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ABSTRACT

In this work, we explore multi-view graph generation with deep
generative models. We discuss some of the challenges associated
with multi-view graph generation that make it a more difficult
problem than traditional graph generation. We propose 3 different
criteria for evaluating the quality of generated graphs: a graph-
attribute-based, a classifier-based, and a tensor-based method. We
also propose TENGAN, a baseline tensor-decomposition-based GAN
to reduce the number of parameters required for multi-view graph
generation. We evaluate its performance on 2 datasets—a Twitter
football dataset and an EU airlines dataset. We find promising results
on the football dataset—multi-view graphs generated by TENGAN
are able to fool a classifier 30% of the time—but find that it performs
poorly on the airlines dataset. We explore some reasons for this
and discuss the limitations of our approach.
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1 INTRODUCTION

Multi-view graph generation can be seen as an extension of the
traditional problem of graph generation. The typical problem state-
ment for graph generation is to generate a graph with some desir-
able properties, often with the goal to structurally emulate another
real-world graph without being exactly the same.

Graph generation models have been applied to a wide variety
of network types, and have been especially shown to be useful in
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protein generation [14][26]. These models can be generally split
into two types: statistical attribute-based generative models and
deep generative models. Statistical generative models like the Erdds-
Rényi [5], Barabasi—Albert [2], and stochastic block models [13]
allow a user to choose certain attributes of the graph. Some of these
have also been extended to work for multi-view graphs [16][22][17].

In contrast, many deep generative models can learn directly one
or more input graphs. This allows them to mimic attributes of the
input dataset without having to explicitly define them. Examples
of these include GraphRNN [26], NetGAN [3], and LGGAN [6].

There have also been several models to generate multi-scale
graphs. The key difference between a multi-view and multi-scale
graph is that a multi-view graph contains the same nodes with
different edges in each view, while a multi-scale graph typically
contains representations of the same underlying graph at different
resolutions (different number of nodes) in each layer. Misc-GAN
[27] generates a multi-scale graph before collapsing it into a stan-
dard graph, and DMGNN [20] predicts multi-scale graphs from
previous ones. However, to the best of our knowledge, there have
been no deep generative models for multi-view graphs.

This is a especially challenging task because of the higher di-
mensionality of the data (there can be many views) and the varying
relationships between the views. It is also non-trivial to evaluate
the quality of the generated multi-view graphs. In this work, we
attempt to solve some of these issues and propose TENGAN, a
preliminary GAN-based method to generate multi-view graphs.

Our contributions include:

¢ Novel method: We propose a novel GAN-based method to
generate multi-view graphs that uses the canonical polyadic
decomposition (CPD) to reduce the number of parameters
required.

e Evaluation criteria: We propose 3 different evaluation met-
rics for multi-view graph generation.

e Preliminary experimentation: We conduct preliminary
experiments on two different datasets to evaluate the per-
formance of our method and provide a baseline for future
works.

2 BACKGROUND

This section provides the necessary background information. Ta-
ble 1 contains the description of the symbols used in this paper.
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Notation | Meaning

X, X, x, x | Tensor, matrix, vector, scalar

I1X|| Frobenius norm
g(i) The i-th view of a multi-view graph g
X; The i-th row of the matrix X
o Outer product

Tijk The value in the i-th, j-th, and k-th entry along the
1st, 2nd, and 3rd mode of the tensor
Table 1: Table of symbols and their description

2.1 Tensors & Decompositions

Networked data (e.g., a social network) can be represented in many
different formats. One of the most common formats is to use an
adjacency matrix. In a similar manner, a multi-view graph can be
viewed as a third-order tensor where J; ; ;. = w if there is an edge
of weight w (or 1 in the case of an unweighted graph) between node
i and node j in view k. One advantage of storing multi-view graphs
in the tensor format is that it allows us to use tensor decomposition
methods.

One of the most common tensor decomposition methods is the
CANDECOMP/PARAFAC or Canonical Polyadic Decomposition
(CPD). Given an integer r, the CPD decomposes a tensor J into the
sum of r outer products of vectors. While the CPD can be applied
to a tensor of any order, we focus on the third-order case in this
work. The CPD can be written (for a third-order tensor) as:

r

TzZaiObioci

i=1

where a;, bj, ¢; are the factor matrices. It is convention to write
the factors as matrices A, B, C, which consist of the corresponding
vectors horizontally stacked. For example, the i-th column of A
would be a;.

CPD is usually solved by using alternating least squares to min-
imize the Frobenius norm of the error: ||iT - 25:1 arob,o cr”F
We can then divide this number by ||J||¢ to calculate a normal-
ized error value, which provides a heuristic for how well a rank r
decomposition can approximate a given tensor.

2.2 Generative Adversarial Networks

Goodfellow et al. [9] introduced Generative Adversarial Networks
(GANSs) introduced in 2014. A GAN consists of two components: a
generator and a discriminator. The generator takes in some random
noise z as input and outputs data (in this case, a multi-view graph).
The discriminator takes in data and outputs the probability that the
data was drawn from the dataset, rather than from the generator.

These two networks are then optimized together in unison, with
the goal of increasing the quality of generated samples and improv-
ing the discriminator’s ability to distinguish the generated data
from the real data.

3 PROBLEM FORMULATION

We consider the following problem:
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Given a set of multi-view graphs G, generate a set of
graphs G’ that are not identical to G, but possess similar
graph attributes to and are indistinguishable (to a classifier)
from them.

Although this may seem like a simple problem, there are several
challenges that we must address in order to solve this problem.

Challenge 1: Sampling from Multi-view Graphs. Many datasets
consist of a single graph with multiple views. However, since we
are emulating a set of multi-view graphs, we need many smaller
multi-view graphs to form a distribution. Therefore, we need a
method that samples smaller subgraphs from a larger multi-view
graph. We defer a detailed evaluation of different methods to a
future work.

Challenge 2: Inadequate Evaluation Criteria. Before we can de-
cide on an appropriate method to accomplish the aforementioned
sampling task, we must determine our evaluation criteria. This is
challenging because we need to consider not only the graph at-
tributes of each view, but also the relationships between each view.
This means that many of the graph evaluation metrics commonly
used in graph generation are insufficient for multi-view graph gen-
eration. Many existing works in multi-view graph generation rely
on statistical properties to mirror

Challenge 3: Large Number of Parameters. If we naively attempt
to generate a multi-view graph, the number of parameters required
will explode. This is because we need O(k x n®) parameters to
generate an adjacency tensor for a multi-view graph with k views
and n nodes. We propose a method TENGAN (described in Section
4.2) that generates a compressed representation of the tensor to
solve this problem.

4 PROPOSED METHOD

We propose TENGAN, a GAN-based model that first generates
factors of the CPD, then uses those to generate the adjacency tensor.
To train our model, we first sample sub-multi-view graphs from
the dataset, as described in Section 4.1 below. Then, we train our
GAN on the sampled multi-view graphs. Finally, we evaluate our
model with the metrics described in Section 4.3.

4.1 Sampling

Many generative models require multiple input samples, rather
than a single example. For example, LGGAN [6] is trained on 2-hop
and 3-hop egonets extracted from the original source graph. We
extend this sampling method to work for multi-view graphs by
taking all possible egonets across each view and using the induced
subgraph across the same nodes in the other views. While there
are many other multi-view sampling methods, like those described
by Gjoka et al. [8] and Interdonato et al. [15], we leave a detailed
evaluation of them to a future work.

4.2 Architecture

Our model is a GAN and consists of a generator network and a
discriminator network. The discriminator uses the max pool of
several Graph Convolutional Networks (GCNs) [18] (one per view)
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followed by a fully-connected layer to predict if a sample is gen-
erated or drawn from the original real dataset. A diagram of our
architecture is shown in Figure 1.

4.2.1 Generator Architecture. The generator uses a shared feature
extractor layer and splits into separate networks, each of which
generates a different factor in the CPD. This is similar to the BRGAN-
B [24] architecture, but uses the higher-order CPD instead of the
SVD. After generating the factors, we calculate the sum of the
outer products of vectors from our factor matrices A, B, and C:
2i_; ai o b; o ¢;. This helps us reduce the number of parameters
needed to generate a given multi-view graph.

If we attempted to generate an adjacency tensor directly, we
would have to use O(k x n?) parameters in the final layer. However,
if we generate the CPD factors first, we only need O(r X (n +k))
parameters in the final layer, where r is a hyperparameter that
increases the quality of the fit at the cost of more parameters. We
show that our models works well for r < n? in Section 5.2.

Sigmoid nxr

Sum of column
outer products

Output

View 1

View 2 L~ GCL i GCL —
Pool

View n % —  GCL — GCL

Sigmoid

| o : Graph Convolutional
"""" Layer

Figure 1: Diagram of the TENGAN generator (top) and discriminator
(bottom). We generate the A, B, and C factor matrices before taking
the sum of their column outer products to form our output multi-
view graph.

4.3 Evaluation Metrics

Another difficult task in multi-view graph generation is evaluating
the quality of the generated graphs. Gretton et al. [11] found that
measuring the Maximum Mean Discrepancy (MMD) between dis-
tributions of different graph statistics works well for simple graphs.
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MMD is also used in other works [26] [6]. Here, we propose three
methods for evaluating the structural similarity between the gen-
erated and input graphs. These methods are described in detail
below.

4.3.1 MMD-Based Evaluation. One method to evaluate the quality
of generated multi-view graphs would be to apply the evaluation
criteria used for simple graphs to each view. We measure the Mean
MMD (M-MMD) score between the distributions of different graph
attributes. More concretely, for each graph attribute, we take the
mean of the MMD between the i-th view of a generated graph
G’ and a graph G. We can use the clustering coefficient, degree
distribution, and the orbit of the graphs similar to You et al. [26].

However, the main downside of this approach is that it does not
take the relationship between the views into account. For example,
consider the case where we generate multi-view graphs with two
views. Let the list of the generated first and second views be V, =
¢ MVg € G’ and vy = g'®Vg’ € G’. Then, suppose the MMD
scores of V| and V) across all the graph attributes are 0. Then, the
overall Mean MMD (M-MMD) would be 0. However, if we permute
V| and V,, we would get the same M-MMD score.

This is clearly an undesirable behavior in any case where each
of the views are correlated with each other. An extreme example of
this would be a multi-view graph g where g(!) has an edge iff g(?
does not have an edge. Then, it is possible for a generated graph g’
to have g’V = ¢/(2) but still have a perfect M-MMD of 0 in all the
graph attributes. To address this issue, we propose a tensor-based
evaluation method:

4.3.2 Tensor-Based Evaluation. As described above in Section 2.1,
multi-view graphs can be viewed as third-order tensors, and tensor
decompositions have been shown to be able to extract structure
(like communities) from multi-view graphs [12][7][1][23]. We take
advantage of this fact by applying the CPD to each multi-view graph
or tensor. The normalized reconstruction error of the decomposition
for various values of r provides a heuristic for how much structure
there is along the three modes of the tensor. We then compare the
errors of the generated and original tensors to see if they are similar
in terms of structure.

We randomly sample n generated tensors from the generated and
real tensors. We then calculate the sum of the Wasserstein metric
(ak.a. the earth mover’s distance: EMD) between all n? pairs. The
lower this score, the more similar pairs are (on average). While this
score works well across a fixed dataset, it is difficult to compare this
score across datasets of different sizes. This is because the number
of feasible r values changes with the size of the tensor; and a given
dataset may naturally have a wider range of pairwise distances.

To solve this issue, we normalize the sum of generated-real
distances by the sum of pairwise real-real distances. More formally,
given real error matrix E and generated error matrix E’ (where every
row E; is a vector of the errors of the i-th sample’s decomposition):

?:1 7=1EMD(E1',E’])
?_1 ;'1:1 EMD(EisEj)

(1)

TENSCORE =

The lower the TENSCORE, the more realistic the generated sam-
ples are.
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Figure 2: Error vs. rank plot for 9 randomly sampled pairs on the football dataset. The dashed green lines are the generated results, and the
solid blue lines are the original results. We can see that the error of generated samples roughly matches those of the original samples. We
compute the normalized EMD of all sampled pairs in our tensor-based evaluation method.

4.3.3 Classifier-Based Evaluation. Another solution to evaluating
the similarity between the generated and original multi-view graphs
is to use a classifier. We train a classifier on generated and original
data; then check to see if it correctly predicts the origin of an
example. We calculate accuracy and F1 score of the resulting model
(the closer to 0.5 or 50%, the better).

In the model, we calculate a graph2vec [21] embedding for each
view of the multi-view graph. Then, we split the embeddings into
training/test data and train a classier for each view. Finally, we can
take the majority vote of the ensemble. These steps are shown in
Figure 3. It is worth noting that the embedding method and model
can be swapped out for other models depending on

However, this still has the problem that it does take the corre-
lation between views into account. This could be solved by using
a multi-view graph embedding method instead, but we leave this
to a future work and instead rely on the tensor-based evaluation
method to address this case.

5 EXPERIMENTAL EVALUATION
5.1 Datasets

We used two datasets in this work:
(1) football [10]: 248 English Premier League football players
and clubs on Twitter, where each of the 6 views corresponds

Embedding Classifier
View 1 > Model > (e.g. SVM)
(e.g. graph2vec) <
Embedding i
' Classifier Real/
View L] Model L] (2.9, SVM) Majority ~ Generated

(e.g. graph2vec)

Embedding Classifier
View n > Model 1 (eg.svM)
(e.g. graph2vec) <

Figure 3: Diagram of the classifier-based evaluation model. We first
calculate an embedding and train a classifier on each view before
using the majority vote to guess if the result is a real or generated
multi-view graph. Note that this is similar to, but different from the
discriminator in Figure 1.

Vote

to a different interaction between the accounts (follows,
followed-by, mentions, mentioned-by, retweets, retweeted-
by). Note that 3 of the views are transposes of the other
3.
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(2) EU airlines [4]: airline routes from 250 European airports,
where each of the 37 views corresponds to a route by a
different airline.

We sample egonets of size 30-50 from each view, as described

above in Section 4.1.

5.2 Results

We evaluated TENGAN on the 2 datasets using the 3 evaluation
criteria described above in Section 4.3, and the results are shown in
Table 2.

5.2.1 MMD-Based Evaluation. In terms of mean MMD scores, TEN-
GAN on the football dataset performs similarly to BRGAN [24] and
LGGAN [6] on the small Citeseer and CORA datasets. However,
TENGAN does relatively poorly on the EU airlines dataset, which is
also reflected in the other evaluation criteria. We talk about some
possible reasons for this in Section 5.2.4. Based on the four runs, we
can see that increasing the r generally leads to better mean MMD
scores.

5.2.2 Tensor-Based Evaluation. TENGAN does well for r = 100 on
the football dataset, with an TENSCORE of less than 1. This indicates
that mean distance for all real-generated pairs is lower than the
mean distance within the real dataset. However, TENGAN has a
very poor TENSCORE on the football dataset with » = 50. This is
likely because 50 components are insufficient to express the rank
of the football tensor. TENGAN also has a poor TENSCORE on the
EU airlines dataset; some possible reasons for this are discussed in
Section 5.2.4.

5.2.3 Classifier-Based Evaluation. TENGAN is able to fool our clas-
sifier on the football dataset roughly 24% of the time with r = 50
and improves to 30% of the time with » = 100. This shows that
TENGAN can generate fairly realistic results on the football dataset.
However, TENGAN fools the classifier only 2-4% of the time on the
EU airlines dataset. We talk about some potential reasons for this
below.

5.2.4  Summary. TENGAN shows promising preliminary results on
the football dataset, but, TENGAN performs very poorly on the EU
airlines dataset. This is likely because the EU airlines dataset also
has much less correlation between each view, making the tensor
higher rank and therefore much harder to model with TENGAN.
It also has a large number of views (which can exceed the num-
ber of nodes, depending on the size of the sub-multi-view graph).
One potential solution to this would be to increase the number of
parameters in the network by increasing r and hidden layer sizes.
However, we defer a detailed evaluation of this to a future work.

6 RELATED WORK

There have been several works on the topic of multi-view graph
sampling. Interdonado et al. [15] mentions that sampling random
nodes with their induced subgraphs works on multilayer graphs, but
may lead to degree distribution and connectivity issues. A solution
to this is to use exploration-based sampling. Methods that work on
standard graphs like Metropolis-Hastings random walks, BFS, and
forest fire sampling [19] can also be applied to multi-view graphs
[15] [16].
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To improve random walk sampling on multi-view graphs, Gjoka et
al. [8] proposes union multigraph sampling—a method that uses
the "union multigraph", which consists of all edges across all views
in the multi-view graph. Union multigraph sampling then performs
a random walk over this multigraph to sample it. While unbiased
samples are useful, we sometimes want a biased sample. Khandagi
et al. [16] proposes using learning automata to perform a biased
sample to better sample nodes with special properties.

There has also been some previous work on multi-view graph
generation. For example, Nicosia et al. [22] proposes a model to grow
a multi-view graph based on traditional preferential attachment
models like the Barabasi-Albert model [2]. Kim et al. [17] uses single-
layer preferential attachment models and tunes the correlation
between layers.

To the best of our knowledge, there have been no other neural-
network-based models for multi-view graph generation. However,
there has been previous work in graph generation using neural
networks. GraphRNN [26] uses a RNN to model graphs as a se-
quence of nodes of edges. NetGAN [3] uses a LSTM to learn the
distribution of biased random walks. GraphVAE [25] uses a varia-
tional autoencoder to generate graphs. LGGAN [6] generates the
adjacency matrix directly, along with associate labels. Finally, BR-
GAN [24] generates rank-constrained graphs by first generating
factor matrices, much like TENGAN.

7 CONCLUSION

In this work, we discuss some of the issues associated with multi-
view graph generation, as well as some potential solutions to these
issues. One of these issues is the large number of parameters re-
quired to generate a multi-view graph using a neural network.
To help solve this, we propose a novel GAN-based method that
leverages the CPD to reduce the number of parameters required.
Another issue with multi-view graph generation is a lack of eval-
uation criteria. We attempt to address this by proposing 3 different
evaluation metrics that evaluate the realism of the graph along
different aspects. Finally, we run our model on 2 different datasets
and evaluate the results according to the metrics we define. This
provides a preliminary baseline for future works to build on top of.
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Football EU Airlines
Model Name Deg Clust Orbit F1  Acc TeENScore Deg Clust Orbit F1  Acc TENSCORE
TENGAN (r = 50) 0.18 069 0.09 071 0.76 1.60 0.91 1.31 083 098 0.98 1.43

TENGAN (r =100) 0.10 045 0.10 0.57 0.70 0.92 091 127 081 097 0.96 1.59

Table 2: Results of TENGAN on the football and EU airlines datasets. Deg, Clust, and Orbit are the mean MMD scores of our MMD-based
evaluation method. F1 and Acc are the scores produced by the classifier-based method. TENSCORE is the score produced by the tensor-based
method. Lower is better for all of these metrics. TENGAN does poorly on the EU airlines dataset—some possible reasons are discussed in
Section 5.2.4.
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