuously gather
feedback from the environment and make changes in the re-
source parameters exposed by the Linux operating system’s
kernel to improve the user experience. The contributions of
this paper are as follows:

e We describe an architecture that integrates machine
learning into the OS as a user space module controlling
allocation of memory, CPU, network, and I/O.

e We utilize reinforcement learning (RL) to solve the
difficult challenge of learning the user’s context and
applying the appropriate resource allocations.

o We demonstrate that our RL algorithm is able to rapidly
converge to the desired allocation of system resources
and that the overhead is modest.

In the following, we first describe our design goals and
overall architecture in Section 2, then explain the system
implementation in Section 3, followed by the evaluation
results in Section 4, discussion and future work, and finally
conclusions.

2 OVERVIEW

Figure 1 depicts an overview of SmartOS. The main learning
component of the system is the Cortex, which is the "brain"
of the system and is responsible for monitoring the applica-
tion status, user context, and the user’s interaction with the
computer. In response to this state information, the Cortex

SmartOS: Towards Automated Learning and User-Adaptive Resource Allocation in Operating Systems

User feedback

05,2’ 1 User-computer ;
% interactions

User Space

Kernel Space

Figure 1: Learning-based SmartOS architecture.

determines which resource allocation policy is the best in
satisfying the user’s expectations. The Cortex applies the
determined resource allocation policy through parameters
exposed by the kernel. The kernel then allocates CPU, mem-
ory, network bandwidth, and disk I/O among applications
according to the specified parameters. The new resource
distribution changes the quality of the user experience. To
indicate the resource policy has successfully achieved its ob-
jectives, the user provides feedback based on their experience
to the Cortex.

The overall architecture and design of the SmartOS system
reminds us of Reinforcement Learning (RL). RL consists of
an agent that measures the current state of the environment,
acts on the environment, and watches the environment’s
next state. Also, it receives a reward based on how that ac-
tion has affected the environment to reach its objective. In
general, the RL agent’s objective is to maximize the total
gained reward. As a result, the instant gain of action is not as
valuable as the entire gain of a set of actions over time. The
nature of RL makes it suitable for decision-making problems.

Due to the similarity between the SmartOS system and RL
design, we decided to utilize an RL algorithm in the Cortex.
Another reason for this decision is that the OS constantly
decides on sharing of resources among processes and sched-
uling processes. This is highly suitable to RL, which is also
constantly adapting its decisions based on the available state
information. Other machine learning techniques such as su-
pervised learning and unsupervised learning are not very
suitable for our problem as they cannot handle the dynamic
nature of our problem. However, the correct identification
of the environment’s current state, set of possible actions,
and reward makes this approach challenging [16].

In pursuing this Cortex model for integrating user-adaptive
learning into an OS, we chose to locate the Cortex component
in user space. This affords us the ability to easily manage,

50

APSys ’21, August 24-25, 2021, Hong Kong, China

test, debug, and update the software and learning algorithms.
Another approach is to place the learning component within
kernel space. This can improve performance. For example,
KMLib provides a fast library framework for ML applica-
tions [3] in kernel space. However, using such a library is
difficult because of the challenge of managing and debug-
ging code in kernel space. It is also a trend in the industry
to move applications to user space to prevent tight coupling
and slow release cycles [15]. We show in section 4 that the
performance of our RL-based system in user space is quite
responsive given the human time scales for adaptation.
Actions: In order to distribute the computer resources among
different applications, one can use the parameters in the ker-
nel or change the kernel code. We have chosen to use the
predefined parameters to control resource allocation to be
compatible with different Linux versions (see Section 3). This
choice will enable us to write our system in user space and
will make it easily pluggable.

Among different resources in a computer, the CPU, mem-
ory, network, and disk I/O are the main focus of our system
as their allocations are critical to application performance.
Rewards: The best reward selection is user feedback because
SmartOS’s final goal is to find the best resource allocation
policy based on user preferences. Therefore the user is the
only person who can show how effective the Cortex was in
reaching its objective. This feedback can be implicit and non-
intrusive based on passively monitored interactions such
as keyboard strokes or mouse clicks and movements. For
example, when the user is frustrated with their computer,
they may move the mouse quickly or type more quickly. The
feedback also can be explicit via a specialized application for
providing feedback.

3 PROTOTYPE

The Cortex of SmartOS was implemented on Linux, Ubuntu
20.04 in user space. As a first step to test the feasibility of
employing RL to automatically tune parameters, we con-
structed simplified discrete-valued models for the environ-
mental states, actions, and rewards, reasoning that if we can
show benefits in such a system, then we can later address
the complexity of continuous-valued states. We limited the
environment state to the applications’ resource usage pro-
files, whether the applications are foreground or background,
and whether the application is a video/audio application. If
an application is in the foreground, the foreground value
in the environment’s current state vector will be one and
zero otherwise. As noted in the Acclaim work, whether a
process is in the foreground or background state is a key
indicator of what the user views as being important at that
moment, though as we shall see statically prioritizing the
foreground is not the whole story. Similarly, the value is one

APSys 21, August 24-25, 2021, Hong Kong, China

if an application is video/audio or zero otherwise. This allows
us to examine how the modality of the application must be
considered in learning the best resource allocation. As for
the CPU, memory, network, and disk I/O values in the state
vector, if the application is intensive in the consumption of
any of these resources, the corresponding vector index for
that resource type will be one otherwise zero. By choos-
ing four independent resource dimensions, this allows us
to examine cases where high priority applications may de-
mand intensive resources in certain dimensions while being
interfered with by other applications in a variety of complex
ways.

We also limited the range of the possible actions. A value
of one in the action vector for any types of resource means
high priority in that corresponding resource and otherwise
normal priority.

As for the reward, to test the space of a wide variety of user

behavior, we created a script that generates user feedback
synthetically. This gives us more freedom to explore many
different types of user behavior, both from a user resource
perspective as well as a temporal perspective. The script only
gives +1 as a reward for the best action, and 0 otherwise. The
best action is the resource allocation policy that results in
highest performance in the applications that are important
to the user in a given scenario.
Resource allocation: We then leveraged various system
tools in Linux to implement changes in relative allocation of
system resources to each application, effectively giving us
the ability to change the prioritization of different processes
independently in four separate dimensions: CPU, memory,
/0, and network bandwidth. The RL algorithm would manip-
ulate these system "knobs" and then inspect whether it had
converged towards the best allocation of resources. Different
resource parameters are controlled as follows:

e CPU: We used the nice value of -20 for high priority
and 0 for normal priority to control CPU allocation.

e Memory: To control the memory, we used the parame-
ters oom adjacent score and cgroup memory swappiness.
To set a high priority for memory for an application,
we used —1000 and 0, for oom adjacent score and cgroup
memory swappiness, respectively, and for normal pri-
ority, we used 0 and 60.

e Network: We utilized cgroup netprio ifpriomap to dis-
tribute the network bandwidth among applications.
For high priority and regular priority applications, we
used 10 and 0 respectively as priority values.

e Disk I/0: To manage the Disk I/O, we leveraged ionice.
We used a real-time class with priority 0 for high pri-
ority applications and left the priority of the standard
application as default (idle class with the priority of 4).

51

Goodarzy, et al.

Reinforcement Learning algorithm: For implementation
of the automated learning, we employed the Monte Carlo
Reinforcement Learning algorithm, which is shown in Sec-
tion 4.5 to have the best convergence rate compared to other
methods in Table 1. For testing some of the algorithms such
as DON and A2C, we used [8], and for the other algorithms,
we used Python 3.6 [2] and the Numpy [6] package.

4 EVALUATION

We sought to compare the automated learning approach of
SmartOS, which applied RL to learn the proper allocation of
CPU, memory, I/O, and network bandwidth, with a variety of
static prioritization schemes. The following are the different
static prioritization heuristics that were compared against:
Fg only: This heuristic sets the CPU, memory, network, and
disk I/O parameter of the Foreground application to high
priority.

Fg + video/audio: This heuristic inspired by [12], adds to
the previous heuristic by also giving high priority in all four
resource dimensions to a video/audio application resulting
in competition in some dimensions for resources with the
foreground application. The idea was to test the case where
a user may be editing a document while listening to music
or playing a video.

Fg + dependent: It gives high priority to the foreground
application and all other applications that foreground per-
formance depends on. It identifies the mentioned applica-
tions by a predefined directed acyclic graph. We specify the
DAG based on our common observation of what applications
each application usually depends on. We aim to test the case
where an application on a computer may consist of a set of
dependent processes that communicate via network message
passing, as is the case for complex applications like browsers
and video/audio.

Multi-dimensions: This heuristic uses a predefined map
that stores the essential resources per application’s perfor-
mance based on our common observation of the applications.
Then, it will prioritize the foreground application in all re-
sources necessary to its performance. After that, if there
are any remaining resources that are not assigned to the
foreground application, it will assign them to the important
applications to the user. These important applications are
also stored in a hash map defined by asking the user in the
beginning. The intent is to examine the case where the fore-
ground application may have variance in its resource needs
while competing with applications that may have resource
needs in different dimensions.

SmartOS: Towards Automated Learning and User-Adaptive Resource Allocation in Operating Systems

25

2
1.5
1
0.5 I
0 = R [- | |

SmartOs

Performance (ops/s)

Linux Fg only Fg+ Fg+ Multi

Video/Audio Dependent dimensions

m Fg ®Runaway

Figure 2: Foreground app contends with a resource-
intensive background app.

4.1 Foreground contends with
resource-intensive background

In this experiment, we set up a scenario to observe how well
our SmartOS’ automated RL utilizes resources compared to
the aforementioned static prioritization schemes as well as
Linux’ base CFS scheduling algorithm. In this scenario, a
foreground application that should be given highest priority
for all resources to maximize user experience is forced to
compete with a resource-intensive background application
that is not as important to the user. Both the foreground
and runaway background applications are implemented as
stress applications that make intensive equal use of the CPU,
memory, and disk I/O, consuming the same resources on the
same core in an Ubuntu 20.04 virtual machine with 8 GB of
memory, one processor, and 50 GB VDI disk drive.

In Figure 2, the blue and orange bars are showing the
performance of the foreground application and background
application correspondingly proportional to base Linux over
60 seconds of execution. As we can see, base CFS-based Linux
gives equal priority to both the foreground and background,
so that the foreground application is not able to make as
much progress as in other policies. In contrast, for each of the
heuristic static prioritization policies, the foreground is able
to run at twice the ops/sec rate of the base Linux case, while
the background application is appropriately given scant re-
sources. Similarly, SmartOS’ user-adaptive RL strategy is
able to learn the correct policy and converge to the same
actions, prioritizing the foreground application.

4.2 Foreground underperforms due to a
dependent application

In this experiment, a stress app runs as a foreground app that
consumes CPU, memory, and disk I/O and is communicating
through blocking pipes with another process that is also a

52

APSys ’21, August 24-25, 2021, Hong Kong, China

1.6

1l
NN nLNL

Fg+ Fg+ Multi Smart0s
Video/Audio Dependent dimensions

o BB
o N B

Performance (ops/s)
)
L)

o
kS

e
N

Linux Fg only

mFg mRunaway

Figure 3: Foreground underperforming due to a depen-
dent application.

stress app and is intensive in consuming the same resources
as the foreground application. We are also running a third
runaway application which is additionally intensive in CPU,
memory, and disk I/O usage. All of these are running on the
same core. Hence, these three applications are competing
on attaining CPU, memory, and disk I/O. We can instantly
see in Figure 3 how the Fg only heuristic does not achieve
good performance as it only changes the priority of the fore-
ground app to high priority and leaves the background app
unchanged. Thus, the foreground app, which is messaging
through pipes with the background app, will remain in the
blocking stage for a significant portion of its execution time,
making the CPU available to the runaway application, result-
ing in an undesired resource allocation, which leads to user
frustration. The same also happens with the Fg+Video/Audio
and Multi-dimension heuristics. The only successful heuris-
tics in this experiment are the Fg+dependent static policy
and SmartOS, which are able to converge to the best resource
allocation decision.

4.3 Multiple important applications with
needs in separate dimensions

Sometimes the performance of other applications besides the
foreground application is also crucial for enhancing the user
experience. An example for this scenario would be when a
user is working inside a document editing application, but
is also monitoring a stock widget on their laptop screen,
or listening to music. The stock widget or music is not a
foreground application, but its performance is important
to the user. Suppose the other applications critical to the
user are consuming different kinds of resources from the
foreground application. In that case, the priority for all re-
sources should not be given to the foreground application. In
order to test such a scenario, we used a VM with four cores,
3 GB of RAM, and 50 GB of VDI hard disk with installed

APSys ’21, August 24-25, 2021, Hong Kong, China

45
o o
< <
40
35
2 30
3
a
X
- 25
S
c
]
£ 20
k]
315
10
5 SN a b ~ & & s & =
HHHd dH 8 A" ado o S ¢ S
0o = - - - - -
Linux Fg only Fg+ Fg+ Multi Smart0S
Video/Audio Dependent dimensions
u Fg (cpu) Critical Background (mem) Runaway (mem)

Figure 4: Multiple important applications with re-
source needs in separate dimensions.

Ubuntu 20.04. We ran a stress app that is CPU intensive as a
foreground application on core one and two, and memory-
intensive applications on cores 2 and 3, respectively. One of
the memory-intensive applications plays an important factor
in the user experience, and the other one is a runaway ap-
plication. As all applications are running on different cores,
they are not competing for more computation. As a result,
giving more priority to the foreground application will not
affect its performance. Thus the Fg only, Fg+ Video/Audio,
and Fg+Dependent static prioritization policies will not im-
prove the user experience. However, the multi-dimensional
heuristic is able to achieve a better user experience as it only
gives priority in CPU to the foreground application and gives
more priority in memory to the critical background applica-
tion. The two memory-intensive applications compete over
the memory since they can not be fit simultaneously in the
memory and should be swapped out to disk space. As a result,
giving more memory priority to the critical application can
enrich the user experience because it prevents swapping out
of the critical application. As we can see in Figure 4, we can
also observe the same result. SmartOS is able to learn and
also reach the same performance as the multi-dimensional
static prioritization approach.

4.4 Variation of dimensions

We next constructed an experiment with random assign-
ments of the importance of various applications and their
resource needs. A random generator first randomly chose
CPU as the resource needed for a stress application running
as a foreground application on core one. It also randomly
chose CPU for the second stress application competing with
the foreground running on the same core. After that, the
random generator chose memory as the resource needed for
applications three and four. These two memory-intensive

Goodarzy, et al.

a5
o
<
40
35
— 30
0
<
P
5
- 25
@
S
€
©
€2
S
©
]
e 15
10
° 3 2 5% .83 88 3| 4
Aede Tada Sadd Sadd deca 23
) =] n N =]
Linux Fgonly Fg+ Fg+ Multi Smart0S
Video/Audio Dependent dimensions
m Fg (cpu) Critical Background (mem) Runaway (cpu) Runaway (mem)

Figure 5: Variation of dimensions.

applications are running on core two and core three com-
peting over memory. One of these two applications’ per-
formance is critical to the user experience quality, and an-
other one is a runaway application. Figure 5 shows that the
static multi-dimensional heuristic is unable to allocate re-
sources efficiently, because it assigns memory as the resource
needed for the foreground application and the second appli-
cation and CPU as the resource required for the third and
the fourth applications, which differs from what these ap-
plications currently need as defined by random assignment.
The other three heuristics, Fg only, Fg+Video/Audio, and
Fg+dependent, successfully improve the foreground applica-
tion, but they don’t change the critical application’s perfor-
mance. Only SmartOS is able to successfully enhance both
the foreground and the critical application’s performance.

Table 1: Different Reinforce Learning methods conver-
gence in a dynamic setting,.

RL Algorithm Feedbacks# | Episodes#
DON [18] 52000 13000
QLearning [22] 28400 7100
Sarsa [20] 3680 920
Double Qlearning [7] 2400 600
A2C [17] 1600 400
Monte Carlo [21] 400 100

SmartOS: Towards Automated Learning and User-Adaptive Resource Allocation in Operating Systems

4.5 SmartOS dynamicity and convergence

We next examine how quickly SmartOS can adapt and con-
verge to appropriate resource allocations based on user feed-
back. We designed an experiment that combined all the pre-
vious experiments. In other words, we execute a script that
runs all the applications in Section 4.1 for 60 seconds. Mean-
while, SmartOS applies a resource allocation policy and asks
the script for its feedback. After 60 seconds, the script closes
all the running applications in Section 4.1 and starts all the
applications in Sec 4.2 for 60 seconds, etc. This same proce-
dure is applied then to the applications in Section 4.3 and
Section 4.4. Each repetition of Section 4.1 to Section 4.4 is
called an Episode. After an episode completes, we repeat the
process all over again with a new episode. Table 1 shows
the number of feedbacks required for each reinforcement
learning algorithm to find the best collection of policies. We
found Monte Carlo to converge most rapidly compared with
other reinforcement learning algorithms.

Episode Reward over Time (Smoothed over window size 10)

Episode Reward (Smoothed)
>

560
Episode

Figure 6: Convergence of Monte Carlo in a dynamic
setting (each episode consists of 4 feedbacks).

Figure 6 provides a detailed temporal perspective of how
SmartOS can achieve the best set of policies and a maximum
reward of 4 (one for each distinguished experiment) after
receiving 400 feedbacks using the Monte Carlo method in
100 episodes. We see that there is rapid convergence early
in the learning process. Note what is pictured is a smoothed
average over 10 episodes. Though episode 100 appears not
to achieve the maximum award, namely full convergence of
4, the unsmoothed value attained a value of 4 so that Monte
Carlo reached full convergence by episode 100. While this ex-
periment combined many iterations of different application
scenarios, we note that for just a single application scenario
of the foreground application only considered in section 4.1,
convergence was achieved in just 8 steps.

We used the Monte Carlo implementation of RL in the
SmartOS Cortex as a basis for performance measurements.
SmartOS adapted to each user feedback in 0.218 ms of total
execution time, of which 0.21 ms of that time consisted of

54

APSys ’21, August 24-25, 2021, Hong Kong, China

purely CPU execution, and the rest contains context switch
time. These results seem to be reasonably responsive to user
feedback without excessively burdening Linux, given that
time scales for human adaptation are on the order of seconds.
Also, the required memory to run the Cortex application was
23.1 MB.

5 DISCUSSION & FUTURE WORK

We desire to focus on the following future work areas:

Real-world SmartOS - SmartOS needs to be tested under
realistic use cases, i.e., working with several typical appli-
cations. We plan to conduct a user study to show how it
will impact the user experience interacting with the OS and
applications. Besides, we are planning to collect implicit feed-
back like pressing keyboard keys abnormally from real users
in the human study to experiment with how well SmartOS
can adapt according to user behavior. We plan to conduct
IRB-approved human user studies with SmartOS, continuous-
valued vector and state evaluation, and incorporate more
complex user context.

SmartOS Performance- SmartOS should be able to per-
form equally or better than native Linux, for example, CFS
for scheduling. Thus, using the collected feedback, SmartOS
needs to realize when to gracefully degrade to the native
CFS scheduler in case of failures resulting from RL algorithm
decisions.

Cross-platform SmartOS- It should be noted that Smar-
tOS can perform cross-platform. Its cortex can be placed
somewhere in the cloud or edge cloud and talk to its RL
agents to adjust necessary parameters. So, this enables Smar-
tOS to gather data from someone’s mobile, desktop, etc., at
the same time and then make decisions. Cloud-based flexi-
bility could also enable aggregated learning across users.

6 CONCLUSIONS

We presented SmartOS, a learning-based operating system
that implements reinforcement learning to automatically
adjust allocation of memory, CPU, I/O, and network band-
width according to learned user preferences. SmartOS is
implemented in Linux user space, and our test results show
SmartOS is able to automatically adapt to increasingly com-
plex allocation scenarios unlike static prioritization policies.
We also showed a Monte Carlo RL algorithm achieved the
fastest convergence in terms of its learning rate, and that its
overhead was on the order of tenths of milliseconds.

7 ACKNOWLEDGEMENT

This research was supported in part by VMware and the NSF
as part of SDI-CSCS award number 1700527, and by the NSF
as part of CAREER award number 1652698.

[

APSys ’21, August 24-25, 2021, Hong Kong, China

REFERENCES

[1] [n.d.]. Completely Fair Scheduler. Retrieved July 14, 2021 from https:

//man7.org/linux/man-pages/man7/sched.7.html

[n.d.]. Python 3.6.0. Retrieved May 26, 2021 from https://www.python.
org/downloads/release/python-360/

Ibrahim Umit Akgun, Ali Selman Aydin, and Erez Zadok. 2020. KMLIB:
Towards Machine Learning for Operating Systems. In Proceedings of the
On-Device Intelligence Workshop, co-located with the MLSys Conference.
1-6.

Siddharth Dias, Sidharth Naik, Sreepraneeth K, Sumedha Raman, and
Namratha M. 2017. A Machine Learning Approach for Improving
Process Scheduling: A Survey. International Journal of Computer Trends
and Technology (IJCTT) 43, 1 (2017), 1-4. https://doi.org/10.14445/
22312803/IJCTT-V43P101

Sepideh Goodarzy, Maziyar Nazari, Richard Han, Eric Keller, and
Eric Rozner. 2020. Resource Management in Cloud Computing Us-
ing Machine Learning: A Survey. In 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA). 811-816.

Goodarzy, et al.

[14] Sandeep Madireddy, Prasanna Balaprakash, Philip Carns, Robert

Latham, Robert Ross, Shane Snyder, and Stefan M. Wild. 2018. Ma-
chine Learning Based Parallel I/O Predictive Modeling: A Case Study
on Lustre File Systems. In High Performance Computing, Rio Yokota,
Micheéle Weiland, David Keyes, and Carsten Trinitis (Eds.). Springer
International Publishing, Cham, 184-204.

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C Evans, Steve Gribble, et al. 2019. Snap: A microkernel
approach to host networking. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles. 399-413.

Nikita Mishra, Connor Imes, John D Lafferty, and Henry Hoffmann.
2018. Caloree: Learning control for predictable latency and low energy.
ACM SIGPLAN Notices 53, 2 (2018), 184-198.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning. PMLR, 1928—

https://doi.org/10.1109/ICMLA51294.2020.00132 1937. ' o
Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf [18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing

atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602

—_
(=)
—

Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal- (2013).
dane, Jaime Fernandez del Rio, Mark Wiebe, Pearu Peterson, Pierre [19] Atul Negi and P. Kishore Kumar. 2005. Applying Machine Learning
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Techniques to Improve Linux Process Scheduling. In TENCON 2005 -
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array 2005 IEEE Region 10 Conference. 1-6. https://doi.org/10.1109/TENCON.
programming with NumPy. Nature 585, 7825 (Sept. 2020), 357-362. 2005.300837
https://doi.org/10.1038/541586-020-2649-2 [20] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning
[7] Hado Hasselt. 2010. Double Q-learning. In Advances in Neural using connectionist systems. Vol. 37. University of Cambridge, Depart-
Information Processing Systems,]. Lafferty, C. Williams, J. Shawe- ment of Engineering Cambridge, UK.
Taylor, R. Zemel, and A. Culotta (Eds.), Vol. 23. Curran As-
sociates, Inc. https://proceedings.neurips.cc/paper/2010/file/
091d584fced301b442654dd8c23b3fc9-Paper.pdf
Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi
Kanervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg
Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. 2018. Stable Baselines. https://github.
com/hill-a/stable-baselines.
Henry Hoffmann. 2015. Jouleguard: Energy guarantees for approxi-
mate applications. In Proceedings of the 25th Symposium on Operating
Systems Principles. 198-214.
Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,
Anant Agarwal, and Martin Rinard. 2011. Dynamic knobs for respon-
sive power-aware computing. ACM SIGARCH computer architecture
news 39, 1 (2011), 199-212.
[11] Julian Kunkel, Michaela Zimmer, and Eugen Betke. 2015. Predicting
Performance of Non-contiguous I/O with Machine Learning. In High
Performance Computing, Julian M. Kunkel and Thomas Ludwig (Eds.).
Springer International Publishing, Cham, 257-273.
Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Riwei Pan, Liang Shi,
Tei-Wei Kuo, and Chun Jason Xue. 2020. Acclaim: Adaptive Memory Re-
claim to Improve User Experience in Android Systems. In 2020 USENIX
Annual Technical Conference (USENLX ATC 20). USENIX Association,
897-910. https://www.usenix.org/conference/atc20/presentation/
liang-yu
[13] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade
of Wasted Cores. In Proceedings of the Eleventh European Conference
on Computer Systems (London, United Kingdom) (EuroSys ’16). As-
sociation for Computing Machinery, New York, NY, USA, Article 1,
16 pages. https://doi.org/10.1145/2901318.2901326

[21] David Silver. 2015. Lectures on Reinforcement Learning. URL: https:
//www.davidsilver.uk/teaching/.

[22] CJC Watkins. 1989. H. Learning from Delayed Rewards, Ph. D. Thesis,
Cambridge University, 1989. (1989).

—_
oo
[t

—
O
—

[10

=

(12

—

55

https://man7.org/linux/man-pages/man7/sched.7.html
https://man7.org/linux/man-pages/man7/sched.7.html
https://www.python.org/downloads/release/python-360/
https://www.python.org/downloads/release/python-360/
https://doi.org/10.14445/22312803/IJCTT-V43P101
https://doi.org/10.14445/22312803/IJCTT-V43P101
https://doi.org/10.1109/ICMLA51294.2020.00132
https://doi.org/10.1038/s41586-020-2649-2
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://www.usenix.org/conference/atc20/presentation/liang-yu
https://www.usenix.org/conference/atc20/presentation/liang-yu
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1109/TENCON.2005.300837
https://doi.org/10.1109/TENCON.2005.300837
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/

	Abstract
	1 Introduction
	2 Overview
	3 Prototype
	4 Evaluation
	4.1 Foreground contends with resource-intensive background
	4.2 Foreground underperforms due to a dependent application
	4.3 Multiple important applications with needs in separate dimensions
	4.4 Variation of dimensions
	4.5 SmartOS dynamicity and convergence

	5 Discussion & Future Work
	6 Conclusions
	7 Acknowledgement
	References

