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This paper endogenizes intervention in financial crises as the strategic negotiation between

a regulator and creditors of distressed banks. Incentives for banks to contribute to a voluntary

bail-in arise from their exposure to financial contagion. In equilibrium, a bail-in is possible only

if the regulator’s threat to not bail out insolvent banks is credible. Contrary to models without

intervention or with government bailouts only, sparse networks enhance welfare for two main

reasons: they improve the credibility of the regulator’s no-bailout threat for large shocks and

they reduce free-riding incentives among bail-in contributors when the threat is credible.

Financial institutions are linked to each other via bilateral contractual obligations and are thus

exposed to counterparty risk of their obligors. If one institution defaults on its liabilities, it affects

the solvency of its creditors. Since the creditors are also borrowers, they may not be able to repay

what they owe and default themselves—problems in one financial institution spread to others in

what is known as financial contagion. Large shocks can trigger a cascade of defaults, which impose

negative externalities on the economy. The extent of these cascades—the magnitude of the systemic

risk—depends on the nature of the linkages, i.e., the structure of the financial system. In the 2008

crisis, it became apparent that the financial system had evolved in a way which enhanced its ability

to absorb small shocks but made it more fragile in the face of a large shock. While a few studies

called attention to these issues before the crisis, it was only after the crisis that the impact of

the network structure on systemic risk became a major object of analysis.1 Most of the existing
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studies analyze the systemic risk implications of a default cascade, taking into account the network

structure, asset liquidation costs, and different forms of inefficiencies that arise at default. Many

of these models, however, do not account for the possibility of intervention to stop the cascade.

There is either no rescue of insolvent banks or the regulator (or central bank or other government

institution) intervenes by following an exogenously specified protocol. The goal of our paper is

to endogenize the intervention mechanism as the equilibrium outcome of the strategic interaction

between regulator and financial institutions.

The most common default resolution procedure during the 2007–2009 financial crisis was the

bailout.2 In a bailout, the government injects liquidity to help distressed banks service their debt,

effectively transferring liabilities from the private sector to the public sector. Some governments,

such as Germany’s, have called for private-sector participation through bail-ins, in which creditors

write down their interbank claims against troubled banks.3 Bail-ins effectively amount to a transfer

of liabilities within the private sector, which places the burden of losses on creditors as opposed to

taxpayers. A prominent example of a bail-in is the rescue of the hedge fund Long-Term Capital

Management (LTCM).4 In our paper, we also consider assisted bail-ins, in which the regulator

provides some liquidity assistance to incentivize the formation of a bail-in.

The negotiation process between the regulator and the banks consists of three stages. In the

first stage, the regulator proposes an assisted bail-in allocation, which specifies the contributions

by each solvent bank, as well as the liquidity injections provided to each bank. In the second stage,

the banks simultaneously decide whether or not to participate in the proposed rescue. If they all

participate, the game ends with the proposed rescue consortium. Otherwise, the regulator reacts in

the third stage by either (i) proceeding with the residual bail-in at increased taxpayer expense, (ii)

proceeding with a bail out, or (iii) avoiding any intervention. After transfers are made, the banks’

liabilities are cleared simultaneously in the spirit of Eisenberg and Noe (2001), possibly leading to

a default cascade if the outcome of the negotiation leaves some banks insolvent.

Financial contagion in our model occurs through the two most prominent channels identified by

historical events.5 First, distressed banks may have to liquidate some of their asset holdings in order

to fulfill their obligations. In the liquidation process, the asset is transferred to buyers with lower

levels of expertise in managing the asset, causing a drop in its value. Due to financial frictions, addi-

2The Bush administration bailed out large financial institutions (AIG insurance, Bank of America, Bear Stearns and Cit-
igroup) and government sponsored entities (Fannie Mae, Freddie Mac) at the heart of the crisis. The European Commission
intervened to bail out financial institutions in Greece and Spain.

3In spite of such calls and the design of instruments to make private-sector participation automatic, there have been few
successful bail-ins. Automatic participation is implemented through the use of “bail-inable debt” such as contingent-convertible
bonds in order to reduce the banks’ credit risk. The focus of this paper is on the welfare impact of default resolution policies
after these risk-mitigating instruments have already been used.

4LTCM Portfolio collapsed in the late 1990s. On September 23, 1998, a recapitalization plan of $3.6 billion was coordinated
under the supervision of the Federal Reserve Bank of New York (FRBNY). A total of fourteen banks agreed to participate and
two banks (Bear Stearns and Lehman Brothers) rejected the proposal.

5Quoting Greenspan (1998): “It was the judgment of officials at the FRBNY, who were monitoring the situation on an ongoing
basis, that the act of unwinding LTCM’s portfolio in a forced liquidation would not only have a significant distorting impact
on market prices but also in the process could produce large losses, or worse, for a number of creditors and counterparties, and
for other market participants who were not directly involved with LTCM. In that environment, it was the FRBNY’s judgment
that it was to the advantage of all parties–including the creditors and other market participants–to engender if at all possible
an orderly resolution rather than let the firm go into disorderly fire-sale liquidation following a set of cascading cross defaults.”
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tional units of the asset are sold to marginally less efficient buyers. Hence, one bank’s liquidation de-

cision affects the value that another bank is able to recover from its asset sale. Second, if a distressed

bank defaults on its obligations, its creditors only collect a fraction of their claims. Bankruptcy

imposes deadweight losses, which are amplified by feedback loops among defaulting banks.

We investigate the structure of default resolution plans that arise in equilibrium when the reg-

ulator cannot credibly commit ex ante to an ex-post suboptimala fixed resolution policy. The lack of

commitment power has important consequences for the regulator’s negotiation power: if banks are

aware that without their participation, the regulator prefers a bailout over no intervention, then

they have no incentive to participate in any assisted bail-in. We say that, in this case, the regulator’s

no-intervention threat fails to be credible.6 Only if the threat is credible can an assisted bail-in be or-

ganized in equilibrium. Individually, a bank is willing to contribute up to the maximum it would lose

in a default cascade. However, because losses are amplified as the shock propagates through the sys-

tem, aggregate losses exceed the required ex-ante contributions. Therefore, it is not necessary that

every bank contributes and banks have an incentive to free-ride on the contributions of others. In the

equilibrium bail-in, the set of contributing banks minimizes free-riding incentives by consisting of

the banks with the largest exposure to contagion. It thus follows that banks are willing to contribute

more in sparser networks: because losses are more concentrated, the benefits of a bail-in are more

targeted

to the contributors than in more diversified networks, thereby reducing free-riding incentives.

A key determinant of the equilibrium outcome is the credibility of the regulator’s no-intervention

threat. We show that the threat is credible if and only if the losses generated by the regulator’s

inaction—equal to the amplification of the shock as it propagates through the network—do not

exceed a given threshold. Whether the shock amplification increases with the size of the initial

shock faster than the threshold rises depends on asset illiquidity and on the network structure. We

identify a variable, which we call the total throughput of defaulting banks, as a sufficient statistic

for the dependence of the credibility on the network structure, conditional on the banks’ levels

of solvency and their total claims on solvent banks. The total throughput measures the rate of

spillover losses transmitted to the solvent banks in the system. Conditional on the banks’ solvency,

the total throughput depends only on the network structure and not on the banks’ balance sheet

quantities, making it a convenient measure to compare the potential to propagate losses among

different network structures. We demonstrate that the throughput increases as the connectivity of

defaulting banks increases. As a result, in sparsely connected networks, the regulator’s threat may

not be credible for small shocks, but the credibility improves as the shock grows larger. Because

the total throughput is small, the systemic threat does not increase much with the size of the

shock. By contrast, in more diversified network structures, small losses can be well absorbed and

the threat not to intervene is credible. However, because the total throughput is large, the threat

becomes less credible as the shock size increases. As illustrated in Figure 1, endogeneity of the

default resolution plan thus reverses the relative desirability of network structures for intermediate

6Several attempted bail-ins failed because the threat of not undertaking a bail-out was not credible; see Stiglitz (2002).
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Figure 1: The figure compares equilibrium welfare losses in a diversified (blue) and a concentrated network (red) in
the presence (solid lines) and absence (dashed lines) of intervention.7 Because the total throughput is small (large)
in sparse (dense) networks, welfare losses in absence of intervention are concave (convex). When the no-intervention
losses exceed the costs of a public bailout (black dashed line), the government’s threat to not intervene fails to be
credible and a public bailout is the only possible equilibrium rescue. If the threat is credible, contributions from the
private sector are possible. Contributions are larger in the sparse network because losses without intervention are
more concentrated, thereby reducing free-riding incentives. Without intervention or in a model with bailouts only,
the diversified network is preferable up until shock size S2. Endogeneity of the intervention reverses the relative
desirability of the two network structures for intermediate shock sizes between S1 and S2.

shock sizes when compared to models without intervention or models with bailouts only.

We then proceed to investigate the structure of optimal intervention plans, that is, the set of

banks that are rescued. A bank is not rescued in a bailout if its creditors have the capacity to

absorb a significant portion of the losses due to contagion. In a bail-in, not only the total loss

absorption capacity matters but also its distribution among the creditors. When a bank has a

single creditor, that creditor cannot free-ride on the contributions of others. Proposing a bail-in for

a bank whose losses are absorbed by a single creditor thus leads to an increase in welfare. However,

if contagion effects are spread among many creditors, rescuing that bank does not substantially

increase contributions from the private sector because of the banks’ inherent free-riding incentives

among the banks’ many creditors. It may then be welfare-enhancing to not rescue such a bank.

Banks rescued in the optimal bail-in may thus default in the optimal bailout and vice versa.

Our results uncover the economic forces behind the decision to rescue banks which default due

to fundamental shocks versus those failing as a result of contagion. For example, the government

opted to rescue AIG as opposed to Goldman Sachs during the global financial crisis.8 Because loss

absorption capacities were low in the aftermath of Lehman Brother’s default, a bankruptcy filings

of by AIG might have had far-reaching consequences, bringing under many of its creditors including

Goldman Sachs. If the financial system had been in a more resilient state, in which Goldman Sachs

was the only contagiously defaulting bank, it might have been welfare-enhancing to let AIG default

and provide liquidity assistance only to Goldman Sachs after the depletion of its capital buffers.

The remainder of the paper is organized as follows. In Section 1, we relate our work to the exist-

ing literature. We develop the model in Section 2. We characterize incentives and the equilibrium

intervention outcome for any financial network in Section 3. In Section 4, we analyze the impact of

the network structure, the shock size, and asset illiquidity on the public bailout and the credibility of

8The bailout of AIG was widely speculated to be an indirect bailout of Goldman Sachs, to which it had sold millions of
dollars worth of insurance. Because of the large exposure, AIG’s default might have lead to the contagious default of Goldman
Sachs, the largest investment bank at the time. Our analysis highlights the factors that rationally should have motivated the
decision about whether to bail out AIG or allow AIG to go under, and then possibly bail out Goldman Sachs.
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the no-intervention threat. In Section 5, we characterize the set of banks to be optimally rescued in

bail-ins and bailouts. We discuss the impact of the network structure on the equilibrium intervention

plan in Section 6 using a model calibrated to a data set of the European Banking Authority (EBA).

Section 7 concludes. The proofs of the main results are contained in the appendix. Supplementary

results and auxiliary proofs are in the online appendix; see Bernard, Capponi and Stiglitz (2019).

1 Literature Review

Our paper is related to a vast branch of literature on financial contagion in interbank networks,

pioneered by Allen and Gale (2000) and Eisenberg and Noe (2001). Cifuentes, Ferrucci and Shin

(2005) have extended those models to include contagion through asset sell-offs, a contagion channel

that is also present in our paper. In a model that draws parallels between the financial crisis

and a systemic bank run, Uhlig (2010) provides a micro-foundation for fire-sale contagion through

uncertainty aversion and adverse selection. The impact of the network structure on the extent of

financial contagion has been studied by Gai and Kapadia (2010), Gai, Haldane and Kapadia (2011),

Battiston et al. (2012), Elliott, Golub and Jackson (2014), Acemoglu, Ozdaglar and Tahbaz-Salehi

(2015), Glasserman and Young (2015), Capponi, Chen and Yao (2016), and Cabrales, Gottardi

and Vega-Redondo (2017). The above mentioned works show that in absence of any intervention,

dense connections tend to reduce financial contagion for small shocks but can serve as an amplifier

of large shocks. While this effect remains present in our model with strategic interventions, dense

networks additionally cause free-riding incentives among bail-in contributors, further reducing the

desirability of dense networks. We refer to Glasserman and Young (2016), Benoit et al. (2017),

and Jackson and Pernoud (2020) for thorough surveys on systemic risk and financial contagion.

The role of the government in stopping financial contagion has been studied since the works

of Freixas, Parigi and Rochet (2000) and Gale and Vives (2002). Many papers have focused on

the moral hazard problem that bailouts create ex ante, causing banks to take on excessive risks.

In order to trigger a bailout more frequently when the market moves against them, banks have

an incentive to overborrow (Chari and Kehoe (2016)) or correlate their investments (Acharya and

Yorulmazer (2007) and Farhi and Tirole (2012)). Despite those perverse incentives, committing to

a no-bailout policy leadscan lead to a reduction of welfare ex ante (Keister (2016)). We focus instead

on the incentives needed ex post for private-sector involvement in resolving financial distress. These

incentives also crucially depend on the government’s preferred bailout through the credibility of the

no-bailout threat. Our model, like the rest of the literature on financial networks, does not account

for the endogenous structure of the interbank network. The exception is Erol (2018), which shows

that bailouts cause banks to organize in a core-periphery network. Different from Erol (2018), the

regulator in our model is strategic and cannot commit to a bailout or a no-intervention policy.

A few papers have studied private default resolutions or bail-ins in models different from ours.

In Rogers and Veraart (2013), banks can prevent a default cascade through mergers. In their paper,

however, a merger needs not be incentive compatible for the shareholders of an individual bank,

nor does the government take an active role. By contrast, the credibility of the regulator’s actions
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and the free-riding problem that the shareholders facethe rational responses of other banks, including their

incentives to free ride, are at the heart of our analysis. Duffie and Wang (2017) consider a bargaining

model, in which bail-ins are done contractually rather than through a central planner. They show

that private bail-ins reached in a 3-bank network are efficient in the limit as disagreement isbargaining

failures are disallowed. Unlike our paper, they abstract away from cross-network externalities and

the government’s involvement. In our paper, reducing externalities from asset liquidation and

bankruptcy losses are the regulator’s driving force to organize a default resolution planmain motivation to

facilitate bail-ins by providing well-designed subsidies. Schilling (2018) shows that if the regulator

can impose a mandatory bail-in on depositors in a single-bank model, the depositors will preempt

such a policy by running on the bank more frequently ex ante. Because bail-ins and bailouts are

financed by solvent financial institutions and the government in our paper, interventions always

make depositors better off.

2 Model

We consider an economy consisting of n risk-neutral financial institutions i = 1, . . . , n, called

“banks”, which lasts for three periods t = 0, 1, 2. At the initial period, each bank i is endowed with

capital that it can lend to other banks, invest into a liquid asset, called “cash”, or invest into an

illiquid asset yielding a random return at time t = 1 and a non-pledgeable return at t = 2. Because

long-term returns are non-pledgeable, liabilities have to be cleared at time t = 1. After short-term

returns are realized, banks may liquidate their risky asset to help service their debt, but doing so

imposes a downward impact on its value because the asset is sold to less efficient users.

Banks negotiate debt contracts with each other at t = 0. We denote by Lji bank i’s liabilities

to bank j at time t = 1 and use Li :=
∑n

j=1 L
ji to denote bank i’s total interbank liabilities. Let

pi denote the market value of bank i’s liabilities, which may be lower than the notional value Li if

bank i is unable to repay its liabilities in full. If pi < Li, we say that bank i defaults. All interbank

liabilities have equal seniority: if bank i defaults, each creditor j receives πjipi from bank i, where

πji =

Lji/Li if Li > 0,

0 otherwise.

The relative liability matrix π = (πij)i,j=1,...,n captures the structure of the financial network. In

addition to its liabilities within the financial network, bank i has financial commitments wi outside

the financial sector due at time t = 1, which have higher seniority than the interbank liabilities.

These commitments include wages, depositors’ claims, and other operating expenses.

For each bank i, we denote by ei the long-term returns of the illiquid asset held by i. We denote

by ci the sum of i’s cash holdings and short-term returns realized at time t = 1. If a bank i is not

able to meet its liabilities out of current income, it will sell a portion `i ∈ [0, ei] of its illiquid asset.
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Liquidation imposes a downward impact on the value of the asset, yielding a recovery rate of

α(`) = exp

(
−γ

n∑
i=1

`i

)
. (1)

Equation (1) captures the fact that buyers of the asset have a lower expertise than the seller and

that additional units of the asset are sold to marginally less efficient buyers. The parameter γ ≥ 0

captures the rate, at which the pool of efficient asset buyers diminishes.9

A defaulting bank liquidates all of its assets to repay the maximal amount that it can to its

creditors. Because liquidation is costly, a solvent bank liquidates just enough to meet its liabilities.

If interbank repayments are p and the asset recovery rate is α, bank i thus liquidates an amount

`i(p, α) = min

(
1

α

(
Li + wi − ci −

n∑
j=1

πijpj
)+

, ei

)
, (2)

where ( · )+ = max( · , 0) denotes the positive part.10 If a bank i cannot meet its liabilities even after

liquidating all of its assets, it will default. The default creates losses proportional to the banks’ asset

value: only a fraction β ∈ (0, 1] of the value is paid to the creditors and a fraction (1− β) is lost.11

The market value of bank i’s interbank liabilities is thus equal to

pi =

 Li if ci + α`i + (πp)i ≥ Li + wi,(
β
(
ci + αei + (πp)i

)
− wi

)+
otherwise,

(3)

where (πp)i =
∑n

j=1 π
ijpj is the market value of bank i’s interbank claims. To summarize, the

financial system in our model is parametrized by (L, π, e, c, w, γ, β), where L, e, c, and w are vectors,

whose entries are the corresponding balance sheet quantities of each bank.

How much a bank is able to repay depends on the solvency of the other banks in the system.

In a clearing equilibrium, every solvent bank repays its liabilities in full and every insolvent bank

pays the entire value (after bankruptcy costs) to its creditors.

Definition 2.1. The triple of repayments, liquidation decisions, and recovery rate (p, `, α) is a

clearing equilibrium for a financial system (L, π, e, c, w, γ, β) if it satisfies (1)–(3).

For payments p, recovery rate α, and liquidation decisions `, the value of bank i’s equity is

V i(p, `, α) :=
(
(πp)i + ci + ei − (1− α)`i − wi − Li

)+
. (4)

If the payment pi made by bank i is positive, it is divided pro-rata among bank i’s junior creditors

and the senior creditors are paid in full. If pi = 0, the junior creditors lose the full amount of their

9The elasticity parameter γ typically depends on the asset class: Ellul, Jotikasthira and Lundblad (2011) find that γ is on
the order of 10−8 for corporate bonds (see Table 8 therein).

10The model can be adjusted to account for liquidity requirements such as Basel-III (2013). This can be achieved by setting
ci equal to the amount of liquid assets that can be liquidated before hitting the liquidity coverage ratio requirement.

11According to Moody’s analysis, the average recovery rate for unsecured corporate bonds ranges from 30% to 43%; see
Exhibit 8 in https://www.moodys.com/sites/products/DefaultResearch/2006600000428092.pdf.
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claims and the senior creditors of bank i suffer a loss of

δi(p, α) :=
(
wi − β

(
ci + αei + (πp)i

))+
. (5)

We denote by D(p, `, α) :=
{
i
∣∣ Li + wi > ci + α`i + (πp)i

}
the set of defaulting banks. Welfare

losses in a clearing equilibrium are defined as the weighted sum of default costs, i.e.,

Wλ(p, `, α) := (1− α)
n∑
i=1

`i + (1− β)
∑

i∈D(p,`,α)

(
ci + αei + (πp)i

)
+ λ

∑
i∈D(p,`,α)

δi(p, α). (6)

The first term captures losses due to a misallocation of the asset when it is sold to less efficient

users. The second term quantifies deadweight losses from bankruptcy. The last term is the welfare

cost of losses borne by the senior creditors. The factor λ ≥ 0 captures the importance the regulator

assigns to those losses relative to deadweight losses. A regulator with λ = 0 views losses of senior

creditors simply as transfers of wealth and not as losses to the economy. A higher value of λ

indicates a higher priority to the economy outside of the banking sector.

Every financial system admits a clearing equilibrium due to Tarski’s fixed-point theorem. In

financial systems with bankruptcy costs (β < 1) or price impacts due to asset liquidation (γ > 0),

there may exist multiple clearing equilibria. Following standard practices in the literature, liabilities

are then cleared with the unique Pareto-efficient clearing equilibrium.

Lemma 2.1. For any financial system, there exists a greatest clearing equilibrium (p̄, ¯̀, ᾱ) that is

Pareto efficient for any λ ≥ 0, i.e., for any other clearing equilibrium (p, `, α), it holds that ᾱ ≥ α
and Wλ(p̄, ¯̀, ᾱ) ≤Wλ(p, `, α) as well as p̄i ≥ pi, ¯̀i ≤ `i, and V i(p̄, ¯̀, ᾱ) ≥ V i(p, `, α) for any bank i.

2.1 Contagion and Default Cascade

We position ourselves at time t = 1 when short-term returns have been realized but banks have not

yet cleared their liabilities. If the banks and/or the regulator have implemented automatic bail-in

triggers such as contingent convertible bonds, then (L, π, e, c, w, α, β) represents the state of the fi-

nancial system after accounting for these risk-mitigating actions. Depending on the size of the shock,

banks may still need to liquidate their assets to remain solvent and defaults may still occur.

There are two channels of financial contagion in our model. The first channel is the downward

price pressure imposed on an asset sold by illiquid banks. Due to financial frictions, additional

units of the asset are sold to marginally less efficient buyers as formalized in (1). Since illiquid

banks target the same pool of potential buyers, one bank’s liquidation decision affects the average

recovery value of other distressed banks. This leads to a downward spiral, which converges to

the highest recovery rate, for which the asset’s demand—given by the inverse of (1)—equals the

liquidated amount.

Lemma 2.2. For any vector p of repayments, there exists a solution (`p, αp) to (1) and (2) such

that α ≤ αp and `ip ≤ `i for any bank i and any other solution (`, α) to (1) and (2).
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The second channel of contagion in our model is credit contagion. A defaulting bank i does not

repay its creditors in full, thereby imposing losses Li−pi to the rest of the financial system. Creditors

with large interbank exposures may thus default as a consequence of these losses and trigger a

cascade of defaults. The cascade starts with the set F :=
{
i
∣∣ ci + αL`

i
L + (πL)i < Li + wi

}
of

fundamentally defaulting banks, i.e., the set of banks that are unable to repay their liabilities even

if every other bank repays its liabilities in full. If there are no fundamentally defaulting banks, then

(L, `L, αL) is the Pareto-efficient clearing equilibrium and all interbank liabilities are honored.

2.2 Coordination of Rescues

Financial stability can be ensured by providing distressed banks with sufficient liquidity to meet

their liabilities. In a bailout, these injections are funded through taxpayer contributions, whereas in

a bail-in, creditors of insolvent banks voluntarily take a haircut on their claims. As an intermediate

option, we also consider assisted bail-ins, which include transfers by both banks and taxpayers.

Definition 2.2. An assisted bail-in (b, s) specifies, for each bank i, the contribution bi to be made

by i and the size si of the subsidy i receives. The government’s contribution to the bail-in is∑n
i=1(si − bi), which is required to be non-negative.12

Observe that assisted bail-ins contain bailouts and privately backed bail-ins as special cases.

As in any negotiation, the outcome depends crucially on the bargaining dynamics—which party

gets to make offers at which point in time. We choose to model the negotiation as a three-stage

interaction. First, the regulator makes a take-it-or-leave-it bail-in proposal to the banks. This

allows us to capture the regulator’s role as a coordinator as well as the fact that the government

holds much of the bargaining power. Second, the banks simultaneously decide whether or not

to participate in the proposed bail-in. Third, the regulator decides what to do if banks reject the

proposal. This captures the fact that the government is the lender of last resort and cannot credibly

commit to not bailing out banks if it is welfare-maximizing to do so.

In our model, the regulator knows the financial position of each bank and, thus, he can anticipate

the banks’ responses to any bail-in proposal. Therefore, he need not make a proposal that is not

incentive compatible and the negotiation collapses into a single stage.13 In reality, the regulator is

not fully informed and the coordination of a bail-in might take the form of a strategic bargaining

game instead. Some banks might reject the regulator’s initial proposal, after which the regulator

revises his proposal to either exclude those banks or to accommodate them.14

12This formulation is equivalent to one, in which creditors write down their claims on insolvent banks such that bi is the net
debt forgiven by bank i and si is the sum of government injections and net debt forgiven to bank i by i’s creditors.

13Bail-ins are typically organized over short periods of time. For example, the critical negotiations leading to the bail-in of
LTCM and to the takeover of Bear Stearns by JPMorgan Chase took place over the span of a weekend. It is thus reasonable
to assume that there is no discounting between rounds of negotiation. Therefore, the solution to our model coincides with the
St̊ahl bargaining solution for any finite number of rounds of negotiation in which the regulator makes the last proposal. Indeed,
in any such bargaining game, a bail-in can be implemented without the regulator’s approval only if it is backed privately. Since
a bank is willing to contribute only if it also has to contribute to the regulator’s preferred proposal, the only privately-backed
bail-in that can arise as a subgame Pareto-efficient equilibrium is, in fact, the regulator’s preferred proposal.

14The original proposal made by the FRBNY for the rescue of LTCM involved a total of 16 of LTCM’s creditors. However,
Bear Stearns and Lehman Brothers later declined to participate. Upon the rejection of these two banks, the Fed adjusted its
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Organization of a rescue. In our model, rescue are organized with the following steps:

1. The regulator proposes an assisted bail-in (b, s).

2. The banks in A(b) :=
{
j 6∈ F

∣∣ bj > 0
}

are considered to be part of the negotiation and each

bank i ∈ A(b) chooses an action ai ∈ {0, 1}, indicating whether it agrees to contribute bi.15

3. The regulator chooses his response r from the following three options:

(i) “bail-in”: Proceed with the proposed subsidies s, using taxpayer money to make up for

the missing contributions. Cash holdings and financial commitments to outside parties

of each bank i are then equal to ci(s) := ci+si and wi(b, a) := wi+bi1{ai=1}, respectively,

where 1A is the indicator function that is equal to 1 if A is true and equal to 0 otherwise.

The resulting financial system is cleared as in Section 2, where we denote the Pareto-

dominant clearing equilibrium by (p̄(b, s, a), ¯̀(b, s, a), ᾱ(b, s, a)). Bank i’s equity value

is equal to V i
(
p̄(b, s, a), ¯̀(b, s, a), ᾱ(b, s, a)

)
. Welfare losses are obtained from (6) by

additionally accounting for the social cost of government subsidies, that is,

Wλ(b, s, a) := Wλ

(
p̄(b, s, a), ¯̀(b, s, a), ᾱ(b, s, a)

)
+ λ

n∑
i=1

(
si − bi1{ai=1}

)
.16 (7)

(ii) “bailout”: Resort to a public bailout (0, s̃) with subsidies s̃ decided by the regulator.

Then, cash holdings of bank i are equal to ci(s̃) = ci + s̃i and we denote by (p̄(s̃),
¯̀(s̃), ᾱ(s̃)) the Pareto-dominant clearing equilibrium. Each bank i’s equity value is

V i(p̄(s̃), ¯̀(s̃), ᾱ(s̃)
)

and welfare losses are denoted by Wλ(s̃) := Wλ(0, s̃, 0).

(iii) “no intervention”: Abandon the rescue, which results in the default cascade described

in Section 2. We denote by (pN , `N , αN ) the Pareto-dominant clearing equilibrium and

by WN the welfare losses in the default cascade in the absence of intervention.

Remark 2.1. Some banks may be left with zero equity after they are bailed in or bailed out.

Such banks cease to exist as a separate entity after the intervention and their bail-ins or bailouts

should be understood as an orderly liquidation through takeovers by the bail-in contributors or the

government.17 Because these banks have zero equity value after the intervention, we do not model

how the assets are distributed among contributors.

Our solution concept is that of a subgame Pareto-efficient equilibrium, defined as follows.

proposal so that the contributions of Bear Stearns and Lehman Brothers were covered by the remaining 14 banks. The fact
that these two banks decided not to cooperate shows that participation in the bail-in was at least partially voluntary.

15We assume that a bank i with bi = 0 is simply not part of the negotiation and hence has no power to reject the proposal.
For ease of notation, we write ai = 1 for such a bank.

16We assume that the regulator assigns the same weight to taxpayer contributions as to losses of senior creditors. One way
to interpret this is that the senior creditors are the depositors of the banks, who are protected by a deposit insurance scheme
that is financed through taxpayer contributions. This assumption is made for notational convenience and ourOur results
would hold if the regulator used different weights.

17Examples of such takeovers from the global 2007–2009 financial crisis are plentiful. Among the most prominent ones are the
takeovers of Bear Stearns and Merrill Lynch by JP Morgan Chase and Bank of America, respectively, or the federal takeovers
of Fannie Mae and Freddie Mac.
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Definition 2.3. A strategy profile (b, s, a, r) is subgame Pareto efficient if it is subgame perfect and

after any proposal (b, s), there is no other continuation equilibrium (ã, r̃) of the accepting/rejecting

subgame that Pareto dominates (a, r) for the banks in A(b) and the regulator.

This equilibrium concept is meant to capture that the coordination of a bail-in is a negotiation

between the regulator and the banks in A(b). For example, during the bail-in of LTCM, Peter Fisher

of the FRBNY sat down with representatives of LTCM’s creditors to find an appropriate solution;

and it is implausible that they would have agreed on a bail-in that is Pareto dominated. Note

that banks in the complement of A(b) are potentially worse off than in an alternative continuation

equilibrium of the accepting/rejecting subgame because they are not part of the discussion.

Any proposal of the regulator admits an equilibrium response by the banks due to the following

lemma. This result also implies existence of subgame Pareto-efficient equilibria in our model.

Lemma 2.3. After any proposal (b, s), the resulting accepting/rejecting subgame has a subgame

Pareto-efficient continuation equilibrium (a, r) in pure strategies.

Because subgame Pareto efficiency is a refinement of subgame perfection, it eliminates the non-

credible threat by the regulator to abandon the rescue in the third stage if a public bailout leads

to lower welfare losses than a default cascade in absence of intervention. This inability to commit

to a no-intervention policy limits the regulator’s ability to incentivize banks to contribute, as we

discuss in Section 3.2. Because the state of the financial system is common knowledge among the

banks and the regulator in our model, we may assume without loss of generality that the regulator

proposes only so-called feasible bail-ins, in which every bank can afford the proposed contribution.

Definition 2.4. A bail-in proposal (b, s) is feasible if bi = 0 for any fundamentally defaulting bank

i ∈ F and Li +wi + bi ≤ ci + si + ᾱ(b, s, 1)¯̀i(b, s, 1) +
∑n

j=1 π
ij p̄j(b, s, 1) for any bank i 6∈ F , where

1 = (1, . . . , 1) is the response vector of unanimous agreement.

While a bank i can refuse to make the proposed contribution bi, in our model it cannot reject the

subsidies si it is supposed to receive. Thus, if the regulator chooses option “bail-in,” the same sub-

sidies are paid regardless of the banks’ responses. Since less taxpayer money flows into the financial

system in (b, s, 1) than in (b, s, a) for any a 6= (1, . . . , 1), each bank is better off in the latter. Feasibil-

ity thus guarantees that each bank can afford the proposed contribution in any response vector.18

3 Incentives and Credibility of Intervention Plans

To highlight the primary economic forces at play, we focus on the case of complete interventions in

this section, where the regulator considers only bailouts and bail-ins that rescue every bank in the

system. Section 5 treats the more general case with partial interventions.

18We show in Lemma E.3 in the online appendix that for any given (b, s), the payments p̄(b, s, a) and recovery rate ᾱ(b, s, a)
are weakly decreasing in ai. A bail-in proposal (b, s) thus includes a guarantee that clearing payments and asset recovery are at
least p̄(b, s, 1) and ᾱ(b, s, 1)—backed by government contributions if necessary. Price guarantees have played a prominent role
in government interventions such as, for example, in TARP or in the acquisition of Merrill Lynch by Bank of America.
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3.1 Public Bailout

In a complete bailout, the regulator provides subsidies so that every bank repays its liabilities in

full and the resulting clearing payment vector is L. The smallest provided subsidies are equal to the

shortfall sL :=
(
L+w−c−αL`L−πL

)+
after banks liquidatethe maximal feasible amount `L, where

12



(`L, αL) is given by Lemma 2.2. If asset liquidation is more costly than taxpayer contributions, the

regulator will want to provide additional subsidies to cover the banks’ shortfall before liquidation

s0 :=
(
L+ w − c− πL

)+
. (8)

Note that subsidies sL and s0 support the clearing equilibria (L, `L, αL) and (L, 0, 1), respectively.

The welfare-maximizing subsidies s in a complete bailout are such that the marginal losses from

liquidation are as close to the marginal welfare cost λ of taxpayer contributions as possible, given

the constraints siL ≤ si ≤ si0 which guarantee solvency of every bank in the system.

Lemma 3.1. Suppose that the price elasticity γ is positive and let g(α) :=
(
(1 + λ)α− 1

)
ln(α)/γ.

In any complete bailout with subsidies si ≤ si0 for every bank i, welfare losses are equal to

Wλ(s) = λ
n∑
i=1

si0 + g(α). (9)

TGiven that every bank is rescued, the regulator’s choice of subsidies affects welfare only through

the induced asset recovery rate. Any bailout that induces recovery rate α requires banks to liquidate

an aggregate amount − ln(α)/γ as seen in (1), reducing the required subsidies by the market value

of those liquidated assets. Compared to subsidies s0, choosing subsidies that induce recovery rate α

lowers welfare cost of subsidies by −λα ln(α)/γ but increases liquidation losses by −(1−α) ln(α)/γ.

The function g captures this welfare trade-off between liquidation costs and taxpayer contributions.

It is strictly convex with the global minimum attained at the indifference recovery rate αind. The

indifference recovery rate is decreasing in λ, but does not depend on the rate γ, at which the buyers’

efficiency decreases.

Lemma 3.2. The asset recovery rate αP in the welfare-maximizing complete bailout is 1 if γ = 0

and αP = max(αind, αL) otherwise. A welfare-maximizing complete bailout awards subsidies sL if

γ = 0. Otherwise, it awards subsidies s with siL ≤ si ≤ si0 for every bank i such that

n∑
i=1

si =

n∑
i=1

si0 +
αP ln(αP )

γ
. (10)

We denote by WP the corresponding welfare losses.

If αP = αL or αP = 1, subsidies in the bailout are uniquely determined and equal to sL and s0,

respectively. However, subsidies are not uniquely determined if αL < αP < 1: since the asset

recovery rate depends only on the total amount of liquidation, welfare depends only on the total

subsidies awarded, but not on how those are distributed among banks. Note that the optimal

complete bailout does not depend on the network structure because all defaults are prevented.

13



3.2 Credibility of the Regulator’s Threat

If welfare losses in the public bailout of Lemma 3.2 are lower than in absence of intervention, banks

know that without their participation, the regulator’s preferred option is a bailout. The regulator

thus has no credible threats to punish recalcitrant banks and, as a consequence, banks have no incentive

to participate in a bail-in. The regulator then has no choice but to resort to a public bailout.. Consequently, the

banks have no incentive to participate in any bail-in and the regulator has no choice but to resort

to a public bailout.

Lemma 3.3. If WP < WN , then the unique subgame Pareto-efficient equilibrium outcome is the

public bailout described in Lemma 3.2, where WP and WN denote the welfare losses under the public

bailout and no-intervention policies, respectively.

We say that the regulator’s no-intervention threat is credible if and only if WN ≤WP . We argue

in the following three subsections that when the threat is credible, the regulator can incentivize

banks to participate in a bail-in. In the remainder of this section, we show that the credibility of

the threat is tightly linked to the amplification of the shock in absence of intervention.19

Since losses to senior creditors are not amplified through the financial system, we exclude

those from consideration. The part of the initial shock that is amplified through the network is

S0 :=
∑n

i=1 s
i
0−
∑

i∈D(pN ,`N ,αN ) δ
i(pN , αN ), i.e., the difference of aggregate shortfall, defined in (8),

and losses to senior creditors. The losses incurred by junior creditors after the amplification are

equal to the decrease in the market value of the banks SN :=
∑n

i=1

(
V i(L, 0, 1)− V i(pN , `N , αN )

)
,

where V i(L, 0, 1) is the book value of bank i’s equity and V i(pN , `N , αN ) is the value of i’s equity

after clearing liabilities when there is no intervention.

Lemma 3.4. The regulator’s threat is credible if and only if

SN − S0 ≤ λS0 −
n∑
i=1

min
(
ei, si0

)
+ g(αP ). (11)

The credibility threshold depends on the welfare cost λ of taxpayer contributions, the size of the

initial shortfall, and the distribution of such shortfall across the system captured by the second and

third term on the right-hand side of (11). The second term is a measure of the amount of illiquid

assets that can be used to absorb the initial shock: the larger this amount is, the more credible

is the threat. The last term in (11) captures the trade-off between liquidation costs and taxpayer

contributions in the optimal bailout for a given distribution of shocks s0. While this trade-off is

minimized at the indifference recovery rate αind, the regulator may not be able to attain αind. The

difference g(αP )− g(αind) is thus a measure of how close to attaining αind the regulator can tailor

a bailout for a given distribution of shocks s0; see also the discussion after Lemma 3.1.

Lemma 3.4 establishes a link between the credibility of the no-intervention threat and existing

literature on financial networks without intervention, which often ranks the desirability of network

structures according to the welfare loss criterion SN−S0. The studies of Allen and Gale (2000) and

19Note that the credibility of the threat is a function of exogenous variables: the welfare losses WP in the optimal bailout is
the result of a minimization problem solved by the regulator alone and WN are the welfare losses in absence of any action.
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Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) show that dense connections between banks may

serve as an amplifier for large initial shocks. For most sizes of the initial shock, the right-hand side

of (11) does not depend on the network structure.20 Therefore, Lemma 3.4 indicates that dense

connections are detrimental to the credibility of the threat when the initial shock is large.

3.3 Regulator’s Response in the Last Stage

A consequence of Lemma 3.2 is that, for a given bail-in proposal (b, s) and a response vector a by

the banks, the regulator’s best response in stage 3 is

r(b, s, a) =


“no intervention” if WN ≤ min(Wλ(b, s, a),WP ),

“bailout” if WP < min(WN ,Wλ(b, s, a)),

“bail-in” otherwise.

(12)

The regulator chooses the action that minimizes welfare losses if such an action is unique. Ties

are broken according to “no intervention” � “bail-in” � “bailout” so that (a) taxpayer money is

used only if it is strictly welfare increasing and (b) unilateral deviations by banks in stage 2 can be

discouraged when WN = Wλ(b, s, a); see Lemma 3.5 and Footnote 22 below for details.

3.4 Banks’ Equilibrium Responses

In this section, we analyze how the banks respond to a given proposal when the regulator’s threat

is credible. A crucial feature of the banks’ response vector is whether a sufficient proportion of

banks accepts the proposal for the regulator to implement the residual bail-in.

Definition 3.1. Given a bail-in proposal (b, s), a subgame-perfect equilibrium (a, r) of the con-

tinuation game is an accepting equilibrium if r(b, s, a) = “bail-in” and it is a rejecting equilibrium

otherwise. The banks’ response vector a in (a, r) is an accepting/rejecting equilibrium response.

For a bank to participate, the bail-in has to be both feasible and incentive-compatible. A

complete bail-in is feasible if the net contribution by any bank i does not exceed its budget constraint

ηi(α, `i) := (ci + α`i + (πL)i − wi − Li)+, (13)

given recovery rate α and liquidation decision `i.21 The incentive-compatibility conditions in a

feasible bail-in proposal are stated in the following lemma.

Lemma 3.5. Suppose the threat is credible, i.e., WN ≤ WP . Let (b, s) be a feasible proposal of a

complete bail-in. In any accepting equilibrium response a, bank i with bi > 0 accepts if and only if:

1. Welfare losses in the residual bail-in without i satisfy Wλ(b, s, (0, a−i)) ≥WN , and

20Only for very large shocks, for which some banks do not repay anything in a clearing equilibrium, the right-hand side
depends on the network through losses to senior creditors δ. Most existing literature does not consider shock sizes this large.

21This condition is recovered as a special case of Definition 2.4 for complete rescues. The model can easily be adapted to
allow for capital requirements of solvent banks by subtracting these requirements from the budget constraint in (13).
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2. Bank i’s net contribution to (b, s) satisfies bi − si ≤ bi∗
(
ᾱ(b, s, (1, a−i))

)
, where

bi∗(α) := max
`i∈[0,ei]

min

(
n∑
j=1

πij(Lj − pjN ) + (1− αN )`iN − (1− α)`i, ηi(α, `i)

)
. (14)

Here, (ãi, a−i) indicates the response vector, in which i responds with ãi and j 6= i responds with aj.

The first condition states that there is no possibility for free-riding: if bank i were to reject

the proposal, the regulator would choose not to intervene rather than pay for i’s contribution

with taxpayer money.22 In other words, the set of banks which accept the proposal is minimal

in any accepting equilibrium response. The second condition states that, in order to prevent a

default cascade, bank i is willing to make a net contribution up to its exposure to the default

cascade through both channels of contagion. While the second condition is not entirely explicit,

Lemma E.3 in the online appendix implies that bi∗
(
ᾱ(b, s, (1, a−i))

)
is non-increasing in bi−si, hence

the incentive-constraint satisfies a threshold property.

The requirement that equilibria be subgame Pareto-efficient implies that banks will accept an

incentive-compatible bail-in proposal. While, in general, accepting equilibria need not be unique,

the regulator can preempt any coordination problems by altering the proposed bail-in so that it

is incentive compatible for only one consortium of banks to accept the proposal. If the regulator

requests zero contributions from any bank outside the selected consortium, unanimous acceptance

becomes the unique accepting equilibrium, and hence the unique subgame Pareto-efficient equilib-

rium, of the revised proposal. We formalize this discussion in Lemmas B.6 and B.7.

3.5 Optimal Proposal by the Regulator

Contributions of banks to a bail-in affect welfare in two ways. First, they reduce the amount of

taxpayer contributions needed. Second, if the asset recovery rate in the optimal bailout is higher

than the indifference recovery rate, the regulator can use the contributions of banks to enhance

welfare by exploiting the trade-off between asset liquidation and taxpayer contributions.

Lemma 3.6. Let b0 := (c+πL−w−L)+ be the largest feasible contributions without asset liquidation

and let g and s0 be defined as in Lemma 3.1 and (8), respectively. Let (b, s) be a complete feasible

bail-in proposal with bisi=0 for every bank i.23 For any response vector a, welfare losses are equal to

Wλ(b, s, a) = WP + g(ᾱ(b, s, a))− g(αP ) + λ

n∑
i=1

(si − si0)+ − λ
n∑
i=1

min
(
bi, bi0

)
1{ai=1}. (15)

Equation (15) shows how welfare losses in a bail-in compare to welfare losses in the optimal

bailout of Lemma 3.2. A contribution of bank i up to the amount bi0 does not require asset liqui-

dation, hence it does not impact the asset recovery rate. Thus, each dollar contributed up to bi0

22The regulator prefers “no intervention” over “bail-in” in (12) when they lead to the same welfare losses so that a rejection
by bank i can be prevented if the welfare losses Wλ

(
b, s, (0, a−i)

)
in the residual bail-in without i are equal to WN .

23The restriction bisi = 0 imposes that bank i either receives subsidies or makes contributions to the bail-in, but not both.
We show in Lemma C.1 in the appendix that this comes without loss of generality.
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improves welfare by λ. Contributions in excess of bi0 require asset liquidation by the bank, thereby

impacting the recovery rate α and the welfare trade-off g. Finally, subsidies beyond bank i’s short-

fall si0 do not reduce losses from misallocation of the asset because banks can fulfill all obligations

without liquidating assets. Each dollar of subsidies awarded in excess of s0 thus effectively burns

λ units of welfare. While this generally constitutes a decrease in welfare, we illustrate below how

welfare burning can be used by the regulator to deter banks from free-riding.

Next, we analyze how the regulator best implements a rescue plan that satisfies the incentive-

compatibility conditions of Lemma 3.5. The no-free-riding constraint in Condition 1 requires that

after the rejection by any bank, welfare losses in the residual bail-in are larger than welfare losses

without intervention. Using (15), this is equivalent to requiring that for any participating bank i,

Wλ(b, s, a) ≥WN + g(ᾱ(b, s, a))− g(ᾱ(b, s, (0, a−i)))− λmin(bi, bi0). (16)

Equation (16) constitutes a lower bound on attainable welfare losses imposed by the no free-riding

constraint. It states that welfare losses in an incentive-compatible bail-in cannot be lowered from

WN by more than the welfare impact stemming from the contribution of any participating bank.

The no-free-riding constraint thus drives the regulator to include banks, which have a potential for

large contributions, or banks whose contributions enhance the welfare trade-off between subsidies

and asset liquidation. By choosing an incentive-compatible proposal (b, s), the regulator implicitly

chooses an associated vector of liquidation decisions ¯̀(b, s, 1) and an asset recovery rate ᾱ(b, s, 1).24

In order to construct a bail-in consortium C with maximal contributions by its participanting banks,

the regulator should choose the maximal feasible contribution ηi(α, `i) by each bank i ∈ C, defined

in (13), given the desired asset recovery rate α and consistent vector of liquidation decisions `. This

contribution is incentive compatible for `i up to some value `i∗(α), defined as the maximizer in (14).

Viewed as a function of α and `, the necessary subsidies to guarantee solvency of every bank are

s(α, `) := (L+ w − c− α`− πL)+. (17)

For a bail-in with subsidies s(α, `) and contributions η(α, `) for a specific choice of C, α, and a

consistent vector `, each bank i ∈ C contributes at least bi := min
(
(π(L− pN ))i + (1− αN )`iN , b

i
0

)
,

the maximal incentive-compatible contribution without asset liquidation, and at most bi∗(α), defined

in Lemma 3.5. The following lemma shows that such bail-ins maximize welfare among all bail-ins

that are individually incentive compatible, i.e., all bail-ins that satisfy Condition 2 of Lemma 3.5.

Lemma 3.7. Let (b, s) be a complete feasible bail-in such that the response vector 1 = (1, . . . , 1) sat-

isfies Condition 2 of Lemma 3.5 for every bank. Denote by C :=
{
i
∣∣ bi > 0

}
the set of contributing

banks and abbreviate α = ᾱ(b, s, 1). Welfare losses in this bail-in satisfy

Wλ(b, s, 1) ≥WP − g(αP ) + g(α)− λ
∑
i∈C

bi. (18)

24By Lemma B.6, the regulator can aim to construct bail-ins that can be accepted by all banks without loss of generality.
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Equality holds if and only if bi − si ≥ bi for every i ∈ C and si ≤ si0 for every i 6∈ C.

Equation (18) shows that when contributions are of size η(α, `), their welfare impact depends

on the liquidation decision only through the induced asset recovery rate. Thus, similarly to the

bailout, the regulator optimizes bail-ins to induce the asset recovery rate, at which he is indifferent

between additional taxpayer contributions and asset liquidation.

Suppose now that for a bail-in of the above form, some bank i ∈ C has an incentive to free-ride,

that is, the regulator proceeds with the residual bail-in even without i’s participation. By Condi-

tion 1 in Lemma 3.5, this occurs precisely if WN −Wλ(b, s, (0, a−i)) ≥ 0. If the regulator were able

to decrease welfare in the proposed bail-in by this amount across all response vectors, he could elim-

inate i’s free-riding incentives. It follows from Lemmas 3.6 and 3.7 that welfare in an individually

incentive-compatible bail-in (b, s) with contributing banks in C exceeds the lower bound in (18) by

λ
∑
i6∈C

(si − si0)+ + λ
∑
i∈C

(
bi − bi

)+
. (19)

Thus, providing subsidies in excess of s0 and requesting contributions below b are means with which

the regulator can decrease or “burn” welfare. Since subsidies in excess of s0 and contributions

below b do not affect the asset recovery rate, burning welfare as in (19) does not distort incentives

and hence decreases welfare by a constant amount across the banks’ responses. We denote by

χC(α) the minimal amount of welfare-burning needed to eliminate free-riding incentives from an

individually incentive-compatible bail-in with contributing banks C that induces recovery rate α.

The mathematical definition of χC(α) is somewhat convoluted and deferred to Lemma A.1. In

Theorem D.2 of the online appendix, we show that welfare burning is used sparingly in equilibrium.

The analysis above brings us to the characterization of the equilibrium intervention plan. The

result states that when the threat is credible, the regulator proposes a bail-in which implements

the minimum value burning χC(α) for the optimal choice of C and α. For the sake of reference, we

isolate the set of all incentive compatible bail-ins that implement the minimum value burning.

Definition 3.2. Let z(α) := α ln(α) and let z−1 be its inverse on the interval
[

1
e , 1
]
. The function

gα(x) := g
(
z−1(z(α) + γx)

)
− g(α) captures the welfare impact of liquidating x fewer units of the

asset at recovery rate α. Let Ξ(C, α) denote the set of all bail-ins (b, s) satisfying:

(i) bi − si ≤ bi∗(α) for every i ∈ C,

(ii) bi = 0 and si(α, e) ≤ si for every i 6∈ C,

(iii)
∑n

i=1(si0 − si)+ +
∑

i∈C(b
i − bi0)+ = −α ln(α)

γ ,

(iv) λ
∑n

i=1(si − si0)+ + λ
∑

i∈C
(
bi − bi

)+
= χC(α),

(v) λmin
(
bi, bi0

)
+ gα

(
(bi − bi0)+

)
≥WN −WP + g(αP )− g(α) + λ

∑
j∈C b

j − χC(α) for i ∈ C.
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The first two conditions state that (b, s) is a feasible, complete bail-in with contributing banks

in C. Conditions (iii) and (iv) state that the bail-in induces asset recovery rate α and the total

amount of welfare burnt is χC(α). To understand Condition (v), recall that a contribution up to

bi does not require asset liquidation. A total contribution of size bi + xi by bank i thus has a total

impact on welfare of λbi + gα(xi). Thus, Condition (v) states that there is no free-riding because

the welfare impact of a deviation by bank i (left hand side) is larger than the difference between

the welfare losses without intervention and in the bail-in. Conditions (i) and (v) together imply

that it is incentive-compatible for any bank i ∈ C to accept the proposal.

Theorem 3.8. For any bail-in (b, s), let `(b, s) denote the vector of liquidated assets if the proposal

is accepted by all banks. For any `, let i1(`), i2(`), . . . denote a decreasing order of banks according

to ηi(α(`), `). Let C(`) :=
{
i1(`), . . . , im(`)(`)

}
, where m(`) denotes the smallest integer k such that

WP +
(
g(α(`))− g(αP )

)
− λ

k∑
j=1

ηij(`)(α(`), `) < WN .

If WP < WN , then any subgame Pareto-efficient equilibrium outcome is a public bailout with welfare

losses WP as specified by Lemma 3.2. If WP ≥ WN , then there exist generically unique C∗ and α∗

such that in any subgame Pareto-efficient equilibrium, a bail-in from the set Ξ(C∗, α∗) is proposed

by the regulator and accepted by all banks.25 Welfare losses are equal to

WE = WP +
(
g(α∗)− g(αP )

)
− λ

∑
i∈C∗

bi + χC∗(α∗).

Finally, if C∗ is unique, then C∗ = C(`(b, s)) for all (b, s) ∈ Ξ(C∗, α∗).

As we have highlighted before, a bail-in can be organized in equilibrium if and only if the

regulator’s no-intervention threat is credible. The set C∗ consists of banks that are most exposed

to contagion at the equilibrium recovery rate α∗: after choosing a set of liquidation decisions `

that induces α∗, the regulator adds banks into the bail-in consortium in decreasing order of their

incentive compatible contributions η(α(`), `) until welfare losses in the bail-in are lower than in

the default cascade without intervention. This occurs after adding the m(`) most exposed banks.

Because of the no-free-riding constraint of Lemma 3.5, no more contributors can be added after

that: any additional bank would know that even without its contribution, the regulator will proceed

with the residual consortium, hence that bank has no incentive to participate.

The recovery rate and the welfare losses are generically unique in equilibrium. The set of

liquidation decisions and the bail-in proposal, however, are not unique in general. Similarly to the

public bailout, welfare depends on the liquidation by banks only through the total amount that

is being liquidated.26 This gives the regulator some leeway on how to induce recovery rate α∗.

25Generic uniqueness is up to banks i with bi0 = 0 because those banks affect welfare only through the welfare trade-off
captured in g. Generically unique means that it is unique for an open and dense set of model parameters.

26The only restriction on liquidation by an individual bank is the fifth condition in Definition 3.2, specifying the minimal
liquidation amount by bank i for the no-free-riding condition to hold.
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Because banks are willing to make larger contributions to a bail-in that guarantees a higher asset

recovery rate, the regulator’s indifference recovery rate increases in a bail-in, that is, α∗ ≥ αind.

In Section D of the online appendix, we highlight the relationship between the equilibrium

recovery rate and the amount of welfare burnt in equilibrium: in many situations, the regulator

will avoid burning welfare and instead choose to induce a recovery rate, at which the contributions

by individual banks are sufficiently large to deter free-riding. Nevertheless, there are scenarios in

which welfare is burnt in equilibrium. One such scenario occurs when buyers of liquidated assets

are fully efficient, that is, when γ = 0; see Section 5.

Remark 3.1. We briefly discuss the default resolution outcome if the government had various degrees

of commitment power or if a bank had made a pre-commitment to participate in a bail-in.

1. Suppose that the regulator had the power to commit to a no-bailout policy in the third stage.

Then the bail-in described in Theorem 3.8 will be organized in equilibrium even if WP < WN ,

hence equilibrium welfare losses decrease to WE in this case.

2. Suppose that the regulator has full commitment power in the third stage, that is, he can

commit not only to a no-bailout policy, but also to not proceeding with a residual bail-

in if some banks reject the proposal. Then the no-free-riding constraint (Condition 1 in

Lemma 3.5) has to be satisfied only if the proposed bail-in does not include any government

subsidies. Note that a bail-in still has to be individually incentive compatible (Condition 2

of Lemma 3.5) as, otherwise, a bank would prefer the default cascade over the bail-in. This

reflects the fact that in a developed democracy, the government cannot legally appropriate the

banks’ capital.27 We conclude that the regulator can force his preferred individually incentive-

compatible assisted bail-in unless the banks can agree on a private bail-in alternative.28

3. Finally, one could easily adapt the model to allow pre-commitments by banks to participate

in a bail-in, which incurs a legal fee Ci on bank i if the bank reneges on its promise. In that

case, the legal fee Ci is simply added to the left expression in the minimum in (14). The

takeover of Merrill Lynch by Bank of America (BOA) could, perhaps, be interpreted as an

assisted bail-in with pre-commitment by BOA.29

4 Shocks, Asset Illiquidity, and Total Throughput

In this section, we analyze the dependence of equilibrium quantities, including asset recovery rate,

awarded subsidies, credibility, and welfare losses, on the banks’ balance sheet parameters, the

27Without Condition 2 of Lemma 3.5, the government could demand arbitrarily high contributions.
28Formally, such a model would require additional stages of negotiation to give banks the opportunity to coordinate on a

private bail-in alternative. It is easy enough to adapt the results in Section 3.4 (by excluding the regulator’s incentives) to
show that no two private bail-ins are Pareto comparable. Therefore, we expect that the subgame Pareto-efficient equilibrium
outcome is a constrained-efficient private bail-in or the regulator’s preferred individually incentive-compatible assisted bail-in.

29When BOA wanted to withdraw from the purchase of Merrill Lynch, the Federal Reserve could have claimed that BOA’s
initial interest stalled a successful default resolution, thereby generating additional losses. To avoid extensive litigation with
an uncertain outcome, both parties agreed on a settlement, in which BOA proceeded to purchase the assets, but the price was
lowered and backed with a government guarantee. The resulting deal was, presumably, close to incentive compatible for BOA.
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network structure, and the recovery rates from asset liquidation and bankruptcy procedures. The

results are presented under the assumptions that γ > 0, ei > 0 for every bank i, and that there is

at least one fundamentally defaulting bank. Without this assumption, the results in this section

hold when strict monotonicity is replaced with weak monotonicity.

4.1 Optimal Bailout

Since every bank is rescued in a complete bailout, there are no bankruptcy costs and no losses that

depend on the network structure. Asset recovery rate, subsidies, and welfare losses in the complete

bailout are thus independent of β and π. The dependence of the welfare-maximizing bailout on the

rate γ at which the pool of efficient buyers diminishes, the welfare cost λ of a taxpayer dollar, and

the size s0 of the banks’ shortfall is given in the following result and illustrated in Figure 2.

Lemma 4.1. There exist (possibly infinite) thresholds γ∗, λ∗ > 0, as well as finite thresholds

si∗, e
i
∗ ≥ 0 for every bank i such that the following conditions hold: 30

(i) The recovery rate αP is decreasing for γ ≤ γ∗ and it is constant for γ ≥ γ∗. Subsidies and

welfare losses are increasing in γ.

(ii) The recovery rate αP and subsidies are decreasing for λ ≤ λ∗ and they are constant for λ ≥ λ∗.
Welfare losses are increasing in λ.

(iii) For any bank i, the recovery rate αP , subsidies, and welfare losses in the optimal bailout are

decreasing for ei ≤ ei∗ and constant for ei > ei∗.

(iv) For any bank i, the recovery rate αP is decreasing for si0 ≤ si∗ and constant for si0 > si∗.

Subsidies and welfare losses are increasing in si0.

If the marginal efficiency of buyers decreases slowly, i.e., γ is low, liquidation has a small impact

on the asset recovery rate and it is welfare maximizing for the regulator to provide only the minimal

amount of subsidies. Under this minimal-intervention policy, the recovery rate of the asset falls as

γ increases. The resulting decrease of the banks’ equity value requires larger subsidies to restore

the system to a going concern. If the marginal efficiency of buyers decreases sufficiently quickly,

that is, γ ≥ γ∗, the regulator switches from the minimal-intervention policy to a policy that trades

off asset liquidation and taxpayer contributions to maintain the indifference recovery rate αind. As

γ increases and liquidation becomes more costly, the regulator has to provide additional subsidies

to maintain the indifference recovery rate, further increasing welfare losses.

If the welfare cost λ of a taxpayer dollar is below the threshold λ∗, the regulator balances

taxpayer contributions and asset liquidation to maintain the indifference recovery rate. As taxpayer

contributions become more costly in terms of welfare, the regulator decreases the size of subsidies

until, at level λ∗, he provides only the minimal subsidies necessary to guarantee solvency.

30The thresholds depend on the other model parameters, that is, γ∗ depends on λ, s0, and e, etc.
31Unlike the calibration done in Section 6, buyers of liquidated assets are not assumed to be fully efficient in the calibration

that generates Figures 2 and 4. In this calibration, we assume that 90% of the outside assets reported by banks are illiquid and
the remaining 10% are perfectly liquid, i.e., cash.
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Figure 2: The three charts show the dependence of the optimal bailout on γ, λ, and e for a calibrated model of a
dense financial network using the 2018 data of the EBA stress test.31 The asset recovery rate αP = max(αL, αind) is
shown in solid lines; the minimal-intervention recovery rate αL and the indifference recovery rate αind are shown in
dashed lines. The total subsidies SP awarded and welfare losses WP are normalized to fit the same scale.

A fundamentally defaulting bank i cannot cover its shortfall by liquidating its assets. If the

amount ei of illiquid asset held by bank i is small, the regulator is thus forced to cover a large

portion of the shortfall even if the marginal welfare cost of taxpayer contributions is higher than

the marginal welfare impact of asset liquidation. As ei increases, bank i is able to cover a larger

portion of its shortfall by liquidating its assets, which reduces the size of the minimal subsidies

required. Below the threshold ei∗, the benefits of reducing subsidies outweigh additional losses from

fire sales, leading to an overall decrease in subsidies and welfare losses.

Finally, both subsidies and welfare losses are increasing in the shortfall s0 of the banks, which can

be understood as a measure of the initial shock size. The asset recovery rate is strictly decreasing

in the size of the shock where it exceeds the indifference recovery rate and it is constant otherwise.

4.2 Credibility

For a given set of parameters, the threat is either credible or not. To analyze how the credibility

depends on underlying variables, we study the difference WP −WN between the welfare losses in

the optimal bailout and in absence of intervention. This measures how close to being credible the

threat is. We say that the credibility of the threat is increasing or decreasing in a parameter if

WP −WN is, respectively, increasing and decreasing in that parameter.

A critical measure for the sensitivity analysis is the total throughput of a defaulting bank to the

solvent members of the economy (i.e., banks and senior creditors). AbbreviateDN = D(pN , `N , αN ),

let CN ⊆ DN denote the set of defaulting banks which repay their senior creditors in full, and let

IN denote the set of illiquid but solvent banks, all in absence of intervention. For two sets of banks

S and C, let πS,C denote the submatrix of π with rows and columns corresponding to banks in S
and C, respectively. The throughput of a bank i ∈ CN to a set of banks S is

θiS(β, π) :=
∑

j∈S\DN

π{j}CN
(
I − βπCN ,CN

)−1
ρCNi + β

∑
j∈S∩DN\CN

π{j}CN
(
I − βπCN ,CN

)−1
ρCNi . (20)

where ρCNi denotes the unit vector in RCN in the direction of i. The total throughput of bank i ∈ CN
is then defined as θi(β, π) := θi{1,...,N}(β, π). For a bank i ∈ DN \ CN , we set θiS(β, π) := 1 for any

set of banks S that contains i and we set θiS(β, π) := 0 otherwise.
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Figure 3: Let πc and πr denote the complete and the ring network, respectively, in a network of n = 36 banks. The
two charts show the total throughput θ1(β, πµ) of bank 1 in the network πµ = µπc + (1−µ)πr for various levels of β,
when CN = DN = {1, 2} and CN = DN = {1, 2, 3, 4, 5} in the left and right panel, respectively.

The total throughput of bank i measures the exposure of solvent junior creditors (first term)

and senior creditors (second term) to a shock hitting bank i. It quantifies the potential for spill-over

losses triggered by defaults. For a bank i ∈ CN , the quantity
(
I − βπCN ,CN

)−1
=
∑∞

k=0

(
βπCN ,CN

)k
captures the amplification of losses due to feedback effects between defaulting banks: term k in the

sum corresponds to the propagation of losses through liability chains in CN of length k. After ac-

counting for bankruptcy losses, the exposure of a solvent creditor to a shock on bank i’s assets is πji

for a solvent bank j and βπji for the senior creditors of a bank j ∈ DN \CN .32 The following lemma

shows that the total throughput is a normalized measure for the rate of spill-over losses, which con-

denses all network information needed to determine the credibility of the regulator’s threat.

Lemma 4.2. The total throughput of any bank is non-decreasing in β and it takes values in [0, 1].

Conditional on the banks’ levels of solvency (the sets DN , CN , and IN ) and the total value of their

claims on solvent banks, WP −WN depends on π only through
∑

i∈CN θ
i
IN (β, π) and

∑
i∈CN θ

i(β, π).

Observe from (20) that the throughput depends on the network structure, the location of the

shocked bank(s) within the network, the connections of the shocked banks to other defaulting banks,

as well as the recovery rate β. Conditional on the banks’ levels of solvency, it does not, however,

depend on the asset recovery rate or the banks’ balance sheet quantities L, c, w, and e. The

throughput is increasing in the connectivity between defaulting banks as illustrated in Figure 3.33

Lemma 4.3.

(i) The credibility of the threat is increasing in λ.

(ii) The credibility of the threat is non-decreasing in β and it is strictly increasing on the set{
β
∣∣ there exists i ∈ DN (β) with θi(β, π) > 0

}
.

32The total throughput of bank i ∈ CN is related to the bank’s Bonacich centrality Bi = 1>CN

(
I − βπCN ,CN

)−1
ρ
CN
i , which

captures the total amplification of losses through feedback loops in CN . The total throughput additionally takes into account
how the losses are distributed among the creditors. It is important to note that the Bonacich centrality may diverge to ∞ if
β → 1, whereas our notion of total throughput is bounded on the interval [0, 1].

33The symmetric complete network πc with πijc = 1{i6=j}/(n− 1) is the most diversified network structure. The ring network

πr with πijr = 1{j=i+1 mod n} is the sparsest network structure as measured by the Gini index; see Hurley and Rickard (2009).
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Figure 4: The three charts show the dependence of the optimal bailout on γ, β, and e for a model of a dense
financial network calibrated to the 2018 data of the EBA stress test. In the right chart, we scale the size of illiquid
assets held by all banks simultaneously, leading to a cluster of thresholds ei∗, where each bank i becomes solvent and
the credibility of the threat increases.

(iii) The credibility of the threat is non-monotonic in γ. However, all discontinuities of WP −WN

with respect to γ are downward discontinuities and the marginal change of WP −WN with

respect to γ at continuity points is decreasing in β and θi(β, π) for every defaulting bank i.

(iv) For each i and fixed e−i, there exists ei∗ such that the credibility of the threat is decreasing at

all ei < ei∗, for which β
(
θi(β, π)+λθiDN (β, π)

)
≤ 1, as well as all ei > ei∗. At the threshold ei∗,

where bank i becomes solvent, WP −WN has an upward discontinuity.

As the welfare cost λ of taxpayer contribution increases, a bailout becomes more costly and the

threat becomes more credible. Similarly, as the recovery rate β increases, bankruptcies become less

costly and it becomes more credible that the regulator will not intervene. If the throughput of all

defaulting banks is 0, then losses generated by defaulting banks do not spill over to the rest of the

system, hence welfare losses are locally constant in β.34 However, if the set of defaulting banks is

connected to the rest of the system, then the credibility is strictly increasing in β.

As γ increases, that is, the efficiency of buyers of liquidated assets decreases more quickly,

illiquid banks raise a smaller amount of cash from their sales and, if γ exceeds a certain threshold,

such banks are unable to meet their liabilities. In absence of intervention, the set of defaulting banks

increases at such a threshold, causing a downward discontinuity in the credibility of the threat due

to bankruptcy losses. Between these discontinuities, two counteracting forces determine the change

in credibility: a larger downward pressure on the asset recovery rate causes larger liquidation losses

without intervention, but also mandates larger subsidies in a bailout. Which effect dominates

depends on the recovery rate β and the network structure via the total throughput of defaulting

banks. As illustrated in Figure 3, the marginal change in credibility is higher in more sparsely

connected networks. The left panel of Figure 4 shows that the discontinuous changes dominate the

continuous changes in a model calibrated to data from the 2018 EBA stress test.

In absence of intervention, an increase in the amount of illiquid asset held by any bank impacts

welfare losses in two ways: liquidation and bankruptcy costs increase, while losses of senior creditors

decrease because they are repaid a larger amount with the proceeds from liquidation. If θiDN (β, π) =

0, that is, every (direct and indirect) creditor of bank i is able to fully repay its senior creditors, or if

34If all senior creditors are repaid in full and the defaulting banks are only liable to each other but not to the solvent banks
in the system, then repayments are just a redistribution of net zero wealth among defaulting banks.
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the weight of senior creditor losses in the welfare function is sufficiently small (λ ≤ β/(1−β)), then

welfare losses in absence of intervention are increasing in asset holdings ei. Since welfare losses in

the public bailout are non-increasing in ei by Lemma 4.1, the credibility of the threat is decreasing

in this case except at the threshold ei∗, where bank i becomes solvent. An increase in asset holdings

ei can increase the credibility only if a sufficient proportion of the revenue of the liquidated assets

accrue to senior creditors and the reduction of senior creditor losses is valued sufficiently highly by

the regulator, that is, if λθiDN (β, π) is sufficiently high.

The following result shows how the credibility of the threat changes with the size of the initial

shock. For the credibility analysis, we write c = c0 − ε as the sum of cash kept in period t = 0 and

the realization of short-term returns on the illiquid assets in period t = 1, where ε is interpreted as

the size of the shock to those returns. In contrast, the public bailout depends on the size ε of the

initial shock only through the shortfall s0, hence Lemma 4.1 simply states the dependency on s0.

Lemma 4.4. For each bank i, there exist 0 < εi1 < εi2 ≤ εi3 such that the credibility of the threat is

constant for εi ≤ εi1, decreasing for εi ∈ [εi1, ε
i
2], and increasing for εi ≥ εi3. On the interval [εi2, ε

i
3],

the credibility has only downward discontinuities. The marginal change of WP −WN at continuity

points in [εi2, ε
i
3] is decreasing in β and θi(β, π).

For very small shock sizes, bank i is able to honor its liabilities without liquidating its assets.

Welfare losses and the credibility of the threat thus remain unaffected. For small shock sizes in

the interval [εi1, ε
i
2], bank i has to start liquidating its assets in absence of intervention, but not

in the public bailout where all interbank claims are honored. The credibility of the threat is thus

decreasing in that interval. For intermediate shock sizes in the region [εi2, ε
i
3], banks do not have

sufficient liquidity to repay their liabilities, both in the bailout and in the no-intervention outcome.

Whether this leads to a larger increase of welfare losses without intervention than in a bailout—

and hence to a decrease in credibility—depends on the recovery rate β and the total throughput

of bank i. Finally, for large shock sizes εi ≥ εi3, bank i does not make any payment to its junior

creditors in absence of intervention, hence any marginal increase in the shock is not amplified

through the network anymore. Consequently, the credibility is increasing in the shock size.

We conclude this section with the following result, which highlights that the credibility of the

threat is the most important determinant when comparing welfare losses between two networks.

Lemma 4.5. For fixed L, e, c, w, γ, β, equilibrium welfare losses after intervention are smaller in

network π1 than in network π2 if the regulator’s threat is credible in π1 but not in π2.

If the regulator’s threat is credible in network π1 but not in network π2, Theorem 3.8 implies

that WE(π1) < WN (π1) ≤ WP = WE(π2). If the threat fails to be credible in both networks, the

regulator must resort to a public bailout in either network, resulting in identical welfare losses.

In Section 6, we compare welfare losses when the threat is credible in both networks. We do so

numerically, using a data set from the European Banking Authority’s 2018 stress test.
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5 Optimal Intervention with Partial Rescues

In this section, we extend the baseline model of Section 3 by enlarging the strategy space of the

government from complete rescues to bail-ins and bailouts that may rescue only a subset of the

banks. We also refer to these interventions as partial interventions or partial rescues. This analysis

reveals the additional forces that contribute to the formation of bail-ins when the regulator does

not necessarily rescue every bank in the system. To simplify the analysis and the exposition of our

results, we assume that buyers of the asset are fully efficient, i.e., γ = 0. This is equivalent to assuming

that banks do not hold any illiquid asset and all non-interbank claims are cash assets.shuts down one of the

channels of contagion and is equivalent to assuming that there are no fire sale effects of liquidation.

5.1 Public Bailout

Without the participation of the banks, the regulator minimizes welfare losses over all possible sets

of banks he could bail out. The first lemma describes this minimization procedure.

Lemma 5.1. For any set of banks B, let p(B) be the greatest fixed-point of

pi =


Li if i ∈ B or ci +

∑n
j=1 π

ijpj ≥ Li + wi,(
β
(
ci + (πp)i

)
− wi

)+
otherwise.

Define the vector of subsidies s(B) by setting si(B) :=
(
Li+wi−ci−

∑n
j=1 π

ijpj(B)
)+

for i ∈ B and

si(B) = 0 otherwise. Let BP := arg minBWλ(s(B)). A welfare-maximizing partial bailout awards

subsidies from the set SP := {s(B∗) | B∗ ∈ BP } and attains welfare losses W ∗P := minBWλ(s(B)).

The bailout s(B) is the welfare-maximizing bailout among all bailouts that rescue banks in

B by giving subsidies only to banks in B. The regulator thus maximizes welfare by optimally

selecting which banks to subsidize. Generically, BP is a singleton, that is, welfare is maximized for

a unique set of banks to be bailed out. Note that in Lemma 5.1, we do not preclude the possibility

that the optimal partial bailout rescues no banks at all. In that case, the optimal “bailout” is no

intervention. The following result describes the structure of the partial bailout by characterizing

conditions under which it is optimal not to rescue a certain set of banks. Those conditions depend

on the shortfall S(B) and the capital buffer C(B) in the bailout s(B), defined as follows:

S(B) :=
(
L+ w − c− πp(B)

)+
, C(B) :=

(
c+ πp(B)− w − L

)+
. (21)

We denote by D(B) and S(B) the set of defaulting and solvent banks, respectively, when liabilities

are cleared with p(B). We denote by δ(B) the corresponding losses to senior creditors.

Lemma 5.2. For any two sets of banks B′ ⊆ B, we denote by ζ := π
(
p(B)− p(B′)

)
the difference

of payments received by banks when liabilities are cleared with p(B) and p(B′), and we denote by

R := D(B′)\D(B) the set of banks rescued in bailout s(B) but not in s(B′). Then Wλ(B′) < Wλ(B)
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if and only if

∑
i∈R

Si(B′) +
λ

1 + λ

∑
i∈S(B)

min
(
ζi, Ci(B)

)
>
∑
i∈R

δi(B′) +
∑

i∈D(B)

min
(
βζi, δi(B′)

)
+
∑
i∈S(B)

ζi. (22)

The left-hand side of (22) captures the benefits for not rescuing banks in R. The first term is

proportional to the shortfall of banks in R if those banks are not rescued. Rescuing them is costly

and requires government expenditures in the form of awarded subsidies. The second term captures

the potential of solvent banks to absorb losses ζ caused by the default of banks in R. If solvent

banks have sufficiently large capital buffers, these losses can be absorbed by the system and there

is less benefit in rescuing the defaulting banks using public money. The right-hand side of (22)

captures the benefits of rescuing banks in R. These include the direct benefits to senior creditors

(first two terms) and solvent junior creditors (third term) if banks in R are rescued. Benefits to

insolvent banks do not explicitly appear in the expression above because those benefits are passed

on to creditors of rescued banks through the repayment of liabilities.

Lemma 5.2 implies that a bank is not rescued in the optimal bailout if it is hit by a very large

shock or if such as shock can be well-absorbed by the capital buffer of its creditors. By contrast,

a bank is rescued in the optimal bailout if, relative to the size of the exogenous shock, the bank’s

default causes large losses to its creditors that cannot be absorbed by their capital buffers. If a bank

is hit by a large shock and its bankruptcy causes a default cascade, it may be welfare enhancing to

only rescue the contagiously defaulting banks: To rescue the fundamentally defaulting bank, the

regulator has to cover the bank’s large shortfall entirely using taxpayer money. If he rescues only

the contagiously defaulting banks, he can leverage the balance sheet capacity of those banks and

cover the residual shortfall only after their capital buffers have been depleted.

Even though we do not explicitly model the network formation stage, our result suggests that

a risky bank i has incentives to borrow from other risky banks in the system so that in case of i’s

default, its creditors are likely to be distressed as well. Then, their potential for absorbing the

losses induced by bank i is small, increasing the chances that bank i is bailed out.

5.2 Banks’ Equilibrium Responses

When the regulator commits to complete rescues as in Section 3, the threat towards the banks is

binary: a bank’s assets are either fully protected or, in absence of intervention, they are exposed

to the full extent of the default cascade. This is no longer the case when the government allows

for partial rescues. A bank’s assets may be protected to varying degrees in a welfare-maximizing

bailout: while some debtors may be rescued and hence the claims towards those banks are protected,

other debtors may still default, thereby inducing losses to the remaining banks in the system.

If the regulator announces that he will implement bailout s(B) when some bank i fails to

cooperate, he threatens losses to creditors of banks in the complement Bc of B. If there is more than

one welfare-maximizing (i.e., credible) bailout, the regulator can choose which bailout to “threaten”

to which banks. Consider a financial system with two identical defaulting banks i and j, where

27



the welfare-maximizing bailout prescribes the rescue of only one of them. Since rescuing either

is a credible action by the regulator, he can threaten the creditors of bank i that, without their

participation, he will bail out bank j and vice versa. This is formalized in the following lemma.

Lemma 5.3. Let (b, s) be a feasible bail-in proposal. In an accepting equilibrium a, bank i with

bi > 0 accepts if and only if for some Bi ∈ BP , the following conditions hold:

1. Wλ(b, s, (0, a−i)) ≥W ∗P ,

2. bi − si ≤
∑n

j=1 π
ij
(
p̄j(b, s, (1, a−i))− pj(Bi)

)
− si(Bi).

Moreover, if there exists B∗ ∈ BP such that Condition 2 holds simultaneously for every bank i with

Bi = B∗, then rejecting equilibria are subgame Pareto efficient only if s ∈ SP . If there exists no

such B∗, then rejecting equilibria are not subgame Pareto dominated by accepting equilibria.

Analogous to Lemma 3.5, Condition 1 is a no free-riding constraint, specifying that without i’s

participation, the regulator chooses his preferred outside option over the residual bail-in.35 Con-

dition 2 states that bank i’s net contribution to the bail-in (b, s) has to be smaller than or equal

to i’s benefits in the bail-in over the threatened bailout s(Bi). If the regulator threatens different

bailouts after a rejection by different banks, the threats cannot be carried out against all banks

simultaneously. Because equilibria are robust only to unilateral deviations, this has no effect on

accepting equilbiria, but it may result in rejecting equilibria also being subgame Pareto efficient.36

5.3 Optimal Proposal of the Regulator

In a partial bail-in, the regulator selects both rescued banks and contributors. Because a bank is

more willing to contribute to a bail-in that protects its debtors, the two decisions are interconnected.

When the regulator proposes to rescue a set of banks B and threatens the bailout s(B∗), the maximal

incentive-compatible contribution by bank i, or the threat level towards bank i, is equal to

ηB∗(B) := min
((
π(p(B)− p(B∗))− s(B∗)

)+
, C(B)

)
, (23)

where C(B) is the vector of the banks’ capital buffer defined in (21). The notion of threat levels

generalizes the credibility of the threat in Section 3.37 If the optimal bailout happens to be the

complete bailout, then threat levels towards all banks are zero and, as in Section 3, the regulator

cannot incentivize any banks to participate. If the optimal bailout is not the complete bailout, the

regulator minimizes welfare losses over which banks to subsidize, taking into account that it affects

35Note that in the case of partial rescues, the preferred outside option is the threatened partial bailout s(Bi) leading to welfare
losses WP . By contrast, Lemma 3.5 for complete rescues is formulated under the assumption that the threat is credible, where
the regulator’s preferred outside option is no intervention and yields welfare losses WN .

36Whether or not is possible to preclude rejecting equilibria by assigning threats to response vectors a 6= (1, . . . , 1) is a combina-
torial argument that depends on the number of participating banks, the number of credible bailout threats, and the rank-order of
threats for the individual banks. Since the optimal bailout is generically unique, this analysis is beyond the scope of the paper.

37Because we consider complete rescues in Section 3, it follows that B = {1, . . . , n} and hence p(B) = L. With complete
rescues, the threat level towards the banks is thus either 0 or it is given by bi∗(α) in (14) for any bail-in that induces asset
recovery rate α. Because ` = 0 and α = 1 in this section, we highlight the dependence on the set B of subsidized banks.
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the contributions he can extract from the private sector. We state the result under the generically

satisfied assumption that the optimal bailout is unique. If the welfare-maximizing bailout fails to

be unique, the regulator will additionally optimize over which bailouts to threaten.

Theorem 5.4. Suppose that BP = {B∗}. For any set of banks B, denote by i1(B), i2(B), . . . a

non-increasing ordering of banks according to ηiB∗(B). For any integer k, define

W k(B) := Wλ(s(B))− λ
k∑
j=1

η
ij(B)
B∗ (B).

Let m(B) denote the smallest k for which W k
B∗(B) < WP and set

W (B) := min
(
Wm(B)(B), W ∗P − λη

im(B)+1(B)

B∗ (B)
)
. (24)

In the game with partial interventions, welfare losses in any subgame Pareto-efficient equilibrium

are equal to W ∗E := minBW (B).

As in Theorem 3.8, the no-free-riding constraint drives the regulator to ask for contributions

from banks, towards which the threat level is the highest. He includes banks into the bail-in

consortium according to the decreasing order i1(B), i2(B), . . . until welfare losses are lower than in

the optimal bailout (left expression in the minimum of (24)). After that, he can only include addi-

tional banks into the consortium by burning welfare (right expression in the minimum of (24)).38

In addition to the above forces that also govern the formation of a complete bail-in, the selection

of rescued banks affects the size of the contributions the regulator can demand from the private

sector. In equilibrium, the regulator will include few banks into the bail-in consortium, each

willing to make a large contribution, rather than many banks with small contributions each. It

is, therefore, beneficial to rescue banks which have few large creditors rather than banks with

many small creditors. This is formalized in the following lemma. It characterizes the structure of

equilibrium partial bail-ins by giving conditions, under which it is optimal not to rescue a certain

set of banks. We use the same notation as in Lemma 5.2 and Theorem 5.4, and additionally denote

by C(B) :=
{
i1(B), . . . , im(B)(B)

}
the set of contributing banks towards a rescue of banks in B.

Lemma 5.5. Suppose that BP = {B∗}. For any two sets of banks B′ ⊆ B, let R := D(B′) \ D(B)

as in Lemma 5.2. Then Wλ(s(B′))−
∑

i∈C(B′) λη
i(B′) < Wλ(s(B))−

∑
i∈C(B) λη

i(B) if and only if

∑
i∈R

Si(B′) +
λ

1 + λ

∑
i∈S(B)

min
(
ζi, Ci(B)

)
+

λ

1 + λ

( ∑
i∈C(B′)

ηiB∗(B
′)−

∑
i∈C(B)

ηiB∗(B
′)

)

>
∑
i∈R

δi(B′) +
∑

i∈D(B)

min
(
βζi, δi(B′)

)
+
∑
i∈S(B)

ζi +
λ

1 + λ

∑
i∈C(B)

min
(
ζi, ηiB∗(B)

)
. (25)

38If buyers of liquidated assets are fully efficient, the order i1(B), i2(B), . . . of banks most exposed to contagion does not
depend on the number of banks included in the consortium. The order is fixed for given B and B∗, and this simplifies the
characterization of welfare burning in equilibrium: To include an additional bank i into the consortium, the regulator burns
WP −Wm(B)(B) units of welfare so that without i’s participation, welfare in the residual bail-in and the optimal bailout are
identical. Then, bank i does not have an incentive to free-ride. Because banks are decreasingly ordered according to their threat
levels, the regulator will consider burning welfare only to include bank im(B)+1(B).
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Similarly to the characterization of the optimal bailout in Lemma 5.2, the left-hand side of (25)

represents the benefits of not rescuing banks in R, whereas the right-hand side represents the ben-

efits of rescuing banks in R. The majority of terms are identical to (22), but there are two key

differences. The first is related to the system’s ability to absorb losses transmitted from banks in R
when they are not rescued (second term on the left-hand side of (25)). Losses are absorbed either

partially or completely by the capital buffers of R’s creditors. In order to benefit from those capital

buffers in a partial bailout, the regulator has an incentive to let banks in R default. In the bail-in,

the regulator benefits from those capital buffers even if he rescues the banks in R because he can

extract larger contributions—up to the amount η(B) ≤ C(B)—from contributors in C(B) (the third

term on the right-hand side of (25)). The choice of which banks to rescue is thus network-dependent :

If banks in R have many creditors, only some of them will be included in C(B) due to free-riding

incentives. Thus, if capital buffers are large and the defaults of banks inR can be well absorbed, the

second term on the left-hand side of (25) is larger than the third term on the right-hand side, con-

stituting a reason not to rescue banks in R. If, however, banks in R have only a few large creditors,

those are likely included in C(B), hence the two terms balance out.39 While, in the partial bailout,

only the size of the absorbed losses matter, in the partial bail-in the distribution of those losses mat-

ters as well because it determines the contributions that can be elicited from the private sector.

The second difference from the case of complete bailouts is the third term on the left-hand side

of (25). It captures the structure of rescue consortia in the two alternative bail-ins, stating that it

is beneficial to not rescue banks in R if, by doing so, the regulator does not lose any contributors.

Indeed, if the number of banks contributing towards a bail-in rescuing banks in B′ is larger than

when rescuing banks in B, i.e., m(B′) ≥ m(B), then this term is positive because C(B′) is the set

of banks of size m(B′) that maximizes contributions of size η(B′).
Both Lemmas 5.2 and 5.5 imply that it is beneficial for banks to have only a small number of

creditors. To be rescued in a bailout, the bank must cause large contagion effects. To be rescued

in a bail-in, the bank’s creditors need to be among the largest potential contributors to the rescue

consortium. Both are more likely to happen when the losses caused by the bank’s default are spread

only across a few creditors. Because the regulator prefers sparsely connected networks, it follows

that ex-ante incentives of banks are better aligned with the regulator’s objective when he allows

for partial intervention, rather than when restricting himself to complete rescues only.

Our final result relates the structure and welfare losses of partial bail-ins and bailouts.

Lemma 5.6. Let B ⊆ B′ with welfare losses Wλ(s(B′)) ≤ Wλ(s(B)) in the corresponding partial

bailouts. Then welfare losses in the optimal partial bail-ins, defined in (24), satisfy W (B′) ≤W (B).

For B′ ∈ BP , Lemma 5.6 shows that it cannot be optimal to rescue a smaller set of banks in a

bail-in than in the optimal bailout: by Lemma 5.3, no bank would have any incentive to contribute

to such a bail-in. Lemma 5.6, however, does not imply that all banks from the optimal bailout are

rescued in the optimal bail-in, nor is that statement true in general. Condition 2 in Lemma 5.3 shows that, in

39One can show that min
(
ζi, ηi(B)

)
= min

(
ζi, Ci(B)

)
for any bank i with a positive threat level ηi(B′) when banks in R are

not rescued. The terms in the sums for each such bank are thus identical.
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order to incentive banks to participate, the regulator needs to propose bail-ins that rescue banks that are not bailed

out. In the online appendix, we provide a numerical example, in which banks rescued in the optimal bailout are not

rescued in the optimal bail-in.; we provide a counterexample to that claim in Section ?? of the online

appendix. In general, the partial bail-in must rescue additional banks to create incentives for banks

to contribute, but may give up the rescue of some banks that are protected in the bailout.

6 Equilibrium Welfare Losses and Network Structure

In this section, we analyze the dependency of equilibrium welfare losses on the structure of the

interbank network using data from the 2018 stress test of the European Banking Authority (EBA).

After eliminating banks with zero reported interbank claims, we are left with 36 banks in the data

set. We elaborate in Section I of the online Appendix how we calibrate our model to the data. To

highlight more prominently the impact of the network structure on welfare, we assume that buyers

of liquidated assets are fully efficient for this calibration exercise. This corresponds to setting γ = 0

or, equivalently, assuming that all outside assets are held as cash. Detailed information on bilateral

exposures is not publicly available. To compare the relative performance of different network

structures, we fit a sparse and a dense network structure πs and πd, respectively, to the data from

the EBA stress test. We then analyze the credibility of the regulator’s threat and the equilibrium

welfare losses as a function of the network structure πµ := µπs + (1 − µ)πd for µ ∈ [0, 1].40 We

generate the dense network πd with the maximum entropy method developed by Upper and Worms

(2004), which distributes interbank liabilities as evenly as possible among the counterparties, yielding a

complete network. We generate the sparse network πs using an iterated greedy algorithm, for which

details are provided in Appendix I.41 We then apply a shock to the assets of HSBC, Barclays, and

Deutsche Bank with a shock size equal to their cash holdings, thereby wiping out the value of their

non-interbank assets.

The left plot of Figure 5 shows the impact of the network structure on welfare losses un-

der different resolution plans. As the network becomes sparser, liabilities among banks are more

concentrated. This makes contagious defaults in absence of intervention more likely and the cor-

responding welfare losses WN change discontinuously where this happens. For the chosen size of

shocks, the threat is credible in all networks since WN is smaller than welfare losses WP in the

complete bailout. This allows the coordination of a complete equilibrium bail-in as described in

Theorem 3.8 with welfare losses equal to WE . Contributions to the equilibrium bail-in are illus-

trated in the right plot of Figure 5, where it is evident that they increase as the network becomes

sparser because free-riding incentives are reduced. The three main creditors of the shocked banks

40Craig and Von Peter (2014) show that the German interbank network has a core-periphery structure: while the 45 large
core banks act as intermediaries and have many counterparties, the periphery banks trade only with core banks, but not with
each other. The participating banks in the EBA stress test are 36 of the largest banks in Europe, which are all considered core
banks. Therefore, we do not aim to estimate a core-periphery network to this data set but rather analyze the impact of a range
of network structures of different sparsity on credibility and equilibrium welfare losses for the subnetwork of core banks.

41The resulting network πd has 1260 edges, i.e., each of the 36 banks is connected to every other bank, and a normalized Gini in-
dex of 0.4556. The network πs has 71 edges with a normalized Gini index of 0.9981. See Hurley and Rickard (2009) for a definition
of the Gini index. The Gini index is a measure of sparsity, which we normalize to account for the fact that diagonal entries in any
relative liability matrix are 0. The normalized Gini index is 0 for the symmetric complete network and 1 for a ring network.

31



0.2

0.4

0.6

0.8

1.0 WP

WNW
∗
PWEW
∗
E

W
el

fa
re

L
o
ss

es

0 µ 1

0.3

0.6

0.15

0.45

Crédit Agricole

BNP ParibasBNP Paribas
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Figure 5: The two plots show how welfare losses under different resolution plans and banks’ contributions to the
equilibrium bail-in change as a function of the network πµ = µπs+(1−µ)πd as µ increases from 0 to 1. Thus, at the left
edge of each plot, the network is equal to a dense network πd and it gets progressively sparser as we move to the right
until it is equal to a sparse network πs at the right edge. Welfare losses and welfare impacts of banks’ contributions
are shown relative to the welfare losses WP in the complete bailout. Contributions of banks are shown cumula-
tively so that the contributed amount of a single bank corresponds to the distance between two consecutive lines.

would suffer large losses without intervention and can, therefore, be incentivized to make large

contributions. This leads to a continuous decrease in equilibrium welfare losses as the network gets

sparser until we observe contagious defaults: due to the no-free-riding constraint, welfare losses in

a bail-in can differ from WN by at most the contribution of any participating bank. Therefore,

discontinuous changes in WN are reflected also in the equilibrium welfare losses WE with complete

rescues. Nevertheless, WE in the sparsest network is 21.3% lower than in the most dense network

despite the fact that without intervention, they would be 17.9% higher.

For the chosen shock sizes, there are no contagiously defaulting banks in the most dense network.

This illustrates that even if the regulator’s threat is more credible in a dense network, equilibrium

welfare losses are typically still decreasing in the sparsity of the network because of the reduced

free-riding incentives. For larger shock sizes or a more lowly capitalized financial system, we would

observe that the credibility improves as the network becomes sparser because dense connections

amplify the shock, leading to a decrease in credibility by Lemma 3.4.

Finally, the left panel of Figure 5 illustrates the findings of Section 5, in which we consider

interventions that may target only a subset of banks. For the chosen shock sizes, it turns out

that in the optimal bailout, the regulator only rescues the contagiously defaulting banks and lets the

fundamentally defaulting banks fail in the optimal bailout. This leads to welfare losses W ∗P , which

coincide with WN when there are no contagiously defaulting banks. In the equilibrium partial bail-

in, however, it is optimal to rescue every bank because contributions from the private sector can be

solicited for the rescue of fundamentally defaulting banks. This is consistent with the predictions

of Lemmas 5.2 and 5.5. Welfare losses W ∗E in the equilibrium bail-in with partial rescues are 41.3%

lower than in the complete network structure. In this calibrated model, there are 7,140 ways of

applying idiosyncratic shocks to three banks in a network of 36 banks. Taking the average over

all combinations of shocks, equilibrium welfare losses in the sparsest network are lower than in the

most dense network by 12.5% for complete rescues and by 23.1% for partial rescues. These results

highlight the importance of the network structure and suggest that structural policies aiming at
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making the financial network more sparse may significantly raise welfare.

7 Concluding Remarks

Various initiatives have been undertaken by central governments and monetary authorities, espe-

cially after the global financial crisis, to expand resolution plans and tools. Our paper makes a first

step towards a systematic analysis of the incentives that govern alternative resolution plans. At the

heart of our analysis is the credibility of the regulator’s no-intervention (or partial rescue) threat,

given the desire of each bank to free-ride on the government’s contributions. Selective bail-ins may

be preferable to complete bailouts and our analysis provides rational arguments for which banks

should be targeted.

The threat not to intervene fails to be credible for a given shock size if and only if the shock

is heavily amplified through inefficient asset liquidation, bankruptcy costs, and linkages between

densely connected banks in distress. The impact of the interbank network structure on the cred-

ibility is captured by a measure we call the total throughput of defaulting banks, which reflects

the rate at which losses spill over to solvent members of the economy, taking into account feedback

effects between defaulting banks. Conditional on the banks’ levels of solvency, the total throughput

depends entirely on the network structure, giving us a metric to rank the desirability of different

network structures. In our model of endogenous intervention, sparse networks become relatively

more desirable because the threat remains credible for larger shock sizes and free-riding incentives

are reduced. For intermediate shock sizes, these effects dominate the diversification benefits of

dense networks. Our analysis thus reverses the presumptions concerning the relative desirability of

sparse versus dense networks.

In our model, the regulator and the banks have complete information about the underlying

financial system, which greatly simplifies the negotiation process. In future research, it would

be interesting to study the situation, in which the regulator and/or the banks have only partial

information about the financial system. Then, banks may have an incentive to reject subsidies

in order to signal financial strength. Consequently, banks need to be incentivized not only to

participate in a bail-in, but also to provide truthful information about their interbank linkages.

Our results have obvious implications for the design of regulations that affect the network

structure and pave the way for future research on endogenous network formation. In such a

model, banks anticipate how their ex-ante risk-taking behavior and their choice of counterpar-

ties affect the credibility of future rescue plans as well as their expected gains from those res-

cues. This adds an important dimension to the moral hazard literature: through their inter-

bank linkages, banks can also control the likelihood of a public bailout as well as the structure

of the prevailing bail-in. Our preliminary results in this direction suggest that it is beneficial

for banks to borrow only from few other banks so that contagion effects in case of the bank’s

default are highly concentrated. Then, free-riding incentives among creditors are smaller, mak-

ing a rescue more appealing to the regulator. Accounting for endogenous network formation will

lead to a comprehensive framework for the analysis of welfare-maximizing policies that the regulator can
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impose,welfare analysis of various policies, combining the bail-out and bail-in strategies analyzed

here with policies directed at affecting the network structure ex ante, including exposure limits,

imposing taxes on exposures beyond a certain limit, or setting limits on intermediation volume.
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A Welfare Burning

In this appendix, we define the minimal amount χC(α) of welfare burning needed to eliminate free-

riding incentives from an individually incentive-compatible bail-in with contributing banks in C.

Lemma A.1. As in Definition 3.2, let z(α) := α ln(α), let z−1 be its inverse on the interval
[

1
e , 1
]
,

and set gα(x) := g
(
z−1(z(α) + γx)

)
− g(α). Note that the function gα is invertible for α ≥ αind.

For a set of banks C, let χiC(α) :=
(
WN −WP + g(αP )− g(α) +λ

∑
j∈C\{i} b

j − gα(bi∗(α)− bi)
)+

for

any bank i ∈ C. Moreover, let χ̂C(α) denote the unique non-negative solution χ to
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Figure 6: Consider an individually incentive-compatible bail-in (b, s) that induces asset recovery rate α, in which
bank i contributes the largest incentive-compatible amount bi∗(α). A rejection by bank i has an impact of λbi +

gα
(
bi∗(α) − bi

)
on welfare (top). If the regulator burns χiC(α) =

(
WN − Wλ(b, s, (0, 1−i))

)+
units of welfare in

a proposal that is otherwise identical, he becomes indifferent between the residual bail-in without bank i and no
intervention (bottom). Thus, bank i can no longer free-ride on the contributions of the remaining banks.

−α ln(α)

γ
=
∑
i∈C

g−1
α

((
WN −WP + g(αP )− g(α) + λ

∑
j∈C\{i}

bj − χ
)+
)

(26)

if it exists and let χ̂C(α) = 0 otherwise. Define χC(α) := χ̂C(α)∨maxi∈C χ
i
C(α). In any bail-in (b, s)

with equilibrium response 1 = (1, . . . , 1), set of contributing banks C =
{
i
∣∣ bi > 0

}
, and induced

asset recovery rate α = ᾱ(b, s, 1), the amount of welfare burnt is bounded below by χC(α), i.e.,

λ
∑
i6∈C

(si − si0)+ + λ
∑
i∈C

(
bi − bi

)+ ≥ χC(α). (27)

For the no-free-riding incentives to hold, the rejection by any bank must have an impact on

welfare in excess of WN − Wλ(b, s, 1). It follows from (15) that the impact on welfare has two

components: contributions up to b affect welfare directly by an amount λb, whereas contributions

that exceed b by an amount x require asset liquidation and affect welfare through the trade-off

gα(x). A contribution of size bi + xi by bank i thus has a total impact on welfare of λbi + gα(xi).

Among individually incentive-compatible contributions, the welfare impact by bank i is maximized

when i contributes bi∗(α). If the maximal welfare impact is smaller than WN −Wλ(b, s, 1), the

remaining value χiC(α) = WN −Wλ(b, s, 1) − λbi − gα(bi∗(α) − bi) has to be burnt; see Figure 6

for an illustration. Burning an amount equal to maxi∈C χ
i
C(α) thus deters free-riding by all banks

when each bank liquidates the maximal incentive-compatible amount. However, asking each bank

to contribute bi∗(α) may require asset liquidation in excess of − ln(α)/γ, which would depress the

asset recovery rate below α by (1). In that case, the regulator has to ask for lower contributions

from banks that require aggregate liquidation of only − ln(α)/γ and burn additional welfare to

balance the reduced welfare impact of the contributing banks. The lowest amount of welfare burnt

in that case is χ̂C(α); see Figure 7 for an illustration. The proof of Lemma A.1 is in Appendix C.

B Proofs of Results in Sections 2 and 3

B.1 Existence and Monotonicity of Clearing Equilibria

This appendix provides the proofs of Section 2, asserting existence and monotonicity of clearing

equilibria, together with Pareto dominance of the greatest clearing equilibrium. We begin with the
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Welfare losses
Wλ(b, s, 1) WN

χ̂C(α)χ̂C(α)

λbi3λbi3

λbi2λbi2

λbi1λbi1

gα(xi3)gα(xi3)

gα(xi2)gα(xi2)

Figure 7: The construction of χ̂C(α) is illustrated for C = {i1, i2, i3}. It is the minimal amount of welfare burnt
such that the welfare impact λbi+gα(xi) caused by the rejection of any bank i ∈ C exceeds WN −Wλ(b, s, 1)− χ̂C(α),
subject to the constraint

∑
i∈C x

i ≤ −α ln(α)/γ, which guarantees that the total amount liquidated does not depress

the asset recovery rate below α. Note that xi3 = 0 because the welfare impact of i3’s rejection is large enough to
deter free-riding without asset liquidation. If χ̂C(α) > 0, then the constraint binds, that is, xi2 + xi3 = −α ln(α)/γ.
Otherwise, the welfare impacts of banks i1 and i2 could be increased and the amount of welfare burnt decreased.

following auxiliary result, which provides us with an alternative expression for welfare losses.

Lemma B.1. For any clearing equilibrium (p, `, α), the following identity holds

Wλ(p, `, α) =

n∑
i=1

(
ci + ei − wi − V i(p, `, α)

)
+
∑

i∈D(p,`,α)

(1 + λ)δi(p, α). (28)

The proof follows from (3), (4), and the fact that
∑

i(πx)i =
∑

i x
i for any vector x by row-

stochasticity of π. Since the equity value of any bank is monotonically increasing in the clearing

equilibrium, a direct consequence of Lemma B.1 is the fact that welfare losses are monotonically

decreasing in the clearing equilibrium. For the sake of reference, we state this property as a lemma.

Lemma B.2. Any bank i’s value of equity V i(p, `(p, α), α) is non-decreasing and welfare losses

Wλ(p, `(p, α), α) are non-increasing in α and pj for any j.

Proof. By definition in (2), `i(p, α) is non-decreasing in p and α. Since bank i’s value in (4) is equal

to V i(p, `, α) = (πp + c + e − (1 − α)`(p, α) − w − L)i1{pi=Li}, it is non-decreasing in p. Because

the weak derivative of −(1− α)`(p, α) is non-negative by the product rule, V i(p, `, α) is also non-

decreasing in α. Monotonicity of V i(p, `, α) implies that the first term in (28) is non-increasing in

(p, α). The second term in (28) is non-increasing in (p, α) by definition of δ(p, α) in (5).

Proof of Lemma 2.2. Let L := [0, e1]× · · · × [0, en] denote the set of possible liquidation decisions

by the banks. Fix a vector p of interbank repayments and define the operator Φp : L → L by

setting Φi
p(x) := `i

(
α(x), p

)
for i = 1, . . . , n, where α(x) and `(α, p) are defined in (1) and (2). By

construction, a pair (`, α) is a solution to (1) and (2) if and only if it is of the form (x, α(x)) for

a fixed point x of Φp. Since both α and `i are non-increasing, Φi
p is non-decreasing. Therefore,

Tarski’s fixed-point theorem implies that the set of Φp’s fixed points forms a complete lattice. In

particular, there exists a fixed point x such that xi ≤ xi for any other fixed point x of Φp and

each i. Let `p = x and αp = α(`p). By construction, (`p, αp) satisfies (1) and (2) and for any other

solution (˜̀, α̃), we have α̃ = exp
(
−γ
∑n

i=1
˜̀i
)
≤ exp

(
−γ
∑n

i=1 `
i
p

)
= αp.

Before proving existence of clearing equilibria, we show the following comparison result for fixed

points that will be used many times throughout our analysis.
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Lemma B.3. Let f and g be two non-decreasing functions mapping a compact set X into itself.

Let x̄f (xf ) and x̄g (xg) denote the greatest (least) fixed points of f and g, respectively, that exist

by Tarski’s fixed point theorem. If f(x̄g) ≥ g(x̄g), then x̄f ≥ x̄g. If f(xg) ≤ g(xg), then xf ≥ xg.

Proof. Let x̄n := f (n)(x̄g) define the n-fold application of f to x̄g. Since f(x̄g) ≥ g(x̄g) = x̄g

and f is non-decreasing, it follows that (x̄n)n≥1 is non-decreasing in each component. Because of

compactness, (x̄n)n≥1 converges to some fixed point x̄∞ of f . Therefore, x̄g ≤ x̄∞ ≤ x̄f because x̄f

is the greatest fixed point of f . The analogous argument shows xg ≥ limn→∞ f
(n)(xg) ≥ xf .

Proof of Lemma 2.1. Let P := [0, L1]×· · ·×[0, Ln] denote the set of all repayment vectors. Observe

first that in any clearing equilibrium of the form (p, `p, αp), in which (`p, αp) is given by Lemma 2.2,

the vector of repayments p is a fixed point of the operator Φ : P → P, defined by

Φi(p) :=


Li if ci + αpe

i + (πp)i ≥ Li + wi,(
β
(
c+ αpe+ πp

)i − wi)+
otherwise.

(29)

We proceed to show that Φ is monotone. It follows directly from (2) that, for any i, `i(α, p) is non-

increasing in pj for any j. Using the definition of Φp given in the proof of Lemma 2.2, we deduce

that Φi
(p̃j ,p−j)(`p) ≤ Φi

p(`p) for any p̃j > pj . Therefore, Lemma B.3 shows that `i
(p̃j ,p−j) ≤ `ip and

hence α(p̃j ,p−j) ≥ αp. This shows that p 7→ αp is non-decreasing, hence so is Φi. Tarski’s fixed point

theorem thus implies the existence of a fixed point p̄ with p̄ ≥ p for any fixed point p. Monotonicity

of the maps p 7→ αp and p 7→ `p shows that any clearing equilibrium of the form (p, `p, αp) for

some p is dominated by (p̄, ¯̀, ᾱ) for ᾱ = αp̄ and ¯̀ = `p̄. Maximality of (`p, αp) in Lemma 2.2 and

monotonicity in (3) show that (p̄, ¯̀, ᾱ) also dominates any other clearing equilibrium. Monotonicity

of the banks’ equity value and welfare losses now follows from Lemma B.2.

B.2 Bailouts

This appendix shows that welfare-maximizing bailouts are of the form given in Lemma 3.2. We

begin this appendix with the following auxiliary lemma, whose elementary proof is omitted.

Lemma B.4. For any γ > 0, the function g(α) =
(
(1 + λ)α− 1

)
ln(α)/γ defined in Lemma 3.1 is

strictly convex. Moreover, its global minimizer αind is decreasing in λ and it lies in
(
max

(
1

1+λ ,
1
e

)
, 1
)
.

Proof of Lemma 3.1. Let s denote a vector of subsidies of a complete bailout with si ≤ si0 for every

bank i. Since every bank is rescued when subsidies s are awarded, the definition of s0 implies that

`i = 1
ᾱ(s)(si0 − si) for any bank i. It follows from (1) that

ᾱ(s) = exp

(
− γ

ᾱ(s)

n∑
i=1

(si0 − si)

)
. (30)

Solving (30) for
∑n

i=1 s
i and substituting into (7) shows (9).
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Proof of Lemma 3.2. Let s denote a vector of subsidies that maximize welfare in a complete bailout.

Because a minimal subsidy of sL is needed to support the clearing payment vector L, it follows that

si ≥ si(α, e) for every bank i. Since any subsidies beyond s0 have infinitesimal welfare impact −λ,

it follows that si ≤ si0 for every bank i. Therefore, `i = 1
αP

(si0 − si) for any bank i, which implies

αP = exp

(
− γ

αP

n∑
i=1

(si0 − si)

)
. (31)

By Lemma 3.1, welfare in the complete bailout depends on the awarded subsidies only through g(αP ).

Since g is differentiable, it follows from Lemma B.4 that αP is either a boundary point or it is equal

to αind. Monotonicity of (31) in the awarded subsidies implies αP lies between recovery rates αL

and 1 that are attained by subsidies sL and s0, respectively. Since g(αind) < 0 = g(1), it follows

from monotonicity in (31) that αP = max(αind, αL). Inverting (31) for
∑n

i=1 s
i yields (10).

B.3 Incentives and Bail-In Selection

In this appendix we provide the proof of Lemma 3.5 and formalize the discussion in Section 3.4 how

the regulator can select among multiple accepting equilibria. We begin with the following auxiliary

result, formalizing that a bank is better off rejecting a bail-in proposal if its participation is not

needed for the regulator to proceed with the bail-in. It will be convenient to denote by V i(b, s, a) =

V i
(
p̄(b, s, a), ¯̀(b, s, a), ᾱ(b, s, a)

)
bank i’s value of equity in the bail-in (b, s, a). Similarly, let V i(s) =

V i
(
p̄(s), ¯̀(s), ᾱ(s)

)
denote bank i’s value of equity in the bailout with subsidies s.

Lemma B.5. Fix a feasible bail-in proposal (b, s) with bi > 0 for some bank i. For any response a−i,

we have V j
(
b, s, (0, a−i)

)
≥ V j

(
b, s, (1, a−i)

)
for any bank j with strict inequality if j = i.

Proof. The two financial systems resulting from
(
b, s, (0, a−i)

)
and

(
b, s, (1, a−i)

)
are identical up

to the financial commitments by bank i, which are larger by bi in the latter system. The result thus

follows from Statement 3 in Lemma E.3 of the online appendix and monotonicity in Lemma B.2.

Proof of Lemma 3.5. Fix a feasible proposal (b, s) with accepting equilibrium response a. We first

show necessity of the stated conditions. To this end, fix a bank i with bi > 0 and suppose towards

a contradiction that ai = 1 but at least one of the two conditions is violated. Suppose first that

Condition 1 is violated. Then the regulator proceeds with a bail-in even if bank i rejects the

proposal, hence subsidies are the same under a and (0, a−i). It follows from Lemma B.5 that

bank i is strictly better off under (0, a−i), contradicting the assumption that a is an equilibrium.

Suppose now that Condition 1 holds but Condition 2 is violated. Then a rejection by i leads to a

default cascade without intervention. Feasibility of (b, s) implies bi − si ≤ ηi(α1, `
i(L,α1)), where

we abbreviate α1 = α
(
b, s, (1, a−i)

)
. Thus, for Condition 2 to be violated, we must have

bi − si > ICi(α1, `
i(L,α1)), (32)
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ICi(α, `i)

ηi(α, `i)

`i∗(α)

bi∗(α) bi∗(α)

ICi(α, `i)

ηi(α, `i)

`i∗(α)

Figure 8: Relation of incentive constraint ICi(α, `i), budget constraint ηi(α, `i), `i∗(α), and bi∗(α).

where we denote ICi(α, `i) := (π(L−pN ))i+ (1−αN )`iN − (1−α)`i. A straightforward calculation

shows that (32) is equivalent to V i
N > V i

(
b, s, (1, a−i)

)
, hence bank i has an incentive to deviate.

For sufficiency, note that Condition 2 implies `i(L,α1) ≤ `i∗(α1) since asset liquidation is mono-

tonic in bank i’s net contribution bi − si. This implies bi − si ≤ bi∗(α) ≤ ICi(α1, `
i(L,α1)) as

illustrated in Figure 8, which is equivalent to V i
(
b, s, (1, a−i)

)
≥ V i

N . By Condition 1, the regulator

will choose to not intervene if bank i rejects the bail-in, hence V i
N is i’s value for rejecting the

proposal. It is thus optimal for bank i to accept the proposal.

The next two results formalize the discussion at the end of Section 3.4, stating that in a subgame

Pareto-efficient equilibrium, we can focus on bail-in proposals that can be accepted by every bank.

Lemma B.6. Let (b, s) be a bail-in with accepting equilibrium responses {a1, . . . , am}. For any

k = 1, . . . ,m, there exists a proposal (b̃, s̃) with Wλ(b, s, ak) = Wλ

(
b̃, s̃, 1), to which 1 = (1, . . . , 1)

is the unique accepting equilibrium response.

Proof. Fix a bail-in (b, s) with an accepting equilibrium response ak. Let B =
{
i
∣∣ bi1{aik=1}

}
denote the set of banks with a positive contribution in (b, s, ak). Define a bail-in

(
b̃, s̃
)

by setting

b̃i = bi1{i∈B} and s̃i = si for i = 1, . . . , n. We will show that 1 = (1, . . . , 1) is an accepting equilib-

rium response to
(
b̃, s̃
)
. Note that, by convention, any bank i ∈ Bc accepts the proposal; see Foot-

note 15. Moreover, Lemma 3.5 shows that the stated Conditions 1 and 2 are satisfied in (b, s, ak) for

any i ∈ B since ak is an accepting equilibrium response. Because each bank makes the same contri-

bution in
(
b̃, s̃, 1

)
as in (b, s, ak), it follows that ᾱ

(
b̃, s̃, 1

)
= ᾱ(b, s, ak), Wλ(b, s, 1) = Wλ(b, s, ak), and

Wλ(b, s, (0, 1−i)) = Wλ(b, s, (0, a−ik )) for each i ∈ B. Therefore, Conditions 1 and 2 of Lemma 3.5

are satisfied also in
(
b̃, s̃
)

for any i ∈ B. It follows from Lemma 3.5 that 1 is an accepting equilib-

rium response to
(
b̃, s̃
)
. Uniqueness follows because the regulator will not proceed with the bail-in

if only a proper subset of B accepts the proposal due to Condition 1 of Lemma 3.5.

Lemma B.7. Suppose that a proposal (b, s) admits at least one accepting equilibrium. Among all

continuation equilibria, welfare losses are minimized in an accepting equilibrium and at least one

of the welfare-minimizing accepting equilibria is subgame Pareto efficient. Moreover, a rejecting

equilibrium is subgame Pareto efficient if and only if (b, s) is the bailout given by Lemma 3.2.

Proof. Fix a complete bail-in proposal (b, s) with accepting equilibrium response a. It follows

from Lemma 3.5 that the value of any bank with bi > 0 is at least as high in a as in a rejecting

equilibrium response. Since Wλ(b, s, a) ≤ WN ≤ WP by definition of an accepting equilibrium,
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no rejecting equilibrium can subgame Pareto dominate a and a rejecting equilibrium is subgame

Pareto efficient only if it is equivalent to (b, s, a). Since there are only two possible outcomes in

a rejecting equilibrium (public bailout and no rescue), the complete bail-in proposal (b, s) has to

coincide with the complete bailout as, by definition, it rescues every bank in the system.

Let A denote the set of accepting equilibria that minimize welfare losses. We show that any

a∗ ∈ arg maxa∈A ᾱ(b, s, a) is subgame Pareto efficient. Suppose towards a contradiction that some a

Pareto dominates a∗, which requires Wλ(b, s, a) ≤Wλ(b, s, a∗). Since rejecting equilibria cannot

Pareto dominate a∗, it follows that a ∈ A. Let C and C∗ denote the set of banks with positive

contributions in a and a∗, respectively. By Condition 1 of Lemma 3.5, the regulator rejects the

bail-in if a strict subset of C∗ accepts the proposal, hence C \C∗ 6= ∅. Since ᾱ(b, s, a) ≤ ᾱ(b, s, a∗) by

maximality of a∗ in A, each bank in C \ C∗ is strictly worse off in a than in a∗, a contradiction.

B.4 Credibility and Existence of Subgame Pareto-Efficient Equilibria

In this appendix we prove Lemma 2.3, which establishes existence of subgame Pareto-efficient

continuation equilibria after the proposal of any bail-in. In order to present the proofs as succinctly

as possible, we invoke Lemma 3.3 to deal with the case when the threat fails to be credible. The

proof of Lemma 3.3 does not rely on Lemma 2.3: existence of equilibria when the threat fails to be

credible follows directly from the existence of strictly dominant strategies.

Proof of Lemma 3.3. Fix a feasible proposal (b, s) and any response vector a. Because the threat

fails to be credible, the regulator will never respond with “no intervention”. Since any bank i with

bi − si > 0 is strictly worse off in (b, s) than in a complete rescue without its participation (e.g.,

bailout or bail-in by residual consortium) by Lemma B.5, rejection is the strictly dominant action

for bank i. Thus, an optimal bailout is the only possible equilibrium outcome by Lemma 3.2.

Proof of Lemma 2.3. If the threat fails to be credible, Lemma 3.3 establishes that any rejecting

equilibrium after any proposal (b, s) is subgame Pareto efficient. Suppose, therefore, that the threat

is credible. Fix a feasible proposal (b, s) and let 0 denote the vector of unanimous rejections. The

credibility of the threat imposes that WN ≤ WP ≤ Wλ(b, s, 0), where we have used that WP

are the lowest-possible welfare losses without contributions by banks. The regulator thus chooses

r(b, s, 0) = “no intervention”. If no bank in A(b) has a profitable deviation, then 0 is rejecting

equilibrium response. Suppose, therefore, that some bank i ∈ A(b) has a profitable deviation and

let ai denote the corresponding action profile. We will show that ai is an equilibrium response.

For ai to be a profitable deviation for bank i, two conditions must hold. First, it is necessary

that r(b, s, ai) = “bail-in” as otherwise, bank i’s value of equity would be equal to V i
N both when i

accepts and when i rejects the proposal. Second, we must have that V i(b, s, ai) > V i
N . The latter

condition is equivalent to Condition 2 of Lemma 3.5 for bank i. Since, by construction, (0, a−ii )

is the vector of unanimous rejections, it follows that Wλ

(
b, s, (0, a−ii )

)
= Wλ(b, s, 0) ≥ WN , i.e.,

Condition 1 of Lemma 3.5 is satisfied for bank i as well.
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To conclude that ai is an accepting equilibrium response, it is sufficient to show that Condition 1

of Lemma 3.5 is violated for any bank j 6= i. Indeed, since (0, a−ji ) = ai and r(b, s, ai) = “bail-in”,

it follows that Wλ(b, s, (0, a−ji )) = Wλ(b, s, ai) < WN , thereby concluding the proof.

We conclude this appendix by proving that the regulator’s threat is credible if and only if the

amplification of the shock through the network is below the threshold given in Lemma 3.4.

Proof of Lemma 3.4. Observe first that (Li+wi− ci− ei− (πL)i)+ = (si0− ei)+ = si0−min
(
ei, si0

)
.

It follows from (28) and the definitions of S0 and SN that welfare losses without intervention equal

WN = SN − S0 +
n∑
i=1

min
(
ei, si0

)
+ λ

∑
i∈D(pN ,`N ,αN )

δi(pN , αN ).

Lemma 3.2 shows that WP = λS0 + g(αP ) + λ
∑

i∈D(pN ,`N ,αN ) δ
i(pN , αN ). Solving the inequality

WN −WP ≤ 0 for SN − S0 using the above expressions for WN and WP , we obtain (11).

C Proof of Theorem 3.8

We start by showing that without loss of generality, we can restrict our attention to bail-ins, in which

each bank either makes a contribution or receives a subsidy. Moreover, because the regulator can

anticipate the banks’ responses, we may also restrict our attention unanimous accepting equilibria.

Lemma C.1. For any bail-in (b, s) with accepting equilibrium response a, there exists a proposal

(b̃, s̃) with accepting equilibrium response 1 such that b̃is̃i = 0 and Wλ

(
b̃, s̃, 1

)
= Wλ(b, s, a).

Proof. Fix a bail-in proposal (b, s) with accepting equilibrium response a. The existence of such a

implies via Lemma B.7 that either (b, s) is the public bailout of Lemma 3.2 or that the threat is

credible. In the former case, the statement holds trivially, hence suppose that the threat is credible.

Denote by C =
{
bi − si > 0, ai = 1

}
the set of banks which make a positive net contribution. Define

the proposal
(
b̃, s̃
)

by setting b̃i = (bi1{ai=1}−si)+ and s̃i = (si−bi1{ai=1})
+, and set ã = (1, . . . , 1).

It follows straight from the construction of
(
b̃, s̃
)

that b̃i1{ãi=1}− s̃i = bi1{ai=1}− si for any bank i,

hence each bank’s net contribution remains unchanged. This implies that clearing equilibria coin-

cide both in
(
b̃, s̃, ã

)
and (b, s, a) and also in

(
b̃, s̃, (0, ã−i)

)
and

(
b, s, (0, a−i)

)
for any i ∈ C. It follows

from (7) thatWλ

(
b̃, s̃, ã

)
= Wλ(b, s, a) andWλ

(
b̃, s̃, (0, ã−i)

)
= Wλ

(
b, s, (0, a−i)

)
for any i ∈ C. Since

a is an accepting equilibrium response to (b, s), Lemma 3.5 implies that for every bank i ∈ C,

b̃i − s̃i = bi − si ≤
n∑
j=1

πij
(
p̄j(b, s, a)− pjN

)
+ (1− αN )`iN − (1− ᾱ(b, s, a))`i(L, ᾱ(b, s, a)).

Because the clearing equilibria under (b̃, s̃, ã) and (b, s, a) coincide, this shows that Condition 2 of

Lemma 3.5 is satisfied in
(
b̃, s̃, ã

)
. In particular, ã is an accepting equilibrium response to

(
b̃, s̃
)
.

Because every bank is rescued in a complete feasible bail-in, the shortfall of each bank i before

liquidation is at most ei. The liquidated amount by any bank i is thus inversely proportional to

the asset recovery rate. This imposes a lower bound on the asset recovery rate of 1
e = exp(−1).
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Lemma C.2. Let (b, s) be a complete feasible bail-in proposal. In any response a, each bank i

liquidates ¯̀i(b, s, a) = 1
α

(
Li + wi + bi1{ai=1} − ci − si − (πL)i

)+
and ᾱ(b, s, a) ≥ 1

e .

Proof. Since (b, s) is a complete rescue, Lemma 2.2 implies that
(
ᾱ(b, s, a), ¯̀(b, s, a)

)
is the solution

to (1) and (2) for p = L with the largest asset recovery rate. By feasibility,

Li + wi + bi1{ai=1} − ci − si − (πL)i ≤ ᾱ(b, s, 1)ei ≤ ᾱ(b, s, a)ei.

This shows that ¯̀i(b, s, a) is indeed of the desired form. Therefore, ᾱ(b, s, a) is a fixed point of the

function fx,y in Lemma E.2 for y = 0 and x = γ
∑n

i=1

(
Li+wi+ bi1{ai=1}− ci− si− (πL)i

)+
. Since

ᾱ(b, s, a) is the greatest fixed point of f on (0, 1], Lemma E.2 implies that ᾱ(b, s, a) ≥ 1
e .

Due to Lemma C.1, we may restrict attention to bail-in proposals (b, s), in which bisi = 0 for

every bank i. Then, liquidation and welfare losses take a simple form as stated in Lemma 3.6.

Proof of Lemma 3.6. Fix a bail-in (b, s) with an accepting equilibrium response a such that bisi = 0

for every bank i. Denote α = ᾱ(b, s, a) for the sake of brevity. Lemma C.2 shows that each bank i

liquidates an amount ¯̀i(b, s, a) = 1
α

(
si0 − bi0 + bi1{ai=1} − si

)+
. Using that bisi = 0 by assumption,

bi0s
i
0 = 0 by definition, and the elementary identity min(x, y) = x− (x− y)+, it follows that

¯̀i(b, s, a) =
1

α

(
si0 −min

(
si, si0

)
+ (bi −min(bi, bi0))1{ai=1}

)
. (33)

Equation (1) implies that liquidation losses in the bail-in are equal to −(1− α) ln(α)/γ. It follows

from (1), (33), and min
(
si, si0

)
= si − (si − si0)+ that net subsidies in the bail-in amount to

n∑
i=1

(si − bi1{ai=1}) =

n∑
i=1

(
si0 + (si − si0)+ −min

(
bi, bi0

)
1{ai=1}

)
+
α ln(α)

γ
.

The result now follows from (7), Lemmas 3.1 and 3.2, and the specific form of g.

Lemma 3.7 states that among all individually incentive-compatible bail-ins with contributing

banks in C that induce asset recovery rate α, welfare is maximized for bail-ins with contributions

ηi(α, `) by banks i ∈ C for any vector ` of asset liquidation that induces asset recovery rate α.

Proof of Lemma 3.7. Fix a complete feasible bail-in proposal (b, s) with accepting equilibrium re-

sponse a. By Lemma C.1 we may assume that bisi = 0 and ai = 1 for each bank i. Since (b, s) is

a complete rescue, it follows that s ≥ s(α, e), where we abbreviate α = ᾱ(b, s, 1). Condition 2 of

Lemma 3.5 and feasibility imply that bi ≤ bi∗(α) for each i ∈ C. Define the bail-in (b̃, s̃) by setting

b̃i = max
(
bi, bi

)
for each bank i ∈ C and s̃i = min

(
si, si0

)
for each bank i 6∈ C. We first show that

min
(
b̃i, bi0

)
= bi. (34)

If bi =
(
π(L−pN )

)i
+(1−αN )`iN , then bi ≤ bi∗(α) = bi ≤ bi0 and hence (34) follows. If bi = bi0 instead,

then min
(
b̃i, bi0

)
= bi0 = bi holds as well. Because subsidies beyond s0 and contributions below bi do
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not prevent or require liquidation, it follows that ᾱ(b̃, s̃, 1) = α. Therefore, Lemma 3.6 implies that

subsidies beyond si0 and contributions below bi are welfare decreasing, i.e., Wλ(b, s, 1) ≥Wλ(b̃, s̃, 1).

Applying Lemma 3.6 to the proposal
(
b̃, s̃
)

and (34) yields

Wλ(b, s, 1) ≥Wλ(b̃, s̃, 1) = WP − g(αP ) + g(α)− λ
∑
i∈C

bi. (35)

This shows the first statement. The final statement follows by observing that the inequality in (35)

holds with equality precisely if bi ≤ bi for each bank i ∈ C and si ≤ si0 for each bank i 6∈ C.

Next, we show that χC(α) in Lemma A.1 is well-defined and that any incentive-compatible

bail-in with contributing banks in C and asset recovery rate α burns at least χC(α) units of welfare.

Proof of Lemma A.1. Fix α ≥ αind. We start by showing that (26) has a unique non-negative

solution if one exists. Lemma B.4 shows that g is increasing and hence invertible on the interval

[αind,∞). Let g−1 denote the inverse on [αind,∞) and define the function α̂(x) := g−1(x+g(α)) for

x ≥ 0. It is easy to check that α̂(x) ≥ α and g−1
α (x) = 1

γ

(
z(α̂(x))− z(α)

)
for any x ≥ 0. Moreover,

for x > 0, we get α̂(x) > α, hence the formula for the inverse of the derivative implies that

α̂′(x) =
1

g′
(
g−1(x+ g(α))

) =
1

g′(α̂(x))
> 0,

where we have used that α̂(x) > α ≥ αind. Since α̂(x) > αind ≥ 1
e and z is increasing on

[
1
e ,∞

)
, it

follows form the chain rule that
(
g−1
α

)′
(x) = 1

γ z
′(α̂(x)

)
α̂′(x) > 0. Let f(χ) denote the right-hand

side of (26). Since g−1
α is strictly increasing, f is strictly decreasing where it is positive. Thus,

there exists a unique non-negative solution if f(0) ≥ −α ln(α)/γ and there exists no non-negative

solution otherwise. The fact that χC(α) is a lower bound for welfare burning in an accepting bail-in

(b, s) with contributing banks C and α = ᾱ(b, s, 1) now follows from Lemma C.3 below.

Lemmas 3.6 and 3.7 together imply that any bail-in satisfying Conditions (i)–(iv) in Defini-

tion 3.2, if accepted, induces welfare losses

WC(α) := WP − g(αP ) + g(α)− λ
∑
i∈C

bi + χC(α).

The following lemma establishes that this is a lower bound for welfare losses that can be attained

by a bail-in with contributing banks C that induces asset recovery rate α.

Lemma C.3. Let (b, s) be a complete feasible bail-in proposal with accepting equilibrium response a.

Let C :=
{
i
∣∣ bi1{ai=1} > 0

}
and denote α = ᾱ(b, s, a) for the sake of brevity. Then Wλ(b, s, a) ≥

WC(α) and the inequality binds if and only if (b, s) ∈ Ξ(C, α).

Proof. Let (b, s) be a complete feasible bail-in proposal with accepting equilibrium response a. By

Lemma C.1, we may assume without loss of generality that bisi = 0 and ai = 1 for every bank i.

It follows in the same way as in the proof of Lemma 3.7 that bi ≤ bi∗(α) for each i ∈ C and si ≥ siL
for each i 6∈ C. Therefore, Conditions 1 and 2 of Definition 3.2 are satisfied.
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Define the bail-in proposal (b̃, s̃) by setting b̃i = max
(
bi, bi

)
for each i ∈ C and s̃i = min

(
si, si0

)
for each i 6∈ C. Let us denote χ := λ

∑n
i=1(si − si0)+ + λ

∑
i∈C
(
bi − bi

)+
. It follows as in the proof

of Lemma 3.7 that ᾱ(b̃, s̃, 1) = α. Together with (34) and Lemma 3.7, this yields

Wλ(b, s, 1) = Wλ(b̃, s̃, 1) + χ = WP − g(αP ) + g(α)− λ
∑
i∈C

bi + χ.

To show the first statement, it thus remains to show that χ ≥ χC(α).

For any bank i ∈ C, let a−i denote the response vector in which every bank but bank i accepts

the proposal and set α−i = ᾱ(b, s, a−i). By Lemma 3.6, welfare losses in this response are equal to

Wλ(b, s, a−i) = Wλ(b, s, 1)− g(α) + g(α−i) + λmin
(
bi, bi0

)
= WP − g(αP ) + g(α−i)− λ

∑
j∈C

bj + λmin
(
bi, bi0

)
+ χ.

Solving this equation for χ, applying Condition 1 of Lemma 3.5, and using the fact that (34) implies

min
(
bi, bi0

)
≤ bi, we obtain a lower bound for χ given by

χ ≥WN −WP + g(αP )− g(α−i) + λ
∑

j∈C\{i}

bj . (36)

Equation (33) implies that for any accepting equilibrium response a,

¯̀j(b, s, a) =
1

ᾱ(b, s, a)

(
(sj0 − s

j)+ + (bj − bj0)+1{aj=1}
)
. (37)

Since sj0 = 0 for j ∈ C and bj = 0 for j 6∈ C, it follows from (1) that

−α−i ln(α−i)

γ
=
∑

j∈C\{i}

(bj − bj0)+ +
∑
j 6∈C

(sj0 − s
j)+ = −α ln(α)

γ
− (bi − bi0)+. (38)

Recall that z−1 denotes the inverse of z(α) = α ln(α) on
[

1
e ,∞

)
. Multiplying (38) by −γ and

applying g ◦ z−1, we obtain g(α−i)− g(α) = gα
(
(bi − bi0)+

)
. In conjunction with (36), this yields

χ ≥WN −WP + g(αP )− g(α) + λ
∑

j∈C\{i}

bj − gα
(
bi∗(α)− bi

)
, (39)

where we have used that gα is increasing. Note that g(α−i)−g(α) = gα
(
(bi− bi0)+

)
≥ 0. Therefore,

solving (36) for g(α−i)− g(α), taking the maximum with 0, and applying g−1
α yields

(bi − bi0)+ ≥ g−1
α

((
WN −WP + g(αP )− g(α) + λ

∑
j∈C\{i}

bj − χ
)+
)
. (40)
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Summing (40) over all i ∈ C yields

∑
i∈C

g−1
α

((
WN −WP + g(αP )− g(α) + λ

∑
j∈C\{i}

bj − χ
)+
)
≤
∑
i∈C

(bi − bi0)+ ≤ −α ln(α)

γ
, (41)

where we have used (38) in the second inequality. Since χC(α) is the smallest value χ′ ≥ 0 that

satisfies (39) for all i ∈ C and (41), it follows that χC(α) ≤ χ. This shows Wλ(b, s, a) ≥WC(α).

This lower bound holds with equality if and only if χ = χC(α), i.e., Condition (iv) in Defini-

tion 3.2 is satisfied. Summing (37) over all banks shows that Conditions (iii) holds as well. Finally,

Condition 1 of Lemma 3.5 for i ∈ C implies that Condition (v) holds. This concludes the proof.

Lemma C.3 shows that welfare losses WC(α) are attained only by bail-ins in Ξ(C, α). The

following lemma shows that the converse is true as well if α ≥ 1
e , which is satisfied by all Pareto-

efficient clearing equilibria; see Lemma E.2 in the online appendix.

Lemma C.4. For any C and α ≥ 1
e , any (b, s) ∈ Ξ(C, α) is a complete feasible bail-in proposal with

Wλ(b, s, 1) = WC(α) such that 1 = (1, . . . , 1) is an accepting equilibrium response if WC(α) < WN .

Proof. Fix (b, s) ∈ Ξ(C, α). It follows along the same lines as in the proof of Lemma F.1 that

(b, s) is a complete feasible bail-in with ᾱ(b, s, 1) = α. Condition (i) in Definition 3.2 implies that

Condition 2 in Lemma 3.5 is satisfied for every bank i ∈ C in the response vector 1. It follows from

Lemma 3.6 and Condition (iv) in Definition 3.2 that Wλ(b, s, 1) = WC(α). Condition (v) in Defini-

tion 3.2 thus implies that Condition 1 of Lemma 3.5 is satisfied for every bank i ∈ C. Therefore, an

application of Lemma 3.5 shows that 1 is an accepting equilibrium response if WC(α) < WN .

Lemma C.5 shows that the equilibrium bail-in contributors are the banks with the slargest

exposure to contagion effects.

Lemma C.5. For any bail-in proposal (b, s), let `(b, s) denote the induced vector of liquidation

decisions when every bank accepts the proposal. For any vector `, let C(`) be defined as in Theo-

rem 3.8. Suppose that there exists C such that in any subgame Pareto-efficient equilibrium, a bail-in

from Ξ(C, α) is implemented. Then C = C(`(b, s)) for any (b, s) ∈ Ξ(C, α).

Proof. Let C be such that in any subgame Pareto-efficient equilibrium, a bail-in from Ξ(C, α) is

implemented. Fix (b, s) ∈ Ξ(C, α) and abbreviate ` = `(b, s). Suppose towards a contradiction that

there exists a pair of banks (i0, j0) ∈ Cc × C such that ηi0(α, `) > ηj0(α, `). Let C̃ := C ∪ {i0} \ {j0}
and define a bail-in

(
b̃, s̃
)

by setting b̃i0 = ηi0(α, `), s̃i0 = 0, b̃j0 = 0, s̃j0 = 0, as well as b̃i = bi and

s̃i = si for any other bank i 6∈ {j0} ∪ {i0}.
We will first show that

(
b̃, s̃
)

is a complete, feasible bail-in proposal. By definition of `, the

shortfall of any bank i in the bail-in (b, s) is α`i. Let σ̃i :=
(
Li + wi + b̃i − ci − s̃i − (πL)i

)+
denote the shortfall of bank i in bail-in

(
b̃, s̃
)
. Since b̃i = bi and s̃i = si for every i 6∈ {i0, j0}, it

follows that σ̃i = α`i for every such bank i. Since j0 makes a positive net contribution bj0 − sj0

to the bail-in (b, s) by Condition 1 of Lemma 3.5, it follows that σ̃j0 ≤
(
Lj0 + wj0 + bj0 − cj0 −
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sj0 − (πL)j0
)+

= α`j0 with strict inequality if `j0 > 0. The definition of η(α, `) in (13) implies that

b̃i0 ≤
(
ci0 + α`i0 + (πL)i0 − wi0 − Li0

)+
, and hence σ̃i0 ≤ α`i0 also for bank i0. We conclude that

σ̃i ≤ α`i ≤ ei for every bank i, hence
(
b̃, s̃) is a complete feasible bail-in proposal.

Since the total shortfall is smaller in
(
b̃, s̃
)

than in (b, s), it follows that α̃ := α
(
b̃, s̃, 1) ≥ α.

Observe further that ηi0(α, `) > ηj0(α, `) ≥ bj0 > 0 implies si0(α, `) = 0 and hence si0 = 0 = s̃j0 .

It also implies that b̃i0 > bj0 , which yields

Wλ

(
b̃, s̃, 1

)
= Wλ(b, s, 1) +

1− α̃
α̃

n∑
i=1

σ̃i − 1− α
α

n∑
i=1

α`i − λ
(
b̃i0 − bj0

)
< Wλ(b, s, 1),

where we have used that σ̃i ≤ α`i for every bank i, that x 7→ (1−x)/x is positive and decreasing, and

that α̃ ≥ α. Because 1 is an accepting equilibrium response for (b, s), this shows Wλ

(
b̃, s̃, 1

)
< WN .

For any i ∈ C̃, let a−i denote the response vector by the banks where every bank but i accepts

the proposal. Observe that Wλ

(
b̃, s̃, a−i0

)
= Wλ(b, s, a−j0) ≥ WN by Condition 1 of Lemma 3.5.

For any i ∈ C̃ \ {i0}, let α̃−i = ᾱ
(
b̃, s̃, a−i

)
and α−i = ᾱ(b, s, a−i) and observe that

− α̃−i ln(α̃−i)

γ
+
α−i ln(α−i)

γ
=
∑
j 6=i

σ̃j −
∑
j 6=i

α`j = σ̃i0 + σ̃j0 − α(`i0 + `j0) ≤ 0. (42)

Equation (42) implies that α̃−i ≥ α−i. Moreover, since the difference in shortfall is the same as the

difference of shortfalls between (b̃, s̃, 1
)

and (b, s, 1), it follows from concavity of x 7→ −x ln(x) that

α̃−i − α−i ≤ α̃− α and hence α̃−i − α̃ ≤ α−i − α. Convexity of x 7→ (1− x)/x thus yields

1− α̃
α̃
− 1− α̃−i

α̃−i
≤ 1− α

α
− 1− α−i

α−i
.

Together with the fact that α`j ≥ σ̃j for every bank j, this implies

Wλ(b, s, a−i)−Wλ

(
b̃, s̃, a−i

)
=

1− α−i
α−i

∑
j 6=i

α`j − 1− α̃−i
α̃−i

∑
j 6=i

σ̃j ≤Wλ(b, s, 1)−Wλ

(
b̃, s̃, 1

)
. (43)

Define now a vector of subsidies ŝ ≥ s̃ that burns additional welfare precisely equal to

χ := max
i∈C

(
Wλ(b, s, a−i)−Wλ

(
b̃, s̃, a−i

))
.

Condition 1 of Lemma 3.5 for bail-in (b, s) yields Wλ(b̃, ŝ, a−i) ≥Wλ(b, s, a−i) ≥WN , showing that

Condition 1 of Lemma 3.5 is also satisfied in
(
b̃, ŝ
)
. Since α

(
b̃, ŝ, 1

)
≥ α̃ ≥ α, it follows that also

Condition 2 of Lemma 3.5 is satisfied in
(
b̃, ŝ
)

for every bank i. Finally, it follows from (43) that

Wλ

(
b̃, ŝ, 1

)
= Wλ

(
b̃, s̃, 1

)
+ χ ≤Wλ(b, s, 1) < WN . (44)

This shows that a = (1, . . . , 1) is an accepting equilibrium response for
(
b̃, ŝ
)
. Condition 2 of

Lemma 3.5 and Lemma B.7 imply that it is the unique subgame Pareto efficient continuation
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equilibrium. Since the regulator has no profitable deviations from (b, s) by assumption, (44) implies

that
(
b̃, ŝ
)

is part of a subgame Pareto-efficient equilibrium as well. This contradicts the assumption

that contributions have to come from banks in C. Therefore, we conclude C = C(`).

Proof of Theorem 3.8. If the threat fails to be credible, then it follows from Lemma 3.3 that the

regulator will implement an optimal public bailout as given in Lemma 3.2.

Suppose, therefore, that the threat is credible. For any set of banks C, Lemma D.1 in the online

appendix characterizes the minimum asset recovery rate αC that can be sustained in a complete bail-

in with contributing banks in C. Let A(C) denote the set of recovery rates α ∈ [αC , 1] that minimize

WC(α). Since WC is continuous, A(C) is non-empty. Lemma F.5 implies that there exists at least one

set C, for which minα∈A(C)WC(α) < WN . For any such set C and any α ∈ A(C), Lemma C.4 implies

that any proposal (b, s) ∈ Ξ(C, α) admits an accepting equilibrium response (1, . . . , 1) that attains

welfare losses WC(α). Moreover, no bail-in with contributing banks in C can attain lower welfare

losses by Lemma C.3. Condition 1 in Lemma 3.5 implies that (1, . . . , 1) is the unique accepting equi-

librium response, hence also the unique subgame Pareto-efficient equilibrium by Lemma B.7. Thus,

the regulator must propose a bail-in (b, s) ∈ Ξ(C∗, α) for α ∈ A(C∗) and contributing banks C∗ that

minimizes welfare losses. We show in Theorem D.2 in the online appendix that only bail-ins from

Ξ(C∗, α(C∗)) for α(C∗) = maxA(C∗) are subgame Pareto efficient and that C∗ is generically unique.

Finally, Lemma C.5 shows that C∗ = C(`(b, s)) for any (b, s) ∈ Ξ(C∗, α∗) if C∗ is unique.
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