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Abstract

Many state-of-the-art ML results have been ob-
tained by scaling up the number of parameters in
existing models. However, parameters and acti-
vations for such large models often do not fit in
the memory of a single accelerator device; this
means that it is necessary to distribute training
of large models over multiple accelerators. In
this work, we propose PipeDream-2BW, a sys-
tem that supports memory-efficient pipeline par-
allelism. PipeDream-2BW uses a novel pipelin-
ing and weight gradient coalescing strategy, com-
bined with the double buffering of weights, to
ensure high throughput, low memory footprint,
and weight update semantics similar to data par-
allelism. In addition, PipeDream-2BW automati-
cally partitions the model over the available hard-
ware resources, while respecting hardware con-
straints such as memory capacities of accelerators
and interconnect topologies. PipeDream-2BW can
accelerate the training of large GPT and BERT
language models by up to 20x with similar final
model accuracy.

1. Introduction

In the quest to achieve higher accuracy across a range of
tasks, DNN models have grown in size, often by scaling up
the number of parameters in existing architectures (Devlin
et al., 2018; Radford et al., 2018; 2019; Brown et al., 2020).
It is challenging to train large models with billions of pa-
rameters. Modern accelerators have limited memory, which
means that the model parameters and intermediate outputs
that need to be in accelerator memory during training might
not fit on a single accelerator. One of the solutions re-
searchers and practitioners have turned to is model-parallel
training (Dean et al., 2012; Chilimbi et al., 2014), where a
model is partitioned over multiple accelerator devices. How-
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ever, model parallelism, when traditionally deployed, can
either lead to resource under-utilization (Narayanan et al.,
2019) or high communication overhead with good scaling
only within a multi-GPU server (Shoeybi et al., 2019), and
consequently an increase in training time and dollar cost.

Recent work has proposed pipelined model parallelism
to accelerate model-parallel training. = For example,
GPipe (Huang et al., 2019) and PipeDream (Harlap et al.,
2018; Narayanan et al., 2019) push multiple inputs in se-
quence through a series of workers that each manage one
model partition, allowing different workers to process dif-
ferent inputs in parallel. Naive pipelining can harm model
convergence due to inconsistent weight versions between
the forward and backward passes of a particular input. Ex-
isting techniques trade off memory footprint and throughput
in different ways to avoid this. GPipe maintains a single
weight version, but has periodic pipeline flushes where the
pipeline is drained of inputs to update weights (Figure 1a);
these flushes limit overall throughput as resources are idle.
PipeDream does not periodically flush the pipeline but stores
multiple weight versions, which increases throughput but
also increases the memory footprint, making the training of
large models infeasible due to memory constraints. Efficient
training of large models requires an approach with both high
throughput and low memory footprint.

Additionally, the performance of a pipeline-parallel system
is dependent on how DNN model operators are partitioned
over workers. This is challenging for three reasons:

* Memory Capacity Constraints: Parameters and inter-
mediate activations associated with a model partition need
to fit in the main device memory of the accelerator.

* Heterogeneous Network Interconnects: Training de-
ployments today feature heterogeneous network topolo-
gies, with higher-bandwidth links between devices on the
same server.

e Large Search Space for Operator Placement: As
model sizes increase, splitting an operator graph becomes
computationally expensive since the number of distinct
partitionings is exponential in the model size.

In this paper, we introduce PipeDream-2BW, a system for
efficient pipeline-parallel training of DNN models with bil-
lions of parameters. PipeDream-2BW achieves high through-
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put and low memory footprint using two key contributions.
First, we propose double-buffered weight updates (2BW),
a technique that reduces the memory footprint of training
while avoiding pipeline flushes. We leverage the fact that
every input’s generated gradient does not need to be ap-
plied to weights immediately, and instead can be accumu-
lated into a “coalesced” gradient to limit the number of
weight versions maintained. Instead of flushing the pipeline
before using newly updated weights, 2BW uses the new
weights for inputs newly admitted into the pipeline, while
using the previous weight version, called the shadow ver-
sion, for already in-flight inputs. This double buffering of
weights at each worker yields a pipelining scheme with
higher throughput than GPipe (no pipeline flushes) and bet-
ter memory efficiency than PipeDream (2 weight versions,
versus worst case of d in PipeDream for a depth-d pipeline).
2BW introduces a constant weight delay term of 1, consis-
tent across stages, while updating weights (weight update
equation of W+ = W — . v f(W 1)), which we
show has empirically similar model convergence to vanilla
weight updates (§5.1). We also present a variant of 2BW
(called PipeDream-Flush) that trades off throughput for
even lower memory footprint and vanilla semantics (weight
update equation of W1 = W) — 1. v f(W®)),

Second, PipeDream-2BW provides a planning algorithm that
yields effective parallelization schemes for many of today’s
large model architectures. PipeDream-2BW’s planner parti-
tions DNN operators over the available workers while taking
into account the memory capacities of the accelerator de-
vices, and addresses the three challenges highlighted earlier.
PipeDream-2BW’s planner exploits the repetitive structure of
large DNNS, e.g., transformer layers in BERT (Devlin et al.,
2018), to explore the space of schedules where each stage
in the pipeline is replicated equally. This choice reduces
the size of the search space explored drastically compared
to existing work like PipeDream and FlexFlow (Jia et al.,
2018), while still providing effective model splits in prac-
tice. PipeDream-2BW’s planner determines the size of each
model partition, batch size, and whether to use memory-
saving optimizations like activation recomputation (Chen
et al., 2016; Griewank & Walther, 2000). PipeDream-2BW’s
planner considers the impact of these decisions on both
throughput and memory footprint, unlike PipeDream and
FlexFlow. Finally, the planner tries to ensure expensive com-
munication stays on high-speed intra-server interconnects.

We find that the Adam optimizer with 2BW has a similar
training loss trajectory to vanilla Adam with the same batch
size, with similar accuracy on downstream finetuning tasks.
PipeDream-2BW achieves end-to-end speedups of 1.3 to
20x for various GPT models compared to an optimized
model-parallel baseline. PipeDream-2BW is up to 3.2x
faster than GPipe, and is able to train large transformer
models that vanilla PipeDream cannot fit in memory.

2. Background

In this section, we provide a brief overview of related tech-
niques for distributed training of DNN models.

Data Parallelism. Data parallelism is used to scale up
model training. With data parallelism (Xing et al., 2015),
every worker has a copy of the entire model and the input
dataset is sharded across workers. Data parallelism cannot
be used to train large models that do not fit on a single
worker, but can be used on smaller model partitions.

Model Parallelism. Model parallelism is used traditionally
to train large models that do not fit on a single worker. With
model parallelism (Dean et al., 2012; Chilimbi et al., 2014),
the weight parameters in a model are split over available
workers, with intermediate activations and gradients com-
municated across workers. Inter-layer model parallelism
underutilizes resources since at most a single worker is
active at any point in time. Tensor (intra-layer) model par-
allelism (Shoeybi et al., 2019) leads to expensive all-to-all
communication in the critical path, limiting the number of
model partitions to the number of GPUs in a single server.
FlexFlow (Jia et al., 2018) shows how to split a model graph
using model and data parallelism, but still suffers from poor
resource utilization when model parallelism is used.

Pipeline Parallelism. To address the shortcomings of
model parallelism, recent work like PipeDream and GPipe
have proposed pipeline parallelism. With pipeline paral-
lelism, multiple inputs (instead of 1) are injected into a
pipeline composed of inter-layer model partitions. This en-
sures that compute resources are better utilized. However,
naive pipelining can lead to weight version mismatches be-
tween forward and backward passes for a particular input.
Specifically, if weight updates are immediately applied to
the latest weight version, then an input might see weight up-
dates in the backward pass that it did not see in the forward
pass, leading to incorrect gradient computations.

GPipe maintains a single version of the model’s weights.
An input batch is split into smaller microbatches. Weight
gradients are accumulated and not applied immediately, and
the pipeline is periodically flushed to ensure that multiple
weight versions do not need to be maintained. GPipe pro-
vides weight update semantics similar to data parallelism.
Figure 1a shows a timeline of GPipe execution. The periodic
pipeline flushes can be expensive, limiting throughput. One
way to mitigate this overhead is to perform additional accu-
mulation within the pipeline, but this is not always practical:
a) at large scale factors, the minimum supported batch size is
large (proportional to the scale factor), and large batch sizes
affect convergence for all models (e.g., Megatron (Shoeybi
et al., 2019) uses a batch size of 1024 for BERT and 512 for
GPT with 512 GPUs), b) GPipe needs to maintain activation
stashes proportional to the batch size.
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Figure 1. Timelines of different pipeline-parallel executions. Without loss of generality, forward and backward passes are assumed to take
twice as long as forward passes; forward passes are shown in blue and backward passes are shown in green. Numbers indicate microbatch
ID, time is shown along z-axis, per-worker utilization is shown along the y-axis. GPipe maintains a single weight version, but periodically
flushes the pipeline. PipeDream does not introduce periodic pipeline flushes, but maintains multiple weight versions.

PipeDream uses a weight stashing scheme to ensure that
the same weight version is used in both the forward and
backward passes for the same input (Figure 1b). The total
number of weight versions stashed is d in the worst case,
where d is the pipeline depth, which is too high for large
models. With PipeDream’s default weight update semantics,
weight updates at each stage have different delay terms, and
no accumulation is performed within the pipeline.

3. PipeDream-2BW System Design

PipeDream-2BW uses memory-efficient pipeline parallelism
to train large models that do not fit on a single accelerator. Its
double-buffered weight update (2BW) and flush mechanisms
ensure high throughput, low memory footprint, and weight
update semantics similar to data parallelism. PipeDream-
2BW splits models into stages over multiple workers, and
replicates each stage an equal number of times (with data-
parallel updates across replicas of the same stage). Such
parallel pipelines work well for models where each layer is
repeated a fixed number of times (e.g., transformer models).

3.1. Double-Buffered Weight Updates (2BW)

PipeDream-2BW uses a novel double-buffered weight up-
date (2BW) scheme in conjunction with 1F1B schedul-
ing (Narayanan et al., 2019), where each worker alternates
between forward and backward passes for different inputs,
to ensure that the same weight version is used in both the for-
ward and the backward pass for a particular input (Figure 2).
2BW has a lower memory footprint than PipeDream and
GPipe, and also avoids GPipe’s expensive pipeline flushes.

Gradients are computed at the granularity of smaller mi-
crobatches. For any input microbatch, PipeDream-2BW
uses the same weight version for an input’s forward and
backward passes. Updates are accumulated over multiple
microbatches before being applied at the granularity of a
batch, limiting the number of weight versions generated and

maintained. Figure 2 shows an example timeline of 2BW.
PipeDream-2BW generates a new weight version once every
m microbatches (m > d, the pipeline depth). For simplicity,
we will initially assume that m = d (d = 4 in Figure 2). A
new weight version cannot be used immediately. In particu-
lar, in-flight inputs cannot use the newest weight version for
their backward passes (for example, input 7 on worker 3 at

= 21), since the forward pass for these inputs was already
initiated using an older weight version on a different stage.
Thus, newly generated weight versions need to be buffered
for future use. However, the total number of weight versions
that need to be maintained is at most 2, since the weight
version used to generate a new weight version can immedi-
ately be discarded (no future inputs that pass through that
stage use the old weight version any longer). For example,
in Figure 2, each worker can discard Wi(o) once they are
done processing the backward pass for input 8 since all
subsequent inputs use a later weight version for both their
forward and backward passes.

The weight version a given input microbatch k (1-indexed)
uses is max(| (k—1)/m] —1,0), where m is the number of
microbatches in a batch (4 in Figure 2). This weight version
is the same for both the forward and backward passes for
input k. m can be any number > d; additional gradient
accumulation (larger m) increases the global batch size.

Memory Footprint. PipeDream-2BW maintains 2 weight
versions, and activation stashes for all in-flight microbatches.
The number of in-flight microbatches at any stage is at
most the pipeline depth (d). With activation recomputation,
PipeDream-2BW’s memory footprint can be decreased, since
only input activations (as opposed to the full intermediate ac-
tivation) need to be maintained for all in-flight microbatches.
With activation recomputation, PipeDream-2BW’s worst-
case memory footprint is % + &d](b)l + d| AP ().
|W] is the size of weight parameters for the full model,
|A@l(p)| is the size of intermediate activations for micro-
batch size b for the full model, and | A™P"(b)| is the size of
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Figure 2. Timeline showing PipeDream-2BW’s double-buffered weight update (2BW) scheme with time along x-axis. Without loss of
generality, backward passes are assumed to take twice as long as forward passes. PipeDream-2BW only stashes two weight versions at

every worker, reducing the total memory footprint while no longer requiring expensive pipeline stalls. Wi(”) indicates weights on worker ¢

with version v (contains weight gradient generated from input v). New weight versions are generated in checkered green boxes; W4(4) is

first used for input 9’s forward pass.

Operations use weight version from last flush

Pipeline flush

Worker 1 1 2 8]

Worker 2 1 2 3 4

Time —— [ ForwardPass [ | Backward Pass

(a) GPipe.

Operations use weight version from last flush

Pipeline flush

Worker 1
Worker 2

Time —— [ Forward Pass [ | Backward Pass
(b) PipeDream-Flush.

Figure 3. Timelines of GPipe and PipeDream-Flush for 2 stages.
Both GPipe and PipeDream-Flush use pipeline flushes; PipeDream-
Flush alternates between forward and backward passes in steady
state to keeping memory footprint low compared to GPipe by
limiting activation stashes to only in-flight microbatches.

input activations for microbatch size b for a pipeline stage.

In comparison, GPipe needs to checkpoint potentially a
much larger number of input activations — proportional to
the total number of microbatches accumulated within the
pipeline before applying a weight update (m). With ac-
tivation recomputation, GPipe’s memory footprint with a
per-GPU microbatch size b is 17| + % +m| AP (B) .
Since [W| < |A(b)| for even small b for most models (Jain
et al., 2018), the memory savings from maintaining one
fewer weight version is small. To achieve high throughput,
GPipe must use a large value of m to amortize away the
cost of pipeline flushes; at such high m, its memory foot-
print is higher than PipeDream-2BW. Additionally, due to its
higher memory footprint, GPipe must always use activation
recomputation. Activation recomputation, however, reduces
throughput by about 33%, and should be avoided if possible.

Semantics. We can also formalize the semantics of 2BW.
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Figure 4. Example PipeDream-2BW (2, 3) configuration. The
model is partitioned into 3 stages (d = 3) and each pipeline
is replicated twice (w = 2). Each pipeline replica is shown in a
different color.

For this discussion, we assume an unreplicated pipeline with
d stages. If b is the per-GPU microbatch size, then gradients
are averaged over m microbatches; thus, the effective batch
sizeis B=5b-m.

We denote TV (*) as the weight version after ¢ batches of size
B. V f(W) is the gradient averaged over the B samples in
the batch. Vanilla minibatch SGD (f is the loss function, v
is the learning rate) then has the following weight update
equation: WD) = W® — . vV f(W®). 2BW’s weight
update semantics (with a delay term of 1 across all stages)
are almost unchanged:

WD —w® . vy,

We show that this delay term does not affect model con-
vergence significantly in §5.1. Intuitively, the parameters
of the model do not change significantly across single it-
erations, so W) ~ W (=1 The semantics with a repli-
cation factor greater than 1 is similar, with the batch size
multiplied by the number of replicas (as with regular data
parallelism). Other momentum-based optimizers such as
Adam can be similarly analyzed (momentum term uses a
weight gradient computed on a 1-stale weight version in-
stead of latest version). Extra shadow variables are not
needed. For example, m; in minibatch SGD with mo-
mentum can be computed as (ignoring bias corrections)
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my = B-my_1 + (1 —B) - VF(WE1). The final weight
update equation is then W+ = W® — .,

3.2. Weight Updates with Flushes (PipeDream-Flush)

We also propose a second memory-efficient pipeline sched-
ule called PipeDream-Flush. It has lower memory footprint
than 2BW and vanilla optimizer semantics, at the cost of
lower throughput. This schedule reuses the 1F1B schedule
from PipeDream (Narayanan et al., 2019), but maintains
a single weight version and introduces periodic pipeline
flushes to ensure consistent weight versions across weight
updates. Timelines for PipeDream-Flush and GPipe with 2
pipeline stages are shown in Figure 3.

Memory Footprint. With PipeDream-Flush, the total num-
ber of in-flight “active” input activations is less than or equal
to the pipeline depth, giving it lower memory footprint than
GPipe, which has to maintain input activations proportional
to the number of microbatches over which gradients are
averaged (m). PipeDream-Flush’s memory footprint is also
lower than PipeDream-2BW since it only needs to maintain
a single weight version (versus 2 with PipeDream-2BW).

Semantics. Periodic pipeline flushes ensure that weight
updates can be performed with gradients computed using
the latest weight version. This results in weight updates of
the form WD = W — . Vf(W®). We compare
2BW’s statistical efficiency (rate of model convergence) to
the vanilla semantics of PipeDream-Flush, GPipe, and data
parallelism, in §5.1.

3.3. Equi-replicated Stages (Parallel Pipelines)

PipeDream-2BW executes DNN training using a hybrid par-
allelization scheme which combines data and model par-
allelism with input pipelining. Since large deep models
today feature extremely repetitive structures, with the same
block repeated multiple times, a simple way of load balanc-
ing computation and communication involves breaking up
a model into stages with an equal number of blocks and
replication factors. Model training in PipeDream-2BW can
thus be thought of as a collection of parallel pipelines (Fig-
ure 4), where inputs and intermediate output activations
within a pipeline do not ever need to be sent to workers
responsible for a different pipeline. Intermediate activations
and gradients can be communicated within a pipeline using
point-to-point communication primitives, such as send and
recv. As with PipeDream, weight gradients need to be
aggregated across stage replicas in different pipelines. Fig-
ure 4 shows an example: each model copy is split across 3
workers (number of stages or depth, d = 3), and each stage
is replicated twice (number of pipelines or width, w = 2).
Stage replicas can be placed on the same server so that ex-
pensive all-reduce updates are between GPUs on the same
server with high-bandwidth interconnects.

4. Planner

PipeDream-2BW’s planner determines how to split a model
over the available compute devices by exhaustively search-
ing over the reduced search space of all possible parallel-
pipeline configurations. The planner also determines
whether memory-saving optimizations should be deployed,
and the per-GPU microbatch size and degree of gradient
accumulation, given a maximum safe global batch size veri-
fied to not compromise model convergence (e.g., determined
from past hyperparameter sweeps without pipelining).

PipeDream-2BW’s planner uses a cost model for the com-
pute times and memory footprints of individual blocks in the
model. Time and memory cost functions allow PipeDream-
2BW to reason about the impact of pipeline width / depth and
memory-saving optimizations (such as activation recompu-
tation) on throughput and memory footprint. For example, a
deeper configuration has additional memory capacity, allow-
ing for a larger maximum per-GPU microbatch size; this can
increase the arithmetic intensity (number of floating point
operations performed per memory load) of kernels (Jouppi
et al., 2017), and consequently throughput. Communication
times for tensors can be estimated by dividing the size of
the tensor by the respective bandwidth. Expensive commu-
nication (e.g., large tensors, or all-reduce communication
needed to coalesce weight gradients across stage replicas)
can be placed on high-bandwidth links within the server by
orienting pipelines appropriately.

Profiling for cost modeling can be done in two ways: end-
to-end for each distinct configuration, or extrapolating from
an individual block’s measurements. End-to-end profiling
is cheap (2 to 3 minutes per configuration), which means
total profiling time is still a couple of hours (compared to
the days to weeks needed for model training). Optimal
configurations can be reused for a given server and model
deployment. We describe how per-block time and memory
measurements can be extrapolated in Appendix §A — this
is even cheaper, but provides less accurate cost estimates.
The highest-throughput-configuration is chosen that also fits
within the memory capacity of the target accelerators.

4.1. Activation Recomputation

Activation recomputation is a common technique (Huang
et al., 2019; Chen et al., 2016; Griewank & Walther, 2000)
that trades off extra computation for a lower memory foot-
print. With activation recomputation, activation stashes are
not left materialized on the device between forward and
backward passes; instead, only input activations on each
stage are stashed, and the remaining activations needed in
the backward pass are recomputed when required by re-
running the forward pass. Activation recomputation trades
off extra computation for a lower memory footprint.
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Activation recomputation is useful for two reasons: it can
enable larger per-GPU microbatch sizes to fit in memory,
which can improve device throughput by increasing the
arithmetic intensity of kernel. It can also enable the train-
ing of large models. Concretely, in some cases, the target
accelerator device does not have sufficient memory capacity
to store full activation stashes for all in-flight microbatches.
This is especially true for deep pipelines, since the num-
ber of in-flight inputs is proportional to the depth of the
pipeline (Narayanan et al., 2019).

4.2. Partitioning Algorithm

Putting it all together, given a total memory capacity M,
PipeDream-2BW’s planner first determines the largest per-
GPU microbatch size that fits on a given worker (and the
corresponding throughput) with and without each memory-
savings optimization deployed using a memory cost func-
tion. The partitioning algorithm also verifies that the re-
sulting global batch size is lower than the maximum safe
batch size B . Each memory-savings optimization can be
integrated into PipeDream-2BW’s planner by specifying a
corresponding throughput and memory cost function.

PipeDream-2BW’s planner then sweeps all (w, d) values to
determine the best pipeline configuration for a given model
and hardware deployment. Configurations with memory
footprint higher than the memory capacity M of the device
(modeled by the MEMORY(.) cost function) are discarded.
Gradient accumulation can be used to increase the batch
size to B. The partitioning algorithm aims to pick a con-
figuration that has a high compute-to-communication ratio,
while accounting for the communication time across stages
in the same pipeline and across replicated stages (modeled
by the THROUGHPUT(.) cost function). The full algorithm
is shown in Appendix §A.

5. Evaluation

In this section, we show that the Adam optimizer with 2BW
has similar semantics to vanilla Adam, and that PipeDream-
2BW and PipeDream-Flush are able to train large models
faster than existing model-parallel approaches including
Megatron (Shoeybi et al., 2019), and existing pipelining
approaches like GPipe (Huang et al., 2019).

Hardware. We show results on two different hardware
setups on AWS: eight 8xV100 servers (64 GPUs) with
NVLink and 16GB of per-GPU memory, and a single
8% V100 server. We use p3.16xlarge instances.

Implementation. Our implementation uses PyTorch and
is adapted from the Megatron repository (meg); we veri-
fied that single-worker performance with this implementa-
tion achieves about 45 TFLOPS on a 355M-parameter GPT
model and is competitive with existing state-of-the-art open
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Figure 5. Training and validation loss when pre-training BERT and
GPT models with vanilla Adam and Adam with 2BW.

source implementations from NVIDIA (nvi). All results
shown are with mixed precision.

Models. We evaluate PipeDream-2BW on BERT (De-
vlin et al., 2018) and GPT (Radford et al., 2019), large
transformer-based language models used for a number of
NLP applications. In particular, most of our experiments are
performed with GPT models with 1.3, 2.2, and 3.9 billion
parameters, with similar layer dimensions to those used in
the Megatron paper (Shoeybi et al., 2019).

Baselines. We compare PipeDream-2BW to two types of
baselines: (a) model parallelism without pipelining (tensor
model parallelism used in Megatron, and inter-layer model
parallelism); and (b) GPipe (we extend GPipe to use parallel
pipelines, and refer to this enhanced version as GPipe in
the rest of this paper), which performs pipeline parallelism.
We do not compare to PipeDream or data parallelism for
the entire model since they cannot fit the above models in
memory when using 16-GB V100 GPUs. With 64 GPUs,
we use data parallelism across stages to scale up training.

Main Takeaways. We make the following observations:

* Quality of Convergence: 2BW weight update semantics
yield pre-trained models which produce comparable ac-
curacy on downstream finetuning tasks to vanilla Adam
(GPipe and PipeDream-Flush) with the same batch size.

* Comparison to Model Parallelism: PipeDream-2BW is
able to train a 3.8 billion-parameter GPT model up to 20 x
faster compared to non-pipelining approaches.

* Comparison to Other Pipelined Approaches:
PipeDream-2BW is up to 3.2 x faster than GPipe.

5.1. Quality of Convergence of 2BW

We pre-trained 355M-parameter BERT and GPT models
with vanilla Adam and Adam with 2BW; we then finetuned
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Task Metric Vanilla  Vanilla (90%) 2BW
MNLI  Overall Acc. 87.77% N/A 87.82%
RACE Overall Acc. 80.06% 79.30% 79.48%

Table 1. Comparison of BERT models pre-trained with vanilla (all
and 90% of iterations) and 2BW optimizers on finetuning tasks.

the resulting BERT models. We note that GPipe, PipeDream-
Flush, and DP have identical semantics, and hence are equiv-
alent baselines (‘“Vanilla”). To provide a fair comparison,
we use the same hyperparameters, including batch size, used
by Megatron (Shoeybi et al., 2019) to train these BERT and
GPT models. For BERT, we use a batch size of 1024, and
for GPT, we use a batch size of 512. We use the Adam opti-
mizer with standard hyperparameters (learning rate of 10~
with initial warmup and subsequent linear decay, maximum
sequence length of 512), and mixed precision. We used
the OpenWebText dataset (ope) for pretraining. Figure 5
shows the training and validation loss for the two models.
The training and validation losses for the 2BW runs track the
vanilla runs almost identically after the first 100k iterations
(when the model is changing more rapidly and the delay
term matters more).

To further validate the quality of the pre-trained model, we
finetuned the pre-trained vanilla and 2BW BERT models on
downstream MNLI and RACE tasks (Wang et al., 2019; Lai
et al., 2017). Both pre-training and fine-tuning were per-
formed with the same hyperparameter and training setups,
and we did not perform hyperparameter tuning for either —
our goal here is to show that 2BW has nearly identical se-
mantics to the corresponding vanilla optimizer. As shown
in Table 1, the accuracy on each of these tasks is similar
after finetuning. We also evaluated the vanilla and 2BW
GPT models on the Wikitext-103 test dataset and got similar
test perplexities (19.28 vs. 19.56); test perplexities match
exactly when “Vanilla” is run for 20% fewer iterations.

5.2. Throughput

Figure 6 shows the throughputs of various PipeDream-2BW,
PipeDream-Flush, and baseline configurations using 8 and
64 V100s with a sequence length of 512 for various large
GPT models. Results with BERT models are similar and
included in Appendix §B.1. We compare to two different
forms of model parallelism, as well as GPipe. Data paral-
lelism is not a viable baseline for these large models due to
its high memory overhead. In these experiments, we use ac-
tivation recomputation, and the largest per-GPU microbatch
size that fits on the 16-GB V100 GPUs. We use the best
configuration recommended by PipeDream-2BW’s planner
for all comparisons: 8-deep configurations for the model
with 2.2 billion parameters, and 16-deep configurations for
the model with 3.8 billion parameters. For each model, we
show two different batch sizes to show the impact of batch
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Figure 6. Throughput of various systems for different batch sizes
for GPT models, using 8 x 16GB-V100 servers.

size on throughput for approaches that use periodic flushes.

Model Parallelism without Pipelining: We compare
against two model parallelism approaches: tensor model
parallelism used by Megatron (Shoeybi et al., 2019) where
each layer is divided among all model-parallel workers, and
inter-layer model parallelism where layers are sharded over
the workers but inputs are not pipelined. On a single node,
PipeDream-2BW is faster than tensor MP by 1.3x. This
grows to 20 x on 64 GPUs for the model with 3.8 billion pa-
rameters, when the all-to-all communication used by tensor
MP needs to be performed across servers, which is expen-
sive using AWS instances (bandwidth across multi-GPU
servers is much lower than the bandwidth within server).
Compared to inter-layer MP, pipelining with flushes in-
creases throughput by up to 4.1x for small batch sizes,
and by up to 5.3 for large batch sizes, on the 2.2-billion
model. 2BW is up to 6.1 faster than inter-layer MP.

GPipe: PipeDream-2BW outperforms corresponding GPipe
configurations at the same global batch size by up to 3.2 %
due to the lack of periodic pipeline flushes. GPipe natively
has high memory footprint due to a large number of acti-
vation stashes: consequently, the maximum number of mi-
crobatches it can admit is small, leading to a larger pipeline
bubble and 2.1 x worse throughput than PipeDream-Flush
at low batch sizes, and 3x at high batch sizes.

PipeDream-Flush and PipeDream-2BW: Figure 6 also
compares PipeDream-2BW and PipeDream-Flush for two
different batch sizes with different numbers of microbatches
over which gradients are averaged (m = d - g) within the
pipeline. At low batch size, PipeDream-2BW is up to 1.6 x
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Figure 8. Throughput of two PipeDream-2BW configurations vs.
global batch size for a 1.3-billion parameter GPT model using 64
V100 GPUs. The legend shows (d, b): the number of pipeline-
parallel stages and the microbatch size.

faster. With more gradient accumulation (batch size of
2048), this speedup drops to 15%. However, high g is not
always practical. Both PipeDream-Flush and PipeDream-
2BW have weight updates with a batch size of b- w - d - g,
where the total number of workers is w - d. For a large
number of workers (> 64), the batch size is high even
with ¢ = 1, m = d, making additional gradient accumu-
lation infeasible (batch size cannot scale to oo without af-
fecting model convergence). Indeed, systems like Mega-
tron (Shoeybi et al., 2019), that train large transformer mod-
els using 512 GPUs, show state-of-the-art results across
tasks using a global batch size < 1024.

5.3. Memory Footprint

We measured the worst-case memory footprint of different
systems on a GPT model, shown in Figure 7. GPipe runs
out of memory at a batch size of 64, due to a larger num-
ber of activation stashes from its all-forward-all-backward
schedule, even with activation recomputation (worst case
of m input activation stashes with activation recomputation,
compared to d for PipeDream-Flush). PipeDream-Flush
has a slightly higher memory footprint compared to inter-
layer model parallelism, since it needs to maintain activation
stashes for more in-flight microbatches. PipeDream-2BW
has a higher memory footprint than PipeDream-Flush due to
an additional weight version (but still lower than GPipe’s).

5.4. Planning Decisions

In this sub-section, we analyze the implications of pipeline
depth and width on performance. We show experiments
demonstrating the impact of activation recomputation on
performance in Appendix §B.2. Figure 8 shows the through-
puts of two PipeDream-2BW configurations for different
batch sizes. We highlight relevant takeaways below.

-9
N

4 8 16 32 64
Model parallel size

Maximum model size
(billion parameters)

Figure 9. Maximum model size supported by various pipeline-
parallel depths with 64 16-GB V100 GPUs.

Inter-Stage Communication: As the global batch size in-
creases with gradient accumulation, throughput for each
configuration increases due to less communication across
stage replicas. This is especially true for configurations with
communication across servers (w > 8,d < 8 for 8-GPU
servers, e.g. d = 4) where inter-stage all-to-all communica-
tion is cross-node and more expensive.

Compute-Communication Ratio: Increasing the pipeline
depth decreases the amount of computation in each pipeline
stage while keeping the number of bytes communicated
between stages constant. This makes the pipeline more
communication-bound, decreasing throughput.

Maximum Per-GPU Microbatch Size: Increasing the
pipeline depth increases the maximum microbatch size that
fits in GPU memory. This leads to possibly higher arithmetic
intensity and throughput. In Figure 8, we show through-
put for two microbatch sizes for the d = 8 configuration;
the larger microbatch size (b = 32) has higher throughput.
Smaller pipeline depths cannot fit large microbatch sizes.

Maximum Model Size: Deeper pipelines support the train-
ing of larger models. We show the empirically measured
maximum model size that can be trained with 2BW using
different values of d in Figure 9.

These observations illustrate the complexity in picking a
configuration. For example, increasing pipeline depth leads
to two effects (decreased compute-communication ratio
within the pipeline and increased arithmetic intensity) that
have opposing effects on throughput. PipeDream-2BW’s
planner automates this process for each combination of
model, batch size, and number of GPUs.

5.5. Maximum Model Size Supported

Figure 9 shows the empirically measured maximum model
size supported by various pipeline depths while using 2BW.
As can be seen in the figure, deeper configurations provide
additional memory capacity. PipeDream-2BW is able to
train models of up to almost 30 billion parameters using
64 16-GB GPUs. As a point of comparison, Megatron-
LM (Shoeybi et al., 2019) was able to train a model with 8.3
billion parameters with 8 32-GB GPUs (2x more memory).
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6. Related Work and Discussion

In this section, we expand on work related to PipeDream-
2BW, and place PipeDream-2BW’s speedups in context.

Model Parallelism in Real Deployments. NVIDIA used
a custom intra-layer model parallelism scheme in its Mega-
tron system (Shoeybi et al., 2019) to train a GPT-2 model
with 8.3 billion parameters on 64 32-GB V100 servers by
parallelizing matrix multiplications across multiple workers.
This approach can be combined with data parallelism. All-
reductions are needed to coalesce partial results produced
on different GPUs, thus making training communication-
bound at high numbers of model partitions. In comparison,
PipeDream-2BW trades off additional memory footprint (an
extra weight version) for lower communication overhead
(20 faster training when using multiple multi-GPU servers
on Amazon AWS with limited inter-node bandwidth).

Pipeline Parallelism. We discussed the existing ap-
proaches to pipeline parallelism in §2, and showed quan-
titative comparisons in §5.2. PipeDream-2BW trains large
models up to 3.2x faster than GPipe at low batch sizes, due
to a lack of periodic pipeline flushes, and lower memory
footprint that allows more input microbatches to be pushed
into the pipeline. PipeDream cannot train these large models.
PipeDream-2BW’s lower memory footprint does come with
tradeoffs, however — PipeDream-2BW accumulates weight
gradients over multiple microbatches, increasing the min-
imum batch size that PipeDream-2BW supports. Thus, for
models that only support very small batch sizes, PipeDream-
2BW, PipeDream-Flush, and GPipe, which perform gradient
accumulation within the pipeline, may not be viable.

PipeMare (Yang et al., 2019) uses asynchronous pipeline
parallelism to provide high throughput (no pipeline flushes)
with asynchronous weight update semantics. PipeMare of-
fers two theoretically-motivated techniques to ensure good
statistical efficiency. In contrast, PipeDream-2BW and all
the baselines we compare against in the paper (traditional
data parallel training, PipeDream, GPipe), use synchronous
execution where the weights used for computation during
forward propagation are the same as those used during
backward propagation. PipeDream-2BW’s double buffered
weight updates use a 1-stale gradient update that does not
require any hyperparameter tuning to generate comparable
results. PipeMare also does not describe how computation
should be partitioned among the available workers.

Memory-Saving Optimizations. A rich line of work at-
tempts to decrease the memory footprint of DNN training.
Gist (Jain et al., 2018) employs lossless and lossy layer-
specific encoding schemes to compress stashed activations.
Systems such as Checkmate (Jain et al., 2020) systemati-
cally determine when activation recomputation (Chen et al.,
2016; Griewank & Walther, 2000) should be performed.

DeepSpeed (Rajbhandari et al., 2019) partitions optimizer
state over data-parallel replicas instead of replicating it, us-
ing a technique called ZeRO. Such orthogonal optimizations
can be combined and incorporated in PipeDream-2BW.

Planning Algorithms. PipeDream, DAPPLE (Fan et al.,
2021), and FlexFlow (Jia et al., 2018) use planning algo-
rithms to partition operator graphs over multiple accelera-
tors to maximize throughput. Unfortunately, these planners
do not exploit the repetitive nature of modern transformer-
based models. For example, PipeDream’s planner explores
O(n3m?) configurations (assuming n layers in the model
and m workers). Furthermore, these planners do not con-
sider the effect of memory-saving optimizations, which are
critical for training large models efficiently (e.g., always
applying activation recomputation can make the system
1.33x slower). PipeDream-2BW’s planner, on the other
hand, performs an exhaustive search of a much reduced
search space since it only considers parallel pipelines (all
possible (w, d) pairs with m workers is O(m?)). Given
this small number of explored configurations, Bagpipe’s
planner takes a fraction of a second with a closed-form cost
model; PipeDream’s partitioning algorithm with the same
cost model takes about 30 minutes for large models.

7. Conclusion

In this work, we proposed and implemented PipeDream-
2BW, a system for memory-efficient pipeline-parallel train-
ing that achieves high throughput, low memory footprint,
and data parallelism-like semantics through a novel weight
update double buffering strategy called 2BW. PipeDream-
2BW also uses a planner to determine how to partition a
model’s operator graph over training resources in a memory-
aware way. PipeDream-2BW accelerates the training of
models with billions of trainable parameters by up to 20 x
compared to model-parallel baselines, and by up to 3.2x
compared to GPipe, on commodity hardware.
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A. Planner, Additional Details

For every possible configuration of width and depth,
PipeDream-2BW’s planner explores the benefit of pipelining
and each space-saving optimization. For example, with acti-
vation recomputation as a target memory-savings optimiza-
tion, PipeDream-2BW considers three possible executions:

* Model and data parallelism without pipelining (with the
largest per-GPU microbatch size that fits in memory).

» Hybrid parallelism with pipelining and without activation
recomputation (all required weight versions and activation
stashes in memory for in-flight microbatches).

» Hybrid parallelism with pipelining and recomputation.

PipeDream-2BW’s planner estimates the throughput and
memory footprint of each of these possible executions us-
ing a cost model. PipeDream-2BW’s planner then tries to
find the configuration with highest throughput that also fits
in main device memory of the accelerators used (memory
capacity provided as input). In this section, we show one
such cost model for throughput and memory.

A.1. Closed-Form Cost Functions

In our experiments, we used profile-based cost functions
that run configurations end-to-end for a couple of hundred
iterations. However, performance of different parallel con-
figurations can also be estimated using closed-form expres-
sions that use more fine-grained profile information (e.g.,
time and memory footprint of each transformer block). We
present one such cost model here.

A.1.1. THROUGHPUT(.) COST FUNCTION

The throughput of various hybrid-parallel setups with and
without pipelining can be modeled using the times of for-
ward and backward passes obtained from a simple profiling
step. Let b be the largest per-GPU microbatch size with-
out additional weight and activation versions, and b’ be the
largest per-GPU microbatch size that can fit on the device
when multiple versions are needed (b’ < b). As before, w
and d are the pipeline width and depth.

Let 7" (b,w,d) represent the compute time of stage
i with a per-GPU microbatch size b, T7%"" (b, w, d) rep-
resent the communication time of activations and gradi-
ents between stages ¢ and j with microbatch size b, and
Tom™ (b, w, d) represent the communication time of ex-
changing gradients between w replicas of stage ¢ with mi-
crobatch size b. We assume that the global batch size used
is B. With pipeline width w and microbatch size b, data-
parallel communication is required every m(b) = B/(w - b)
microbatches.

Then, without pipelining, each microbatch of size b takes

the following computation time, t:
t—ZmaX T (b, w, d) +ZT;°:;“1 (b,w, d),

1

m : Ticomm(b7 w, d))

With pipelining, computation of different stages can be
overlapped. A microbatch of size b’ can then be processed
every t seconds, where ¢ is given by the expression:

t = max max (T, "™ (v, w, d)+

> Temm (b, w, d),
J
1
m(b')

. CZW’L_COmm(b/’ w, d))

With activation recomputation, the number of floating point
operations increases, since forward passes need to be re-
peated to recompute the activation stashes needed in the
backward pass. We use a constant multiplier ¢**'™ to repre-
sent this. ¢**"™ = 4/3 is a reasonable value for this constant,
since the backward pass typically takes twice as long as
the forward pass. ¢**™ can also be measured empirically.
Arithmetic intensity might also increase, which is captured
by 77" (.) being a function of the microbatch size b. Com-
munication time remains unchanged from before. Every b
inputs can now be processed in time ¢, where ¢ is given by,

t = max max(c™"™ - T; "™ (b, w, d)+
1

> T (b, w, d),
J
1

) 7™ (b, w, d))

The throughput in samples per second of each of these
setups is then the corresponding per-GPU microbatch size
(b or b') divided by ¢.

Estimating 7™ (.). T;°"" (b, w, d) is the compute time
of stage ¢+ with per-GPU microbatch size b, and can be
computed by summing up the forward and backward pass
times of all blocks within the stage. If the depth of the
pipeline is d and the total number of blocks in the model
is B, then the total number of blocks in a given stage is
B/d. Forward and backward pass times for each stage can
be estimated by profiling 100-200 iterations of training.

Estimating 7°°™™(.). Communication times can be simi-
larly modeled. Let the size of the associated parameter with
B total blocks be , and the size of the block’s input and
output activations be | A"P+°ut (p)|. With a pipeline of depth
d, each pipeline stage has 1/d of the total model parameters.
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Algorithm 1 Partitioning Algorithm

Input: Model m, memory capacity M, m’s associated
search function SEARCH(.), m’s associated throughput
cost function THROUGHPUT(.), m’s memory footprint
cost function MEMORY (.), maximum safe batch size B.
Return: Optimal width and depth w° and d°", opti-
mal per-GPU microbatch size b°", boolean whether ac-
tivations should be recomputed r°P', optimal degree of
gradient accumulation g°P".

Initialize t™* = 0, w°"* = NULL, d°** = NULL
for w =1to N do
ford =1to N/w do
// For given width w, depth d, and batch size B,
find optimal microbatch size and whether activation
recomputation should be performed.
b,” = m.SEARCH(w, d, B)

t = m.THROUGHPUT(w, d, b, 1)
if m.MEMORY (w, d, b, r) > M then
continue
end if
if t > t™* then
$max — t7,wopt — w7dopl — d7 poPt — b, 7OPt —
end if
end for
end for
" = B/(N - b°"") // To reach batch size B.

The time to communicate activations across stages can be
computed as (factor of 2 for gradients in the backward pass),

9] A+ ()| . T(d > 1)
Teomm () 4y ) =
( ) dethdep[h (d )

]

The time to communicate weight gradients across stage
replicas can be computed similarly given a bandwidth func-
tion bwdthygn (w), and the number of bytes communicated
during all-reduce. The number of byes communicated in an
all-reduction can either be explicitly measured, or estimated
using a closed-form expression (Narayanan et al., 2019).

bwdthgepm (d) and bwdthyiqm (w) represent the bandwidths
for inter-stage and intra-stage communication. These band-
width functions can respect hierarchical network topologies.
For example, if w is less than the number of workers in
a single server, communication can be performed entirely
within a server, using the higher intra-server bandwidth.

Bhjgn if w < number of GPUs in server
Biow otherwise

bwdthwidth(w) = {

A.1.2. MEMORY(.) COST FUNCTION

The memory footprint can similarly be modeled using the
sizes of activations and weights obtained from a profiling
step. Let the total size of the weight parameters for the
entire model be |W/|, let the total size of the activations
given a microbatch size b for the entire model be | A% (b)],
and let the size of the input activations for a single stage be
| Ainput(p) |, With a pipeline of d stages, each pipeline stage
has weight parameters of size |W|/d, and activations of size
|Atotal(b)|/d‘

Without Activation Recomputation. As discussed in §3.1,
2BW maintains 2 different versions of the weight parameters.
PipeDream-2BW also maintains d versions of activations
(the total number of in-flight activations). This means the
total PipeDream-2BW memory footprint is:

2(W| | dA° ()|

d| A" (b)].
] 7 TdA)|

With Activation Recomputation. With activation recom-
putation, the total number of activation versions in GPU
memory at any point in time is 1. This means that the
PipeDream-2BW memory footprint with d stages is:

2w A ()|
d d

+ d| AP (b))

A.2. Partitioning Algorithm

We show pseudocode for the full partitioning algorithm in
Algorithm 1.

B. Evaluation, Additional Graphs

In this section, we present additional results we could not
fit in the main paper due to space.

B.1. Throughput and Memory Footprint with BERT
Models

We also ran PipeDream-2BW on two BERT models: one
with 2.2 billion parameters, and another with 3.8 billion pa-
rameters. Figure 10 compares PipeDream-2BW’s throughput
against the same baselines as before, and Figure 11 com-
pares PipeDream-2BW’s memory footprint for these BERT
models. We see that results are similar to GPT. One point
of difference is that GPipe does not run out of memory at
the batch size of 64 (for GPT, only a batch size of 32 fits
in memory, leading to a larger pipeline bubble); however,
GPipe still has higher memory footprint compared to all
other baselines.

B.2. Impact of Activation Recomputation

Figure 12 shows the effect of activation recomputation
on throughput for various GPT models. For a given per-
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(b) BERT, 2.2B, 8-way model parallelism (64 x V100s).
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(c) BERT, 3.8B, 16-way model parallelism (64 x V100s).

Figure 10. Throughput of various systems for different batch sizes
for BERT models. Results are shown with a single 8 x V100 server,
and with eight 8 X V100 servers (with 16GB).

>\?g:]]g o w7 \nter-layer MP
5T 9 :§; Tensor MP
= g v‘:i:i w5 GPipe
2s 6 5 B PipeDream-Flush
83 o = PipeDream-2BW
N— 0 XX
64 256
Batch size

Figure 11. Worst-case memory footprint (in GB) of various sys-
tems with 8 V100 GPUs for a BERT model with 2.2B parameters.
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Figure 12. Throughput of (1, 8) PipeDream-2BW configurations
vs. per-GPU microbatch size for GPT models using a maximum
sequence length of 512 and 8 16-GB-V100 GPUs, with and without
activation recomputation. Activation recomputation helps increase
the maximum per-GPU microbatch size that fits, especially for
larger models, leading to higher throughput in some cases.

GPU microbatch size, recomputation introduces overhead
(capped at 33% since the backward pass takes twice as long
as the forward pass for most operators). However, recom-
putation allows for a larger per-GPU microbatch to fit on
the worker, sometimes leading to higher throughput than

without activation recomputation: activation recomputation
leads to higher throughput in Figure 12b, but not in Fig-
ure 12a. In the extreme case (not pictured), recomputation
makes it possible to train large models by reducing peak
memory footprint of training, at the cost of extra compute
operations due to an extra forward pass.



