Unleashing the Hidden Power of Compiler
Optimization on Binary Code Difference: An
Empirical Study

Xiaolei Ren

Michael Ho

Jiang Ming"

University of Texas at Arlington, USA University of Texas at Arlington, USA University of Texas at Arlington, USA

xiaolei.ren@mavs.uta.edu

Yu Lei
University of Texas at Arlington, USA
ylei@cse.uta.edu

Abstract

Hunting binary code difference without source code (i.e.,
binary diffing) has compelling applications in software se-
curity. Due to the high variability of binary code, existing
solutions have been driven towards measuring semantic si-
milarities from syntactically different code. Since compiler
optimization is the most common source contributing to bi-
nary code differences in syntax, testing the resilience against
the changes caused by different compiler optimization set-
tings has become a standard evaluation step for most binary
diffing approaches. For example, 47 top-venue papers in the
last 12 years compared different program versions compiled
by default optimization levels (e.g., -Ox in GCC and LLVM).
Although many of them claim they are immune to compiler
transformations, it is yet unclear about their resistance to
non-default optimization settings. Especially, we have obser-
ved that adversaries explored non-default compiler settings
to amplify malware differences.

This paper takes the first step to systematically studying
the effectiveness of compiler optimization on binary code
differences. We tailor search-based iterative compilation for
the auto-tuning of binary code differences. We develop Bin-
Tuner to search near-optimal optimization sequences that
can maximize the amount of binary code differences. We run
BinTuner with GCC 10.2 and LLVM 11.0 on SPEC bench-
marks (CPU2006 & CPU2017), Coreutils, and OpenSSL. Our
experiments show that at the cost of 279 to 1, 881 compilation

“Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI °21, June 20-25, 2021, Virtual, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8391-2/21/06...$15.00
https://doi.org/10.1145/3453483.3454035

michael.ho22@mavs.uta.edu

jiang.ming@uta.edu

LiLi
Monash University, Australia
Li.Li@monash.edu

iterations, BinTuner can find custom optimization sequences
that are substantially better than the general -Ox settings.
BinTuner’s outputs seriously undermine prominent binary
diffing tools’ comparisons. In addition, the detection rate of
the IoT malware variants tuned by BinTuner falls by more
than 50%. Our findings paint a cautionary tale for security
analysts that attackers have a new way to mutate malware
code cost-effectively, and the research community needs to
step back to reassess optimization-resistance evaluations.

CCS Concepts -« Security and privacy — Software and
application security.

Keywords Compiler Optimization, Binary Code Difference

ACM Reference Format:

Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. 2021. Un-
leashing the Hidden Power of Compiler Optimization on Binary
Code Difference: An Empirical Study. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI "21), June 20-25, 2021, Virtual,
Canada. ACM, New York, NY, USA, 19 pages. https://doi.org/10.
1145/3453483.3454035

1 Introduction

Binary code, which is pervasive in our daily lives, spans
a broad spectrum from traditional PC software, emerging
IoT device firmware, to tremendous malware. As high-level
language information such as data structures and types are
missing in binary code, studying software security problems
with only access to binary code is a challenging but also
fascinating task [1-3]. Especially, the similarities between
two binary code versions can reveal rich information even
in the absence of source code. For example, whether a si-
milar high-severity vulnerability recurs in other programs,
or whether different malware variants belong to the same
family. Therefore, binary diffing research generates a large
body of literature on this topic, such as software vulnerabi-
lity search [4-10], security patch analysis [11-13], malware
similarity analysis [14-20], and code clone detection [21-25].

https://doi.org/10.1145/3453483.3454035
https://doi.org/10.1145/3453483.3454035
https://doi.org/10.1145/3453483.3454035

PLDI 21, June 20-25, 2021, Virtual, Canada

As pure syntax-based binary code representation (e.g., in-
struction mnemonic n-grams or data constants [26, 27]) are
prone to false negatives, the trend of binary diffing technique
is to overlook ostensible, syntactic differences and capture
semantic similarities. At the other end of the spectrum, pure
semantic similarity analysis is infeasible in practice due to
its complexity and undecidability [28]. Existing approaches
are more apt to adopt mixed syntactic/semantic code repre-
sentations to measure binary code difference.

Compiler optimization is the most common factor lea-
ding to the semantics-preserving but syntactically different
binary code. To achieve the goal of using less computing
resources, modern compilers contain a large number of avai-
lable optimization options, which can transform binary code
notably [29]. For example, loop-related optimization (e.g., un-
switching and loop unrolling) effectively rewrite control flow
structure, and peephole optimization substitutes a loop-free
code with an optimal assembly code sequence [30]. There-
fore, evaluating the resilience against the changes caused by
compiler optimization settings has become a convention for
binary diffing tools. We surveyed the research literature in
the last 12 years and assessed their resilience experiments.
We find that the impact of compiler transformation on bi-
nary code is limited by the default optimization levels. For
example, Asm2Vec in IEEE S&P’19 [21] takes the comparison
between O3 and OO0 as the “most difficult” case. However, the
optimization flags in GCC’s -O3 setting only account for less
than 48% of all available options. We argue that the power
of compiler optimization on binary code difference has been
significantly underestimated on modern CPU architectures.

In this paper, we first study compiler optimization effects
on binary code differences. Then, we investigate the latent ca-
pability of all available optimization options on binary code
differences. Our research is motivated by the usage of non-
default optimization settings in practice. First, research pa-
pers [31-33] have confirmed that many performance-critical
applications (e.g., programs running in resource-constrained
devices) resort to a program-specific optimization sequence,
which gains augmented improvements beyond default -Ox le-
vels. Second, as quite a few binary diffing tools (e.g., MutantX-
S [27], CoP [23], and BinSim [14]) work with adversaries,
there is no reason to assume that software plagiarists or mal-
ware developers would restrict themselves to -Ox settings.
For emerging IoT malware that has to run in miscellane-
ous embedded devices, traditional obfuscation techniques
used in Windows malware (e.g., binary packing [34] and
code virtualization [35]) are not well accepted because of
the high runtime overhead and poor compatibility [36-38].
In contrast, compiling malware source code with different
optimization flags other than the default levels can provide
an additional layer of protection in metamorphism!. We have

!Metamorphism means malware mutates code during propagations so that
each variant exhibits little similarities to the other [39].

Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li

tracked the compiler provenance of Linux.Mirai family [40],
an infamous IoT botnet, for one year. Surprisingly, we find
that up to 42% of Linux.Mirai variants are not generated un-
der default settings, and these variants reveal a much lower
anti-malware detection rate than the rest of samples.

Our research methodology is inspired by search-based
iterative compilation [41-45]. It has long been known that
a fixed compiler optimization sequence does not produce
optimal results in all cases. However, finding an optimal,
program-specific compilation sequence is particularly chal-
lenging as well, because the search space of various optimi-
zation combinations is extremely large. Iterative compilation
explores the huge optimization space using metaheuristic
search algorithms. It attempts to find near-optimal or suf-
ficiently good-enough solutions with acceptable overhead.
The idea of iterative compilation is simple, but it can yield
substantial performance gains. Therefore, the method of our
study is to iteratively explore the optimization space to find
better configurations than the default -Ox settings, so that
the different degrees of binary code are greatly improved.

We developed an auto-tuning platform, named BinTuner,
to maximize binary code difference. We apply the genetic
algorithm to guiding optimization space exploration. The
key step is to design a fitness function, which evaluates the
results of compilation and steers the search process toward
the optimal solutions. An efficient function can dramatically
reduce the overall overhead of iterative compilation. We
adopt normalized compression distance (NCD) as a simple-
albeit-rudimentary fitness function to quantitatively mea-
sure binary code structural differences. NCD has a desirable
theoretical underpinning in terms of Kolmogorov complex-
ity [46], as well as superior performance.

We run BinTuner on SPEC integer benchmarks of CPU2006
and CPU2017, Coreutils, and OpenSSL. Our results show that
at the cost of 279 to 1, 881 compilation iterations, BinTuner
can find various custom optimization sequences that out-
perform default settings in all 42 cases. For example, we
obtain an additional improvement beyond LLVM’s -O3 with
an average value of 18% (peaking at 60%). Besides, we find
that for Coreutils, the binary different degrees caused by -Os
are greater than -O3 by 20%. The comparisons with promi-
nent binary diffing tools show that their accuracies decline
steeply for the tuned binary code produced by BinTuner.
BinTuner’s effect even surpasses Obfuscator-LLVM [47], a
popular compiler-level code obfuscator at present. Our fin-
dings also reveal a new threat: cybercriminals can take a
free ride of iterative compilation to automatically generate
numerous metamorphic samples. We hope that our work
spurs discussion and inspires the research community to
redesign resilience evaluations for binary diffing approaches.
In summary, our contributions are as follows.

e Binary diffing hinges on the comparison of mixed syn-
tactic and semantic binary code representations, but

Unleashing the Hidden Power of Compiler Optimization on Binary Code Difference

the impact of compiler optimization on them is not
well studied. Our work bridges this gap (§3).

e As far as we know, BinTuner is the first auto-tuning
framework to deliver near-optimal binary code that
maximizes the amount of binary code differences. Our
findings highlight a pressing need for the research
community to revisit the optimization-resistance ex-
periments (§4 & §5).

e BinTuner can assist the binary diffing research in ge-
nerating more diversified datasets for training and tes-
ting. Its source code and the tuned benign programs
are available at (https://github.com/BinTuner/Dev).

The long version of this paper is available at (https://arxiv.
org/abs/2103.12357).

2 Background & Motivation

For pedagogical reasons, we first characterize the flourishing
binary diffing literature. Next, we discuss two representa-
tive binary diffing tools BinDiff and BinHunt. Our study
treats BinHunt as an appropriate reference to evaluate Bin-
Tuner’s outcome. At last, we introduce our observation on
optimization-resistance experiments.

2.1 Binary Diffing Research

Even without access to source code, the similarities between
two different binary code can expose the underlying relati-
onship such as code clones, close malware lineage, or same
toolchain provenance. Therefore, the multifaceted benefits
of binary diffing have led to a wide adoption by various soft-
ware security analysis tasks. Our long version in arXiv lists
47 top-venue papers related to binary diffing in the past 12
years. The selected papers cover the area of security, soft-
ware engineering, programming languages, systems, and
Al These papers vary in the code representations to com-
pare and how to measure their semantics similarities. The
problems that they deal with include vulnerability search,
malware analysis, patch inspection, plagiarism detection,
and de-anonymizing code authors. In spite of these versa-
tile applications, the accuracy of binary diffing is subject
to modern compilers, which bring additional complexities
to binary code structures [3]. The key to a binary diffing
approach is to define a semantics-aware code representation,
so that similar programs reveal the representations that are
close to each other.

2.2 Mixed Syntactic and Semantic Binary Code
Representations

The mixture of syntactic and semantic code representation
strikes a balance between complexity and precision, and it
is becoming a good practice. The lion’s share of binary dif-
fing papers we surveyed (42 out of 47) adopts the mixed
syntactic/semantic representations. In particular, these met-
hods differ in two levels: 1) which binary code structure

PLDI ’21, June 20-25, 2021, Virtual, Canada

is defined as code representation to compare (syntactic le-
vel); 2) how to represent and compare code representation
semantics (semantic level). For syntactic level properties,
most papers select recognizable binary code structures as
code representations, including function, basic block, loop,
trace, control flow graph (CFG), and call graph (CG). Their
detection accuracies rest with precisely locating the scope of
such code representations.

At the semantic level, the methods of measuring code re-
presentation semantics are even richer. They are ranging
from computationally expensive but accurate to scalable but
less robust properties. For example, symbolic execution re-
presents the input-output relations as formulas and then
verifies their equivalence using a theorem prover [14, 23, 48—
50]; dynamic testing generates concrete inputs automati-
cally to compare output values [7, 10, 51-53]; basic block
re-optimization normalizes syntactically different data-flow
slices to expedite scalable search [5, 54]; descriptive statis-
tic features (e.g., the number of transfer instructions) gear
towards fast matching target functions among large-scale
binaries [8, 55]. Recent papers take advantage of deep le-
arning and neural networks to learn the relationship bet-
ween two binary code snippets [4, 21, 56-58]. For example,
Asm2Vec [21] learns the lexical semantic relationships on
x86/64 instruction set within a function scope, such as Stre-
aming SIMD Extensions (SSE) operands are related to SSE
registers, and file-related APIs are typically used together.

2.3 BinDiff & BinHunt

BinDiff [59, 60] is an industry-standard and the most-cited
binary diffing tool. Many papers either rely on BinDiff’s
result or compare with BinDiff in their evaluations. BinDiff
takes IDA’s disassembly code [61] as input, and it relies on the
comprehensive use of three-level statistic features (function,
basic block, and the topological order of control flow/call
graph) to achieve the goal of fast graph matching. BinDiff
is resilient against moderate syntactic differences such as
register swapping and instruction reordering.

BinHunt [62] is the first work to find semantic differences
in binary code. We consider BinHunt as an improvement
to BinDiff in two ways but at the cost of overhead. First,
BinHunt applies symbolic execution and theorem proving to
match functionally equivalent basic block pairs, so that it has
a better resistance to intra-basic-block obfuscation types [14]
than BinDiff. Second, BinHunt customizes a backtracking-
style graph isomorphism algorithm to find the best matc-
hings between functions and basic blocks. This algorithm
can remove many false matches caused by BinDiff’s graph
matching heuristics. BinHunt’s final difference score of two
binary code varies from 0.0 to 1.0 (a higher score indicates
more different). This score is a quantitative value to measure
the structural changes in CFG/CG and semantical changes in
basic blocks. Note that these changes are also the targets that
BinTuner aims to achieve. Unfortunately, the computational

https://github.com/BinTuner/Dev
https://arxiv.org/abs/2103.12357
https://arxiv.org/abs/2103.12357

PLDI "21, June 20-25, 2021, Virtual, Canada

35K - -
m == —
g =8 # Optimization
o m =B settings: 5
L 3okt
]
£]
B
w2 25K - | —s— GCC defaul optimization d
= —e— GCC non-default optimization » |# Optimization
D 20k} seftings: 142
—
=2 .
Z sk .
= . .
P L
z 1.0k | ° L]
5 o o *
=
5000 | o .
1 1 1 1

AW b % % & %
%%@ 'bl, ‘%’a %%0 1&‘3’70 %Q’ro "307‘9

{a) The trend of compiler optimization settings

—— GCC default optimization (O
—— GCC non-default optimization

3.0k

Mumber of Mirai 10T Eotnet Samples

10 15 20 25 30 35 40 45 a0 55

(b) Anti-virus scanner detection number (CDF)

Figure 1. The data of Mirai [oT botnet family in 2019.

cost of either BinHunt or BinDiff is too high to be acceptable
as BinTuner’s fitness function. In our evaluation, we treat
BinHunt's score as an objective reference to verify whether
BinTuner’s outcome can beat -Ox levels. We present BinHunt
score’s calculation details in our long version.

2.4 Non-default Optimization Effects

All of 47 top-venue papers that we surveyed perform simila-
rity analysis on the different versions produced by default
compilation levels. Twenty-two papers claim they are re-
silient against the syntactical changes caused by compiler
optimizations, and they treat the comparison between 03
{i.e., the highest general optimization level) and O0 (i.e., no
optimization) as the worst case. However, both GCC’s and
LLVM’s -03 levels only contain less than 48% of the available
compilation options. Security analysts have confirmed that
compiler optimization effects can make malware analysis
complicated. Qihoo 360’s security analysts reported that the
aggressive compiler optimization hinders the extraction of
Mirai IoT botnet classification features [63].

Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li

Since Dec. 2018, we have tracked the compiler provenance
of Mirai IoT botnet family for one year. We leverage Vi-
rusTotal’s Intelligence service [64] to collect the Mirai sam-
ples that have different hash values. Because Mirai’s source
code was leaked online in 2016 [65], we use BinTuner to
generate a large training set with all applicable combinati-
ons of compiler versions and optimization levels, including
non-default compilation options. We adopt BinComp’s met-
hod [66] to reverse-engineer compiler provenance informa-
tion {e.g., compiler family, compiler version, and optimiza-
tion level) for each collected Mirai sample. Figure 1(a) shows
that until Dec. 2019, up to 42% (2, 527) of Mirai variants are
compiled by 142 kinds of GCC’s non-default optimization
settings. Note that different from PC malware, no Mirai sam-
ples apply packing or code virtualization. In spite of this,
harnessing compiler optimization can still bypass the anti-
virus detection. We confirm this by counting the recognition
nurmnbers of all available anti-virus scanners in VirusTotal.
Figure 1{b) shows the cumulative distribution result of Vi-
rusTotal detection numbers. Obviously, the Mirai variants
that are compiled by custom compiler optimization settings
reveal a much better evasive effect than the rest of samples.

3 Compiler Optimization Effects on
Binary Code Differences

In this section, we focus on the effects of compiler optimiza-
tion on syntactic and semantic binary code representations.
An in-depth understanding of these effects is crucial to the
design of a robust binary diffing tool, but this problem is not
well studied by the previous work.

3.1 Effect on Syntactic-Level Properties

Most binary diffing approaches assume the precise identi-
fication of code representation scopes before comparisons.
Only in this way can they properly gauge their semantics.
However, this assumption is fragile in practice. As binary
function, basic block, and control flow graph are the three
most common code representations (32 out of 47 papers that
we surveved compare them), we discuss how optimization
algorithms can break the integrity of them.

3.1.1 Function

Binary function scope is mainly affected by inter-procedural
optimizations. The well-known function inlining optimiza-
tion replaces function call instruction with the actual code
of callee function. The frequently invoked library functi-
ons are most likely to be inlined. Although BinGo [7] pro-
poses selective inlining to mitigate this problem, it is still
quite ad hoc in the selection of function invocation patterns;
AsmZVec [21] adopts BinGo’s approach to train its learning
model, but it does not inline any library call; discovRE [8]
even explicitly turns off function inlining in its vulnerable

Unleashing the Hidden Power of Compiler Optimization on Binary Code Difference

PLDI ’21, June 20-25, 2021, Virtual, Canada

: — — i = sbb
if (ecx==1 or ebx==0) if ([ecx’:Ox'1234] >=10) instruction | cmp [ecx+0x1234], 10;
jmp Failed; eax=1; sbb eax, eax;
else else ; A
inc eax;
jmp Success: eax = 0; o sum = 0;
for (i=10; i>0; i--)
no OptImIZatlmpound conditionals if (eax==A) sbb it;tg) e::),(_A; sum += i;
=C; instruction d
xor edx, edx; eax sbb eax, eax; e _ loop
1 else e and eax. B: instruction
cmp ecx, 1; cmp ecx, 1; eax = B+C; c v
jz Failgd; szl add eax, mov eax, 0;
‘o eax, eax: if ([ebp+8]==5) setne [xor eax, eax; mov ecx, 10;
A e A A eax = 5; instruction | cmp [ebp+8], 5; loop_start:
?est fabx, ebx; —— ! ! else setne al; add eax, ecx;
jz Failed; ’ eax = 6; 9 add eax, 5 loop loop_start
=
- test eax, edx;
‘ jnz Failed if (eax ==0) conditional
PN ecx remains the same;| Moves mov eax, [ealx+0x12],
- clse » test eax, eax;
ﬁSuccess: —Failed: ’—‘—‘ ’—‘—‘ i
- - Success: Failed: move esi into ecx; o cmovnz ecx, esl

(a) Compound conditionals

(b) Five branch-free code optimization strategies

Figure 2. Compiler optimization breaks the integrity of basic blocks. (a) Compound conditionals generate more straight-line
code by merging several basic blocks into one, and (b) five optimization strategies produce branch-free code to avoid a
conditional jump instruction. All of them also change the structure of control flow graph.

function search evaluation. Tail call optimization [67] is anot-
her obstacle to binary function recognition. Instead of using
traditional call instruction, tail call switches to a jump in-
struction at the end of the caller function to target the callee
function. This avoids the cost of frequent stack frame set-
up and tear-down. In the binary code of Coreutils compiled
with GCC -03, about 10% of functions use tail call optimiza-
tion. Goér et al’s work relies on dynamic instrumentation
to recognize jump instructions as inter-procedural calls [68].
However, mainstream disassemblers and most binary dif-
fing tools are all static-only approaches. As a result, tail call
optimization will mislead their function matchings.

For random-sampling based function comparison met-
hods [51, 52], they typically rely on calling conventions to
recover complete function input parameters first. After that,
they generate concrete values as function inputs and then
compare function outputs. However, compiler optimizations
may violate calling conventions and thus complicate function
parameter extraction. For example, if the intended parame-
ter value is already in an argument register, the compiler
may not set that register explicitly at the function callsite.
Therefore, the absence of the value assignment instruction
leads to the underestimation of function parameters.

3.1.2 Basic Block

Compared to the recovery of binary function’s scope and
parameters, the identification of basic block scope is much
simpler. Expensive symbolic execution is typically performed
within a basic block for accurate semantics modeling [10, 23,
438, 62]. The challenge here lies in that many intra-procedural
optimizations (e.g., loop unrolling, compound conditionals,
and basic-block merging) tend to produce branch-less code
to favor pre-fetching instructions. As shown in Figure 2, mo-
dern compilers take advantage of the instruction side effect
on FLAGS register (e.g., sbb, setz, and cmovnz) to avoid

branches; while 1loop instruction does not set FLAGS at all,
but it is exactly like dec ecx & jnz. Straight-line code can
avoid branch misprediction and facilitate pipeline execution,
but it also merges several basic blocks into one. Branch-
free code violates the assumptions embodied by basic-block
centric comparison models, because they are either straight-
forward “1-to-1” (one basic block in source function is mat-
ched against the one in target function) [10, 23, 48, 56, 62]
or “n-to-n” [69]. Dealing with basic block merging requires
heavyweight inter-basic-block control flow analysis.

3.1.3 Control Flow Graph (CFG)

A number of binary diffing methods measure CFG simila-
rity [8, 10, 17] or match CFG structural features [55, 57].
However, CFG is more vulnerable to both inter-procedural
and intra-procedural optimizations. Most factors that break
the integrity of function and basic block (e.g., function inli-
ning and loop-related optimizations) can effectively change
the control flow graph structure as well. Another example is
optimizing switch structure via binary search. Typically, the
compiler translates a switch structure into an indirect jump
and a lookup table for switch-case handlers, since it takes
O(1) lookup time. The pattern looks like jmp dword ptr
[eax*4 + Address]. Address is the lookup table starting
address, and eax, controlled by switch’s condition, is the
index to a specific switch-case handler. However, if switch’s
cases are not in a small sequential range, both GCC and
LLVM will adopt a binary search algorithm instead [70]. As
a result, the new CFG will reveal more branches.

3.2 Effect on Semantic-Level Properties

Quite a few tasks [8, 16, 27, 55, 57, 71] need to perform a
large-scale binary similarity analysis, such as malware cluste-
ring and bug search in firmware images. To meet the scalable
goal, they represent the semantic as a vector of descriptive

PLDI 21, June 20-25, 2021, Virtual, Canada

for (i=0; i< n; i++)

Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li

cfi=afi] * bil;
x/255 — (x*257+257)>>16 l
(a) Strength reduction 1 L1 strepy(buf, "Hello World!");
2 movups xmmf1, [rdx+r9*4]; i
3 movups xmmo, [r8+r9*4]; 1 lea eax,[esp+0x10];
1 xor eax, -1; 1 not eax; 4 mulps xmm1, meO; _ 2 mov dword prt [eax],0x6c6c6548;
2 addeax, 1. "2 noteax; 5 movaps [rox+r9*4], xmm1; 3 mov dword prt [eax+0x4],0x6f57206f:
3 neg eax; 6 add 9,4, 4 mov dword prt [eax+0x8],0x21646¢72;
10 bytes 3 bytes ; ﬁmLp1 r9, rax; 5 mov byte prt [eax+0xc],0x0;
LT

(b) Peephole optimization

(c) Loop vectorization

(d) GCC’s built-in implementation of strcpy()

Figure 3. Compiler optimization generates a totally different binary code snippet in syntax. (a) x/255 is re-implemented via
multiplication with a perfect approximation; (b) peephole optimization replaces non-optimized instruction segment with a
faster set of instructions; (c) loop vectorization takes advantage of SSE vector instructions to run matrix product in parallel; (d)
GCC’s built-in implementation of strcpy() becomes a sequence of immediate-to-memory mov instructions.

numeric features, such as the number of particular opcode
types. However, the transformation of some compiler opti-
mizations can generate totally different binary code snippets
in syntax. This impedes the binary diffing work that does
not extract the intrinsic semantics of code representations.
The arithmetic division is the most expensive integer cal-
culation on CPU. Figure 3(a) shows the strength reduction
optimization rewrites the division of a constant using mul-
tiplication [72]. The peephole optimization example in Fi-
gure 3(b) substitutes two instructions (10-byte length) with
semantically equivalent but much faster instructions. The
new ones only take as few as 3 bytes and have less fetch-
execute cycles. Figure 3(c) shows an example of loop vectori-
zation [73-75]: it makes use of modern CPU’s fast SSE vector
instructions to perform the same matrix product operation
on multiple values simultaneously. To obtain the optimal
performance, GCC has built-in implementations for many
standard C library functions (e.g., strcpy and strcmp) [76].
Figure 3(d) optimizes the call to strcpy as a sequence of
immediate-to-memory mov, which is much faster than its
natural loop-based equivalent. Without semantics informa-
tion, the lightweight, lexical-based features cannot find they
are equivalent. The book “Hacker’s Delight” [77] contains
a collection of optimization tricks to speed up arithmetic
algorithms via bitwise operations, and many of them have
been accepted by LLVM and GCC as optimization options.

4 BinTuner Design

We conduct an empirical study using iterative compilation to
figure out to what extent compiler optimization can change bi-
nary code. Our study demonstrates that iterative compilation
can automatically find much better optimization sequences,
which work in concert to yield further improvements in
binary code differences.

4.1 Overview

We build an auto-tuning framework, called BinTuner, to tune
binary code differences via iterative compilation. Figure 4

Gce
Initial Compiler OSg\gcteq
Optimization Flags ptimization -
. e traints
Genetic | Optons | Constrainis | | @ || Compier |« of Tim
+ Algorithm (23) Interface
E 4 ft—
Makefile Current Optimal iBinary Code
Analyzer Configuration
< e Fitness
e Function
Server Database Client

@ Valid Optimization Options @) NCD Value @ Binary Code

Figure 4. The overview of BinTuner’s architecture.

shows the architecture of our framework. The core on the
server side is a metaheuristic search (e.g., genetic algorithm)
engine, which directs iterative compilation towards maximi-
zing the effect of binary code differences. The client side runs
different compilers and the calculation of the fitness function.
Both sides communicate valid optimization options, fitness
function scores, and compiled binaries to each other, and
these data are stored in a database for future exploration.
When BinTuner reaches a termination condition, we select
the iterations showing the highest fitness function score and
output the corresponding binary code as the final outcomes.
Similar to the observation of adaptive optimizing com-
piler [42], our rationale behind using genetic algorithm is
that the options revealing the optimal effects on binary code
difference are rare, but the local minima are frequent. In
light of this, biased random search such as genetic algorithm
can find good-enough solutions more quickly than local se-
arch such as hill climbing. We tune four parameters for the
genetic algorithm, including mutation_rate, crossover_rate,
must_mutate_count, and crossover_strength. As shown as
Figure 4’s grey boxes, BinTuner consists of four components.
Makefile Analyzer. BinTuner takes over the role of ma-
kefile to drive the multiple rounds of compilation and linking.
We utilize the “scan-build” tool [78] to extract source file de-
pendencies, configuration information, and initial compiler
optimization flags from the target program’s makefile.
Constraints Verification. Both LLVM and GCC expli-
citly specify a set of constraints between optimization flags,

Unleashing the Hidden Power of Compiler Optimization on Binary Code Difference

including adverse interactions and dependency relationships.
In some cases, two options negatively influence each other,
and turning on them together leads to a compilation error.
Some other compilation options only work when a certain op-
tion has been activated. For example, -fpartial-inlining
has any effect only when -finline-functions is turned
on. To avoid compilation errors caused by such constraints,
we manually translate them into logical first-order formulas
offline after understanding the compiler manual. The know-
ledge we learned is easy to move between the same compiler
series. We only need to consider the different optimization
options introduced by the new version.

When BinTuner is running, constraints verification com-
ponent uses a solver to check the correctness of newly ge-
nerated optimization options. Otherwise, it will eliminate
conflicting optimization sequences.

Compiler Interface. It works as a dispatcher loop to glue
multiple compilers, genetic algorithm, and fitness function
calculation. Compiler interface automates the whole iterative
compilation process and is extensible for new compilers.

Fitness Function. Existing fitness functions do not suf-
fice for BinTuner. We choose a new fitness function, Normali-
zed Compression Distance (NCD), to quantitatively evaluate
how close a given optimization sequence is to our expected
optimum solution. The strategy for doing so is explored next.

4.2 Fitness Function Selection

A crucial step of genetic algorithm is to design a fitness
function, which navigates the process of natural selection
towards the optimal generations [79]. A qualified fitness
function has to meet two requirements: 1) it can quantita-
tively determine how fit a solution is; 2) the calculation of
fitness function should be efficient. Otherwise, it will be-
come a performance bottleneck, and then the overall cost
will increase drastically.

Challenges. Existing program-related fitness functions
do not serve our need: quantitatively measuring the strength
of binary code difference. We originally planned to use Bin-
Diff or BinHunt difference score. Unfortunately, they do
not satisfy the above second requirement: high efficiency.
Their calculations have to disassemble the binary code first,
which accumulates to significant overhead after multiple
generations of genetic algorithm. In our evaluation, many
benchmarks’ binary code size are beyond 50M (up to 97M).
Even on our powerful server machine, IDA [61] has to take
8 ~ 11 minutes to disassemble one large-size sample; BinDiff
needs additional 5 ~ 9 minutes to complete comparison, and
BinHunt’s running time increases to 30 ~ 66 minutes. The-
refore, we have to look for a low-computational-overhead
measurement, which can approximate to the strength of
binary code difference even without disassembly.

Normalized Compression Distance. The recent succes-
ses on large-scale malware classification using an informa-
tion-theoretic measure, Normalized Compression Distance

PLDI ’21, June 20-25, 2021, Virtual, Canada

(NCD) [80-83], caught our attention. NCD infers the de-
gree of similarity between arbitrary byte sequences by the
amount of space saved after compression. Its theoretical me-
rit comes from Kolmogorov complexity, which is algorithmic
information theory that can measure code irregularity and
randomness [46]. However, Kolmogorov complexity is un-
computable. Li et al. [84] proposed using a lossless data com-
pression method (i.e., NCD) to approximate to Kolmogorov
complexity. The calculation of NCD score is as follows.

C(x - y) — min(C(x), C(y))
max(C(x), C(y))

NCD(x,y) = (1)

C(x) represents a specific lossless compression algorithm,
which returns the compressed length of program x’s code
section in raw bytes; while x-y indicates the concatenation
of two programs’ code sections. NCD score ranges from 0.0
to 1.0 (the higher, the more different). If x and y are identical,
the NCD score becomes 0.0. The accuracy of this approxi-
mation relies on the quality of compression algorithm, and
recent malware classification work demonstrates that LZMA
algorithm [85] is a good candidate [82].

Correlation. The intuition behind our selection of NCD
is that the impact of compiler optimization on code repre-
sentations causes structural irregularities in the binary code.
Code regularity represents that certain code structures are
repeated time after time. When compiling with OO0 (i.e., no
optimization), the compiler tends to generate boilerplate
code. Various optimizations break the integrity of code struc-
tures, and hence the optimized code is more likely to exhibit
irregularities. This explains that the binary code compiled
under OO setting typically has a much higher compression
ratio than O3 version. In BinTuner’s each iteration, we com-
pute the NCD score between the existing solution and OO0,
and genetic algorithm prefers the optimization sequence that
reveals a higher NCD score. We also calculated Pearson cor-
relation values between NCD scores and BinHunt difference
values for two relatively small SPEC benchmark programs:
462.libquantum & 429.mcf. The reason for selecting these two
programs is that we can terminate BinHunt’s experiments
within a reasonable time. Our experimental results show that
about 70% of significant positive correlations between NCD
scores and BinHunt difference scores. We present detailed
BinTuner’s genetic algorithm and Pearson correlation value
plot in our long version.

NCD Calculation Performance. The average NCD cal-
culation time is less than 30 seconds. Taking NCD as the
fitness function, BinTuner completes the above two experi-
ments in 42 minutes, while BinTuner takes 58.3/75.8 hours to
terminate if we use BinDiff/BinHunt difference score as the
fitness function. Using NCD as the fitness function speeds
up BinTuner’s performance by two orders of magnitude.

PLDI 21, June 20-25, 2021, Virtual, Canada

5 Evaluation

Experimental Setup. We use LZMA algorithm [85] in NCD
calculation and Z3 [86] solver to remove conflicting optimiza-
tion options. The testbed contains two Intel Xeon Gold 6134
processors and 256G memory, running Ubuntu 20.04 LTS.
We terminate BinTuner’s iterative compilation empirically
when the successive NCD’s growth rate is less than 0.35%.
At this point, we treat the improvement of NCD is reaching
the point of diminishing returns. Typically, we can obtain a
set of best results that all reveal the same NCD score, and
we select the last one to evaluate BinTuner’s performance.
Dataset. We evaluate BinTuner with SPEC integer bench-
marks including CPU2006 and CPU2017, Coreutils-8.30, and
OpenSSL-1.1.1. In addition to measuring CPU performance,
SPEC CPU2006 is often used as a complicated evaluation
case for binary code analysis approaches in the past decade.
SPEC CPU2017 is the latest generation of SPEC CPU bench-
mark with larger and more complex workloads. Compared to
CPU2006, CPU2017 benchmarks have up to 2.3X more lines
of source code and 10X higher dynamic instructions [87].
Our dataset contains the benchmark suites used for mea-
suring CPU integer processing power: SPECint 2006 and
SPECspeed 2017 Integer.? Coreutils and OpenSSL are the
two most popular utilities in binary code search evaluati-
ons. Coreutils is a package of 95 utilities” executable code. In
embedded systems, developers typically statically link them
into one single binary code, so we do it in the same way in
our evaluation. At last, we tune IoT malware to test their
evasion capabilities to VirusTotal’s anti-malware scanners.

5.1 BinTuner’s Efficacy

The first experiment is to determine whether BinTuner can
find custom compilation sequences that can cause additional
enhancements in binary code differences. As most of the
related work treats the comparison between O3 and OO0 as
the worst case, we also take O0’s binary code as the baseline
to calculate NCD during BinTuner’s iterative compilation.
We did not choose BinHunt’s difference score as the fitness
function due to its high computational overhead. Instead,
we only compute BinHunt difference scores for several ca-
ses, including the binaries compiled by default -Ox settings
and BinTuner’s final outcomes, because we take them as ob-
jective references to verify whether BinTuner’s results can
outperform -Ox levels. BinHunt’s comparison is well suited
for us to interpret the compiler optimization impact on the
structural changes in CFG/CG and semantical changes in
basic blocks. Note that BinTuner’s outputs retain functional
correctness because all of BinTuner’s outputs pass the test
cases shipped with our dataset.

2We remove five benchmarks that have either compilation or linking errors:
403.gcc and 471.omnetpp for LLVM; 401.bzip2 and 464.h264ref for GCC,
and 602.gcc_s for the both.

Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li

LLVM. Figure 5(a) shows BinHunt difference scores un-
der multiple LLVM 11.0 optimization settings. We first look
at the “O3 vs. O0” bar, which is taken by many binary diffing
tools as the maximum difference in their compiler-agnostic
evaluations. However, BinTuner’s outputs, shown as the
white bar, are better than “O3 vs. O0” in all cases with an
average improvement of 18%. The peak value (as much as
60%) happens at 462.libquantum, in which BinTuner’s re-
sult reveals large differences in the syntactic properties of
code representations—only 19% of basic blocks and 27% of
functions are matched with the -O0 version. Moreover, this
benchmark involves quite a few factorizations of numbers
and the dot product of matrix. These features enable strength
reduction and loop vectorization to take optimization effects,
and thus they also change semantic properties of code re-
presentations. When we only focus on default -Ox settings,
we find that -O3 indeed works best for most cases, but its
distance from -O2 is insignificant. Also, we notice two excep-
tions that -O1 (401.bzip2) and -O2 (625.x264_s) are slightly
better than -O3. Besides, we also compare BinTuner’s out-
puts with -O3 versions, and the last bar shows that they
share small similarities in most cases.

GCC. Similarly, Figure 5(b) presents the results under
GCC 10.2 optimization settings. Compared with “O3 vs. 00”,
BinTuner’s outputs obtain an average enhancement of 15%,
and the tuned binary code of Coreutils achieves the maxi-
mum improvement of 55%. The custom compilation sequence
completely messes up Coreutils’s control flow graphs, in
which BinHunt only matches 11% of graph edges with the
00 version, while “O3 vs. 00” has up to 37% matched CFG
edges. Note that the average difference score of “BinTuner vs.
007 (0.77) is very close to the difference score of the wrong
pair comparison of “Coreutils vs. OpenSSL” (0.79). This me-
ans the distance of “BinTuner vs. O0” is so significant that
BinHunt is hard to distinguish it from the wrong-pair ma-
tches. Due to the space limit, the first bar of Figure 5(b) is
“Os vs. 00”. Os enables all of O2’s optimizations except those
increasing code size. However, somewhat counterintuitively,
we observe an outlier: Coreutils’ GCC -Os presents an even
larger amount of differences than GCC -O3 by 20%. This is a
counterexample of the long-held belief that O3 is always the
best in the amount of binary code differences.

Cross Comparison. For the two most striking cases
shown in Figure 5, We also present BinHunt’s cross com-
parison results among BinTuner and -Ox levels in our long
version. BinTuner’s results are unquestionably the most sig-
nificant ones.

LLVM vs. GCC. The vertical comparisons between Fi-
gure 5(a) and 5(b) reveals that the same benchmark may exhi-
bit different patterns under different compilers. For example,
BinTuner achieves the best improvement for 462.libquan-
tum under LLVM. In contrast, GCC’s default -Ox settings
already work pretty well on the same program, leaving only
marginal improvement space to BinTuner.

Unleashing the Hidden Power of Compiler Optimization on Binary Code Difference

PLDI 21, June 20-25, 2021, Virtual, Canada

1.0

o
w

e
@

e
]

e
@

BinHunt Difference Score

o
3

e
b

o
w

*’%% %:"X \:%"» %%;é%% %&;9, ‘t;,' gﬁ‘ *, 13, %,5 '{;\,

{a) LLVM 11.0: SPECint 2006, SPECspeed 2017, Coreutils, and OpenSSL

1.0
[Josve.ap
I 02 vs. 20
0.3 Feem- I 03 ve. 00 1
oo | BITunerva. OO| _
0 P77 BirniTuner va. 03|

BinHunt Difference Scare

0.3

ENSNARRRENRON

RS q"%;; %"%“%

{b) GCC 10.2: SPECint 2006, SPECspeed 2017, Coreutils, and CpenSSL

Figure 5. BinHunt difference scores (the larger means more different) of our dataset under various optimization settings. “4**”
benchmarks belong to CPU2006, and “6**” benchmarks are CPU2017. We highlight the most striking cases as red.

Table 1. BinTuner’s search iteration numbers and total run-
ning time (hour). The data of SPEC benchmarks are repre-
sented as (min, max, median).

SPECint 2006 SPECspeed 2017 Coreutils OpenSSL

LLVM

lterations (347, 687, 470) (279, 585, 415) 527 593
Hours (0.3, 22.7, 0.8) (0.3, 48.5, 0.6) 4.4 49
lelele

lterations (491, 937, 612) (469, 1851, 246) 841 803
Hours (0.4, 31.3, 4.4) (0.5, 70.9, 3.2) 7.0 6.7

5.2 Compiler Optimization Impact on Code
Similarity Representations

In this section, we zoom in on each bar of Figure 5 to pre-

sent our findings behind quantitative difference values. The

detailed metrics data are shown in our long version. We cal-
culate the ratio of matched (basic blocks, CFG edges, and
non-library function) under different compilation settings.
These data reflect the optimization impact on the most com-
mon code representations. In general, as the optimization
level increases, the portion of matched code representations
decreases. Especially, the binary compiled by -03 does not
represent the lower bound anymore, but BinTuner’s outputs
tend to produce more drastic changes. Among the three code
representations, CFG is the most susceptible to compiler op-
timizations. For example, for 657.xz_s compiled by LLVM,
the matched CFG edges drop sharply from 35% (01 vs. 00%)
to as little as 8% (“BinTuner vs. 00"). We also present the
number of BinTuner’s iterations and total running time, and

PLDI 21, June 20-25, 2021, Virtual, Canada

Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li

1 095
]
S095 f
8 09 | 09 |
z
ko
B oss | MWW\V\NW\W e |
§ | | | A A WM MM MY
o
z 08 i VAT
gors f 08
E. — Binuner —BinTuner
0.7 1 _
S - 075 | —o1
© N X
g 065 02 —02
E - 03
£ 06 —
2 e 7 NCD
055
05 065
0 50 100 150 200 250 300 350 0 200 400 600 800 1000 1200 1400 1600
(a) LLVM & 462.libquantum (b) LLVM & 445.gobmk
1
1 0.95
°
3095 09
>
g oo r 085
£
8 085
2 0 08
2 08 ot 0.75
5
2 —os IWAAATTSAN AVAWAYSIVAVASSY \MWAVM AL
8075 o 07 PPN i
g
8 o7 —03 0.65 BinTuner|
2 —NCD —o1
£ 065 [vi 06 —0s
E —02
2 06 055 —o3
—NCD
0.55 L L L L L L L L 05 L L L L L L L L L
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 900

(c) GCC & Coreutils

(d) GCC & 429.mcf

Figure 6. The aggregated NCD variation (Y-axis, higher is better) over BinTuner iterations (X-axis). We show two most
significant cases from LLVM and GCC, respectively. Note that the O1/02 lines in (c) are very close and may be difficult to see.

Flag | Potency Flag | Potency
-funroll-loops 18.0%| |-funroll-loops 17.8%
-fslp-vectorize 13.2%| |-fump-tables 12.5%
-flump-tables 12.6%| |-fvectorize 12.3%
-finline-functions 9.5%| |-finline-functions 10.6%
-ftree-vectorize 5.8%| |-ftree-vectorize 4.8%
-mlong-calls 4.2%| |-mlong-calls 4.5%
-mstackrealign 3.6%| |-fno-escaping-block-tail-calls ~ 4.1%
-fwrapv 3.2%| |-fmerge-all-constants 3.8%
-fmerge-all-constants 3.0%| |-fwrapv 3.6%
-freg-struct-return 2.2%| |-fpcc-struct-return 21%
94 other flags 24.7%| |89 other flags 23.9%

Jaccard Index (O3, BinTuner) = 0.54
(a) LLVM & 462.libquantum

Jaccard Index (O3, BinTuner) = 0.57
(b) LLVM & 445.gobmk

Flag ‘ Potency Flag ‘ Potency
-finline-small-functions 9.4%| |-finline-small-functions 8.7%
-ftree-vectorize 7.9%| |-freorder-functions 7.6%
-freorder-functions 7.3%| |-freorder-blocks-and-partition ~ 7.2%
-funswitch-loops 7.0%| |-ftree-loop-distribute-patterns 6.8%
-fpeel-loops 6.9%| |-fpeephole2 6.7%
-fpeephole2 6.6%| |-ftree-vectorize 6.4%
-freorder-blocks 6.2%| |-fmove-loop-invariants 6.0%
-ftree-loop-vectorize 5.5%| |-floop-unroll-and-jam 5.6%
-fbranch-count-reg 5.1%| |-foranch-count-reg 4.7%
-falign-loops 5.0%| |-falign-functions 41%
125 other flags 33.1%| |127 other flags 36.2%

Jaccard Index (O3, BinTuner) = 0.63
(d) GCC & 429.mcf

Jaccard Index (O3, BinTuner) = 0.61
(c) GCC & Coreutils

Figure 7. Top 10 most potent optimization flags for the significant benchmarks shown in Figure 6.

we summarize them in Table 1. For 38 out of 42 tested pro-
grams, BinTuner reaches the termination condition within
1K iterations. BinTuner’s performance bottleneck mainly co-
mes from benchmark’s compilation time, as long, one-time
compilation time will accumulate to high cost after many
iteration rounds. The worst case, 623.xalancbmk_s from SPE-
Cspeed 2017, has a pretty large code size and complicated
library dependencies, and therefore both LLVM and GCC
will take 6 ~ 8 minutes to complete compilation and linking.
Considering the extremely large search space, using NCD

as the fitness function is cost-effective to find near-optimal
compilation settings.

NCD Variation. We choose NCD as the fitness function,
and Figure 6 plots NCD’s variation over BinTuner’s iterati-
ons for the four most significant test cases. Although each
program shows different NCD patterns, the general trend is
to steer genetic algorithm towards optimal solutions with
small fluctuations. Furthermore, when the termination cri-
teria is met; that is, the improvement of NCD is reaching a
plateau, we can get multiple different versions that all reveal

Unleashing the Hidden Power of Compiler Optimization on Binary Code Difference

the best NCD score. Recall that Coreutils’ GCC -Os presents
an even larger amount of differences than GCC -0O3, so Os’s
NCD value is also larger than O3 in Figure 6(c). The NCD in
Figure 6(d) jumps by 23% at the 620th iteration. We attribute
this sudden leap to the mutation of genetic algorithm.

5.3 Optimization Flag Potency

For the significant cases shown in Figure 6, we try to under-
stand which optimization flags contribute the most to the
binary code differences obtained. This is not a trivial task,
because figuring out the interactions among a set of optimi-
zation flags is challenging. To approximate the potency of
each flag, given the optimal optimization sequence tuned by
BinTuner, we measure the drop of BinHunt difference score
when this flag is removed from that sequence. We normalize
all BinHunt score drops to sum up to 100%. This measure-
ment is not perfect, because some optimization flags may
have competing or conflicting effects. Figure 7 presents the
top 10 most potent optimization flags for the four significant
benchmarks shown in Figure 6. Different from -Ox settings,
we did not find such a standard flag combination that can
always favor creating a binary-different file, because each
benchmark requires a different set of compilation options
to achieve the best potency. However, our experiment still
reveals interesting observations.

For the two significant benchmarks of LLVM (462.libquan-
tum and 445.gobmk), they reach the optimal potency through
a few large steps. They are dominated by the top four opti-
mization options: loop unrolling, loop vectorization, switch-
case optimization (-fjump-tables), and function inlining.
Besides, 445.gobmk’s top 10 flags contain tail call optimiza-
tion, -fno-escaping-block-tail-calls, which can hide
a binary function’s boundary.

GCC’s most potent optimization flag for Coreutils and
429.mcf is function inlining (-finline-small-functions),
and other top flags take incremental steps with smaller po-
tency effects. In addition to the flags that can change the CFG
structure (e.g., loop-related optimizations), the top 10 flags
in Figure 7(c) and (d) also reflect the compiler optimizations
that break the integrity of basic block and affect semantic-
level properties. For example, GCC’s -freorder-blocks and
-fbranch-count-reg favor producing branch-free code; peep-
hole optimization (-fpeephole2) can mislead fast code mat-
ching approaches that compare numeric vector features.

Note that although most of these top 10 flags also appear
in O3 sequence, the remaining flags are different from the
ones in O3 sequence. At the bottom line of Figure 7, we
show the share of common optimization flags between O3
and BinTuner’s output using Jaccard index: |[A N B|/|A U B].
Jaccard index results indicate that BinTuner can find different
optimization options that yield further improvements in
binary code differences.

PLDI ’21, June 20-25, 2021, Virtual, Canada

5.4 Comparative Evaluation of Prominent Binary
Diffing Approaches

We have demonstrated the efficacy of BinTuner by taking
BinHunt [62] difference score as an objective reference. Gi-
ven the same source code, BinTuner is able to generate dras-
tically different binary code; this casts a doubt on whether
the tuned binary code can also reliably complicate the ana-
lyses across multiple advanced binary diffing approaches.
We conduct a separate experiment to compare prominent
binary diffing tools. Unfortunately, only a very small portion
of binary diffing papers release their source code.

Tools’ Selection. We selected open-source binary dif-
fing tools, including Asm2Vec [21], INNEREYE [56], VulSee-
ker [4], and BinSlayer [15]. In addition, we re-implement the
method of CoP [23], IMF-SIM [51], and Multi-MH [10]. The
superset of these seven tools and BinHunt is representative
enough to cover the mixed syntactic/semantic binary code re-
presentations that we discussed in §3. Asm2Vec, INNEREYE,
and VulSeeker are three machine learning based methods to
learn the semantic similarities between two functions, basic
blocks, and control flow graphs, respectively. IMF-SIM repre-
sents random-sampling based function comparison, which
generates concrete inputs automatically to compare function
outputs. CoP and Multi-MH are two examples of basic-block
centric comparison. BinSlayer improves BinDiff [60] with the
Hungarian algorithm for accurate graph matching. We did
not test the dynamic approaches that compare system call
dependency graph [18, 25] or aligned API call sequence [14],
because they are difficult to measure the changes of binary
code representations.

Experiment Settings. The challenge of comparing diffe-
rent binary diffing tools is that they adopt different similarity
metrics such as graph edit distance [15] or statistical signi-
ficance [48]; directly showing their similarity scores is not
informative. We normalize their comparisons by calcula-
ting the ratio of truly matching function pairs that are also
the rank #1 matching candidates (i.e., Precision@1). Preci-
sion@1 is also adopted by IMF-SIM [51] and Asm2Vec [21]
to measure detection accuracy. We perform the compara-
tive evaluation on Coreutils and OpenSSL, which are the
most popular test suites in vulnerability search and code
clone detection. We still take the O0 version as the baseline,
and Figure 8 shows Precision@1 data under four different
compilation settings. For the three machine learning based
methods [4, 21, 56], we follow the same training data set-
ting as Asm2Vec; that is, we train O0 functions to match the
functions in other optimization settings. For the experiment
of GCC & Coreutils, we test Os because Figure 5(b) shows
the effect of “GCC -Os” on the binary differences of Coreutils
is greater than -O3 by 20%. For the experiment of LLVM &
OpenSSL, we also test Obfuscator-LLVM [47], a very popular
compiler-level code obfuscator at present. When running
Obfuscator-LLVM, we enable all three kinds of obfuscation

PLDI 21, June 20-25, 2021, Virtual, Canada

09 -

BinTuner|

o o
~ o
T T

o
(o]
R —

o e
~
B

Precision@1 (higher is better)
=} [=}
w (9]
T T T

o
)
T

o
=

7Asm2Vec VulSeeker IMF-SIM
(a) GCC & Coreutils

CoP Multi-MH BinSlayer

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 4
Asm2Vec INNEREYE VulSeeker IMF-SIM

Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li

L_Jo1

[O3

Il Obfuscator-LLVM
BinTuner

CoP Multi-MH BinSlayer

(b) LLVM & OpenSSL

Figure 8. Precision@1 data (higher is better) reported by prominent binary diffing tools under four different settings. Note
that 1) Os presents an even larger amount of differences than O3 in (a), and 2) INNEREYE [56] only works with LLVM.

schemes: instruction substitution, bogus control flow graph
via opaque predicates, and control flow flattening.

Results. In summary, all tested binary diffing tools per-
form well when structural features are not changed too much.
They show relatively high Precision@1 scores for the pair of
O1 vs. O0. As the optimization level increases, interactions
between multiple basic blocks become more intense, and
structural properties are highly modified. Therefore, Preci-
sion@1 data fall into decline, and we can see a sharp drop
when comparing with BinTuner’s output. As both IMF-SIM
and Asm2Vec papers also evaluate their tools using Preci-
sion@1, according to their worst cases, the values of Preci-
sion@1 caused by BinTuner are much lower than them by
46%~61%. These tested tools assume the integrity of function,
basic block, or control flow graph. However, §5.2 has demon-
strated that such an assumption is fragile. Among the three
most common code representations, control flow structure
is susceptible to a large number of optimization strategies.
This explains why BinSlayer [15] starts a precipitous decline
from O3 level, because it relies on bi-partite control flow
graph matching.

BinTuner vs. Obfuscator-LLVM. Figure 8(b) shows
that the potency of BinTuner is even better than Obfuscator-
LLVM (O-LLVM). The reason is the obfuscation schemes
applied by O-LLVM are limited in the function scope. By
contrast, BinTuner has more options to achieve similar intra-
procedural change effects. For example, O-LLVM’s instruction
substitution only contains several fixed rules to diversify
arithmetic operations; while BinTuner enables peephole op-
timization [30], which has rich substitution rules to generate
an optimal assembly code sequence. Furthermore, BinTuner
contains inter-procedural optimizations to hide function call
relationships (e.g., function inlining and tail call optimiza-
tion). This viewpoint is also reflected in the experiment of
IMF-SIM [51]. IMF-SIM outperforms the rest of tools. It treats

Table 2. The number of anti-virus scanners recognizing IoT
malware variants as malicious samples.

x86-32 x86-64 ARM MIPS

LightAidra

Default (GCC -02) 46 42 44 43
GCC -03 45 41 43 41
BinTuner 14 13 13 15
BASHLIFE

Default (GCC -02) 41 37 39 38
GCC -03 40 37 38 37
BinTuner 12 11 13 12

the target functions as blackbox and performs dynamic tes-
ting to compare function-pair output values. Thus IMF-SIM
is quite robust to intra-procedural optimization/obfuscation
such as the effect caused by O-LLVM. However, BinTuner’s
custom optimization sequence leads to its loss of accuracy
in two ways: breaking function’s integrity and complicating
the extraction of function parameters (see §3.1.1).

5.5 Tuning IoT Malware

The security risk motivating our research is that malware
developers have utilized non-default compiler settings to
generate metamorphic variants. Our one-year compiler pro-
venance study on Mirai botnet presented in §2.4 confirms
this new threat: 42% of them reveal different compiler opti-
mization settings with -Ox. We apply BinTuner to the leaked
source code of another two IoT botnet malware (LightAidra
and BASHLIFE) [88] and count the anti-virus detection re-
sults via VirusTotal. Table 2 shows that the new malware
variants tuned by BinTuner reveal different code features
and bypass many anti-virus scanners. The detection number
drops by more than half. Upon further investigation, the
rest of anti-virus scanners can recognize the tuned samples
because they match the signatures embedded in data section
or API calls rather than code section. We also did a similar
experiment as Figure 8(a) for Asm2Vec and other tools. They

Unleashing the Hidden Power of Compiler Optimization on Binary Code Difference

Table 3. The average of execution speedup comparison.

GCC LLVM
O3 BinTuner O3

SPECint 2006 6.6% 4.7% 7.1% 5.0%
SPECspeed 2017 6.9% 5.0% 7.3% 5.2%
Coreutils 5.7% 4.9% 5.9% 5.0%
OpenSSL 5.9% 5.8% 6.0% 7.2%

BinTuner

perform poorly against BinTuner generated malware sam-
ples, and the average Precision@1 score drops from 0.75 to
0.26. Table 2 shows that, by taking advantage of iterative
compilation, adversaries have a new way to evade detection.

6 Related Work

We summarized binary diffing literature in §2. This section
introduces the work most germane to BinTuner’s design.

Our work differs from “Compiler-Generated Software Di-
versity” proposed by Jackson et al. [89] in a number of ways.
Jackson et al’s work aims to avoid that a single vulnerability
compromises all vulnerable systems. Therefore, their diver-
sification methods are designed to invalidate the hard-coded
addresses of return-oriented programming (ROP) gadgets.
However, they do not focus on changing CFG/CG structures
or basic block semantics, and their diversified binaries still
share many similarities that can be detected by BinHunt. In
contrast, we take a free ride of iterative compilation to inves-
tigate to what extent compiler optimization can affect both
syntactic and semantic binary code representations, which
are the core in a binary diffing approach. To this end, we
customize iterative compilation to favor adding structural
differences to binary code.

Our study is inspired by Search-Based Software Engineer-
ing. Several papers share a similar idea to address software
security problems. Closure* [90] looks for a sequence of Ja-
vaScript obfuscation schemes so that they can produce the
optimal obfuscation potency. It also takes a guided stochastic
algorithm to explore a huge search space. To quantitatively
assess how difficult an adversary can understand an obfus-
cated JavaScript program, Closure* proposes an obscurity
language model measuring code perplexity as the objective
function. AMOEBA [91] iteratively performs a set of primi-
tive code transformations to maximize the effect of software
diversification. However, AMOEBA takes an empirical way
to prune search space rather than using the metaheuristic se-
arch. This prevents AMOEBA from investigating the order in
which code transformations can take more effect. Compared
with the heavyweight code obfuscator such as Tigress [92],
we view BinTuner’s effect as a lightweight obfuscation stra-
tegy without adding noticeable computational overheads,
but it still puts reverse engineers at a disadvantage.

7 Discussion and Future Work

We stress that our comparisons to binary diffing tools are not
a criticism of their techniques, but rather offer a cautionary

PLDI ’21, June 20-25, 2021, Virtual, Canada

note for the evaluation of the compiler optimization resis-
tance. We believe our study is inconclusive on this topic, but
reporting our experiences will nevertheless raise awareness
of compiler optimization on binary code differences. Please
note that dynamic approaches that compare system call de-
pendency graph [18, 25] or aligned API call sequence [14]
are not affected by BinTuner.

The combination of iterative compilation and binary dif-
fing shows promise, but BinTuner is still in its infancy. Alt-
hough genetic algorithm is sufficient for producing diversi-
fied code, we plan to employ other advanced search heuris-
tics (e.g., Markov chain Monte Carlo sampling [93]). Besides,
utilizing the interactions between optimization options can
further improve the search algorithm. For example, BinTuner
explores all flags involving function inlining in proximity
before moving to other groups.

Currently, we set up only one fitness function in BinTuner,
so the tuned binary code may not present the best runtime
performance. Table 3 shows the runtime speedup compari-
son, and we only find the execution speedup of OpenSSL
caused by BinTuner can compete with O3. Next, like Open-
Tuner [45], we will study constructing custom optimization
sequences that present the best tradeoffs between multiple
objective functions (e.g., execution speed & NCD). To further
reduce the total iterations of BinTuner, an exciting direction
is to develop machine learning methods that correlate C lan-
guage features with particular optimization options. In this
way, we can predict program-specific optimization strategies
that achieve the expected binary code differences.

8 Conclusion

Existing binary diffing’s resilience evaluations are limited by
the default optimization settings. In this work, we perform a
systematic study using search-based iterative compilation.
Our results demonstrate the effect of modern compiler op-
timization on binary code difference has been swept under
the carpet for a long time. We wish our study can help the
research community redesign the optimization-resistance
experiments and evaluate the compiler-agnostic capability.

Acknowledgments

We would like to thank our shepherd Yaniv David and the
anonymous paper reviewers for their helpful feedback. We
also thank VirusTotal for providing the academic API and
malware samples. This research was supported by the Nati-
onal Science Foundation (NSF) under grant CNS-1850434.

The second student author, Michael Ho, passed away on
February 12, 2018, after a courageous battle with leukemia.
Michael was dedicated to this research project and made
significant contributions. He was also a self-taught, talented
magician and performed in many events. The audience al-
ways enjoyed his humor and creativity. We will remember
his passion for research and life.

PLDI 21, June 20-25, 2021, Virtual, Canada

References

(1]

—
~
—

(9]

(10]

(1]

[12]

[13]

(14]

(16]

Gogul Balakrishnan and Thomas Reps. WYSINWYX: What You See is
Not What You eXecute. ACM Transactions on Programming Languages
and Systems (TOPLAS), 32(6), August 2010.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis. In Proceedings
of the 37th IEEE Symposium on Security and Privacy (S&P’16), 2016.
Xiaozhu Meng and Barton P. Miller. Binary Code is Not Easy. In
Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA’16), 2016.

Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. VulSeeker:
A Semantic Learning Based Vulnerability Seeker for Cross-platform
Binary. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering (ASE’18), 2018.

Yaniv David, Nimrod Partush, and Eran Yahav. FirmUp: Precise Static
Detection of Common Vulnerabilities in Firmware. In Proceedings of
the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’18), 2018.
Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. Binary Code
Clone Detection Across Architectures and Compiling Configurati-
ons. In Proceedings of the 25th International Conference on Program
Comprehension (ICPC’17), 2017.

Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu,
Chia Yuan Cho, and Tan Hee Beng Kuan. BinGo: Cross-Architecture
Cross-OS Binary Search. In Proceedings of the 2016 ACM SIGSOFT
International Symposium on the Foundations of Software Engineering
(FSE’16), 2016.

Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla.
discovRE: Efficient Cross-Architecture Identification of Bugs in Binary
Code. In Proceedings of the 23nd Annual Network and Distributed System
Security Symposium (NDSS’16), 2016.

Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and
Christian Rossow. Leveraging Semantic Signatures for Bug Search in
Binary Programs. In Proceedings of the 30th Annual Computer Security
Applications Conference (ACSAC’14), 2014.

Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and
Thorsten Holz. Cross-Architecture Bug Search in Binary Executables.
In Proceedings of the 36th IEEE Symposium on Security and Privacy
(S&P’15), 2015.

David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng.
Automatic Patch-Based Exploit Generation is Possible: Techniques and
Implications. In Proceedings of the 29th IEEE Symposium on Security
and Privacy (S&P’08), 2008.

Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and
Fu Song. SPAIN: Security Patch Analysis for Binaries Towards Under-
standing the Pain and Pills. In Proceedings of the 39th International
Conference on Software Engineering (ICSE’17), 2017.

Lei Zhao, Yuncong Zhu, Jiang Ming, Yichen Zhang, Haotian Zhang,
and Heng Yin. PatchScope: Memory Object Centric Patch Diffing. In
Proceedings of the 27th ACM Conference on Computer and Communica-
tions Securit (CCS’20), 2020.

Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. BinSim:
Trace-based Semantic Binary Diffing via System Call Sliced Segment
Equivalence Checking. In Proceedings of the 26th USENIX Conference
on Security Symposium (USENIX Security’17), 2017.

Martial Bourquin, Andy King, and Edward Robbins. BinSlayer: Accu-
rate Comparison of Binary Executables. In Proceedings of the 2nd
ACM SIGPLAN Program Protection and Reverse Engineering Workshop
(PPREW’13), 2013.

Jiyong Jang, David Brumley, and Shobha Venkataraman. BitShred:

Feature Hashing Malware for Scalable Triage and Semantic Analysis.
In Proceedings of the 18th ACM Conference on Computer and Communi-

cations Security (CCS’11), 2011.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li

Paolo Milani Comparetti, Guido Salvaneschi, Engin Kirda, Clemens
Kolbitsch, Christopher Kruegel, and Stefano Zanero. Identifying Dor-
mant Functionality in Malware Programs. In Proceedings of the 31st
IEEE Symposium on Security and Privacy (S&P’10), 2010.

Matt Fredrikson, Somesh Jha, Mihai Christodorescu, Reiner Sailer, and
Xifeng Yan. Synthesizing Near-Optimal Malware Specifications from
Suspicious Behaviors. In Proceedings of the 31st IEEE Symposium on
Security and Privacy (S&P’10), 2010.

Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. Large-scale Malware
Indexing Using Function-call Graphs. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS’09), 2009.
Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Chris-
topher Kruegel, and Engin Kirda. Scalable, behavior-based malware
clustering. In Proceedings of the 16th Annual Network and Distributed
System Security Symposium (NDSS’09), 2009.

Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland.
Asm2Vec: Boosting Static Representation Robustness for Binary Clone
Search against Code Obfuscation and Compiler Optimization. In Pro-
ceedings of the 40th IEEE Symposium on Security and Privacy (S&P’19),
2019.

Zhenzhou Tian, Qinghua Zheng, Ting Liu, Ming Fan, Eryue Zhuang,
and Zijiang Yang. Software Plagiarism Detection with Birthmarks
Based on Dynamic Key Instruction Sequences. IEEE Transactions on
Software Engineering, 41(12), 2015.

Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu.
Semantics-based Obfuscation-resilient Binary Code Similarity Compa-
rison with Applications to Software Plagiarism Detection. In Procee-
dings of the 22nd ACM SIGSOFT International Symposium on Foundati-
ons of Software Engineering (FSE’14), 2014.

Dong-Kyu Chae, Jiwoon Ha, Sang-Wook Kim, BooJoong Kang, and
Eul Gyu Im. Software Plagiarism Detection: A Graph-based Approach.
In Proceedings of the 22nd ACM International Conference on Information
& Knowledge Management (CIKM’13), 2013.

Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. Behavior
Based Software Theft Detection. In Proceedings of the 16th ACM Con-
ference on Computer and Communications Security (CCS’09), 2009.
Andreas Sebjernsen, Jeremiah Willcock, Thomas Panas, Daniel Quin-
lan, and Zhendong Su. Detecting Code Clones in Binary Executables.
In Proceedings of the 18th International Symposium on Software Testing
and Analysis (ISSTA’09), 2009.

Xin Hu, Sandeep Bhatkar, Kent Griffin, and Kang G. Shin. MutantX-S:
Scalable Malware Clustering Based on Static Features. In Proceedings
of the 2013 USENIX Conference on Annual Technical Conference (USENLX
ATC’13), 2013.

Mila Dalla Preda, Roberto Giacobazzi, Arun Lakhotia, and Isabella
Mastroeni. Abstract Symbolic Automata: Mixed Syntactic/Semantic
Similarity Analysis of Executables. In Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’15), 2015.

Rolf Rolles. Compiler Optimizations for Reverse Engineers.
https://www.msreverseengineering.com/blog/2014/6/23/compiler-
optimizations-for-reverse-engineers, 2014.

Sorav Bansal and Alex Aiken. Automatic Generation of Peephole
Superoptimizers. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’06), 2006.

Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, Grigori Fur-
sin, and Michael F. P. O’Boyle. Portable Compiler Optimisation Across
Embedded Programs and Microarchitectures Using Machine Learning,.
In Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 42), 2009.

James Pallister, Simon J. Hollis, and Jeremy Bennett. Identifying Compi-
ler Options to Minimize Energy Consumption for Embedded Platforms.
The Computer Journal, 58(1):95-109, January 2015.

https://www.msreverseengineering.com/blog/2014/6/23/compiler-optimizations-for-reverse-engineers
https://www.msreverseengineering.com/blog/2014/6/23/compiler-optimizations-for-reverse-engineers

Unleashing the Hidden Power of Compiler Optimization on Binary Code Difference PLDI ’21, June 20-25, 2021, Virtual, Canada

(S&P’17), 2017.
[50] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken.

[33] Paschalis Mpeis, Pavlos Petoumenos, and Hugh Leather. Iterative
Compilation on Mobile Devices. In the 6th International Workshop on

—

—

—

[t

—

—

[t

—

—

=

—

Adaptive Self-tuning Computing Systems, 2016.

Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G
Bringas. SoK: Deep Packer Inspection: A Longitudinal Study of the
Complexity of Run-Time Packers. In Proceedings of the 36th IEEE
Symposium on Security & Privacy (S&P’15), 2015.

Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. VMHunt: A Veri-
fiable Approach to Partial-Virtualized Binary Code Simplification. In
Proceedings of the 25th ACM Conference on Computer and Communica-
tions Security (CCS’18), 2018.

Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. Understanding Linux Malware. In Proceedings of the 39th
IEEE Symposium on Security and Privacy (S&P’18), 2018.

Jinchun Choi, Afsah Anwar, Hisham Alasmary, Jeffrey Spaulding,
DaeHun Nyang, and Aziz Mohaisen. IoT Malware Ecosystem in the
Wild: A Glimpse into Analysis and Exposures. In Proceedings of the
4th ACM/IEEE Symposium on Edge Computing, 2019.

Emanuele Cozzi, Pierre-Antoine Vervier, Matteo Dell’Amico, Yun Shen,
Leyla Bilge, and Davide Balzarotti. The Tangled Genealogy of IoT Mal-
ware. In Proceedings of the 36th Annual Computer Security Applications
Conference (ACSAC’20), 2020.

Li Wang, Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. Meta-
Hunt: Towards Taming Malware Mutation via Studying the Evolution
of Metamorphic Virus. In Proceedings of the 3rd International Workshop
on Software PROtection (SPRO’19), 2019.

Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma,
Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt
Thomas, and Yi Zhou. Understanding the Mirai Botnet. In Proceedings
of the 26th USENIX Security Symposium (USENIX Security’17), 2017.
P.M.W. Knijnenburg, T. Kisuki, and M.F.P.O’Boyle. Iterative Compila-
tion. In Proceedings of the 2002 International Workshop on Embedded
Computer Systems, 2002.

Keith D. Cooper, Devika Subramanian, and Linda Torczon. Adaptive
Optimizing Compilers for the 21st Century. The Journal of Supercom-
puting, 23(1), 2002.

Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack
Davidson, and Douglas Jones. Fast Searches for Effective Optimization
Phase Sequences. In Proceedings of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation (PLDI'04), 2004.
Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang
Peng, Olivier Temam, and Chengyong Wu. Evaluating Iterative Op-
timization Across 1000 Datasets. In Proceedings of the 31st ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI’10), 2010.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
OpenTuner: An Extensible Framework for Program Autotuning. In
Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation (PACT’14), 2014.

Ming Li and Paul M.B. Vitnyi. An Introduction to Kolmogorov Com-
plexity and Its Applications. Springer-Verlag New York, third edition,
2008.

Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin.
Obfuscator-LLVM - Software Protection for the Masses. In Procee-
dings of the IEEE/ACM 1st International Workshop on Software Protection
(SPRO’15), 2015.

Yaniv David, Nimrod Partush, and Eran Yahav. Statistical Similarity
of Binaries. In Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI’16), 2016.
Dongpeng Xu, Jiang Ming, and Dinghao Wu. Cryptographic Function

Detection in Obfuscated Binaries via Bit-precise Symbolic Loop Map-
ping. In Proceedings of the 38th IEEE Symposium on Security and Privacy

Data-driven Equivalence Checking. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’13), 2013.

Shuai Wang and Dinghao Wu. In-memory Fuzzing for Binary Code
Similarity Analysis. In Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering (ASE’17), 2017.
Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley.
Blanket Execution: Dynamic Similarity Testing for Program Binaries
and Components. In Proceedings of the 23rd USENIX Security Sympo-
sium (USENIX Security’14), 2014.

Joan Calvet, José M. Fernandez, and Jean-Yves Marion. Aligot: Cryp-
tographic Function Identification in Obfuscated Binary Programs. In
Proceedings of the 19th ACM Conference on Computer and Communica-
tions Security (CCS’12), 2012.

Yaniv David, Nimrod Partush, and Eran Yahav. Similarity of Bina-
ries through re-Optimization. In Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI'17), 2017.

Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa,
and Heng Yin. Scalable Graph-based Bug Search for Firmware Images.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS’16), 2016.

Fei Zuo, Xiaopeng Li, Zhexin Zhang, Patrick Young, Lannan Luo,
and Qiang Zeng. Neural Machine Translation Inspired Binary Code
Similarity Comparison beyond Function Pairs. In Proceedings of the
26th Network and Distributed System Security Symposium (NDSS’19),
2019.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song.
Neural Network-based Graph Embedding for Cross-Platform Binary
Code Similarity Detection. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS’17), 2017.
Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua
Piao, and Wei Zou. aDiff: Cross-version Binary Code Similarity De-
tection with DNN. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE’18), 2018.

Halvar Flake. Structural Comparison of Executable Objects. In Procee-
dings of the 2004 GI International Conference on Detection of Intrusions
& Malware, and Vulnerability Assessment (DIMVA’04), 2004.

Google LLC. BinDiff: Graph Comparison for Binary Files. https:
//www.zynamics.com/bindiff.html, 2017.

Hex-Rays. IDA Pro Dissasember. https://www.hex-rays.com/products/
ida, [online].

Debin Gao, Michael K. Reiter, and Dawn Song. BinHunt: Automatically
Finding Semantic Differences in Binary Programs. In Poceedings of
the 10th International Conference on Information and Communications
Security (ICICS’08), 2008.

Ya Liu and Hui Wang. Tracking Mirai Variants. 2018 Virus Bulletin,
October 2018.

VirusTotal. VT Intelligence: Combine Google and Facebook and apply
it to the field of Malware. https://www.virustotal.com/gui/intelligence-
overview, [online].

Brian Krebs. Source Code for IoT Botnet Mirai Released.
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-
mirai-released/, October 2016.

Ashkan Rahimian, Paria Shirani, Saed Alrbaee, Lingyu Wang, and Mou-
rad Debbabi. BinComp: A Stratified Approach to Compiler Provenance
Attribution. Digital Investigation, 14(S1), August 2015.

William D. Clinger. Proper Tail Recursion and Space Efficiency. In
Proceedings of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation (PLDI’98), 1998.

Franck de Goér, Sanjay Rawat, Dennis Andriesse, Herbert Bos, and
Roland Groz. Now You See Me: Real-time Dynamic Function Call

https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.virustotal.com/gui/intelligence-overview
https://www.virustotal.com/gui/intelligence-overview
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/

PLDI 21, June 20-25, 2021, Virtual, Canada

(69]

(70]

(71]

(72]

(73]

(74]

[75]
(76]
(7]

(78

[t

[79

—

(80

[

(81]

Detection. In Proceedings of the 34th Annual Computer Security Appli-
cations Conference (ACSAC’18), 2018.

Yaniv David and Eran Yahav. Tracelet-based Code Search in Exe-
cutables. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’'14), 2014.
Robert L. Bernstein. Producing Good Code for the Case Statement.
Software: Practice and Experience, 15(10), 1985.

Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland.
Kam1n0: MapReduce-based Assembly Clone Search for Reverse Engi-
neering. In Proceedings of the 22nd ACM SIGKDD International Confe-
rence on Knowledge Discovery and Data Mining (KDD’16), 2016.
Torbjorn Granlund and Peter L. Montgomery. Division by Invariant
Integers Using Multiplication. In Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation
(PLDI’94), 1994.

GCC team. Auto-Vectorization in GCC. https://www.gnu.org/software/
gcc/projects/tree-ssa/vectorization.html, 2018.

Maria Jesus Garzaran and David Padua. Tutorial: Program Optimiza-
tion through Loop Vectorization. 2011 International Symposium on
Code Generation and Optimization (CGO’11), 2011.

LLVM team. Auto-Vectorization in LLVM. https://llvm.org/docs/
Vectorizers.html, 2018.

GCC team. 6.57 Other Built-in Functions Provided by GCC. https://gcc.
gnu.org/onlinedocs/gcc/Other-Builtins.html#Other-Builtins, 2018.
Henry S. Warren. Hacker’s Delight. Addison-Wesley Longman Publis-
hing Co., Inc., Boston, MA, USA, 2002.

Laszl6 Nagy. scan-build. https://github.com/rizsotto/scan-build, [on-
line].

Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing,
4(2):65-85, 1994.

Nadia Alshahwan, Earl T. Barr, David Clark, George Danezis, and
Héctor D. Menéndez. Detecting Malware with Information Complexity.
Entropy, 22(5), 2020.

Edward Raff and Charles Nicholas. An Alternative to NCD for Large
Sequences, Lempel-Ziv Jaccard Distance. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’17), 2017.

[82]

[83]

[84]

(85]

[86]

[87]

[88]
[89]

[90]

[o1]

[92]

[93]

Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li

Rebecca Schuller Borbely. On Normalized Compression Distance and
Large Malware. Journal of Computer Virology and Hacking Techniques,
12(4), November 2016.

Edward Raff and Charles Nicholas. Malware Classification and Class
Imbalance via Stochastic Hashed LZJD. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security (AlSec’17), 2017.

Ming Li, Xin Chen, Xin Li, Bin Ma, and P. M.B. Vitanyi. The Similarity
Metric. IEEE Transactions on Information Theory, 50(12), December
2004.

Igor Pavlov. LZMA SDK (Software Development Kit). https://www.7-
zip.org/sdk.html, 2018.

Leonardo De Moura and Nikolaj Bjerner. Z3: An Efficient SMT Sol-
ver. In Proceedings of the 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2008.

Reena Panda, Shuang Song, Joseph Dean, and Lizy K. John. Wait of a
Decade: Did SPEC CPU 2017 Broaden the Performance Horizon? In Pro-
ceedings of the 24th IEEE International Symposium on High-Performance
Computer Architecture (HPCA’18), 2018.

Fei Ding. Iot malware. https://github.com/ifding/iot-malware, 2017.
Todd Jackson, Babak Salamat, Andrei Homescu, Karthikeyan Mani-
vannan, Gregor Wagner, Andreas Gal, Stefan Brunthaler, Christian
Wimmer, and Michael Franz. Moving Target Defense: Creating Asymme-
tric Uncertainty for Cyber Threats, volume 54 of Advances in Information
Security, chapter Compiler-Generated Software Diversity, pages 77-98.
Springer, 2011.

Han Liu, Chengnian Sun, Zhendong Su, Yu Jiang, Ming Gu, and Ji-
aguang Sun. Stochastic Optimization of Program Obfuscation. In
Proceedings of the 39th International Conference on Software Engineer-
ing (ICSE’17), 2017.

Shuai Wang, Pei Wang, and Dinghao Wu. Composite Software Diver-
sification. In Proceedings of the 33rd IEEE International Conference on
Software Maintenance and Evolution (ICSME’17), 2017.

Christian Collberg. The Tigress C Obfuscator. https://tigress.wtf/,
[online].

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic Superopti-
mization. In Proceedings of the 18th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS’13), 2013.

https://www.gnu.org/software/gcc/projects/tree-ssa/vectorization.html
https://www.gnu.org/software/gcc/projects/tree-ssa/vectorization.html
https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#Other-Builtins
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#Other-Builtins
https://github.com/rizsotto/scan-build
https://www.7-zip.org/sdk.html
https://www.7-zip.org/sdk.html
https://github.com/ifding/iot-malware
https://tigress.wtf/

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Binary Diffing Research
	2.2 Mixed Syntactic and Semantic Binary Code Representations
	2.3 BinDiff & BinHunt
	2.4 Non-default Optimization Effects

	3 Compiler Optimization Effects on Binary Code Differences
	3.1 Effect on Syntactic-Level Properties
	3.2 Effect on Semantic-Level Properties

	4 BinTuner Design
	4.1 Overview
	4.2 Fitness Function Selection

	5 Evaluation
	5.1 BinTuner's Efficacy
	5.2 Compiler Optimization Impact on Code Similarity Representations
	5.3 Optimization Flag Potency
	5.4 Comparative Evaluation of Prominent Binary Diffing Approaches
	5.5 Tuning IoT Malware

	6 Related Work
	7 Discussion and Future Work
	8 Conclusion
	References
	A BinHunt Difference Score Calculation
	B Metaheuristic Search: Genetic Algorithm
	C Correlation Between NCD and BinHunt
	D Cross Comparison

