Towards Transparent and Stealthy Android OS Sandboxing via
Customizable Container-Based Virtualization

Wenna Song"?, Jiang Ming>", Lin Jiang*, Yi Xiang"?, Xuanchen Pan®, Jianming Fu'?

Guojun Peng

L2t

!School of Cyber Science and Engineering, Wuhan University, China
2Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, China
3University of Texas at Arlington, Arlington, TX 76019, USA
*Independent Researcher, *Wuhan Antiy Information Technology Co.,Ltd, China

ABSTRACT

A fast-growing demand from smartphone users is mobile virtualiza-
tion. This technique supports running separate instances of virtual
phone environments on the same device. In this way, users can run
multiple copies of the same app simultaneously, and they can also
run an untrusted app in an isolated virtual phone without causing
damages to other apps. Traditional hypervisor-based virtualiza-
tion is impractical to resource-constrained mobile devices. Recent
app-level virtualization efforts suffer from the weak isolation mech-
anism. In contrast, container-based virtualization offers an isolated
virtual environment with superior performance. However, exist-
ing Android containers do not meet the anti-evasion requirement
for security applications: their designs are inherently incapable of
providing transparency or stealthiness.

In this paper, we present VPBox, a novel Android OS-level sand-
box framework via container-based virtualization. We integrate
the principle of anti-virtual-machine detection into VPBox’s design
from two aspects. First, we improve the state-of-the-art Android
container work significantly for transparency. We are the first to
offer complete device virtualization on mainstream Android ver-
sions. To minimize the fingerprints of VPBox’s presence, we enable
all virtualization components (i.e., kernel-level device and user-
level device virtualization) to be executed outside of virtual phones
(VPs). Second, we offer new functionality that security analysts
can customize device artifacts (e.g., phone model, kernel version,
and hardware profiles) without user-level hooking. This capabil-
ity prevents the tested apps from detecting the particular mobile
device (e.g., Google Pixel phone) that runs an Android container.
Our performance evaluation on five VPs shows that VPBox runs
different benchmark apps at native speed. Compared with other
Android sandboxes, VPBox is the only one that can bypass a set of
virtual environment detection heuristics. At last, we demonstrate
VPBox’s flexibility in testing environment-sensitive malware that
try to evade sandboxes.

 Guojun Peng (guojpeng@whu.edu.cn) and Jiang Ming (jiang ming@uta.edu) are the
corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11...$15.00
https://doi.org/10.1145/3460120.3484544

CCS CONCEPTS

« Security and privacy — Mobile and wireless security.

KEYWORDS

Container-Based Virtualization, Android OS Sandboxing, Anti-
Evasion

ACM Reference Format:

Wenna Song, Jiang Ming, Lin Jiang, Yi Xiang, Xuanchen Pan, Jianming
Fu, Guojun Peng. 2021. Towards Transparent and Stealthy Android OS
Sandboxing via Customizable Container-Based Virtualization. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS "21), November 15-19, 2021, Virtual Event, Republic of Korea.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3460120.3484544

1 INTRODUCTION

With the proliferation of mobile systems and networks, smart-
phones are replacing traditional personal computers to fulfill most
users’ daily computing needs [22, 27]. The trend of Bring Your
Own Device [13] has paved the way for another fast-growing de-
mand: mobile virtualization. It allows users to run multiple separate
instances of smartphone environments on the same physical de-
vice. Although Android’s multiple users feature [7] can switch
among different user accounts without leveraging virtualization,
researchers have found a significant number of vulnerabilities from
this new feature due to its weak isolation mechanism [1, 52]. Espe-
cially, mobile apps are now performing various critical tasks such
as online payment [76], GPS navigation [68], and IoT device remote
control [32]. Inevitably large amounts of private data, such as user
credentials and location data, are stored in the smartphone. The rise
in risks of data thefts and fraudulent attacks [33, 38] also drives the
trend of secure mobile virtualization, which can provide an isolated
environment to run untrusted apps and monitor their behaviors.
Resource-constrained mobile devices limit the adoption of tradi-
tional hypervisor-based virtualization [14, 21, 59]. Security experts
and researchers have been analyzing Android apps dynamically us-
ing emulators [41, 43, 53, 64, 75] on top of a PC. However, traditional
Android emulators are often slow in performance and leave plenty
of fingerprints regarding the runtime environment, hardware ef-
fects, and device artifacts. As they are fundamentally different from
real devices, a broad spectrum of anti-emulation heuristics has been
proposed to detect emulators [16, 30, 34, 45, 50, 55, 69]. The recent
progress on app-level virtualization can run multiple copies of the
same app within a host app [11, 12, 51]. The most representative
one, Parallel Space [42], has been downloaded hundreds of mil-
lion times. However, their weak isolation mechanism violates the

https://doi.org/10.1145/3460120.3484544
https://doi.org/10.1145/3460120.3484544

least-privilege principle, leading to possible permission escalation
attacks to guest apps [20, 56, 57, 77, 78].

In contrast, container-based virtualization can potentially over-
come the limitations that exist on both hypervisor-based and app-
level virtualization. It is lightweight OS-level virtualization that
allows several isolated guest virtual machines to run on top of
the Operating System (OS) kernel [28, 61]. Because a container
is managed by the OS kernel and executes directly on the hard-
ware, it is able to provide a close-to-native virtual environment
with high performance. Moreover, as a container does not have
software-emulated hardware, the fingerprint of its presence is also
minimized [18, 36, 37].

Cells [10] is the first Android container architecture to run mul-
tiple virtual phones (VPs) on a single Android instance. However,
the design of Cells does not meet the anti-evasion requirement.
Its user-level virtualization method introduces non-system compo-
nents into the VP. The VP’s apps, running at the same privilege
level as these virtualization components, can find suspicious files
and processes via interface scanning. Besides, Cells’s virtualization
of many devices has been obsolete (e.g., Binder, Network, Display,
and Power), and it also lacks support for some essential devices,
such as Bluetooth and GPS. Furthermore, Cells is inherently inca-
pable of customizing the VP’s device attributes stealthily. All of
these limitations (i.e., the deficiency in stealthiness, incomplete
device virtualization, and a lack of device attribute customization)
can be exploited by adversaries to fingerprint the presence of the
VP. Other follow-up container frameworks [17, 71, 73] share simi-
lar limitations of lacking transparency and stealthiness, restricting
their applications to security-related tasks.

This project seeks to integrate the principle of anti-evasion into
the development of a new Android OS-level sandbox, called VP-
Box.! We achieve this goal through two contributions: 1) improving
the state-of-the-art Android container work significantly so that
transparent virtualization works on mainstream Android versions;
2) customizing the virtual phone’s device attributes stealthily to
bypass the ad-hoc fingerprinting for a specific phone model.

In particular, we improve Cells [10] significantly to achieve the
goal of “out-of-the-box” virtualization: having no in-guest virtual-
ization component. VPBox consists of kernel-level and user-level
device virtualization methods. The kernel-level mechanism enables
transparency and performance, and it also paves the way for our
novel user-level device virtualization. For the proprietary devices
that are entirely closed source (e.g., Bluetooth) and the devices
whose configurations happen at user space (e.g., WiFi), we propose
a stealthy user-level device virtualization mechanism without com-
promising transparency. In addition, we take a set of optimization
techniques to minimize memory consumption. To enforce a fine-
grained access control policy and record system calls invoked, we
also virtualize SELinux to enable SELinux settings for each VP.

Although apps are difficult to recognize the difference between
VPBox and the underlying physical device, they can still finger-
print the particular smartphone (e.g., Google Pixel phone) that
runs VPBox. We address this limitation by allowing users to config-
ure the VP with various device attributes (e.g., phone model and
hardware profiles). Unlike existing work that relies on user-level

1“VPBox” means running Virtual Phones as an OS-level SandBox.

hooking [54], our customization methods are more stealthy be-
cause they run outside of the VP. VPBox leverages the new device
namespace mechanism to isolate the VP’s requests from the host’s,
and it returns the custom parameters to the VP’s inquiries. Our
isolation design ensures that an app in the VP is unaware of the
custom device artifacts. This new feature also enables security ap-
plications that require diversified virtual phones, such as analyzing
logic bombs [29] that are triggered by particular device artifacts.

VPBox has been tested to support Android versions from 6.0
to 10.0. Our performance experiments, running a set of bench-
mark apps in up to five VPs on Google Nexus 6P and Pixel 3a
XL phones, demonstrate that VPBox introduces negligible runtime
overhead and only modest memory consumption. Unlike emulators,
VPBox’s native performance indicates measuring execution time’s
variability will fail to detect it. Next, we test Android emulators, app-
virtualization sandboxes, and Android containers using mainstream
virtual environment detection heuristics [16, 34, 50, 55, 56, 69, 78],
such as detecting Android system properties, sensor events, video
frame rate, and instruction-level profiles. VPBox is the only one to
exhibit the same hardware effects and device artifacts as the under-
lying physical device. Besides, VPBox is immune to two advanced
unsafe environment detection APIs: Google SafetyNet’s “basicIn-
tegrity” [5] and ishumei [60]. They can recognize the environment
of Android emulators, app-level virtualization, API hooking, and
rooted device, but they fail to detect VPBox. At last, we evaluate
VPBox’s resilience against 1, 961 environment-sensitive malware,
including samples that try to detect Google phones.

Threat Model. We assume the apps running in the VP are
unprivileged user-mode programs. This assumption is also held
by bare-metal malware analysis frameworks such as BareBox [39]
and BareDroid [48]. That being said, a skilled attacker may exploit
a Linux kernel zero-day vulnerability to compromise VPBox. For
this reason, we disable the loading of arbitrary kernel modules
and prevent user-level apps from accessing kernel memory. §9 will
discuss whether VPBox introduces the new artifacts (if any) that
can be exploited by adversaries. In a nutshell, our research makes
the following contributions.

o A Transparent Android Container Framework. VPBox
represents the latest progress in mobile container-based vir-
tualization. Our “out-of-the-box” design advances state of the
art in transparent device virtualization. Our user-level vir-
tualization solution offers a flexible and stealthy alternative
to virtualize new hardware devices without compromising
transparency.

e Device Attribute Customization. In VPBox, each VP’s
artifacts are highly customizable without user-level hooking.
This new feature offers a cost-effective way to simulate more
diversified VPs on a single device. To the best of our know-
ledge, VPBox offers the most comprehensive device-attribute
editing options so far.

e Open-source Implementation. VPBox reveals a strong
resilience against virtual-machine detection heuristics and
device-consistency checks, as well as native performance.
VPBox’s demo video is available at https://youtu.be/TpGD_
jjxSqc. To foster more research on the VPBox platform, we

https://youtu.be/TpGD_jjxSqc
https://youtu.be/TpGD_jjxSqc

release VPBox’s source code at (https://github.com/VPBox/
Dev).

2 BACKGROUND AND RELATED WORK

We first summarize two common Android virtualization techniques
that do not rely on new hardware features (e.g., TrustZone [35]):
Android emulators and app-level virtualization. Their deficiencies
in lacking transparency and stealthiness have been utilized as effec-
tive evasion methods. Next, we discuss the status quo of Android
container-based virtualization. It is a new style, lightweight vir-
tualization technique, but the weaknesses of existing containers
severely limit their adoptions in security applications. Our project
unleashes the power of container-based virtualization to foster
strengths and circumvent weaknesses of the current work. At last,
we introduce the background about Binder. Our Binder virtualiza-
tion enables having no in-guest virtualization component at user
level.

2.1 Android Emulators

Android sandboxes based on full-system emulation provide an iso-
lated environment to collect app behaviors [41, 43, 53, 64, 75]. Upon
analysis completion, the virtual environment can be restored to a
clean snapshot in a matter of seconds. Security analysts typically
run Android malware in an emulator to observe malicious behaviors.
However, a long-standing challenge of emulators is to virtualize
various hardware device effects realistically. It is fundamentally
infeasible to make hardware emulation and native hardware in-
distinguishable [31]. Researchers have proposed a set of detection
heuristics to find the hardware-related discrepancies caused by non-
transparent system emulation techniques [16, 30, 34, 45, 50, 55, 69],
and many of them have been adopted by malware [3]. For example,
due to the performance slowdown in graphics rendering emulation,
Android emulators typically exhibit a low video frame rate [69].
Petsas et al. detect QEMU-based emulators by checking the vir-
tual program counter update and cache consistency [50]. Bordoni
et al. find that sensor-related APIs’ return values are different be-
tween mobile emulators and real devices [16]. Sahin et al. uncovered
instruction-level discrepancies between software-based emulators
and real ARM CPUs [55].

In contrast, VPBox’s container-based virtualization has a unique
advantage in the transparent virtualization effect: VPBox does not
have software-emulated hardware, and the foreground VP can al-
ways access hardware devices and run apps at native speed.

2.2 App-Level Virtualization

The recent app-virtualization development (e.g., Virtual App [11],
DroidPlugin [51], and Parallel Space [42]) provides a more light-
weight option to run multiple copies of the same app on a single
device, such as accessing Facebook simultaneously with two dif-
ferent accounts. The key idea is that a host app provides a virtual
environment on top of the Android framework, and it creates sys-
tem service proxies to launch arbitrary guest apps from their APK
files without installation. Due to the dynamic proxy hooking, the
actions from a guest app will be treated by the Android system as
the host app’s actions. In this way, two copies of the same app are
able to bypass the UID restriction and execute at the same time.

Despite the growing popularity of app-virtualization-based apps
in the Android market, researchers have realized the security prob-
lems caused by this new technical progress [20, 56, 57, 77, 78]. As all
guest apps share the same UID with the host app, the current design
introduces a serious “shared-everything” threat to guest apps [56],
which has made malicious attacks such as permission escalation
and privacy leakage tremendously easier. Although guest apps can
also directly access the Android device that installs the host app, the
host app has to hook API invocations of the guest app so that the
Android system thinks that all API requests and components are
from the host app. However, the hooking mechanism leaves many
host app’s signatures in the guest app’s call stack and memory;
DiPrint [56] utilizes these signatures to detect the presence of an
app-virtualization environment.

By contrast, VPBox can achieve the same goal of running multi-
ple instances of the same app simultaneously, but with a stronger
isolation mechanism among virtual phones and the host device.
Furthermore, VPBox’s virtualization and customization do not
adopt user-level API hooking and thus has better stealthiness than
app-level virtualization.

2.3 Android Container-Based Virtualization

The container-based virtualization reveals distinct benefits in per-
formance and transparent hardware virtualization effects. Initial
investigations on Linux Containers [18, 36] and Docker [37] have
shown that container-based virtualization is very promising to de-
feat emulator-aware malware. However, these works [18, 36, 37] did
not deliver a functional mobile virtualization platform, and many
important topics, such as how to hide new artifacts introduced by
containers and an extensive evaluation with existing anti-virtual-
machine heuristics, are still missing. Our research bridges this gap.
Challenges. Compared with the rise of container-based virtu-
alization in PC and server platforms [2, 26, 72], Android container’s
development has to overcome the challenge of hardware resource
multiplexing. Especially, many mobile devices are physically not
designed for multiplexing (e.g., WiFi and Bluetooth). For the An-
droid OS, at least the devices and pseudo-device drivers listed in
Table 1 must be fully supported. However, none of the existing
Android containers can meet this goal. Besides, to facilitate a rapid
transplantation and upgrade of the Android system, Android 8.0 re-
architected the vendor interface in the Android OS framework [46].
This new update invalidates existing virtualization methods on
multiple devices, such as Telephony, Display, Network, and Binder.
Another take-away message from Table 1 is that none of the
existing work can meet the “out-of-the-box” design; that is, all
of them have in-guest virtualization components that run at the
same privilege level as the VP’s apps. As a result, it is trivial to
detect whether an app is running in these containers by scanning
suspicious non-system files and processes. Furthermore, as shown
in Table 1’s gray color row, no existing work can customize the VP’s
device attributes. As we will present in §7, stealthy customization
is impossible without the “out-of-the-box” virtualization design.
Cells [10]. Cells is the pioneering work of mobile container-
based virtualization. Limited by the small-scale touchscreen, Cells
introduces a usage model of having one foreground VP and other
VPs running in the background. The VP running in the foreground

https://github.com/VPBox/Dev
https://github.com/VPBox/Dev

Table 1: The comparison of devices, pseudo-device drivers, and services among five Android container-based virtualization
solutions. Cellrox [17] is Cells’s commercial version. The labels O/@ indicate the virtualization is missing (O) or enabled (@®). ©
means the virtualization has been outdated in mainstream Android versions. The marks v//X indicate the device virtualization

meets the “out-of-the-box” design (V') or not (X).

Description

‘ Cells [10] Cellrox [17] Condroid [73] VMOS [71] VPBox

Device/Pseudo Device!

Display Display screen graphics 0,V o,V 0. X 0, X e.v
Filesystem SD card partition virtualization 0,V R4 R4 R4 e,v
Power Power management 0.V 0,/ 0. X 0. X e v
Binder Inter-process communication 0,V o,V 0. X 0, X e.v
Input Touchscreen and input buttons e.v e/ O, X O, X e/
Network Core network resources 0,V o,V 0 X O, X e.v
WiFi Wireless connection configuration 0. X 0. X 0. X @) e.v
Telephony Incoming/outgoing calls 0, X O, X O O e.v
GPU Graphics processing unit 0.V o,V O 0, X e.v
Sensors Light sensor and accelerometer e.v e,V @) 0, X e v
Camera Video and still-frame input @) O 0, X 0, X e.v
Audio Speakers, microphone @) O 0. X (©) e
GPS Global positioning system @) O (@) @) e.v
Bluetooth Short-range wireless communication @) O @) @] e v
ADB Command-line utility for debugging @) O @) @) e.v
Service

Multiple virtual phones [] [] [] (@) []
Reduce memory consumption © © © (©) []
Security-Enhanced Linux in Android @) O O (©) []
Device attribute customization (@) @) O (@) []
The latest Android version supported 4.0.3 5.1 442 5.1 10.0

IPseudo-device drivers (e.g., Binder) are parts of the kernel that act like device drivers but do not correspond to any actual hardware.

is displayed at any time and is always given direct access to hard-
ware devices. Cells invents a new device namespace mechanism
to support efficient hardware resource multiplexing, and each VP is
associated with a unique device namespace for device interactions.
In addition to the kernel-level virtualization, Cells also integrates
user-level device virtualization methods to handle proprietary de-
vices with closed software stacks. Unfortunately, many of Cells’s
device virtualization methods are either incompatible with new
Android versions or leave in-guest components. Furthermore, it
also lacks some essential device virtualization solutions that are
indispensable to a malware sandbox. For example, as no existing
work can virtualize Bluetooth because of its complexity, malware
can easily check Bluetooth profiles (e.g., Bluetooth MAC Address)
to differentiate a sandbox from a real machine [4, 69].

Condroid [73] & VMOS [71]. Condroid and VMOS, two follow-
up Android containers, share similar limitations with Cells in trans-
parency and customization. Condroid transplants the Linux Con-
tainer tools [44] to Android and makes the most of the modifications
at the Android framework layer; it ensures the isolation of contain-
ers by leveraging namespaces and cgroups. VMOS runs another
Android OS as the guest operating system by mounting the virtual
root file system and virtualizing the JAVA runtime. VMOS’s virtual
system and the host phone share the host’s native libraries to access
hardware devices. Compared with Cells, VMOS’s implementation
is simpler, but at the cost of a weaker container isolation mecha-
nism. Except for the mount namespace, VMOS’s virtual system and
the host device have the same namespaces, which cannot isolate
operating system resources.

Summary. The existing Android containers are not qualified to
be an OS-level sandbox for security applications. Their limitations
on outdated/incomplete device virtualization, having in-guest com-
ponents, and a lack of device customization, can all be exploited
by attackers as new fingerprints to detect the presence of Android
containers. Our work delivers a novel Android container platform
with strong anti-evasion capability, even to a dedicated adversary.

2.4 Binder

Binder is the Android-specific inter-process communication (IPC)
mechanism and the remote method invocation system. Binder con-
sists of Binder driver, ServiceManager, server, and client. The Binder
driver is a pseudo device in the kernel and does not correspond to
the physical device. Userspace processes supporting the Binder com-
munication will create corresponding Binder data structures (e.g.,
binder_proc, binder_node) in the kernel to maintain the process
state. The server is the Binder service. ServiceManager is a special
Binder service. The Android kernel creates a global binder_node
object binder_context_mgr_node in the Binder driver to indicate
that it is the Binder service manager and set handler=0 for other
client processes to call. When the client (e.g., App) requests the
Binder service, it will obtain the ServiceManager service by calling
the handler with a value of 0. ServiceManager finally queries the
binder_node from the server according to the list of services it
maintains and binds it to binder_node from the client to implement
the client-to-server binder interface call.

Virtual Phone

Host Root Namespace (Foreground)

Device Namespace

Proxy
Telephony| | Bluetooth

Binder Service Sharing

Virtual
Phones

WiFi
Configuration

Audio &
Camera

| GPU

Display

Kernel-Level Device Virtualization

Sensors | [Binder

Input Power | | Network

| ors |

i

| Namespace(pid, uts, mnt, net, user, ipc, device)
cgroups chroot

Linux Kernel

Figure 1: Overview of VPBox’s architecture. The names in
red represent Cells’s modules reused by VPBox.

3 VPBOX SYSTEM OVERVIEW

VPBox is a transparent and stealthy Android OS-level sandbox via
a novel, customizable container-based virtualization technique. To
enable the application to security related tasks, VPBox’s design is
capable of meeting the following two progressive requirements:

(1) Transparency. This requirement involves two aspects: a)
the virtualized device exhibits the same hardware effects as
the underlying physical device; b) complete virtualization
support for all devices and services listed in Table 1.

(2) Stealthiness. On top of the transparency, this requirement
ensures a dedicated adversary in the VP is difficult to finger-
print the presence of the container, including the presence of
virtualization components and the particular mobile device
that runs the container.

Existing Android containers partially meet the transparency re-
quirement due to their incomplete device virtualization, but no one
satisfies the stealthiness requirement. The last column of Table 1
shows VPBox’s advantages. All of the devices and services listed in
Table 1 are fully supported by VPBox, including hardware devices,
pseudo-device drivers, and necessary services to the Android sys-
tem (e.g., Bluetooth, ADB, and SELinux). Security analysts are free
to configure different device artifacts and then boot up diversified
virtual environments. To achieve the goal of stealthiness, we enable
our device virtualization and the customization of device-specific
attributes to be executed outside of VPs.

Figure 1 provides an overview of VPBox’s device virtualiza-
tion. VPBox retains the foreground-background VP usage model of
Cells [10]. Each isolated VP runs a stock Android userspace envi-
ronment. The VP running in the foreground can always have direct
access to hardware devices. VPBox utilizes Linux namespaces and
the device namespace introduced by Cells to remap OS resource
identifiers to VPs. Each VP has its private namespace so that it does
not interfere with the other VPs and the host. The names in red

in Figure 1 represent Cells’s modules reused by VPBox. We reuse
Cells’s kernel-level virtualization methods that still work in the
latest Android version, including Input (e.g., touchscreen and input
buttons) and Sensors (e.g., accelerometer and light sensors). The
virtualization of Input and Sensors is to modify a device subsystem
to be aware of the device namespace. We also keep two custom
processes, “Cellc” and “CellD,” in the host device’s root namespace;
they manage the service of booting up a VP and switching VPs be-
tween the foreground and background. CellD also coordinates our
ADB virtualization. We add a control center app for VPBox users to
start and switch VPs swiftly. More importantly, we improve Cells
in four significant ways to meet our requirements on transparency
and stealthiness.

(1) We design kernel-level device virtualization to be compati-
ble with device changes in the new Android systems. Our
method makes it possible to have no in-guest virtualization
component for our user-level device virtualization(§4).

(2) We propose a novel user-level virtualization mechanism,
which offers a flexible and stealthy solution to virtualize new
hardware devices without compromising transparency (§5).

(3) We take new measures to reduce memory consumption and
enable SELinux settings for each VP (§6).

(4) We provide a broad spectrum of options to customize the
VP’s device attributes stealthily. This enables us to simulate
more diversified VPs on a single device (§7).

4 KERNEL-LEVEL DEVICE VIRTUALIZATION

Kernel-level device virtualization provides efficient hardware re-
source multiplexing, and it is also transparent to user-mode apps
running in VPs. Our kernel-level mechanism enables the virtualiza-
tion of Binder, power management, core network resource, and GPS
on mainstream Android versions. Our key method is to rewrite the
source code of kernel drivers to be aware of the device namespace.
Next, we use Binder and GPS as examples to present the strategy of
our kernel-level device virtualization. We put core network resource
and power management virtualization in Appendix A.

Binder. Binder allows high-level framework APIs to cross pro-
cess boundaries and interact with Android system services. The
Binder driver consists of three pseudo-device drivers. In addition
to the traditional “/dev/binder” driver, the Android system adds
another two Binder drivers since Android 8.0: “/dev/hwbinder” and
“/dev/vndbinder”; they are used for IPC between framework/vendor
processes and IPC between vendor/vendor processes [8]. Without
Binder virtualization, Binder’s IPC feature can be abused by dif-
ferent container processes, violating the system isolation between
containers. In VPBox, we have modified all Binder drivers’ data
structures to enable IPC between two processes that share the same
device namespace. Binder driver virtualization is the foundation of
our new user-level device virtualization technique (see §5), which
allows a service process in the VP to share the corresponding ser-
vice in the host system and leaves no virtualization component in
the VP’s userspace.

GPS. GPS provides a more accurate positioning service than
network positioning, but existing Android containers do not sup-
port GPS virtualization. GPS relies on a physical chip for loca-
tion tracking. In the Android framework layer, the GPS provider,

GpsLocationProvider, calls the hardware abstraction layer (HAL)
interface via Java Native Interface methods. The HAL interface inter-
acts with the GPS chip through “/dev/gss” driver. The GPS chip is an
active tracking device. After a user’s first request, the GPS chip will
continue to report the location information to GpsLocationProvider
without interruption. However, the GPS chip only supports one
connection. Our virtualization of GPS is to rewrite “/dev/gss” dri-
ver to support multiple connections. We modify “gss_open” and
“gss_event_output” functions so that the location information re-
ceived from the chip is forwarded to multiple clients simultaneously.
The location information goes through HAL and eventually reaches
GpsLocationProvider in the Android framework layer of the host
and virtual phones, respectively.

5 USER-LEVEL DEVICE VIRTUALIZATION

User-level device virtualization is necessary, because some hard-
ware vendors provide proprietary software stacks that are com-
pletely closed source. Without hardware vendor’s support, it would
be difficult, if not impossible, to virtualize them in the kernel. VP-
Box’s user-level virtualization achieves the goal of having no in-
guest virtualization component by developing two new methods,
which enable the VP space to retain native-like system components.

1. Binder Service Sharing For the system services registered
in ServiceManager (e.g., WifiService & SurfaceFlinger), we pro-
pose a new, general virtualization technique via Binder service
sharing. We first modify the Binder-driver data structure (e.g.,
context_mgr_node, procs, and dead_nodes) to ensure that each
VP has its own Binder-driver data structure. Next, we create a
new specific handler in Binder’s data structure and let it point to
the host’s context_mgr_node. As context_mgr_node is associated
with ServiceManager, with this handler, the VP can access the host
phone’s ServiceManager node. Therefore, this mechanism allows
a VP’S service process to share the corresponding service in the
host system. Then, we leverage the SELinux technique to enforce
which services the VP can share in the host system. In VPBox, we
use Binder service sharing to virtualize WiFi configuration, Display,
GPU, Audio, and Camera.

2. Device Namespace Proxy We cannot apply Binder service
sharing to the anonymous services not registered in ServiceMan-
ager, such as telephone and Bluetooth, because their binder_node
and binder_ref kernel structures are missing. Therefore, we de-
velop a new device namespace proxy to virtualize telephone and
Bluetooth, leaving no in-guest virtualization component. Cells’s
user-level virtualization is not stealthy. It creates each VP’s own
proxy, connecting to CellD running in the host’s root namespace.
CellD, in turn, communicates related hardware vendor libraries
to respond to the VP’s requests. However, Cells’s proxy layer is
located at the VP’s application framework layer. Like API hooking,
apps running in the VP can easily detect the presence of Cells’s
proxy layer because they share the same privilege level. We address
the stealthiness concern by creating a device namespace proxy in
the host’s userspace only.

Next, §5.1 and §5.2 explore the method of Binder service sharing,
and §5.3 takes Bluetooth as an example to present the method of de-
vice namespace proxy. We put the details of other user-level devices’

Host Userspace

App H ConnectivityService
NetworkAgent 9 n App

A

VP NetworkAgentQ v
| WifiManager

Y U

|

VP Userspace

WifiService

!

WiFi Java Native
Interface

WPA Server &
Client

wpa_supplicant
Binder service |

v
sharing \ 4

Host: Binder &~ > VP: Binder

Linux Kernel

<«<—> WiFi configuration and status notifications before virtualization.
<«—>» The workflow to answer a WiFi status query from the VP’s app.
— - — - » The VP’s app receives network status notifications.

Figure 2: VPBox’s WiFi configuration virtualization.

virtualization (telephony, filesystem, and ADB) in Appendix B and
Appendix C.

5.1 WiFi Configuration

WiFi configuration and status notifications occur at the userspace.
We use Binder service sharing for its virtualization. Compared with
Cells’s method, our approach is simpler and leaves no virtualization
component in the VP’s userspace. Cells’s WiFi virtualization is not
stealthy because it adds a WiFi poxy inside each VP. In contrast,
our virtualization occurs at the host’s userspace and the kernel.
Figure 2 illustrates our design. In the Android system, before vir-
tualization, WifiService (@) calls the library of “wpa_supplicant”
(@) to detect WiFi connections. The “wpa_supplicant” library is a
user-level library that contains wireless network service code. The
WiFi-connection information is sent through NetworkAgent (€))
to ConnectivityService (@), which answers app queries about the
state of network connectivity. To virtualize WiFi, we use the binder
service sharing mechanism (@) to bridge WifiService between the
VP and the host. The blue double arrow line in Figure 2 shows the
workflow to respond to a WiFi status query from the VP’s app. In
addition, we create a new NetworkAgent in the host and bind it to
the VP’s device namespace (@). As shown by the red dotted line,
we also use Binder service sharing to connect the new NetworkA-
gent (@) with the VP’s ConnectivityService (@)). The purpose of
doing so is to automatically forward network status notifications
(e.g., WiFi signal strength) to the VP.

5.2 Display, GPU, Audio, and Camera

Display, GPU, Audio, and Camera are all virtualized via the Binder
service sharing mechanism while ensuring the isolation between
VPs. We use Display and GPU as examples to describe the design.
The virtualization methods of Audio and Camera are similar by
sharing the Binder service of AudioFlinger and CameraService.

T
[~] |8 i
® | ®
% 12
o | =
o @
o |
Android] 13 Android
Bluetooth APIs 2 } o Bluetooth APIs
I3 > -
Binder IPC ;|°: } Binder IPC
com.android.bluetooth } '‘com.android.bluetooth
com.android.bluetooth JAVA Module } JAVA Module
JAVA Module i
¢ | Binder Service
JNI Module | Sharing
2 Binder Service T
o |
=
= |
z |
= |
X = |
Java Native ° |
I"t(j:‘i’)ce % packages/apps/Bluetooth }
|
z JNI Module |
|
|
|
Java Native |
Interface (JNI) }
|
Bluetooth Stack Bluetooth Stack !
|
|
HIDL HIDL i
|
Bluetooth Bluetooth i
Controller Controller |
|
|
,, e
Drivers Drivers
Linux Kernel Linux Kernel

(a) Android Bluetooth

Architecture (b) VPBox Bluetooth Architecture

Figure 3: VPBox’s Bluetooth virtualization.

The Display is an essential device in smartphones, and the GPU
provides hardware display acceleration. Before Android 6.0, the
Android system takes Linux framebuffer (FB) as an abstraction
to a physical display and screen memory. Cells virtualizes FB by
multiplexing FB’s device driver. However, Android 6.0 and later
versions have switched to the ION driver for managing the screen
memory. Modifying the ION driver to virtualize FB is error-prone
and complicated.

To solve this issue, we take advantage of the Binder service shar-
ing to enable each VP to multiplex an essential graphics service—
SurfaceFlinger of the host system. SurfaceFlinger is responsible for
compositing all of the application and system surfaces into a single
framebuffer for a final display. Also, we adapt related data struc-
tures, graphics rendering APIs, and interfaces for virtualization. 1)
We add the system tag field in the Layer data structure to detect
to which system (VP or host) the Layer belongs. 2) With the added
system tag, we identify the foreground system layer from Surface-
Flinger’s APIs, such as layer cropping and compositing, to display
the final image on the screen. 3) To switch the screen between the
VP and host, we add new interfaces for clearing and redrawing im-
ages in SurfaceFlinger. Our design is two-birds-one-stone because
no additional measures are needed for GPU virtualization. Since the
VP multiplexes the host system’s screen memory buffer, the host’s
GPU can directly work on it for display acceleration. Additionally,
to properly support the foreground-background usage model, we
limit the SurfaceFlinger service to only respond to the request from
the foreground VP, ignoring the requests from background VPs.

5.3 Bluetooth

None of the existing Android emulators or containers can virtu-
alize Bluetooth. Each smartphone manufacturer provides its own
proprietary Bluetooth vendor code that is entirely closed source.
Without the hardware vendor’s support, the kernel-level virtual-
ization of Bluetooth would be very challenging. Figure 3(a) shows
the Android Bluetooth architecture since Android 8.0. To use the
Bluetooth service, an app first calls Android Bluetooth APIs (@),
which further sends the request to the Bluetooth service process
(@) via Binder IPC. Next, the Bluetooth service process connects to
the Bluetooth stack (€)) via Java Native Interface (JNI). Then, the
Bluetooth stack interacts with the Bluetooth controller (@) using
Hardware Interface Design Language (HIDL).

Bluetooth service process (@) only provides the anonymous
Binder service externally, which does not submit the registered
Binder to the ServiceManager. This means we cannot apply the
binder service sharing mechanism to @. Instead, we implement a
new service proxy to virtualize Bluetooth. Figure 3(b) illustrates
our workflow. We modify the Bluetooth app (“packages/apps/Blue-
tooth”) and embed a Bluetooth JNI proxy. After our modification,
the Bluetooth service process now only contains the JAVA module
(@), and the original JNI module is put into the newly added Blue-
tooth JNI proxy (@) in the host. Now, it is our Bluetooth JNI proxy
to interact with the Bluetooth stack and the Bluetooth controller.

Furthermore, to enable our proxy to communicate with new
Bluetooth service processes (@) in the host and each VP, we also
build a binder service in the Bluetooth JNI process (@). In this way,
each VP can finally access the Bluetooth driver in the host device.
Please note that the Bluetooth driver does not support multiplexing.
An exception will happen if multiple connections are established
with the Bluetooth driver at the same time. Therefore, we add a
namespace check in our proxy (@): we only forward the foreground
VP’s Bluetooth service request. Our SELinux policy specifies user-
level apps in each VP have no privilege to access the new Bluetooth
service process (@) to detect our change.

6 SCALABILITY AND SELINUX

When running multiple VPs on VPBox, memory usage becomes
the scalability bottleneck. We modify related kernel functions and
data structures to support three memory optimization techniques:
advanced multi-layered unification filesystem (AUFS) [49], Linux
kernel same-page merging (KSM) [65], and Android low memory
killer [6]. We use the AUFS mechanism to mount the read-only
partition of the VP system to reduce the load storage of the de-
vice. However, there is no AUFS module in the Android system.
We first transplant the AUFS module from its git repository to
the “/fs” directory of the Android kernel source code. Then, we
modify the file operation interface of the kernel, such as d_walk,
setfl, sync_filesystem, and related data structures, to complete
the adaption. KSM is a module in the Android kernel, but we
need to activate it to support multiple container instances. KSM
is a memory-saving de-duplication feature. The major modifica-
tions we made include enabling “/sys/kernel/mm/ksm/run=1" and
“CONFIG_KSM=y”, configuring the values of sleep_millisecs,
pages_to_scan, and other parameters in “kernel/mm/ksm.c” mod-
ule based on the terminal hardware configuration and the number

Brand: Google Pixel
Android ID: dbeXXX

Custom Device Data i @ i Custom Device Data

0 . Serial Number: 86518x00000¢48 >
build.VPBox.prop SSID: Pixel-XXX-5G ¥
MAC Address: a4:ca:a0:4000¢69 (6) VP (9]
Phone Number: 814-777-xxxx e Device Attribute Device Attribute
property_get Query Query
System Properties ? No Host: Init
Yes
v
VP: Init 124 Customization Function ‘ Customization Function Fﬁ
o (1) [7) 1
Real Devi Device Device Real Device
v Shared‘ Memory v ea[)atzvIoe Access Access Data
|
VP Memory | o Host Memory | Vitualzaton | | Virtualization |
Al i Virtualized Deivice)
"gr,‘:geif;em IF;C Properties Host User-level Proxy Host Kernel Driver
i CPU | Power | GPS | Memory...
Namespace |:} (Bluetooth | Telephony | Display | GPU...) (| | | ry...)
[

Self-made Syscall

Figure 4: VPBox’s workflow of customizing the VP’s device attributes.

of container instances. We virtualize the kernel driver of Low Mem-
ory Killer so that each VP can independently use this mechanism
to manage the process memory of its namespace. We mainly mod-
ified the process task_struct data structure to bind the device
namespace to identify the VP that different processes belong to. In
particular, we modified “kernel/drivers/staging/android/lowmemo-
rykiller.c” module, registered a lowmem_shrinker memory callback
for each VP, and configured the scheduling strategy so that the back-
ground VP’s lowmem_shrinker has more execution opportunities
than the foreground VP’s lowmem_shrinker.

Moreover, we also provide an optional, “screen off” function for
background VPs to further improve scalability. In this way, when a
VP is switched to the background, its power model will become the
same as pressing the power button of the native Android system.
Turning off the screen causes each component to stop unnecessary
services, processes, and threads, which further reduces memory
consumption.

To isolate all VPs from the host machine and one another, we
utilize three kinds of namespaces (UID, device, and mount) to
enforce the access control on user credentials, data, device state,
and filesystem. Also, we disable the capability of creating device
nodes inside a VP. Furthermore, we add a fine-grained permission
strategy that monitors a VP’s internal processes in real time. We
modify the host’s SELinux policy to take different VP’s namespaces
as new labels and create new SELinux access control strategies for
each VP’s internal processes. In this way, we can prevent untrusted
apps from abusing the VP’s device access permissions.

Inspired by BareDroid [48], we also take advantage of SELinux
to record the system calls invoked during app execution. By default,
only denied operations are recorded by SELinux. We modified the
SELinux policy by adding an auditallow tag to each authorized op-
eration. In this way, we can collect complete operations performed
by a user app.

7 DEVICE ATTRIBUTE CUSTOMIZATION

Our virtualization techniques attempt to provide VPBox users with
the same experiences as using a physical smartphone. However, a
dedicated adversary can still detect the particular device running

VPBox, such as the Google phones we used. Even bare-metal mal-
ware analysis frameworks, such as BareBox [39] and BareDroid [48],
are still susceptible to ad-hoc fingerprinting techniques by examin-
ing specific software/hardware environment features. To address
this issue, we go one step further to enable customizing VP’s de-
vice attributes. Our “out-of-the-box” virtualization design enables
the device attribute customization to preserve stealthiness. This
new feature offers a cost-effective way to simulate more diversi-
fied virtual environments (e.g., Xiaomi Redmi series and Huawei
Honor series) on a single device. Figure 4 shows the workflow of
our proposed device-attribute customization. VPBox users provide
a configuration file “build VPBox.prop” in advance ((@ in Figure 4),
which stores device-specific attributes in the form of key-value
pairs. We classify these key-value pairs into three categories: An-
droid system properties, user-level-virtualized device properties,
and kernel-level-virtualized device properties. Each category has
a different customization method. The strategy and advantages of
our customization are explored next.

7.1 Android System Property Customization

Android system properties are const values that describe the mobile
device’s configuration information, such as brand, model, serial
number, IMEL, and manufacturer. These properties are stored in
the init process’s shared memory, but they are independent of
our device virtualization. This shared memory is typically used to
store some system and hardware information when the system is
being initialized. Other processes enquire about Android system
properties at runtime by calling “property_get” (@ in Figure 4),
an API for other processes to read the data stored in the shared
memory space. Therefore, during the process of booting up the VP,
its init process will call “load_system_props” to load the custom
Android system properties from “build. VPBox.prop” into the VP’s
shared memory space (€)). Then, the custom system properties are
ready for apps running in the VP to access and inquire.

7.2 User-level Customization

The second category of “build.VPBox.prop” contains the device
attributes that we customize for user-level-virtualized devices, such

as Bluetooth, WiFi, and telephony. The customized data in the
second category will be loaded into the host init process’s shared
memory (@). We enforce the IPC namespace to isolate the host’s
and VP’s shared memory (@). We embed a customization function
in the place where we perform user-level device virtualization, such
as Bluetooth JNI proxy and Telephony RilD proxy. In particular, the
customization function takes effect after the virtualization function
has responded to the app’s device attribute query request (@9).
The customization function first determines whether the current
query request is from the VP by checking the associated device
namespace. If the query is from the VP’s app, it calls “property_get”
(@) to get the custom data from the shared memory that maps
“build. VPBox.prop”, and then it returns the custom device data to

the VP (@).

7.3 Kernel-level Customization

The third category contains key-value pairs used to customize
kernel-level-virtualized devices, such as Power and GPS. Besides,
certain kernel drivers contain basic device attributes (e.g., kernel
version and memory/processor information), which are included
in the third category of our customized data as well. These kernel-
related configuration data are also stored in the host init process’s
shared memory.

In the kernel driver, we embed a customization function at the
place where our kernel-level virtualization function has responded
to the app’s device access request (@)). The customization functions
need to interact with the shared memory of the host’s init process.
However, the customized data in the init process have no privilege
to enter the kernel space. To overcome this obstacle, we create a
new system call to copy data from the userspace to the kernel space
(@®). All of our customization functions in the kernel drivers work
similarly. For example, we customize the battery-related profiles
(e.g., battery level) in the kernel power driver and use the device
namespace to determine whether the query request is from the VP
or the host. If the request is from the VP, the Power’s customization
function will call our created syscall to extract the custom data and
then return them to the VP (@)).

However, we have to take special measures to customize kernel
version information, of which two attributes are defined in the UTS
namespace data structure (‘UTS_RELEASE” and “UTS_VERSION”).
We need to modify the UTS namespace data structure to embed
our customization function. Interested readers are referred to Ap-
pendix D for more details.

7.4 Advantages of VPBox’s Customization

VPBox now provides 150 device configuration options, which span
a broad spectrum of device attributes. Appendix Table 6 lists cus-
tomizable device-attribute options. We collect them from 1) the
related work on Android sandbox detection, and 2) existing device-
attribute editing tools. To the best of our knowledge, VPBox’s
device-attribute customization options are the largest and most
comprehensive so far.

Existing Android device-attribute editing tools [15, 74] are built
on Xposed [54] by hooking APIs. Compared to them, VPBox reveals
two distinct advantages. First, our customization methods are more
stealthy, because they occur at internal data structures or internal

Configure
build.VPBox.prop

Create a VP
Compile image files

Exit the original VP

Replace
build.VPBox.prop

Control
E—
center

VPBox Start a new VP

(b) Start a new customized VP

Control center

VPBox

Initialize a VP

(a) Create and initialize a VP
Figure 5: The workflow of starting a custom virtual phone.

interfaces that are inaccessible to the virtual phone. Besides, they do
not rely on user-level API-hooking, which means our customization
does not leave footprints in the VP’s runtime environment.

Second, our VP’s customization does not interfere with nor-
mal operations on the host device. System modifications without
leveraging container virtualization lack flexibility and compatibility,
because only changing return values of APIs or syscalls is likely to
result in system crashes or exceptions. For example, blindly editing
Bluetooth attributes would cause the Bluetooth system service to
keep restarting, affecting the app that is using the Bluetooth ser-
vice. In VPBox’s customization functions, we do not use the custom
device data to respond to all device access requests. Instead, we
analyze the data flow of the VP interface that accesses the device.
Only if the device data obtained by the VP interface finally flows
into the VP’s process, and the process UID is a user app, we send
the custom device data to the VP interface. Powered by our “out-
of-the-box” virtualization design, VPBox can gracefully decouple
device-attribute editing operations from normal operations on the
host device and solve incompatibility issues.

8 EVALUATION

VPBox Usage The VP images are created and configured on a PC
and downloaded to the host device via USB. We provide a control
center app for VPBox users to switch between the host system
and VPs swiftly. To start a new custom VP, a user takes the follow-
ing three steps: 1) exit the original VP; 2) update and replacing a
new “build VPBox.prop” configuration file; 3) stat a new VP via the
control center app. Figure 5 shows how to start a new custom VP.

We evaluate VPBox from three dimensions. First, we provide
performance measurements to show that VPBox reveals native
performance. Second, we compare existing Android sandboxes
in evading various virtual environment detection heuristics. The
third experiment evaluates VPBox’s device customization using
environment-sensitive malware. Please note that we are unable to
compare VPBox with other peer Android containers in the perfor-
mance test. The complete source code download links of Cells [10],
Cellrox [17], and Condroid [73] have been out of work for a while,
so we cannot compile and run their virtual phones. We can only

Native Phone = 1-VP ®m2-VP m3-VP m4-VP m5-VP Native Phone

1.2 1.2
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0 .
Linpack 3Dmark Quadrant WiFi Bluetooth $Pst Linpack 3Dmark Quadrant
es
(a) Normalized Nexus 6P results
Native Phone 1-VP ®m2-VP m3-VP m4-VP m5-VP Native Phone
1.2
1,792
1 1,536
1,280
08 1,024
0.6 768
512
0.4 256
0.2 0
No APPs Browser
0 Linpack 3Dmark Quadrant WiFi Bluetooth GPS
Test
(d) Normalized Pixel + music results
Native Phone 1-vp 2-VP ®3-VP m4-VP m5-VP Native Phone 1-vP 2-vP
1,792 1792
1,536 1536
1,280 1280
1,024 1024
768 768
512 512
256 256
o 0

No APPs Browser
+Email

+Calendar

Browser
+Email

Browser No APPs Browser

(g) Nexus 6P memory usage after optimization

1-VP ®m2-VP m3-VP m4-VP HS5-VP

(b) Normalized Pixel results

1-VP ®m2-VP m3-VP m4-VP m5-VP

7
5.
2!

(e) Nexus 6P memory usage in MB

(h) Pixel memory usage after optimization

1-VP ®m2-VP m3-VP m4-VP m5-VP

GPS
Test

1-VP ®2-VP E3-VP m4-VP mH5-VP

Native Phone

Linpack 3Dmark Quadrant WiFi Bluetooth

12

1
0.8
0.6
0.4
0.2

0

WiFi Bluetooth GPS
Test

(c) Normalized Nexus 6P + music results

Native Phone
1792
1536
1280
1024

8
2
6
0

No APPs

[

Browser
+Email
+Calendar

Browser
+Email

Browser
+Email

Browser Browser
+Email

+Calendar
(f) Pixel memory usage in MB

3-VP m4VP m5VP

Native phone ® 1-VP m2-VP Hm3-VP H4-VP H5-VP

1.2
1
0.8
0.6
0.4
0.2
Browser Browser . .
+Email +Email Nexus6p Nexus6p Pixel Pixel
+Calendar (4h+Music) (12h+ldle) (4h+Music) (12h+ldle)

(i) Normalized battery consumption

Figure 6: VPBox’s performance measurements on Google Nexus 6P and Pixel 3a XL phones.

run one VP using VMOS [71] on Android 5.1, but VMOS’s 1-VP and
VPBox’s performance data on multi-VPs are not comparable.

8.1 Performance Measurements

We measure runtime overhead, memory usage, and power con-
sumption using two different Google Phones: Nexus 6P (1.55 GHz
Cortex-A53, Adreno 430 GPU, 3G RAM, and 32G ROM) and Pixel 3a
XL (2.15 GHz Kryo, Adreno 530 GPU, 4G RAM, and 32G ROM). We
follow similar experimental settings as Cells’s paper in SOSP’11 [10].
We measured the performance of VPBox when running 1VP, 2VPs,
3VPs, 4VPs, and 5VPs, each with a fully booted Android environ-
ment. Our runtime overhead measurement contains two scenarios.
The first one is running a set of benchmark apps on VPBox’s VPs
and a native phone, respectively. The second one is running the
same benchmark apps on VPs and the native phone, but simultane-
ously with an additional background music player workload. The
benchmark application is always run in the foreground VP; if the
background workload is used, it runs in a single background VP
when multiple VPs are started. The results of runtime overhead are
normalized against the performance of running the same bench-
mark apps on the latest manufacturer stock image available fort
two Google phones, but without the background workload.

Benchmark Apps. Each benchmark app is designed to stress
some aspect of the system performance: Linpack (v1.1) for CPU;
3DMark (v2.0.4646) for 3D graphics; Quadrant advanced edition
(v2.1.1) for 2D graphics and file I/O; WiFi using BusyBox wget
(v1.21.1) to download a 409M video file through a PC’s WiFi hotspot;
Bluetooth measurement is the time that the Bluetooth module takes
to transfer a 1M file between two paired Bluetooth devices; and
GPS performance is measured by the time that the GPS Test app
(v1.6.3) takes to acquire the GPS location.

Runtime Overhead. Figure 6(a) & 6(b) show the normalized
runtime overhead on two Google phones with no background work-
load running. The deviations between “n-VP” and “Native Phone”
represent the additional overhead caused by VPBox’s device vir-
tualization. The negligible deviations in most cases indicate no
user-noticeable performance difference between running in VPBox
and running natively on a real phone, even with up to five VPs
running simultaneously. The WiFi benchmark shows the largest
overhead—it introduces about 3%~6% additional slowdowns on
two phones. In addition to VPBox’s virtualization, we argue that
WiFi variability levels could also affect network performance. Fig-
ure 6(c) & 6(d) show the normalized runtime overhead when run-
ning the background music player. As would be expected, running

the background workload causes additional overheads relative to
our baseline. Among all of our benchmarks, 3DMark shows the
least overhead because playing music does not involve 3D render-
ing. Compared to Cells’s performance data [10], VPBox reveals the
same level of variability in runtime overhead.

Memory Usage. Figure 6(e) & 6(f) show the default memory us-
age (without memory optimization) on two phones. The “No Apps”
measures the memory usage after booting each VP but running
no apps. Then, we measure the memory usage after starting an
instance of Chrome browser, Gmail client, and Google Calendar in
each running VP. Apparently, after starting multiple VPs, memory
usage becomes the scalability bottleneck. Note that VPBox requires
incrementally less memory when starting more VPs. The reason
is Android low memory killer; even without specific memory opti-
mization methods, it automatically takes effect to kill background
processes and free memory for new applications. Figure 6(g) & 6(h)
show results after we apply kernel same-page merging, file system
unioning, and “screen off” for background VPs. With these mem-
ory optimization methods enabled, we can further reduce memory
consumption by 100MB to 600MB.

Power Consumption. Figure 6(i) shows the normalized power
consumption on two Google phones; the larger value means more
power consumption. The “4h + Music” measures the power con-
sumption after playing the music repeatedly for 4 hours. When
multiple VPs exist, we run the music player in the foreground VP.
Compared with the native phone, the power consumption results
from 1-VP to 3-VP increase by less than 5%, and the power con-
sumption results from 4-VP to 5-VP increase by less than 10%. The
Pixel 3a XL phone’s power measurement is better than the Nexus 6p
phone, because Pixel 3a XL phone’s power management has been
improved. The “12h + Idle” measures the power consumption after
12 hours in an idle state. Compared to the native phone, VPBox’s
numbers in “12h + Idle” show no measurable increase.

Conclusion. VPBox’s superior performance data indicate that
it is immune to the evasions that measure the performance gap
between virtual machines and real devices.

8.2 Security Analysis

Our second experiment evaluates the resilience against virtual en-
vironment detection heuristics proposed by the previous work [16,
34, 50, 55, 56, 69, 78]. The superset of them covers the mainstream
Android virtual environment detection heuristics. Table 3 presents
the results under Android emulators, app-level virtualization, and
Android container environments. Row 2 to 10 are nine types of
Android virtual environment detection heuristics, and their descrip-
tions are presented in Table 2. We first run these detection heuristics
in a physical device and save their results as Output 1. Then, we
install seven different virtualization environments listed in Row
1 on this device and then rerun these detection methods in seven
virtual environments, respectively. After that, we compare their
outputs with Output 1. A transparent virtual environment should
show no appreciable difference with its underlying device.

VPBox meets this goal from two aspects: 1) the virtualized de-
vice exhibits the same hardware effects as the underlying physical
device; 2) VPBox’s virtualization supports all devices and services
listed in Table 1. Besides, to achieve the goal of stealthiness, we

Table 2: Android virtual environment detection heuristic
types and their description.

Type Description

The emulated network environment is typically
different from that of physical devices, such as
IP address, virtual router, and host loopback.

Emulated Network [69]

CPU & Graphical
Performance [69]

1) Calculate 1,048, 576 digits of Pi;
2) measure video frame rate

Hardware Components [69] E.g., Bluetooth, Radio, and Power management.

Sensor Events [16] Detect accelerometer API return values.

1) Virtual program counter update;

Hypervisor Heuristics [50] 2) cache consistency

Software-based emulators reveal different
instruction-level behaviors from real ARM
CPUs when processing undefined instructions.

Instruction-level
Profiles [55]

Android APIs [34, 69] Many APIs return unique device identifiers.

System Properties [34] Android system configurations and status.

Shared UID &
Hooking [56, 78]

In app-level virtualization, the host app shares
the same UID with all guest apps and relies
on hooking to hide guest apps’ API requests.

enable our device virtualization and the customization of device
specific attributes to be executed outside of VPs. It ensures a dedi-
cated adversary in the VP is diffcult to fingerprint the presence of
VPBox, including the presence of virtualization components.

Hardware-related Discrepancies. Row 2 to Row 7 focus on
detecting the hardware-related discrepancies caused by virtualiza-
tion. Android emulators are easy to be detected because of software-
emulated hardware and slow performance. VirtualApp and Parallel
Space reveal the same hardware effects because guest apps can still
directly access the underlying Android device’s hardware. VMOS
fails five times in the category of “Hardware Components.” The
reason is VMOS lacks virtualization support for WiFi, Telephony,
Audio, GPS, and Bluetooth. VMOS’s results imply that incomplete
device virtualization can also be exploited by adversaries to finger-
print the presence of a virtual phone.

Device Artifacts. Row 8 and Row 9 represent the detection of
device artifacts. Software-based emulators exhibit different values
in some Android system properties, and many APIs return unique
device identifiers. For app-level virtualization, to run multiple copies
of the same guest apps simultaneously, the host app (e.g., Virtual-
App) has to intentionally reveal some different device artifacts (e.g.,
Android ID) to each guest app instance. As VMOS’s device virtual-
ization is not complete, it also returns ten different API values about
device identifiers, such as TelephonyManager.getLine1Number ().
In contrast, as VPBox’s foreground VP can directly access the hard-
ware, it reveals the same device artifacts as the physical device.

App-level Virtualization. Row 10 detects two characteristics
of app-level virtualization [56, 78]: 1) Shared UID between the host
app and guest apps; 2) API-hooking mechanism. The three Android
emulators also adopt API-hooking as an analysis approach. By
contrast, only VPBox succeeds in bypassing all detection heuristics.
Because each VP has its private namespace so that it does not
interfere with the other VPs and the host. Besides, VPBox do not
rely on user-level API-hooking, which means our virtualization
does not leave hook footprints in the VP’s runtime environment.

Table 3: The results of anti-virtual-environment detection. For the results like “X/Y”, Y is the total number of detection heuris-
tics, and X is the number of effective ones. For the results of SafetyNet and ishumei, O means a tool successfully detect this
virtual environment, and @ means it treats this virtual environment as a genuine Android device. For each evasive malware
family, the value in “()” is the number of samples, and we represent the number of file operations generated by each evasive

malware family as (min, max, median).

. - Android Emulator App-Level Virtualization Android Container

Detection Heuristics

DroidScope [75] CuckooDroid [53] DroidBox [41] VirtualApp [11] Parallel Space [42] VMOS [71] VPBox!
Emulated Network [69] 5/5 5/5 5/5 0/5 0/5 0/5 0/5
Performance [69] 2/2 2/2 2/2 0/2 0/2 0/2 0/2
Hardware Components [69] 11/13 13/13 13/13 0/13 0/13 5/13 0/13
Sensor Events [16] 9/9 9/9 9/9 0/9 0/9 0/9 0/9
Hypervisor Heuristics [50] 2/2 2/2 2/2 0/2 0/2 0/2 0/2
Instruction-level Profiles [55] 6/6 6/6 6/6 0/6 0/6 0/6 0/6
Android APIs [34, 69] 38/47 47/47 40/47 22/47 16/47 10/47 0/47
System Properties [34] 10/10 10/10 10/10 0/10 0/10 0/10 0/10
UID & Hooking [56, 78] 1/4 1/4 1/4 4/4 4/4 0/4 0/4
SafetyNet-bI [5] @) O O O O O [
ishumei [60] @] O O O O @] []
Evasive Malware (1, 961)
Rotexy (273) [58] (9,77, 25) (9, 73, 10) (9, 73, 16) (18, 24, 19) 0,0,0) (24,113,43) (50, 170, 74)
Ashas (152) [63] (0, 27, 0) (0, 20, 0) (0, 23, 0) (0, 46, 29) 0,0,00 (51,92, 63) (65, 99, 75)
HeHe (145) [23] (0,0, 0) (0,0, 0) (0,0, 0) (0, 6, 0) 0,0,00 (0,31, 17) (26, 44, 30)
Ztorg (143) [67] (0, 37, 25) (0, 30, 20) (0, 30, 20) (0, 31, 26) (0,0, 0) (0, 59, 3) (40, 63, 45)
Andr RuSms-AT (217) [62] (0, 29, 0) (0, 20, 0) (0, 25, 0) (4, 41, 10) 0,0,00 (17,79,36) (48,157, 74)
OBAD (290) [66] (26, 52, 40) (20, 40, 30) (25, 49, 35) (16, 50, 26) 0,6,00 (38,87,70) (78,101, 94)
Android BankBot (290) [40] (0, 176, 50) (0, 118, 30) (0, 149, 24) (1, 224, 71) 0,0,00 (6,211,93) (64, 250, 101)
GhostClicker (442) [25] (24, 94, 41) (12, 47, 23) (24, 65, 35) (56, 192, 92) (0,59,35) (85,273,97) (108, 392, 125)
G-Ware? (9) [9] (0, 10, 8) (0,5,3) 0,9,7) (0, 24, 3) (0,0, 0) (5,31,7) (127, 160, 150)

1All VPBox’s anti-virtual-machine detection experiments are performed in the foreground virtual phone.
2In addition to detecting virtual environments, G-Ware family also detects Google phones.

Commercial Detection Tools. Google SafetyNet [5] and ishumei [60]use the number of file operations as a quantitative measurement

are two representative anti-abuse/anti-fraud APIs. They help devel-
opers to determine whether their apps are running on a genuine
Android device. The “SafetyNet-bI” in Table 3 represents SafetyNet’s
“basicIntegrity” verdict. SafetyNet’s “basicIntegrity” and ishumei
can identify the signs of a rooted device, emulator, and API hook-
ing. Our results show that both of them are able to recognize all
of the tested Android emulators, VirtualApp, Parallel Space, and
VMOS, but they fail to detect VPBox. Please note that SafetyNet
also provides another more stringent Android compatibility testing,
called “ctsProfileMatch.” It detects genuine but uncertified devices,
certified devices with an unlocked bootloader, and devices with
custom ROM. VPBox does not pass the verdict of “ctsProfileMatch,”
because we have to unlock the bootloader to flash VPBox’s image.
We argue that this is not a specific limitation caused by our virtual-
ization system. We download the complete Android 6.0-10.0 system
source code, compile them in Ubuntu, and then flash them on mo-
bile devices—all of them cannot pass the check of “ctsProfileMatch”
either. Also, many top phone manufacturers run a custom ROM in
their products, such as the MIUI system in Xiaomi smartphones.
Evasive Malware. We collect 1, 961 environment-sensitive mal-
ware samples (9 families) from our industry collaborator. Security
analysts have confirmed that all of these samples try to detect vir-
tual machines. For example, HeHe [23] variants detect whether
they are being run in an emulator by checking the IMEI, phone
number, operator, and phone model. Like BareDroid [48], we also

for the amount of malicious behaviors. Under each virtual environ-
ment, we follow CopperDroid’s targeted stimulation strategy [64]
to stimulate a running malware sample for 1 minute and monitor
its behaviors. The last nine rows of Table 3 show the number of
file operations generated by each evasive malware family—they
are strikingly different between VPBox and the others. The num-
ber “0” indicates that the sample crashed upon start; we attribute
this to the successful detection of virtual environment. Apparently,
evasive malware samples either crashed upon start or performed
a very small number of file operations under emulators and app-
level virtualization tools. In contrast, no evasive malware sample
crashed under VPBox, and malware exhibit much more behaviors
than other sandboxes. For example, we find most malware crashed
in Parallel Space [42], and the variants of HeHe [23] and Ztorg [67]
can detect all virtual environments except for VPBox.

8.3 VP Customization Evaluation

We conduct a separate experiment to compare evasive malware
behaviors in VPBox and physical Google phones. Although most
malware samples reveal the same behaviors in VPBox and physical
Google phones, we do find an exception for G-Ware [9]. Upon
further investigation, we find that, in addition to evading virtual
machines, G-Ware family also avoids running in Google phones.
G-Ware samples first retrieve the device’s system property. If the
string of “http.agent” or “Manufacturer” contains “Pixel,” “Nexus,”

Table 4: Number of file operations generated by G-Ware in
Google phones (Pixel 3a XL and Nexus 6p) and four differ-
ent custom VPs. We customize the four VPs as Xiaomi Red-
miNote 4 (VP1), Xiaomi Redmi Note 4x (VP2), Huawei Honor
6x (VP3), and Huawei Honor 8 (VP4).

Samples Real Devices VP1 VP2 VP3 VP4
G-Warel 11 147 143 139 141
G-Ware2 10 157 152 142 157
G-Ware3 8 139 134 141 149
G-Ware4 8 153 149 150 151
G-Ware5 7 133 127 132 131
G-Ware6 26 152 146 147 153
G-Ware7 9 146 147 141 157
G-Ware8 23 160 159 147 151
G-Ware9 12 141 157 150 146

or “google,” G-Ware’s malicious activities will not be triggered.
We construe this behavior as a way to evade Android’s built-in
Application Sandbox or bare-metal analysis framework, because
Android’s built-in sandboxing environments are usually named as
“Nexus XXX” or “Pixel YYY,” and the bare-metal analysis framework
like BareDroid [48] is also built on a specific Google Nexus phone.
We list G-Ware samples’ MD5 values in Appendix Table 7.

Our device attribute customization functionality prevents mal-
ware from fingerprinting the underlying mobile device that runs
VPBox. We configure our VPs as four different phones: Xiaomi
RedmiNote 4 (VP1), Xiaomi Redmi Note 4x (VP2), Huawei Honor
6x (VP3), and Huawei Honor 8 (VP4). In particular, we edit cus-
tomizable device-attribute options (shown in Appendix Table 6) as
the same values of the target phone. After that, we rerun G-Ware
malware in custom VPs to monitor their behaviors. As shown in
Table 4, all G-Ware samples exhibit much more file operations in
VPs than in physical Google phones. Besides, we observe the same
behaviors across the four VP environments, such as calling “set-
ComponentEnabledSetting” to hide the current App icon and then
stealthily downloading new malicious packages.

9 DISCUSSION AND FUTURE WORK

A natural question to VPBox is whether a skilled attacker can easily
detect the presence of the new Android container once it is publicly
known. We do not assume that evading our approaches is strictly
impossible, but they can prohibitively increase attackers’ cost. We
acknowledge that VPBox introduces some specific artifacts, such
as never-changing geographical location and device namespace.
However, these artifacts can be hidden by VPBox’s unique feature
on device attribute customization and its fine-grained SELinux
policy. As some devices’ virtualization methods happen at the host
userspace, if an app in the VP has the root privilege, it can find out
the corresponding service processes are incomplete. For example,
the VP’s Bluetooth service process does not interact with its own
Bluetooth stack and Bluetooth controller. However, our design
pushes attackers from attempting to fingerprint a virtual machine
or a very specific mobile device, to attempting to exploit privilege
escalation vulnerabilities to root devices. We believe this to be a
non-trivial task even for skilled attackers.

VPBox now provides 150 device customization options, but we
cannot guarantee that our list is complete. The arms race here is
that an attacker could detect the existence of VPBox’s underlying
Google phone by checking the consistency of some obscure device
properties, but finding all of them is an open problem. It is worth
noting that only the foreground VP shows the full strength in
bypassing virtual-machine detection heuristics. Some devices (e.g.,
Bluetooth and ADB) in background VPs are disabled because they
are physically not designed for multiplexing. Therefore, the best
strategy to run untrusted apps or evasive malware is executing
them in the foreground VP.

Reverse Turing Test. A new trend of evading virtual environ-
ment is the so-called “Reverse Turing Test” by detecting human
interactions [19, 24, 47]. For example, Miramirkhani et al. [47] pro-
pose using the “wear and tear” artifacts that typically occur on
devices of real users, but not virtual devices, to detect malware
sandboxes. The authors [47] also developed a statistical model to
help build virtual machine images that exhibit more realistic “wear-
and-tear” characteristics. Their findings help further improve the
fidelity of VPBox by customizing the VP with the “wear-and-tear”
artifacts.

Dynamic Malware Analysis. VPBox shows promise as a sand-
box for dynamic malware analysis. Currently, system call invoca-
tion tracking is ready via SELinux virtualization. With the device
namespace and our custom SELinux policy, we can capture sys-
tem calls pertaining to the malware process. However, system calls
alone have been questioned to depict high-level Android-specific
semantics [64, 75]. Next, inspired by CopperDroid’s out-of-the-
box approach [64], we will reconstruct malware behaviors from
low-level system events, leaving no in-guest behavior analysis com-
ponents. We always perform malware analysis in the foreground
VP, and all background VPs are customized in a clean state. Upon
analysis completion, a background VP is switched to the foreground
to start the next round of malware analysis.

10 CONCLUSION

In this paper, we characterize, research, and evaluate VPBox, a new
Android container-based virtualization framework. VPBox provides
a transparent virtual phone environment and allows users to cus-
tomize the virtual phone’s device attributes stealthily. Currently,
VPBox is the only Android container framework that can work on
mainstream Android versions. Our experiments demonstrate that
VPBox introduces negligible runtime overhead and reveals strong
resilience against various virtual machine detection heuristics. VP-
Box has been deployed into a production environment to assist
security professionals in identifying evasive malware.

ACKNOWLEDGMENTS

We sincerely thank CCS 2021 anonymous reviewers for their in-
sightful comments and Dr. Srdjan Capkun for helping us improve
the paper throughout the shepherding process. This research was
supported in part by the National Natural Science Foundation of
China (62172308, U1626107, 61972297, 62172144), and Jiang was
supported by the National Science Foundation (NSF) under grant
CNS-1850434 and CNS-2128703.

REFERENCES

(1]

A

=
X0

[10

[11]
[12

[13]

[14

[15

=
&

[17]
(18]

[19

[20

[21]

[22]

[23

[24]

[25]

[26

[27]

Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang, Ninghui Li, and Chen
Tian. 2018. AceDroid: Normalizing Diverse Android Access Control Checks
for Inconsistency Detection. In Proceedings of the 2018 Network and Distributed
System Security Symposium (NDSS’18).

Theodora Adufu, Jieun Choi, and Yoonhee Kim. 2015. Is Container-based Tech-
nology a Winner for High Performance Scientific Applications?. In Proceedings
of the 17th Asia-Pacific Network Operations and Management Symposium.

Amir Afianian, Salman Niksefat, Babak Sadeghiyan, and David Baptiste. 2019.
Malware Dynamic Analysis Evasion Techniques: A Survey. Comput. Surveys 52,
6, Article 126 (November 2019), 28 pages.

Vitor Afonso, Anatoli Kalysch, Tilo Miiller, Daniela Oliveira, André Grégio, and
Paulo Licio de Geus. 2018. Lumus: Dynamically Uncovering Evasive Android
Applications. In Proceedings of the 21st International Conference on Information
Security (ISC’18).

Android Developers. [online]. SafetyNet Attestation APL https://developer.
android.com/training/safetynet/attestation.

Android Open Source Project. 2019. Low Memory Killer Daemon (Imkd). https:
//source.android.com/devices/tech/perf/lmkd.

Android Open Source Project. [online]. Supporting Multiple Users. https://source.
android.com/devices/tech/admin/multi-user/.

Android Open Source Project. [online]. Using Binder IPC. https://source.android.
com/devices/architecture/hidl/binder-ipc.

androidcentrol. 2018. G-Ware Virus. https://forums.androidcentral.com/ask-
question/885223-g-ware-virus-app-not-deleting.html.

Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason
Nieh. 2011. Cells: A Virtual Mobile Smartphone Architecture. In Proceedings of
the 23rd ACM Symposium on Operating Systems Principles (SOSP’11).

asLody. 2015. Virtual App. https://github.com/asLody/Virtual App.

Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von
Styp-Rekowsky. 2015. Boxify: Full-fledged App Sandboxing for Stock Android.
In Proceedings of the 24th USENIX Conference on Security Symposium (USENIX
Security’15).

Rafael Ballagas, Michael Rohs, Jennifer G Sheridan, and Jan Borchers. 2004. BYOD:
Bring Your Own Device. In Proceedings of the 6th International Conference on
Ubiquitous Computing (UbiComp’04).

Ken Barr, Prashanth Bungale, Stephen Deasy, Viktor Gyuris, Perry Hung, Craig
Newell, Harvey Tuch, and Bruno Zoppis. 2010. The VMware Mobile Virtualization
Platform: Is That a Hypervisor in Your Pocket? ACM SIGOPS Operating Systems
Review 44, 4 (2010).

Antonio Bianchi, Eric Gustafson, Yanick Fratantonio, Christopher Kruegel, and
Giovanni Vigna. 2017. Exploitation and Mitigation of Authentication Schemes
Based on Device-Public Information. In Proceedings of the 33rd Annual Computer
Security Applications Conference (ACSAC’17).

Lorenzo Bordoni, Mauro Conti, and Riccardo Spolaor. 2017. Mirage: Toward a
Stealthier and Modular Malware Analysis Sandbox for Android. In Proceedings
of the 22th European Symposium on Research in Computer Security (ESORICS’17).
Cellrox Itd. [online]. Cellrox Mobile Virtualization. https://www.cellrox.com/.
Ngoc-Tu Chau and Souhwan Jung. 2018. Dynamic analysis with Android Con-
tainer: Challenges and Opportunities. Digital Investigation 27 (2018).

Valerio Costamagna, Cong Zheng, and Heqing Huang. 2018. Identifying and Evad-
ing Android Sandbox Through Usage-Profile Based Fingerprints. In Proceedings
of the First Workshop on Radical and Experiential Security.

Deshun Dai, Ruixuan Li, Junwei Tang, Ali Davanian, and Heng Yin. 2020. Parallel
Space Traveling: A Security Analysis of App-Level Virtualization in Android. In
Proceedings of the 25th ACM Symposium on Access Control Models and Technologies
(SACMAT’20).

Christoffer Dall and Jason Nieh. 2014. KVM/ARM: The Design and Implemen-
tation of the Linux ARM Hypervisor. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’14).

David Pierce. 2018. Your Smartphone Is the Best Computer You Own. The Wall
Street Journal, http://tiny.cc/cqsnpz.

Hitesh Dharmdasani. 2014. Android.HeHe: Malware Now Disconnects Phone
Calls. https://www.fireeye.com/blog/threat-research/2014/01/android-hehe-
malware-now-disconnects-phone-calls.html.

Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang. 2016. Evading Android
Runtime Analysis Through Detecting Programmed Interactions. In Proceedings
of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks
(WiSec’16).

Echo Duan and Roland Sun. 2017. GhostClicker Adware: a Phantomlike Android
Click Fraud. http://tiny.cc/7w5ctz.

Michael Eder. 2016. Hypervisor- vs. Container-based Virtualization. In Proceed-
ings of the Seminars Future Internet (FI) and Innovative Internet Technologies and
Mobile Communications.

Eric Enge. 2019. Mobile vs. Desktop Usage in 2019. https://www.perficient.com/
insights/research-hub/mobile-vs-desktop-usage-study.

[28

[29

[30

)
=

(32

[33

[34

[36

[37

[38

%
20,

[40]

[41

[42

[43

[44

[45

[46

[47

[49

[50

(51

Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015. An Up-
dated Performance Comparison of Virtual Machines and Linux Containers. In
Proceedings of the 2015 IEEE International Symposium on Performance Analysis of
Systems and Software.

Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. 2016. TriggerScope: Towards Detecting Logic
Bombs in Android Applications. In Proceedings of the 37th IEEE Symposium on
Security and Privacy.

Jyoti Gajrani, Jitendra Sarswat, SMeenakshi Tripathi, Vijay Laxmi, M.S. Gaur,
and Mauro Conti. 2015. A Robust Dynamic Analysis System Preventing SandBox
Detection by Android Malware. In Proceedings of the 8th International Conference
on Security of Information and Networks (SIN’15).

Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. 2007. Compat-
ibility is Not Transparency: VMM Detection Myths and Realities. In Proceedings
of the 11th USENIX Workshop on Hot Topics in Operating Systems (HOTOS’07).
Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and
David Wagner. 2016. Smart Locks: Lessons for Securing Commodity Internet of
Things Devices. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security (ASIACCS’16).

John Heegh-Omdal. 2020. StrandHogg 2.0 - The ‘evil twin’, New Android Vul-
nerability Even More Dangerous, With Attacks More Difficult to Detect Than
Predecessor. https://promon.co/strandhogg-2-0/.

Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. 2014. Morpheus:
Automatically Generating Heuristics to Detect Android Emulators. In Proceedings
of the 30th Annual Computer Security Applications Conference (ACSAC’14).

Uri Kanonov and Avishai Wool. 2016. Secure Containers in Android: The Samsung
KNOX Case Study. In Proceedings of the 6th Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM’16).

Alexander Kedrowitsch, Danfeng (Daphne) Yao, Gang Wang, and Kirk Cameron.
2017. A First Look: Using Linux Containers for Deceptive Honeypots. In Pro-
ceedings of the 2017 Workshop on Automated Decision Making for Active Cyber
Defense.

Ayrat Khalimov, Sofiane Benahmed, Rasheed Hussain, S.M. Ahsan Kazmi, Alma
Oracevic, Fatima Hussain, Farhan Ahmad, and Chaker Abdelaziz Kerrache. 2019.
Container-Based Sandboxes for Malware Analysis: A Compromise Worth Con-
sidering. In Proceedings of the 12th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC’19).

I Luk Kim, Yunhui Zheng, Hogun Park, Weihang Wang, Wei You, Yousra Aafer,
and Xiangyu Zhang. 2020. Finding Client-side Business Flow Tampering Vulnera-
bilities. In Proceedings of the 42nd International Conference on Software Engineering
(ICSE20).

Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. 2011. BareBox: Efficient
Malware Analysis on Bare-Metal. In Proceedings of the 27th Annual Computer
Security Applications Conference (ACSAC’11).

Mobhit Kumar. 2019. New Android Malware Apps Use Motion Sensor to Evade De-
tection. https://thehackernews.com/2019/01/android-malware-play-store html.
Patrik Lantz. 2015. Dynamic Analysis of Android Apps. https://github.com/
pjlantz/droidbox.

LBE Tech. [online]. Parallel Space: Run Multiple Social and Game Accounts in
Your Phone Simultaneously. http://parallel-app.com/.

Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor van der Veen, and Christian Platzer. 2014. ANDRUBIS -
1,000,000 Apps Later: A View on Current Android Malware Behaviors. In Proceed-
ings of the 3rd International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security.
Linux Containers. [online].
//linuxcontainers.org/.
Dominik Maier and Mykola Protsenko. 2014. Divide-and-Conquer: Why Android
Malware Cannot Be Stopped. In Proceedings of the 9th International Conference
on Availability, Reliability and Security (ARES’14).

Iliyan Malchev. 2017. Here comes Treble: A modular base for An-
droid. https://android-developers.googleblog.com/2017/05/here-comes- treble-
modular-base-for.html.

Najmeh Miramirkhani, Mahathi Priya Appini, Nick Nikiforakis, and Michalis
Polychronakis. 2017. Spotless Sandboxes: Evading Malware Analysis Systems
Using Wear-and-Tear Artifacts. In Proceedings of the 38th IEEE Symposium on
Security and Privacy (S&P’17).

Simone Mutti, Yanick Fratantonio, Antonio Bianchi, Luca Invernizzi, Jacopo Cor-
betta, Dhilung Kirat, Christopher Kruegel, and Giovanni Vigna. 2015. BareDroid:
Large-Scale Analysis of Android Apps on Real Devices. In Proceedings of the 31st
Annual Computer Security Applications Conference (ACSAC’15).

Junjiro R. Okajima. [online]. Advanced Multi Layered Unification Filesystem.
http://aufs.sourceforge.net/.

Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis,
and Sotiris Ioannidis. 2014. Rage Against the Virtual Machine: Hindering Dy-
namic Analysis of Android Malware. In Proceedings of the 7th European Workshop
on System Security (EuroSec’14).

Qih00360. 2015. DroidPlugin. https://github.com/DroidPluginTeam/DroidPlugin.

Infrastructure for Container Projects. https:

https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation
https://source.android.com/devices/tech/perf/lmkd
https://source.android.com/devices/tech/perf/lmkd
https://source.android.com/devices/tech/admin/multi-user/
https://source.android.com/devices/tech/admin/multi-user/
https://source.android.com/devices/architecture/hidl/binder-ipc
https://source.android.com/devices/architecture/hidl/binder-ipc
https://forums.androidcentral.com/ask-question/885223-g-ware-virus-app-not-deleting.html
https://forums.androidcentral.com/ask-question/885223-g-ware-virus-app-not-deleting.html
https://github.com/asLody/VirtualApp
https://www.cellrox.com/
http://tiny.cc/cqsnpz
https://www.fireeye.com/blog/threat-research/2014/01/android-hehe-malware-now-disconnects-phone-calls.html
https://www.fireeye.com/blog/threat-research/2014/01/android-hehe-malware-now-disconnects-phone-calls.html
http://tiny.cc/7w5ctz
https://www.perficient.com/insights/research-hub/mobile-vs-desktop-usage-study
https://www.perficient.com/insights/research-hub/mobile-vs-desktop-usage-study
https://promon.co/strandhogg-2-0/
https://thehackernews.com/2019/01/android-malware-play-store.html
https://github.com/pjlantz/droidbox
https://github.com/pjlantz/droidbox
http://parallel-app.com/
https://linuxcontainers.org/
https://linuxcontainers.org/
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
http://aufs.sourceforge.net/
https://github.com/DroidPluginTeam/DroidPlugin

(52

[53]

[54
[55]

[56

[57

[58

[59]

[60

[61

[62]

[63

[64]

[65

[66]
[67]
[68]

[69

[70]

[71]
[72

[73]

[74]

[75]

[77

[78]

Paul Ratazzi, Yousra Aafer, Amit Ahlawat, Hao Hao, Yifei Wang, and Wenliang
Du. 2014. A Systematic Security Evaluation of Android’s Multi-User Framework.
In Proceedings of the Mobile Security Technologies (MOST 14).

Idan Revivo and Ofer Caspi. 2016. CuckooDroid - Automated Android Malware
Analysis. https://github.com/idanr1986/cuckoo-droid.

rovo89. [online]. Xposed Module Repository. https://repo.xposed.info/.

Onur Sahin, Ayse K. Coskun, and Manuel Egele. 2018. PROTEUS: Detecting
Android Emulators from Instruction-level Profiles. In Proceedings of the 21st Inter-
national Symposium on Research in Attacks, Intrusions, and Defenses (RAID’18).
Luman Shi, Jianming Fu, Zhengwei Guo, and Jiang Ming. 2019. “Jekyll and Hyde”
is Risky: Shared-Everything Threat Mitigation in Dual-Instance Apps. In Proceed-
ings of the 17th ACM International Conference on Mobile Systems, Applications,
and Services (MobiSys’19).

Luman Shi, Jiang Ming, Jianming Fu, Guojun Peng, Dongpeng Xu, Kun Gao, and
Xuanchen Pan. 2020. VAHunt: Warding Off New Repackaged Android Malware
in App-Virtualization’s Clothing. In Proceedings of the 27th ACM Conference on
Computer and Communications Security (CCS’20).

Tatyana Shishkova and Lev Pikman. 2018. The Rotexy Mobile Trojan —- Banker
and Ransomware. https://securelist.com/the-rotexy-mobile-trojan-banker-and-
ransomware/88893/.

Junaid Shuja, Abdullah Gani, Kashif Bilal, Atta Ur Rehman Khan, Sajjad A. Madani,
Samee U. Khan, and Albert Y. Zomaya. 2016. A Survey of Mobile Device Virtual-
ization: Taxonomy and State of the Art. Comput. Surveys 49, 1 (April 2016).
shumei. [online]. ishumei Android Device Security Threat Detection SDK. https:
//www.ishumei.com/product/bs-post-sdk.html.

Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry
Peterson. 2007. Container-Based Operating System Virtualization: A Scalable,
High-Performance Alternative to Hypervisors. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems (EuroSys’07).
SophosLabs. 2017. Android Malware Anti-emulation Techniques. http://tiny.cc/
s416tz.

Lukas Stefanko. 2019. Tracking down the developer of Android adware affecting
millions of users. https://www.welivesecurity.com/2019/10/24/tracking-down-
developer-android-adware/.

Kimberly Tam, Salahuddin J. Khan, Aristide Fattoriy, and Lorenzo Cavallaro.
2015. CopperDroid: Automatic Reconstruction of Android Malware Behaviors.
In Proceedings of the 2015 Network and Distributed System Security Symposium
(NDSS’15).

The kernel development community. [online]. Kernel Samepage Merging. https:
//www.kernel.org/doc/html/latest/admin- guide/mm/ksm.html.

Roman Unuchek. 2013. The most sophisticated Android Trojan. https://securelist.
com/the-most-sophisticated-android- trojan/35929/.

Roman Unuchek. 2017. Ztorg: money for infecting your smartphone. https:
//securelist.com/ztorg-money-for-infecting-your-smartphone/78325/.

Steven J. Vaughan-Nichols. 2009. Will Mobile Computing’s Future Be Location,
Location, Location? Computer 42, 2 (2009).

Timothy Vidas and Nicolas Christin. 2014. Evading Android Runtime Analysis
via Sandbox Detection. In Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security (ASIACCS’14).

Timothy Vidas, Daniel Votipka, and Nicolas Christin. 2011. All Your Droid Are
Belong to Us: A Survey of Current Android Attacks. In Proceedings of the 5th
USENIX Conference on Offensive Technologies (WOOT’11).

VMOS Inc. [online]. Virtual Android on Android . http://www.vmos.com/.
Miguel G. Xavier, Marcelo V. Neves, Fabio D. Rossi, Tiago C. Ferreto, Timoteo
Lange, and Cesar A. F. De Rose. 2013. Performance Evaluation of Container-Based
Virtualization for High Performance Computing Environments. In Proceedings of
the 21st Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing.

Lei Xu, Guoxi Li, Chuan Li, Weijie Sun, Wenzhi Chen, and Zonghui Wang. 2015.
Condroid: A Container-Based Virtualization Solution Adapted for Android De-
vices. In Proceedings of the 3rd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud’15).

XxsqManage. 2019. The Best Tool to Change Android Phone’s Configuration.
http://www.javaer.xyz/XxsqManager/html/index.html.

Lok Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing
the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis. In
Proceedings of the 21st USENIX Conference on Security Symposium.

Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing Wang, Yueheng Zhang,
and Dawu Gu. 2017. Show Me the Money! Finding Flawed Implementations of
Third-party In-app Payment in Android Apps. In Proceedings of the 2017 Network
and Distributed System Security Symposium (NDSS’17).

Lei Zhang, Zhemin Yang, Yuyu He, Mingqi Li, Sen Yang, Min Yang, Yuan Zhang,
and Zhiyun Qian. 2019. App in the Middle: Demystify Application Virtualization
in Android and its Security Threats. In Proceedings of the 45th International
Conference on Measurement and Modeling of Computer Systems (SSIGMETRICS’19).
Cong Zheng, Wenjun Hu, and Zhi Xu. 2018. Android Plugin Becomes a Catas-
trophe to Android Ecosystem. In Proceedings of the 1st Workshop on Radical and
Experiential Security (RESEC’18).

APPENDIX

A CORE NETWORK RESOURCE AND POWER
MANAGEMENT

We reuse most of Cells’s kernel-level work to virtualize core net-
work resources such as network adapters, IP addresses, and port
numbers. However, the Android system has been updated signifi-
cantly since Android 6.0. It adopted the so-called “policy routing” to
work with multiple routing tables and rules. Policy routing defines
which traffic a specific routing table is used for. Therefore, we need
to come up with a new virtualization method. We extend Cells
by configuring ndc and iptables commands to add new rules for
policy routing. As WiFi configuration management happens in the
userspace, we adopt the binder service sharing to virtualize WiFi
configuration (see §5.1).

In power management virtualization, VPBox reuses Cells’s solu-
tion in wake-locks virtualization but manages early suspend com-
pletely differently. Since Android 6.0, the early suspend subsystem
has been replaced by SurfaceFlinger’s setPowerMode interface to
manage display’s on/off-screen, which invalidates Cells’s virtualiza-
tion that modifies the early suspend subsystem to recognize device
namespaces. By contrast, we virtualize SurfaceFlinger service at
the user level (see §5.2). We only need to prevent background VPs
from putting the foreground VP into a low power mode via the
setPowerMode interface.

Android Java Host Userspace

RIL Java

Libraries

Vendor RIL

Linux Kernel

Drivers/PPP

Baseband Baseband
(a) Android (b) Cells

Radio Interface Layer Radio Interface Layer

Figure 7: Cells’s Radio Interface Layer (RIL). Cells’s RIL
proxy is visible to apps running in the VP.

B TELEPHONY VIRTUALIZATION VIA RILD
PROXY

As smartphone vendors customize their own proprietary radio
stack, we adopt a user-level device namespace proxy to virtualize
the telephony in the VP. The previous solution proposed by Cells is
not stealthy, because its proxy is located in the VP’s userspace and
visible to apps running in the VP. We show Cells’s Radio Interface
Layer in Figure 7. By contrast, we design a socket-interface-based

https://github.com/idanr1986/cuckoo-droid
https://repo.xposed.info/
https://securelist.com/the-rotexy-mobile-trojan-banker-and-ransomware/88893/
https://securelist.com/the-rotexy-mobile-trojan-banker-and-ransomware/88893/
https://www.ishumei.com/product/bs-post-sdk.html
https://www.ishumei.com/product/bs-post-sdk.html
http://tiny.cc/s416tz
http://tiny.cc/s416tz
https://www.welivesecurity.com/2019/10/24/tracking-down-developer-android-adware/
https://www.welivesecurity.com/2019/10/24/tracking-down-developer-android-adware/
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://securelist.com/the-most-sophisticated-android-trojan/35929/
https://securelist.com/the-most-sophisticated-android-trojan/35929/
https://securelist.com/ztorg-money-for-infecting-your-smartphone/78325/
https://securelist.com/ztorg-money-for-infecting-your-smartphone/78325/
http://www.vmos.com/
http://www.javaer.xyz/XxsqManager/html/index.html

proxy that only presents at the host userspace. As shown in Figure 8,
in the host’s Radio Interface Layer, we create a Radio Interface Layer
Daemon (RilD) proxy between the communication flow of Android
telephony Java libraries (RIL Java) and RilD. Then, we create two
standard Unix Domain sockets in the proxy. One socket connects
to the RIL Java of each VP; the other connects to the RIL Java of
the host system. The RIL Java in each VP communicates with the
proxy of the host system, and the proxy passes the communication
data (e.g., dial request and SIM) to the host system’s RilD. The
RilD proxy also passes the VP-related arguments (e.g., call ring
and signal strength) to the VP’s RIL Java over a socket. In this
way, we provide a separate telephony functionality for each VP. In
addition, we customize the SELinux-based device access control
strategy to ensure that private call data (e.g., incoming/outgoing
call information and voice data) pertaining to a specific VP cannot
be accessed by other VPs.

VP Userspace

RIL Java

Android Java

RIL Java

Libraries

Vendor RIL

Linux Kernel

Drivers/PPP

Baseband Baseband
(a) Android (b) VPBox

Radio Interface Layer Radio Interface Layer

Figure 8: VPBox’s Radio Interface Layer (RIL).

Table 5: Common Radio Interface Layer(RIL) commands.

Type Commands
Solicited dial request, get current cal'ls, SIM I/O,
set screen state, set radio state
Unsolicited signal strength, call ring

call state changed

Once a VP’s phone function is enabled, the VP can make/receive
calls and access phone hardware information, such as international
mobile subscriber identity (IMSI) and mobile equipment identifier
(MEID). VPBox disables the telephony functionality for VPs that
have no telephony access. In addition, when the foreground VP is
making or receiving calls, other background VPs cannot make/re-
ceive calls even if they have the telephony functionality. To properly
support the foreground-background usage model, RIL commands
shown in Table 5 require filtering from background VPs or special
handling. We take the same special handling with Cells.

1
2
3

1
2

3 "
4"

C FILESYSTEM AND ANDROID DEBUG
BRIDGE

Existing Android containers’ SD card partition virtualization does
not comply with the new SD card access management starting from
Android 6.0, which introduces Filesystem in Userspace (FUSE) tech-
nology to manage the SD card partition. Recent Android versions
directly fork a process in the Volume Daemon (Vold) subsystem
and start the sdcard process to mount the FUSE filesystem. Because
the FUSE module supports file system creation in userspace, and
the VP in VPBox runs complete userspace, we take the following
two steps to virtualize SD card partition: 1) open a “dev/fuse” node
in the VP’s Vold process and fork a sdcard process; 2) mount FUSE
filesystem to the “dev/fuse” node.

ADB is a command-line utility that can debug apps, transfer
files back and forth with a PC, and run shell commands. Enabling
ADB for a VP facilitates app security testing [70]. ADB includes
three components: a client, a server, and a daemon (adbd). Usually,
the ADB server and ADB client are located in one device, and they
communicate with adbd process in another device. The cross-device
communication performed by ADB complicates its virtualization.
If the host and the VP are running ADB command at the same time,
we must virtualize the two ends of ADB protocol to avoid conflict.

We build a mutual exclusion mechanism in the Android frame-
work layer. When switching a system to the foreground, we ter-
minate the adbd process in the other ones. In this way, only the
foreground VP can use ADB exclusively. This mechanism is simple
to implement, but the side effect is that the host and background
VPs’ ADB do not work. We argue that this trade-off is acceptable,
as the VP is always activated when using ADB. Besides, as the ADB
protocol partition can only be mounted for one time, we also solve
the difficulty of sharing the ADB protocol partition with the VP. In
the CellD process, we intentionally mount “/dev/usb-ffs/adb”, the
ADB protocol partition’s mount point, to the VP’s system directory.
As a result, the ADB protocol partition is visible to the VP.

D KERNEL VERSION CUSTOMIZATION

const char linux_banner[] =
"Linux version " UTS_RELEASE " (" LINUX_COMPILE_BY "@"
LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION "\n";

Listing 1: Kernel version information.

const char linux_proc_banner[] =

"%s version %s"
(" LINUX_COMPILE_BY "@" LINUX_COMPILE_HOST ")"
(" LINUX_COMPILER ") %s\n";

Listing 2: linux_proc_banner.

Customizing kernel version information is a little bit tricky. List-
ing 1 shows the kernel version information. It consists of two ob-
jects defined in the UTS namespace data structure (‘UTS_RELEASE”
and “UTS_VERSION ”), as well as linux_proc_banner information
(as shown in Listing 2). The customization of linux_proc_banner
information (Listing 2) is similar to other kernel-related profile cus-
tomizations, but we need to take special measures for “UTS_RELEASE”
and “UTS_VERSION” These two objects are bound to the UTS
namespace, and the only place that we can edit them is in the func-
tion “clone_uts_ns”, which creates a new UTS namespace when
booting the VP. Therefore, we embed a customization function in

Table 6: VPBox’s customizable device-attribute options (total number: 150).

Type Customizable Device-Attribute Options Number

SECURITY_PATCH, RESOURCES_SDK_INT, BASE_OS, Gsm.version.baseband, Product Name, Useragent,
PREVIEW_SDK_INT, CODE NAME, Description, Secure, USER, Brand, Specific Version Number,
Hardware Serial Number, Device Fingerprint, Device Version Number, Product Local region,

System Property Device Model, Device TAGs, Manufacturer, Device Version Type, Version ID, Product Device, 36
Httpagent, Device Bootloader, Product Board, Product Locale Language, User Key, RADIO,
Compile machine name, Compiler, SDK, SDK_INT, Version increment, Compile time, Compile type

Kernel Version UTS_RELEASE, UTS_VERSION, LINUX_COMPILE_BY, UTS_VERSION, 6
LINUX_COMPILE_HOST, UTS_MACHINE

Memory Heapsize, Heapgrowthlimit, AvailROMSize, TotalROMSize, AvailRAMSize, TotalRAMSize 6

CPU CPUFreq, CPUHardware, CPU Cores, CPU Model, CPU Hardware, CPU Architecture, CPU Version, 14
CPUTemp, CPUABI, CPU Variant, CPU Part, Feature, CPU Serial Number, CPU Vendor

Network MAC address, SSID, BSSID, RSSI, IP Address, DNS1, DNS2, Gateway, Available Networks, NetRate, 18

etwo Netmask, WiFiState, NetworkInerfaces, TypeName, Networkld, NetworkType, Network Capabilities, Throttling
Power Battery Scale, Battery Plugged, Battery Temperature, Battery health, Battery Voltage, 9

Battery Level, Battery Status, Battery Technology, Battery Type

Bluetooth Name, Bluetooth MAC Address, Connected Devices, ProfileConnectionState,
Bluetooth Available Devices, Bluetooth Scanmode, Bluetooth Version, Bluetooth State, Bonding State, 14
Device Alias, Profiles (e.g., Contact Sharing), Rssi, ScanResultType, ManufacturerData

Accuracy, Speed, GPS Status, Location Type, Best Providers, Base Station Signal Strength, NetworkId,

Locati . . . R . . .
ocation Longitude, Latitude, Bearing, Altitude, Location Area Code, Cell Identity, Systemld, BaseStationId

15

Subld, ImsRegistrationState, MMS_USER_ANENT, MMS_UA_PROF_URL, Mobile Network Cod,
Telephony IMEI1, IMEI2, MEID, IMSI, IMEISV, ESN, ICCID, Phone Number, SIMState, SIMCountryIso, 20
Carrier_name, Mobile Country Code, SIMOperatorName, Phone Type, SIMOperator

GPU Version, Vendor, Density, Renderer, Resolution, ScaledDensity, Extensions,

Display & GPU Touch Screen Type, Brightness, x_px/y_px, x_dpi/y_dpi, GPU Extension 12
Table 7: G-Ware samples’ MD5 values. “clone_uts_ns” to 1) access our customized “UTS_RELEASE” and
“UTS_VERSION” via our created syscall; 2) update the data structure

Sample MD5 “new_utsname” that defines these two objects.

>

G-Warel B7494A6879FD107FC0910D9F6B7F49B2

G-Ware2 AE2437BC6B21D83A9262A752CD56E678

G-Ware3 BB878E32E75D1136CC10D89619C64E37

G-Ware4 6F46F37EFACE7E6ED38306DA9536A9E5

G-Ware5 5B6614A0E3A824DE836B5D86919F37DA

G-Ware6 8FDFD410B35B356EE2D67828 A6 A2F05C

G-Ware7 5F62A64CCAS5E5CA87C36D3FC6D2FC986

G-Ware8 F9265AA20E6D53C680B9A76E4CFCIF28

G-Ware9 1F66A7A83A331C4DASFF9EB55C7B317C

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Android Emulators
	2.2 App-Level Virtualization
	2.3 Android Container-Based Virtualization
	2.4 Binder

	3 VPBox System Overview
	4 Kernel-Level Device Virtualization
	5 User-Level Device Virtualization
	5.1 WiFi Configuration
	5.2 Display, GPU, Audio, and Camera
	5.3 Bluetooth

	6 Scalability and SELinux
	7 Device Attribute Customization
	7.1 Android System Property Customization
	7.2 User-level Customization
	7.3 Kernel-level Customization
	7.4 Advantages of VPBox's Customization

	8 Evaluation
	8.1 Performance Measurements
	8.2 Security Analysis
	8.3 VP Customization Evaluation

	9 Discussion and Future Work
	10 Conclusion
	References
	A Core Network Resource and Power Management
	B Telephony Virtualization via RiLD Proxy
	C Filesystem and Android Debug Bridge
	D Kernel Version Customization

