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Abstract

Graph Laplacian (GL)-based semi-supervised learning is one of the most used approaches for clas-

sifying nodes in a graph. Understanding and certifying the adversarial robustness of machine learn-

ing (ML) algorithms has attracted large amounts of attention from different research communities

due to its crucial importance in many security-critical applied domains. There is great interest in

the theoretical certification of adversarial robustness for popular ML algorithms. In this paper, we

provide the first adversarial robust certification for the GL classifier. More precisely we quanti-

tatively bound the difference in the classification accuracy of the GL classifier before and after an

adversarial attack. Numerically, we validate our theoretical certification results and show that lever-

aging existing adversarial defenses for the k-nearest neighbor classifier can remarkably improve the

robustness of the GL classifier.

Keywords: Graph Laplacian; Semi-supervised learning; Robust certification

1. Introduction

Let ΩN := {xi}Ni=1 ⊂ R
d be a set of feature vectors with a subset of ΓN := {xi}i∈ZN⊂[N ] being

labeled. If i ∈ ZN then xi is labeled `(xi) ∈ R and we denote `N := `|ΓN
. The Graph Laplacian

(GL) framework encodes the geometry of the feature vectors ΩN by constructing an undirected

graph, GN = (ΩN ,WN ), where ΩN forms the nodes of the graph and WN := (Wx,y)x,y∈ΩN

is the set of edge weights with Wx,y being the weight of the edge between x and y. The graph

Dirichlet energy is defined by

E(u; ΩN ) =
∑

x,y∈ΩN

Wx,y(u(x)− u(y))2,

where u is a function defined on the nodes ΩN of the graph. We can then predict the label for the

unlabeled data by solving the following constrained energy minimization problem

minimize E(u; ΩN ) over u : ΩN → R subject to u(x) = `N (x) ∀x ∈ ΓN . (1)

Laplacian regression is the solution to (1). To go from regression to (binary) classification one

thresholds u, e.g. if the classes are represented by {0, 1} then the GL classifier predicts the label 1
if u(x) ≥ 1/2, and 0 otherwise. Note that the GL classifier classifies any unlabeled data leveraging
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both labeled and unlabeled data. As a comparison, for any unlabeled x, the k-nearest neighbor

(kNN) classifier classifies x with the most common label amongst its labeled nearest neighbors.

The GL classifier has been successfully used for semi-supervised data classification (Wang et al.,

2006; Zhou et al., 2004; Zhu et al., 2003), image processing (Buades et al., 2006; Gilboa and Osher,

2009; Shi et al., 2017), improving robustness and accuracy of deep neural nets (DNNs) (Wang

et al., 2018a; Wang and Osher, 2019), etc. Direct application of GL classification with Gaussian

(Belkin and Niyogi, 2004) or locally linear embedding weights (Roweis and Saul, 2000) for the

above tasks may cause inference inconsistency in the low labeling ratio regime. To resolve this

dilemma, many regularisation strategies have been developed to adapt GL to the ultra-low ratio of

the labeled training data, e.g., scaling the weights (Shi et al., 2017, 2018) of the labeled data and the

p-Laplacian (Calder, 2018; Rios et al., 2019; Zhou and Schölkopf, 2005).

Despite the tremendous success of machine learning (ML) algorithms, they are generally vul-

nerable to adversarial attacks (Szegedy et al., 2013). The adversarial vulnerability of ML algorithms

raises concerns in applications to security-critical domains, such as: autonomous cars (Akhtar

and Mian, 2018; Schneier, 2019), medical imaging (Finlayson et al., 2019), and national defense

(Hoadley and Lucas, 2018). Many algorithms have been recently proposed to improve robustness of

ML including adversarial training (Goodfellow et al., 2014; Madry et al., 2017), augmenting training

data with unlabeled instances (Carmon et al., 2019), and noise injection (Wang et al., 2019).Nev-

ertheless, there is a lack of theoretical understanding of adversarial issues of ML models. In this

paper, we focus on theoretical analysis of the conditions that guarantee adversarial robustness of

the GL classifier for semi-supervised learning (SSL).

1.1. Our Contribution

A classifier is said to be certifiably robust in classifying x, if the classification result remains con-

stant provided the perturbation on x is within a ball, e.g., `2-ball, of radius r. In this paper, we

provide the first certification of the adversarial robustness of the GL classifier under the `2-norm.

Our theory shows that within a certain adversarial attack regime, the GL classifier with O(k) edges

per node is intrinsically more robust than the kNN classifier. We show that to achieve certified

robustness, the GL method needs significantly fewer nearest neighbors, with a small computational

overhead. Our theoretical result resonates with the finding that unlabeled data can improve the

robustness of ML algorithms (Carmon et al., 2019) and provides a feasible avenue to explain the

observation that GL-based activation function remarkably improves DNNs’ robustness (Wang and

Osher, 2019). We summarize these high probability results in Table 1, where N and M are the total

number of data and the number of unlabeled data respectively, k is the number of nearest neighbors

involved in kNN and the approximate order of edges per node for the GL classifier, r is the maxi-

mum allowed adversarial perturbation measured in the `2-norm, and κ is the condition number of

the matrix WN . We point out, however, that the results for the GL classifier in Table 1 are a special

case and in particular one can reduce the number of neighbors k at the cost of reducing the probabil-

ity (going from high probability bounds to low probability bounds). Note that if a constant fraction

of the data is labeled i.e., (N−M)/N is constant, then k = Ω(logN) for the GL classifier. We will

numerically verify these theoretical results with the existing benchmark experiments in Section 4.

More detail on how we extracted these bounds from our theoretical results is given in Remark 3.
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Table 1: High probability robustness guarantees and computational complexity of GL vs. kNN.

Classifier k Assumption on r Computational Complexity Reference

kNN Ω(
√

N logN) None O(kM log(N −M)) Wang et al. (2018b)

GL Ω
(

N logN

N−M

)

r ≤ c

√

N−M

N

(

logN

N−M

)
1

d

O(kN logN +Nk
√
κ) This Work

1.2. Additional Related Works

The first theoretical characterisation of the number of nearest neighbors required for a robust kNN

classifier appeared in (Wang et al., 2018b), where the authors also proposed a robust one nearest

neighbor approach. We apply the robust characterisation used by Wang et al. (2018b) and develop

a robust certification for the GL classifier in SSL.

To prove robustness, we connect with large data results and we mention several here. When the

labeling rate is low Laplacian regularisation becomes degenerate and the label function u becomes

nearly constant with sharp spikes at the labeled points (El Alaoui et al., 2016; Nadler et al., 2009;

Slepčev and Thorpe, 2019). The degeneracy can be avoided by either using p-Dirichlet energies,

with p > d (Calder, 2019; El Alaoui et al., 2016; Slepčev and Thorpe, 2019), by increasing the

label rate (N − M)/N (Calder et al., 2020), or by reweighting the Laplacian in order to gain

more regularity (Calder and Slepčev, 2019; Shi et al., 2018). Similar results hold for the game

theoretic p-Laplacian (Calder, 2018, 2019). In addition, pointwise convergence of Laplacians has

been considered several times, for example (Belkin and Niyogi, 2007; Calder, 2018; Calder et al.,

2020; Garcı́a Trillos et al., 2019; Garcı́a Trillos and Slepčev, 2018; Hein et al., 2005; Singer, 2006).

1.3. Organization

We organize this paper as follows: In Section 2, we present the main theory on the certified ro-

bustness of the GL classifier. In Section 3, we analyze the computational complexity of the GL

classifier. We verify the robustness of the GL classifier in different settings and compare it with the

kNN classifier in Section 4. This paper ends with some concluding remarks in Section 5. Technical

proofs and some more experimental details and results are provided in the appendix.

1.4. Notation

We denote vectors/matrices by lower/upper case bold face letters. Given two sequences {an} and

{bn}, we write an = O(bn) if there exists a positive constant C such that an ≤ Cbn; and an =
Ω(bn) if for large enough n, bn is at least can for some constant c. Throughout 0 < c ≤ C < +∞
will be arbitrary constants (independent of data realisations and all other parameters but possibly

depending on dimension and the density of the data generating distribution) and may change value

from line-to-line. We denote the set {1, 2, · · · , N} by [N ].

2. Main Theory

2.1. Preliminaries and Assumptions

To certify the robustness of the GL classifier, we make the following assumptions on the dataset:

(A1) Ω ⊂ R
d is open connected and bounded with Lipschitz boundary;
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(A2) xi
iid∼ µ ∈ P(Ω) where µ has density ρ ∈ C2(Ω) that is bounded below by a positive constant,

i.e. infx∈Ω ρ(x) =: ρmin > 0;

(A3) P(x ∈ ΓN |x ∈ ΩN ) = P(i ∈ ZN |xi ∈ Ωn) = β and if x ∈ ΓN , then x is labeled as `(x)
for a Lipschitz function ` : Ω → R.

It will be convenient to define `N = `|ΓN
. Note that β is the probability of a data point being

labeled and so (in the notation of Table 1) we can make the formal association β ∼ (N −M)/N .

For convenience, we introduce the following constrained graph Dirichlet energy functional:

Econ(u;DN ) =

{

E(u; ΩN ) if u(x) = `N (x) ∀x ∈ ΓN

+∞ else.

The Euler-Lagrange equation corresponding to minimizing Econ(·;DN ) is

LN (u; ΩN )(x) = 0 for x ∈ ΩN \ ΓN

u(x) = `N (x) for x ∈ ΓN ,

where LN (·; ΩN ) is the graph Laplacian defined by

LN (u; ΩN )(x) =
∑

y∈ΩN

Wx,y (u(x)− u(y)) .

We have made explicit the dependence of the domain ΩN on the functionals E , Econ and the

operator LN . Although this notation may feel cumbersome at this stage, it will aid clarity when we

have two sets of data; the original dataset ΩN and the (adversarially-) perturbed dataset Ω̂N .

We will consider Geometric Random graphs. This construction involves weighting edges be-

tween all pairs of nodes as a function of the distance between nodes (and we say there is no edge

between two nodes if the edge weight is zero). We use a parameter ε, which is often chosen relative

to N , to control the length scale in the graph. This is summarised below:

(A4) Wx,y = Wε,x,y where Wε,x,y = ηε(|x − y|) and ηε = 1
εd
η(·/ε) and η : [0,+∞) →

[0,+∞) is non-increasing, positive, η(t) ≥ 1 for all t ≤ 1 and η(t) = 0 for all t ≥ 2. In

addition, either η is Lipschitz continuous, or η(t) = 1t≤1.

We note that whilst we use the geometric random graph construction in (A4) and we use the kNN

graph in our experiments. The parameters k and ε are related as follows k ∼ Nεd (cf Lemma 10).

There are additional technical challenges when addressing the kNN constructions, however, we

believe our results carry through to this setting (see also Remark 3 below).

The assumptions in (A4) allow us to bound the degrees of nodes and, letting x̂, ŷ be the adver-

sarial perturbations of x,y, show that either (i) Wx,y is always close to Wx̂,ŷ (when η is Lipschitz)

or (ii) we can control the number of x,y such that Wx,y is not close to Wx̂,ŷ (when η = 1·≤1).

2.2. Robustness of Semi-Supervised Learning with Graph Laplacian

In this subsection, we give a theoretical bound of the following question: how is the classification

estimate affected if an adversary replaces the clean dataset DN = (ΩN , `N ) with a new, corrupted,

dataset D̂N = (Ω̂N , ˆ̀N )? Following Wang et al. (2018b), we assume that the adversary can corrupt
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features by adding a small perturbation to the unlabeled data; the question of robustness under

poisoning attacks (Dalvi et al., 2004; Lowd and Meek, 2005) is an interesting question we leave

open. We assume the adversary can corrupt the unlabeled data by moving each point a maximum

distance of r in `2-norm. That is, the adversary can replace the set ΩN with a corrupted dataset

Ω̂N by, for each i = 1, . . . , N , choosing x̂i ∈ B(xi, r) thus defining Ω̂N = {x̂i}Ni=1. Here,

and in the sequel, x̂, x̂i is understood to be a perturbation of x,xi, respectively. Although the

labels are not perturbed, the domain of the labeling function `N is, i.e. the perturbed domain is

Γ̂N = {x̂i}{i :xi∈ΓN}, and so we define ˆ̀
N : Γ̂N → R by ˆ̀

N (x̂) = `N (x) for all x̂ ∈ Γ̂N . Note

that ˆ̀N (x̂) = `N (x) is precisely the condition that the adversary doesn’t corrupt labels.

A learning strategy is a map from the dataset DN = (ΩN , `N ) to a function u : ΩN → R. For

example, in the previous section we defined the learning strategy

DN = (ΩN , `N ) 7→ u(·;DN ) := argminu:ΩN→REcon(·;DN ). (2)

This is the learning strategy we will analyse.

Given a dataset DN = (ΩN , `N ) and a perturbation D̂N = (Ω̂N , ˆ̀N ) we will compare u(·;DN )
with u(·; D̂N ) by |u(x;DN ) − u(x̂; D̂N )|. The L∞ distance between u(·;DN ) and u(·; D̂N ) can

be defined as maxx∈ΩN
|u(x;DN )− u(x̂; D̂N )|.

We let δ > 0 be a prescribed tolerance then the robustness radius is the smallest r such that it

is possible to perturb u(·;DN ) by more than δ. More precisely, we define the δ-robustness radius

below which is a modification of the robustness radius in (Wang et al., 2018b).

Definition 1 δ-Robustness Radius. Let DN 7→ u(·;DN ) be a learning strategy. The δ-robustness

radius Rδ(Ω
′, u,DN ) of u over a subset Ω′ ⊂ Ω given the data DN is the smallest radius r such

that sup
x∈ΩN

|u(x;DN )− u(x̂; D̂N )| > δ where |x̂− x| < r for all x ∈ Ω′, i.e.

Rδ(Ω
′, u,DN ) = inf

r>0

{

∀xi ∈ ΩN ∩ Ω′ ∃x̂i ∈ B(xi, r) s.t. sup
x∈ΩN

|u(x;DN )− u(x̂; D̂N )| > δ

}

.

We prove δ-robustness over Ω′ in order to avoid problems at the boundary ∂Ω. In particular,

we take Ω′ such that dist(Ω′, ∂Ω) is sufficiently large. We believe our arguments can be extended

to the boundary but the techniques to do so are more involved and will involve estimates between

the GL and its continuum analogue at the boundary. In particular, our proof uses a bound between

the graph Laplacian and its continuum analogue, for which there are quantitative bounds away from

the boundary, e.g. Singer (2006); Calder (2018). Near the boundary the bound between the graph

Laplacian and its continuum counterpart deteriorates to O(1), i.e. there are currently no established

rates of convergence close to the boundary, see Calder et al. (2020).

Our main theoretical results are the following, the proofs can be found in Appendix A.

Theorem 2 δ-Robustness of GL-based Regression. Under Assumptions (A1-A4) define u by (2).

There exists constants C0 > 0, ε0 > 0, C > c > 0 such that if ε ∈ (0, ε0), r ∈ (0, rmax)

where rmax = c
√
βε, β ∈ [ε2, 1] and Ω′ ⊂ Ω, with dist(Ω′, ∂Ω) > C0β

− 1

2 ε log
(

β
1

2 ε−1
)

, then

Rδ(Ω
′, u,DN ) ≥ r with probability at least 1− CNe−cNβεd where

δ =
Cε√
β
log

(√
β

ε

)

. (3)
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Remark 3 The comparison with kNN given in Table 1 can be derived from the above theorem as

follows. With probability at least 1− CNe−cNεd the number of neighbors in an ε connected graph

scales as Nεd (cf Lemma 10); hence k ∼ Nεd. Now to achieve a high probability convergence rate

we require that (Nβεd)/(logN) is large, which gives a lower bound on ε. Choosing ε as small as

possible then implies that k � (logN)/β. Since β ∼ (N −M)/N then we arrive at the form of

the bound stated in Table 1. Moreover, we believe the above theorem can be generalised to include

the kNN graph construction: Wx,y = WN,k,x,y where WN,k,x,y = N
k
1x∼ky

and 1x∼ky
= 1

if x is a kNN of y (or vice versa) and 1x∼ky
= 0 otherwise. Formally, we conjecture that if one

substitutes ε =
(

k
N

)
1

d then Theorem 2 continues to hold with kNN weights, i.e. Rδ(Ω
′, u,DN ) ≥ r

with probability at least 1− CNe−ckβ where

δ =
Ck

1

d

N
1

d

√
β
log

(

N
1

d

√
β

k
1

d

)

.

Remark 4 Theorem 2 shows the δ-robustness of GL-based regression up to rmax = c
√
βε. We can

restate this in terms of the number of labels, N−M , by using the formal scaling β ∼ (N −M)/N ,

so that rmax = cε
√

(N −M)/N . In particular, the number of labels increases the δ-robustness

following a square-root law.

Typically, one uses Laplacian regularisation for labeling by projecting the solution u of (1) onto

the set of labels. For simplicity we consider the binary classification problem, that is we seek a

function v : ΩN → {0, 1} where 0 and 1 are the two classes. As is common, we define

v(x;DN ) =

{

1 if u(x;DN ) ≥ 1
2

0 else.

Corollary 5 Let δ be given by (3). In addition to the assumptions of Theorem 2 we assume

sup
ξ>0

1

ξ
Vol

({

x :
1

2
− ξ ≤ `(x) ≤ 1

2
+ ξ

})

≤ A, (4)

for some A > 0, then there exists Ωδ ⊂ Ω such that µ(Ω \ Ωδ) ≤ Cδ and R0(Ωδ, v,DN ) ≥ r with

probability at least 1− CNe−cNβεd .

The classification decision boundary is {x : u(x) = 1
2}, which (c.f. Theorem 6) is approxi-

mately the set {x : `(x) = 1
2}. The additional assumption in equation (4) is in order to ensure that

the set where ` is close to 1
2 can be controlled. When `(x) is sufficiently far from 1

2 then we obtain

v(x;DN ) = v(x̂; D̂N ).

The proof of Theorem 2 and Corollary 5 is given in Appendix A, and relies on a quantitative

bound between solutions of (1) and the true function `. In particular, if the data points are close

to being iid then we can use the result in Calder et al. (2020) to infer a high probability bound

between u(·;DN ) and `. Our proof shows that if r < rmax then we can consider the perturbed data

points Ω̂N = {x̂i}Ni=1 to be close to iid and hence apply the result to infer a high probability bound

between u(·; D̂N ) and `. In fact, we can show the following result, and the proof is also given in

Appendix A.
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Table 2: CPU time and memory cost of GL vs. kNN classifiers for MNIST 1v7 classification

(without attack), and the dataset is described in Subsection 4.1.

Classifier kNN GL

Number of Nearest Neighbors (k) 5 10 15 20 5 10 15 20

Peak Memory (MB) 382 382 382 382 439 445 448 449
CPU Time (second) 2.55 2.62 2.70 2.89 2.99 3.27 3.89 5.07

Theorem 6 Under the assumptions of Theorem 2 we have that max
x̂∈Ω̂N

|u(x̂; D̂N )− `(x)| ≤ δ

with probability at least 1− CNe−cNβεd where δ is given by (3).

Theorem 2 quantifies the robustness of GL regression. More precisely, it establishes an upper

bound of the maximum allowed adversarial perturbation under which the GL solution, u, of (2) is

close to the ground truth label function `(x) with high probability. Furthermore, Theorem 6 implies

that after an adversarial attack the solutions to GL regression remain close to the true solution with

a quantifiable bound. In Corollary 5 we infer the robustness of GL classification.

3. Computational Complexity Analysis

We ignore the common pre-processing time for both kNN and GL. The computational complex-

ity of kNN is dominated by nearest neighbor searching, and the total computational complexity of

searching for the nearest neighbors for all unlabeled points is O(kM log(N−M)) (Muja and Lowe,

2014). For the GL classifier, if we use the top k(k � N)-nearest neighbors, the total computational

complexity for constructing the weight matrix would be O(kN logN). The additional computa-

tional complexity of GL comes from solving a sparse linear system of the size N × N , which can

be solved by using the conjugate gradient method in O(Nk
√
κ) time, with κ being the condition

number of WN (Shewchuk, 1994). Hence, the total computational complexity of the GL classifier

is O(kN logN +Nk
√
κ). Table 2 lists a comparison of CPU time and peak RAM consumption for

MNIST 1v7 classification with different numbers of nearest neighbors (k) being used, and all the

experiments are done on an Intel(R) Xeon(R) CPU E5-P2690 0 @ 2.90GHz. We provide the de-

tailed experimental settings in Section 4. GL is slightly more computationally expensive than kNN,

but for the most used k the computational overhead is not an obstacle. Moreover, GL classifier can

achieve at least comparable results to kNN with a much smaller k.

4. Experiments

We consider performance of GL classifier and its enhanced variants in classifying different datasets

under adversarial attacks to numerically validate: 1) our certification results in Table 1, 2) the effi-

cacy of adversarial defenses, and 3) the advantages of the GL classifier over the kNN classifier. In

all experiments below, we construct WN in the same way as that used in Shi et al. (2017).
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4.1. Datasets, Classifiers, & Attacks

We use the same benchmark datasets, adversarial attacks, and defenses as those used in Wang et al.

(2018b), where the authors analyzed robustness of kNN. Below we give a brief description of these

baselines.

Datasets. We consider three benchmarks: Halfmoon, MNIST 1v7, and Abalone (Dua and Graff,

2017). Halfmoon is a randomly generated 2D synthetic dataset in which we randomly generate 2000

points and 1000 points, with a standard deviation of 0.2, as the training and test set, respectively.

For the MNIST 1v7, we randomly select 500 images for each of digit 1 and 7 to form the training

set and the same size for the test set. For Abalone, we use 500/100 samples for training/test. We

also generate a validation set for each of the three benchmarks with the same size as the test set.

Adversarial Attacks. We apply the same white-box (WB) and black-box (BB) attacks as that

used in Wang et al. (2018b). In particular, we consider the following two WB attacks:

• Direct attack (DA). Given a perturbation of `2 magnitude r and the training dataset S (which

might be an augmentation or pruning of DN ), the adversarial example of x is xadv = x +
r(x − x

′)/|x − x
′|, where x

′ is the nearest neighbor of x in S that is labeled differently from

x. In our experiments, we vary the value of r to change the maximum `2 norm of the adversarial

perturbation.

• Kernel substitution attack (KSA). KSA attacks a surrogate kernel classifier, trained on the same

training set as that of GL classifier, using the fast gradient sign method with the target maximum

`2 norm of the adversarial perturbation, see (Goodfellow et al., 2014).

In the BB attacks, we adopt three substitute classifiers: kernel classifier (Kernel), logistic re-

gression (LR), and neural net (NN). The adversary trains these substitute models using the method

of Papernot et al. (2017) and generate adversarial examples by attacking surrogate classifiers. We

use the same setting as that used in Wang et al. (2018b) for both WB and BB attacks.

4.2. An Approximated Numerical Robust Certification for the GL Classifier

According to Table 1, GL classifier is robust when the number of nearest neighbors that used to con-

struct WN satisfies k ≥ C(N logN)/(N − M) and r ≤ c
√

(N −M)/N d
√

(logN)/(N −M),
where c and C are two constants that are independent of N and M ; we will numerical verify this

in this subsection. In particular, we first perform a grid search with a small amount of labeled data,

say one-fifth of the whole labeled data, for each benchmark to estimate the parameters c and C.

Then, we apply the obtained c and C to compute the smallest number of nearest neighbors k and

the largest perturbation r such that the GL classifier is guaranteed to be robust. Finally, we apply

the above five attacks to the GL classifier with twenty different values of maximum perturbation

uniformly sampled from [0, r]. For each attack value we do 20 independent runs. Table 3 shows

the accuracies of GL classifier on three benchmarks and the theoretical values (assisted with grid

search on small amount of labeled data) of k and r with different amount of labeled data N −M .

These results show that for any benchmark with a given amount of labeled data and k that is used

to construct WN , the GL classifier’s accuracy is consistent under different adversarial attacks using

different attack strengths, and these results confirm our theoretical robustness of GL classifier.
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Table 3: Accuracies of GL classifier for Abalone, Halfmoon, and MNIST classification with dif-

ferent number of labeled data N − M . For different N − M , the GL classifier is robust

when the adversarial attack does not exceed r provided the number of nearest neighbors

that used to construct WN is at least k. (Unit: %)

N −M k r No Attack WB-DA WB-KSA BB-LR BB-Kernel BB-NN
Abalone

100 18 0.0186 64.7± 0.48 64.6± 0.53 64.2± 1.61 64.2± 0.66 64.5± 0.87 64.3± 0.43
200 14 0.0196 69.6± 0.72 69.2± 0.92 69.8± 0.85 69.7± 0.93 68.6± 1.55 68.9± 0.86
300 13 0.0198 67.5± 0.36 67.1± 0.51 67.1± 1.36 66.6± 0.39 68.1± 1.18 67.1± 0.82
400 13 0.0197 69.5± 0.87 69.0± 0.93 69.1± 1.50 69.8± 1.01 68.8± 1.72 69.4± 1.13
500 13 0.0196 70.2± 0.99 70.1± 1.09 69.8± 0.91 69.8± 0.82 69.4± 0.88 69.8± 1.21

Halfmoon
400 22 0.0216 97.0± 0.08 96.8± 0.05 96.9± 0.12 96.6± 0.07 96.8± 0.09 96.6± 0.11
800 15 0.0195 96.6± 0.15 96.7± 0.17 96.4± 0.08 96.7± 0.08 96.5± 0.10 96.6± 0.14
1200 13 0.0177 96.8± 0.06 96.7± 0.11 96.8± 0.05 96.7± 0.11 97.0± 0.16 97.0± 0.06
1600 11 0.0165 96.7± 0.07 96.5± 0.09 96.7± 0.16 96.9± 0.08 96.7± 0.18 96.7± 0.08
2000 10 0.0156 96.6± 0.10 96.2± 0.07 96.6± 0.10 96.4± 0.15 96.5± 0.08 96.6± 0.16

MNIST
200 19 0.407 98.9± 0.11 98.7± 0.12 98.8± 0.18 98.8± 0.09 98.8± 0.05 98.8± 0.11
400 11 0.532 98.7± 0.11 98.7± 0.15 98.6± 0.13 98.7± 0.14 98.6± 0.12 98.7± 0.05
600 9 0.609 98.8± 0.09 98.8± 0.11 98.9± 0.10 98.8± 0.14 98.9± 0.13 98.8± 0.11
800 7 0.663 99.0± 0.13 98.7± 0.10 99.0± 0.12 98.9± 0.10 98.8± 0.05 98.8± 0.12
1000 7 0.703 98.9± 0.13 98.9± 0.14 98.7± 0.11 98.7± 0.11 98.9± 0.13 98.9± 0.09

4.3. The Effects of Adversarial Defenses

Wang et al. (2018b) propose to enhance the robustness of kNN by i) augmenting the training set with

xadv generated from WB-DA, and resulting in the classifier ATNN; ii) augmenting the training data

with adversarial examples crafted by all the above attacks and leads to the classifier ATNN-ALL;

iii) pruning the training set such that the pruned training set is a-separated Wang et al. (2018b) and

gives the RobustNN classifier. In the above kNN-based classifiers, if we replace kNN by GL, we

get four more classifiers: GL, ATGL, ATGL-ALL, RobustGL. For GL-based classifiers we adapt

the same setting as that used in (Wang et al., 2018b) for kNN-based classifiers, except the number of

nearest neighbors, k, in constructing WN . We use the values of k in Table 3 for the whole labeled

training set, i.e., 13, 10, and 7, respectively, for Abalone, Halfmoon, and MNIST.

Figure 1 shows the results (20 runs) of the above eight classifiers for three datasets classification

under the WB DA and KSA attacks with different perturbations r. We provide the results of these

classifiers under BB attacks in Appendix B. We vary r from 0 to 0.04, to 0.2, and to 4 for these three

datasets classification, respectively. For these three datasets, GL-based classifiers are always more

accurate than kNN-based classifiers with or without defense under different WB attacks. Further-

more, as r increases, the improvement becomes more significant. The training data pruning-based

adversarial defense remarkably improves kNN-based classifiers in all cases (Fig. 1 (a), (b), (c), (d),

and (f)) with the exception of the Halfmoon dataset under the KSA attack, and improves GL-based

classifiers when classifying the Abalone dataset under the KSA attack with large r (Fig. 1 (d)).

Similarly, both data augmentation methods can usually improve classifiers’ robustness, especially

for MNIST 1v7.

4.4. Robust Accuracy with Different Number of Training Data

Our theory indicates that for a given k, the robustness of GL classifier depends on the number of

labeled data. In this subsection, we study the effects of the number of labeled data on the classifiers’
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Appendices

The appendices are structured as follows. In Section A, we proof the results in Section 2. In Sec-

tion B, we numerically study the robustness of the GL-based classifier under the black-box attacks.

In Section C, we empirically study the effects of the number of training data in the robustness of

the GL-based classifiers and contrast it to the kNN-based classifiers. In Section D, we visualize the

adversarial examples of GL-based classifiers under different adversarial attacks.

Appendix A. Proofs of the Main Results

We define the following quantities:

dN,ε(x; ΩN ) =
∑

y∈ΩN

Wx,y =
∑

y∈ΩN

ηε(|y − x|)

pN,ε(x; ΓN ) =
∑

y∈ΓN

Wx,y =
∑

y∈ΓN

ηε(|y − x|)

Lϕ(x) = ση
ρ(x)

div(ρ2∇ϕ)(x)

where ση =
∫

B(0,2) η(|z|)|z1|2 dz. We also define the constant Cη =
∫

B(0,2) η(|z|) dz. The value

dN,ε(x; ΩN ) is the degree of the node at x and pN,ε(x; ΩN ) is degree of the node at x using only

labeled data. We also define the “thickened” boundary ∂εΩ by

∂εΩ = {x ∈ Ω : dist(x, ∂Ω) < ε} .
We now recall Theorem 3.11 from Calder et al. (2020) which forms the basis for our proofs.

Theorem 7 (Calder et al., 2020, Theorem 3.11) Let ε ∈ (0, 1) and β ∈ [ε2, 1], ` : Ω → R be

Lipschitz, ρ ∈ C2(Ω), Ω satisfy (A1), and Wx,y is constructed as in (A4). Assume there exists

C > c > 0 such that Ω′
N = {x′

i}Ni=1 ⊂ Ω and Γ′
N ⊆ Ω′

N satisfy

∣

∣dN,ε(x; Ω
′
N )− CηNρ(x)

∣

∣ ≤ CN
√

β (5)

dN,ε(x; Ω
′
N ) ≥ cN (6)

pN,ε(x; Γ
′
N ) ≥ cNβ (7)

∣

∣

∣

∣

1

Nε2
LN (ϕ; Ω′

N )(x)− Lϕ(x)
∣

∣

∣

∣

≤ C‖ϕ‖C3(Ω̄)

√
β

ε
∀ϕ ∈ C3(Ω̄) (8)

for all x ∈ Ω′
N \ ∂2εΩ. There exists C0 > 0 and C̄ such that if u′ satisfies

LN (u′; Ω′
N ) = 0 ∀x ∈ Ω′

N \ Γ′
N

u′(x) = `(x) ∀x ∈ Γ′
N

then

max
x∈Ω′

N
\∂τΩ

∣

∣u′(x)− `(x)
∣

∣ ≤ C̄ε√
β
log

(√
β

ε

)

where τ = C0ε√
β
log
(√

β
ε

)

.

910



ROBUST CERTIFICATION FOR LAPLACE LEARNING ON GEOMETRIC GRAPHS

The theorem is stated for any collection of data points Ω′
N = {x′

i}Ni=1 and, under the assump-

tions, gives a quantitative bound between the GL solution and the label `. The general idea behind

the proof of Theorem 7 is to exploit the connection between solutions of the GL-based classifier

with an appropriately defined random walk that terminates when it hits a labeled data point. In

particular, the distance of the random walk after k steps from its starting position is like ε
√
k (the

size of each step is ∼ ε so this coincides with the usual random walk bounds in continuum domains)

and the random walk will terminate after approximately k ∼ N/|Γ′
N | steps. By (7) the probability

of a data point being labelled is a fraction of β. Putting all this together one gets that the error of

the GL-based solution should be on the order of ε/
√
β. A more careful treatment gives the extra

logarithmic terms and makes precise the high probability bound, we refer to Calder et al. (2020) for

details.

We will apply the theorem to the dataset ΩN and the adversarially-perturbed domain Ω̂N .

In Calder et al. (2020) it is shown that the conditions (5-8) hold with high probability when the

data points xi are iid, we recall this result in Lemma 9.

To make notation easier we let

u = argmin Econ(·;DN ) û = argmin Econ(·; D̂N )

LN = LN (·; ΩN ) L̂N = LN (·; Ω̂N )

dN,ε = dN,ε(·; ΩN ) d̂N,ε = dN,ε(·; Ω̂N )

pN,ε = pN,ε(·; ΓN ) p̂N,ε = pN,ε(·; Γ̂N ).

We are unable to apply Theorem 7 directly to the adversarially-perturbed problem. This is be-

cause the function ˆ̀
N is not Lipschitz continuous (and depends on N ). To control the adversarially-

perturbed problem we use stability of Laplace’s equation. In particular, we let ŵ satisfy

L̂N ŵ(x̂) = 0 ∀x̂ ∈ Ω̂N \ Γ̂N

ŵ(x̂) = `(x̂) ∀x̂ ∈ Γ̂N .

We first show that û and ŵ are close.

Lemma 8 Assume the graph ĜN , which consists of nodes Ω̂N and edges between any two nodes

x̂, ŷ for which Wε,x̂,ŷ > 0, is connected. Let ˆ̀N (x̂) = `(x) where |x̂ − x| ≤ r for all x ∈ ΩN

and suppose that ` is Lipschitz continuous. Then,

max
x̂∈Ω̂N

|û(x̂)− ŵ(x̂)| ≤ Lip(`)r.

Proof Let v̂ = û− ŵ. Then v̂ satisfies

L̂N v̂(x̂) = 0 ∀x̂ ∈ Ω̂N \ Γ̂N

v̂(x̂) = `(x)− `(x̂) ∀x̂ ∈ Γ̂N .

By the maximum principle (for example see (Calder, 2018, Theorem 3))

max
x̂∈Ω̂N

v̂(x̂) = max
x̂∈Γ̂N

v̂(x̂) ≤ Lip(`)r.
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Similarly, by the minimum principle we have min
x̂∈Ω̂N

v̂(x̂) ≥ −Lip(`)r. Combining the two

bounds we can conclude the result.

Next we recall that the conditions 7 hold in the unperturbed domain.

Lemma 9 Let Assumptions (A1-A4) hold. There exists C > c > 0 such that if ε ∈ (0, 1) and

β ∈ [ε2, 1] then

|dN,ε(x)− CηNρ(x)| ≤ CN
√

β

dN,ε(x) ≥ cN

pN,ε(x) ≥ cNβ
∣

∣

∣

∣

1

Nε2
LNϕ(x)− Lϕ(x)

∣

∣

∣

∣

≤ C‖ϕ‖C3(Ω̄)

√
β

ε
∀ϕ ∈ C3(Ω̄)

for all x ∈ ΩN \ ∂2εΩ with probability at least 1− CNe−cNβεd .

Proof The first inequality holds by choosing δ =
√
β in (Calder, 2018, Theorem 5) (and noting

that in the proof one establishes the bound with probability at least 1 − CNe−cNβεd). The second

inequality holds by (Calder et al., 2020, Propositions 3.5 and 3.8). The third inequality holds by

Remark 12 below. The fourth inequality holds by choosing δ =
√
β
ε

in (Calder, 2018, Theorem 5).

To prove the bounds for the perturbed model we will use the following preliminary result.

Lemma 10 Let AN ⊂ ΩN satisfy P(x ∈ AN ) = α ∈ [0, 1]. Then, there exists, a > 0 and

C > c > 0 (independent of α) such that for all τ ∈ (0, 1] and 0 < ϑ ≤ 1

P ((1− ϑ− aτ)Cτ (x)Nα ≤ # {y ∈ AN : |x− y| ≤ τ} ≤ (1 + ϑ+ aτ)Cτ (x)Nα, ∀x ∈ ΩN )

≥ 1− CNe−cNατdϑ2

where Cτ (x) = ρ(x)Vol(B(x, τ) ∩ Ω). Moreover, there exists τ0 > 0, C2 > C1 > 0, such that,

for all τ ∈ (0, τ0),

P

(

C1Nατd ≤ # {y ∈ AN : |x− y| ≤ τ} ≤ C2Nατd, ∀x ∈ ΩN

)

≥ 1− CNe−cNατd .

Remark 11 We can apply the above lemma to lower bound the number of labeled data points in

B(x, ε). In particular, if x ∈ Ω \ ∂2εΩ then Cε(x) = ρ(x)Vol(B(0, 1))εd, and if η = 1·≤1 then

Cη = Vol(B(0, 1)). We choose α = 1 and τ = ε to infer

dN,ε(x) =
∑

y∈ΩN

Wx,y =
1

εd
# {y ∈ ΩN : |x− y| ≤ ε} ≤ CηNρ(x) +O ((ϑ+ ε)N)

with probability at least 1−CNe−cNεdϑ2

. Choosing ϑ =
√
β proves the first inequality in Lemma 9

for the special case η = 1·≤1.
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Remark 12 We can also use the above lemma to bound the number of labeled data points in

B(x, ε). Let x ∈ Ω\∂2εΩ, and choose α = β. Applying the second bound in Lemma 10, and using

that η(t) ≥ 1 for all t < 1, we have

pN,ε(x) =
∑

y∈ΩN

Wx,y ≥ 1

εd
# {y ∈ ΓN : |x− y| ≤ ε} ≥ C1Nβ

with probability at least 1− CNe−cNβεd . This proves the third inequality in Lemma 9.

Proof [Proof of Lemma 10] Fix x ∈ ΩN and τ > 0. Let ξy = 1 if y ∈ AN and |x − y| ≤ τ , and

ξy = 0 otherwise. We can write

# {y ∈ AN : |x− y| ≤ τ} =
∑

y∈ΩN

ξy.

By Bernstein’s inequality

P





∑

y∈ΩN

(ξy − E[ξy]) ≥ t



 ≤ exp

(

− ct2

Nσ2 + t

)

for all t > 0 and where

σ2 = E (ξy − E[ξy])
2

(note that the right hand side is independent of y). Using the lower bound on the density ρ of x we

infer

P(ξy = 1) = P (B (x, τ) ∩ Ω)P(y ∈ AN )

= αVol (B(x, τ) ∩ Ω) (ρ(x) +O(τ))

= αCτ (x) (1 +O(τ)) .

So there exists a > 0 such that

αCτ (x) (1− aτ) ≤ E[ξy] = P(ξy = 1) ≤ αCτ (x) (1 + aτ) .

Hence,

σ2 ≤ E[ξ2
y
] = E[ξy] ≤ Cατd

for some C > 0. We can then bound

P (# {y ∈ AN : |x− y| ≤ τ} ≤ t+ Cτ (x)Nα(1 + aτ))

≥ P





∑

y∈ΩN

(ξy − E[ξy]) ≤ t





≥ 1− exp

(

− ct2

Nσ2 + t

)

≥ 1− exp

(

− ct2

CNατd + t

)

.
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Similarly,

P (# {y ∈ AN : |x− y| ≤ τ} ≥ −t+ Cτ (x)Nα(1− aτ))

≥ P





∑

y∈ΩN

(ξy − E[ξy]) ≥ −t





≥ 1− exp

(

− ct2

Nσ2 + t

)

≥ 1− exp

(

− ct2

CNτdα+ t

)

.

Choosing t = Cτ (x)Nαϑ implies

P ((1− aτ − ϑ)Cτ (x)Nα ≤ # {y ∈ AN : |x− y| ≤ τ} ≤ (1 + aτ + ϑ)Cτ (x)Nα)

≥ 1− 2e−cNατdϑ2

where we restrict ϑ ≤ 1. Union bounding (Fréchet inequality for logical conjugation) implies the

first result.

Choose τ0 > 0 sufficiently small so that 1 − aτ0 > 0 and set ϑ = 1
2(1 − aτ0) > 0. Noticing

that we can find C1, C2 such that 0 < C1 ≤ (1− aτ − ϑ)C(x) ≤ (1 + aτ + ϑ)C(x) ≤ C2 we can

conclude the second part of the lemma.

We are left to show the analogue of Lemma 9 for the perturbed quantities d̂N,ε, p̂N,ε and L̂N .

Lemma 13 Under Assumptions (A1-A4) and assuming |xi − x̂i| ≤ r for all i = 1, . . . , N there

exists ε0 > 0, C > c > 0 such that if ε ∈ (0, ε0), β ∈ [ε2, 1] and r ∈ (0, c
√
βε] then

∣

∣

∣d̂N,ε(x̂)− CηNρ(x̂)
∣

∣

∣ ≤ CN
√

β

d̂N,ε(x̂) ≥ cN

p̂N,ε(x̂) ≥ cNβ
∣

∣

∣

∣

1

Nε2
L̂Nϕ(x̂)− Lϕ(x̂)

∣

∣

∣

∣

≤ C‖ϕ‖C3(Ω̄)

√
β

ε
∀ϕ ∈ C3(Ω̄)

for all x̂ ∈ Ω̂N \ ∂2εΩ with probability at least 1− CNe−cNβεd .

Proof Let dist(x̂, ∂Ω) > 2ε. We first consider a bound on the difference between weights
∣

∣Wx,y −Wx̂,ŷ

∣

∣. If η is Lipschitz continuous we have,

∣

∣Wx,y −Wx̂,ŷ

∣

∣ =
1

εd

∣

∣

∣

∣

η

(

x− y

ε

)

− η

(

x̂− ŷ

ε

)∣

∣

∣

∣

≤ Lip(η)

εd+1
||x− y| − |x̂− ŷ||1|x−y|≤2(ε+r)

≤ 2Lip(η)r

εd+1
1|x−y|≤2(ε+r).
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On the other hand, If η(t) = 1t<1 then we have

∣

∣Wx,y −Wx̂,ŷ

∣

∣ ≤ 1

εd
1ε−2r≤|x−y|≤ε+2r.

Now, for the first inequality we have, when η is Lipschitz continuous,
∣

∣

∣
d̂N,ε(x̂)− dN,ε(x)

∣

∣

∣
≤
∑

y∈ΩN

∣

∣Wx̂,ŷ −Wx,y

∣

∣

≤ Cr

εd+1
# {y ∈ ΩN : |x− y| ≤ 2(ε+ r)}

≤ CrN(ε+ r)d

εd+1

≤ CN
√

β

by Lemma 10 with probability at least 1− CNe−cNεd . And when η(t) = 1t<1,

∣

∣

∣
d̂N,ε(x̂)− dN,ε(x)

∣

∣

∣
≤ 1

εd
# {y ∈ ΩN : ε− 2r ≤ |x− y| ≤ ε+ 2r}

≤ CN

εd

[

(1 + ϑ+ a(ε+ 2r)) (ε+ 2r)d − (1− ϑ− a(ε− 2r)) (ε− 2r)d
]

≤ CN(
√

β + ϑ)

by Lemma 10 with probability at least 1−CNe−cNεdϑ2

, choosing ϑ =
√
β we have, in both cases,

∣

∣

∣
d̂N,ε(x̂)− dN,ε(x)

∣

∣

∣
≤
∑

y∈ΩN

∣

∣Wx,y −Wx̂,ŷ

∣

∣ ≤ CN
√

β

with probability at least 1− CNe−cNβεd . By the triangle inequality and Lemma 9
∣

∣

∣
d̂N,ε(x)− CηNρ(x)

∣

∣

∣
≤
∣

∣

∣
d̂N,ε(x)− dN,ε(x)

∣

∣

∣
+ |dN,ε(x)− CηNρ(x)| ≤ CN

√

β

with probability at least 1− CNe−cNβεd .

By assuming that c is sufficiently small (where r ≤ cβε) we can make C in the above bound

arbitrarily small. Hence we can assume that C < Cηρmin and therefore the second inequality holds.

Similarly, for the third inequality when η is Lipschitz,

|p̂N,ε(x̂)− pN,ε(x)| ≤
∑

y∈ΓN

∣

∣Wx̂,ŷ −Wx,y

∣

∣

≤ Cr

εd+1
# {y ∈ ΓN : |x− y| ≤ 2(ε+ r)}

≤ CrNβ(ε+ r)d

εd+1

≤ CNβ
3

2

by Lemma 10 with probability at least 1− CNe−cNβεd . And, if η = 1·<1,

|p̂N,ε(x̂)− pN,ε(x)| ≤
1

εd
# {y ∈ ΓN : ε− 2r ≤ |x− y| ≤ ε+ 2r} ≤ CNβ

3

2
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by Lemma 10 with probability at least 1 − CNe−cNβεd . Again, by assuming that c is sufficiently

small (where r ≤ cβε) we can make C in the above bound arbitrarily small so that

p̂N,ε(x̂) ≥ pN,ε(x)− |p̂N,ε(x̂)− pN,ε(x)| ≥ cNβ − CNβ
3

2 ≥ cNβ

by Lemma 9 with probability at least 1− CNe−cNβεd .

For the final inequality we have

∣

∣

∣
L̂Nϕ(x̂)− LNϕ(x)

∣

∣

∣
≤

∣

∣

∣

∣

∣

∣

∑

y∈ΩN

(

Wx̂,ŷ −Wx,y

)

(ϕ(x̂)− ϕ(ŷ))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

y∈ΩN

Wx,y (ϕ(x̂)− ϕ(ŷ)− ϕ(x) + ϕ(y))

∣

∣

∣

∣

∣

∣

≤ ‖ϕ‖C1(Ω)(ε+ 2r)
∑

y∈ΩN

∣

∣Wx̂,ŷ −Wx,y

∣

∣

+ 2r‖ϕ‖C1(Ω)

∑

y∈ΩN

Wx,y

≤ CN‖ϕ‖C1(Ω)(ε+ 2r)
√

β + CN‖ϕ‖C1(Ω)

√

βε

≤ CN‖ϕ‖C1(Ω)

√

βε

by Lemma 9 with probability at least 1− CNe−cNβεd .

It is now very easy to prove Theorem 2.

Proof [Proof of Theorem 2 and Theorem 6.] By Theorem 7, Lemmas 8, 9 and 13, and the Lipschitz

condition on ` we have

|u(x)− `(x)| ≤ Cε√
β
log

√
β

ε

|ŵ(x̂)− `(x̂)| ≤ Cε√
β
log

√
β

ε

|ŵ(x̂)− û(x̂)| ≤ C
√

βε

|`(x̂)− `(x)| ≤ C
√

βε

with probability at least 1− CNe−cNβεd . So by the triangle inequality

|u(x)− û(x̂)| ≤ Cε√
β
log

√
β

ε

and

|`(x)− û(x̂)| ≤ Cε√
β
log

√
β

ε

with probability at least 1− CNe−cNβεd . This implies that Rδ(Ω
′, u,DN ) ≥ r with probability at

least 1− CNe−cNβεd .
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Corollary 5 is not difficult to show using the Theorem 2.

Proof [Proof of Corollary 5.] We work on the set of realisations of {xi}∞i=1 such that the conclusions

of Theorem 2 hold; i.e. the following statements hold with probability at least 1−CNe−cNβεd . Let

us define v̂(x̂) = v(x̂; D̂N ) and

Ωδ =

{

x :
1

2
− 2δ > `(x) or `(x) ≥ 1

2
+ 2δ

}

.

By Assumption 4 we have that Vol(Ωc
δ) ≤ Cδ. Moreover, for x ∈ ΩN such that `(x) ≥ 1

2 + 2δ we

have

û(x̂) ≥ u(x)− δ ≥ `(x)− 2δ ≥ 1

2

so |v(x)− v̂(x̂)| = 0. And similarly, if x ∈ ΩN is such that `(x) < 1
2 − 2δ we have

û(x̂) ≤ u(x) + δ ≤ `(x) + 2δ <
1

2

so |v(x) − v̂(x̂)| = 0. Hence, for any x ∈ ΩN ∩ Ωδ we have |v(x) − v̂(x̂)| = 0. Therefore,

R0(Ωδ, v,DN ) ≥ r as required.

Appendix B. Robust Accuracy Under Different Black-Box Adversarial Attacks

In this section, we report the robustness results of the GL- and kNN-based classifiers under the three

different BB attacks, where these BB attacks attack the substitute models: logistic regression (LR),

neural net (NN), and kernel classifier (Kernel). For Abalone classification, GL-based classifiers

performs better than the corresponding kNN-based classifiers; in particular, the RobustGL (GL

classifier with the pruned dataset that satisfies the a-separation condition (Wang et al., 2018b))

outperforms all the other classifiers under three BB attacks with different maximum perturbation.

Data augmentation with adversarial data can also enhance the classifiers’ adversarial robustness.

These adversarial defenses can also improve kNN-based classifiers for Abalone classification. For

Halfmoon classification, GL-based classifiers again outperforms kNN-based classifiers consistently.

Furthermore, with adversarial data augmentation, the classifiers’ robustness can be significantly

improved.

For MNIST 1v7 classification, GL-based classifiers are not always more robust than kNN-based

classifiers. Nevertheless, ATGL or ATGL-ALL (GL with adversarial data augmentation) gives the

most robust classification under different BB attacks.

Appendix C. Robust Accuracy with Different Number of Training Data

We have numerically shown that as the number of training data increases, the robustness of GL-

based classifiers on the Abalone dataset will increase under the WB attacks. In this section, we

consider the effects of the number of training data on the classifiers’ robustness under BB attacks.

As shown in Fig. 6, under the BB attack with LR or Kernel as the substitute model, both GL- and

kNN-based classifiers become more robust as the number of training data increases. As we increase

the number of training data from 100 to 500, the models classification accuracy can increase more

than 5% under the BB attacks with different maximum perturbations. For BB attacks with kNN

917










	Introduction
	Our Contribution
	Additional Related Works
	Organization
	Notation

	Main Theory
	Preliminaries and Assumptions
	Robustness of Semi-Supervised Learning with Graph Laplacian

	Computational Complexity Analysis
	Experiments
	Datasets, Classifiers, & Attacks
	An Approximated Numerical Robust Certification for the GL Classifier
	The Effects of Adversarial Defenses
	Robust Accuracy with Different Number of Training Data

	Conclusions
	 Appendices
	Appendix
	Proofs of the Main Results
	Robust Accuracy Under Different Black-Box Adversarial Attacks
	Robust Accuracy with Different Number of Training Data
	Visualizing the Adversarial Examples of GL-Based Classifiers 


