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Cliques with many colors in triple systems

Dhruv Mubayi
∗
and Andrew Suk

†

Erdős and Hajnal constructed a 4-coloring of the triples of an N -
element set such that every n-element subset contains 2 triples with
distinct colors, and N is double exponential in n. Conlon, Fox and
Rödl asked whether there is some integer q ≥ 3 and a q-coloring of
the triples of an N -element set such that every n-element subset
has 3 triples with distinct colors, and N is double exponential in n.
We make the first nontrivial progress on this problem by providing
a q-coloring with this property for all q ≥ 9, where N is exponential
in n2+cq and c > 0 is an absolute constant.
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1. Introduction

The Ramsey number rk(n; q) is the minimum integer N such that for any
q-coloring of the k-tuples of an N -element set V , there is a subset A ⊂ V
such that all of the k-tuples of A have the same color. Estimating r3(n; 2) is
one of the most central problems in combinatorics. The best known bounds,
due to Erdős, Hajnal and Rado [5, 4], state that there are positive constants
c and c′ such that

(1) 2cn
2

< r3(n; 2) < 22
c′n

.

Erdős conjectured that the upper bound is closer to the truth, namely,
r3(n; 2) grows double exponentially in Θ(n), and he even offered a $500
reward for a proof. His conjecture is supported by the fact that a double
exponential growth rate is known when we have 4 colors [3, 4], that is, for
fixed q ≥ 4

(2) r3(n; q) = 22
Θ(n)

.
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In this paper, we study the following generalization of r3(n; q). For inte-
gers n > q ≥ t ≥ 2, let f(n; q, t) denote the maximum integer N such that
there is a q-coloring of the triples of an N -element set V with the property
that every subset of V of size n induces at least t distinct colors. Thus when
t = 2, we have

f(n; q, 2) = r3(n; q)− 1,

and for q ≥ t ≥ 3, we have f(n; q, t) < r3(n; q). When t = 3, Conlon, Fox,
and Rödl raised the following problem [2].

Problem 1.1 (Conlon-Fox-Rödl). Is there an integer q ≥ 3 and a positive
constant c such that f(n; q, 3) > 22

cn

holds for all n > 2?

A simple application of the Probabilistic Method (see [1]) shows that
f(n; q, 3) > 2cn

2

, where c = c(q). Our main result is the following.

Theorem 1.2. There is an absolute constant c > 0 such that for all integers
n > q ≥ 9,

f(n; q, 3) ≥ 2n
2+c·q

.

For larger values of t, we show the following.

Theorem 1.3. Given integers q ≥ t ≥ 2, there is an n0 = n0(q, t) such that
for all integers n > n0,

f(n; q, t) ≥ 2n
log(q/(t−1))/4.

Both proofs are based on a stepping-up argument introduced by Erdős
and Hajnal [3]. We start with the proof of Theorem 1.3 in the next section,
as it is a direct application of the stepping-up method. The proof of Theorem
1.2 combines a more general stepping-up argument with induction, and is
given in Section 3. Throughout this paper, all logarithms are in base 2.

2. Forcing many colors

In this section, we prove Theorem 1.3. We will need the following lemma.

Lemma 2.1. Given integers q ≥ t ≥ 2, there is an integer m0 such that the
following holds. For every m ≥ m0, there is a q-coloring φ of the pairs of
U = {0, 1, . . . , �(q/(t− 1))m/4�− 1} such that every subset of size m induces
at least t distinct colors.

Proof. Given q ≥ t ≥ 2, let m0 = m0(q, t) be a sufficiently large integer that
will be determined later. Color the pairs of U = {0, 1, . . . , �(q/(t − 1))m/4�
uniformly independently at random with colors {α1, . . . , αq}. Let X denote
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the number of subsets A ⊂ U of size m that have less than t distinct colors
among their pairs. Then we have

E[X] ≤
(
|U |
m

)(
q

t− 1

)(
t− 1

q

)(m2 )

≤
(

q

t− 1

)m2/4

qt−1

(
t− 1

q

)m2/2

= qt−1

(
q

t− 1

)−m2/4

.

By setting m0 = m0(q, t) sufficiently large, we have for all m ≥ m0, E[X] <
1. Hence, there is a q-coloring φ :

(
U
2

)
→ {α1, . . . , αq} such that every subset

A ⊂ U of size m has at least t distinct colors among its pairs.

Proof of Theorem 1.3. Given q ≥ t ≥ 2, let n0 = n0(q, t) be a sufficiently
large integer that will be determined later. Set M = �(q/(t− 1))m/4�, U =
{0, 1, . . . ,M −1}, and let φ :

(
U
2

)
→ {α1, . . . , αq} be a q-coloring of the pairs

of U with the properties described in Lemma 2.1. Set V = {0, 1, . . . , 2M−1}.
In what follows, we will use φ to define a q-coloring χ :

(
V
3

)
→ {α1, . . . , αq}

of the triples of V with the desired properties.
For each v ∈ V , write v =

∑M−1
i=0 v(i)2i with v(i) ∈ {0, 1} for each i. For

u 	= v, let δ(u, v) ∈ U denote the largest i for which u(i) 	= v(i). Notice that
we have the following stepping-up properties (see [6]).

Property I: For every triple u < v < w, δ(u, v) 	= δ(v, w).
Property II: For v1 < · · · < vr, δ(v1, vr) = max1≤j≤r−1 δ(vj , vj+1).

Using φ :
(
U
2

)
→ {α1, . . . , αq}, we define χ :

(
V
3

)
→ {α1, . . . , αq} as

follows. For vertices v1 < v2 < v3 in V and δi = δ(vi, vi+1), we define
χ(v1, v2, v3) = αj if and only if φ(δ1, δ2) = αj . We now need the following
lemma.

Lemma 2.2. For m ≥ 2 set n = 2m. Then for any set of n vertices
v1, . . . , vn ∈ V , where v1 < · · · < vn, there is a subset B ⊂ {δ(vi, vi+1) :
1 ≤ i ≤ n − 1} with at least m distinct elements such that for each pair
(δr, δs) ∈

(
B
2

)
, there is a triple vi < vj < vk in {v1, . . . , vn} such that

χ(vi, vj , vk) = φ(δr, δs).

Proof. We proceed by induction on m. The base case m = 2 follows from
Property I. For the inductive step, assume that the statement holds for all
m′ < m. Let v1, . . . , vn ∈ V such that v1 < · · · < vn and n = 2m. Let
δi = δ(vi, vi+1), for i = 1, . . . , n − 1. Set δw = max{δi : 1 ≤ i ≤ n − 1}



566 Dhruv Mubayi and Andrew Suk

and notice that, by Properties I and II above, δw > δi for all i 	= w. Set
S = {v1, . . . , vw} and T = {vw+1, . . . , vn}. Then either |S| or |T | has size at
least 2m−1. Without loss of generality, we can assume that |S| ≥ 2m−1 since
a symmetric argument would follow otherwise. By the induction hypothesis,
there is a subset B0 ⊂ {δ1, . . . , δw−1} ⊂ U with at least m − 1 distinct
elements and for each pair (δr, δs) ∈

(
B0

2

)
, there is a triple vi < vj < vk in S

such that

χ(vi, vj , vk) = φ(δr, δs).

Set B = {δw} ∪ B0, which implies |B| ≥ m. Then notice that for each
pair (δw, δr), where δr ∈ B0, by Property I above, we have

χ(vr, vr+1, vw+1) = φ(δw, δr).

Hence B ⊂ U has the desired properties, and this completes the proof of the
claim.

Set n0 = �2m0� wherem0 is defined in Lemma 2.1. Then for all n > n0 we
have m > m0. Thus, by Lemma 2.1 and Lemma 2.2, any set of n vertices in
V induces at least t distinct colors with respect to χ. Since |V | = 2(q/(t−1))m/4

and n = 2m, we have |V | = 2n
log(q/(t−1))/4.

3. Forcing three colors

In this section, we prove Theorem 1.2. We will need the following lemma.

Lemma 3.1. Let r > 3 and set V3 = {0, 1, . . . , �2r2/24� − 1}. Then there
is a 3-coloring φ3 :

(
V3

3

)
→ {β1, β2, β3} of the triples of V3 such that every

subset of size r induces at least three distinct colors.

We omit the proof of Lemma 3.1 as it follows by the same probabilistic
argument used for Lemma 2.1. Hence, Lemma 3.1 implies that f(n; 3, 3) ≥
2n

2/24. Together with the following recursive formula, Theorem 1.2 quickly
follows.

Theorem 3.2. For integers n > q ≥ 9, we have

f(n; q, 3) ≥ (f(�n/ log n�, q − 6, 3))n
1/4/2 .

We will also need the following lemma, whose proof is also omitted since
it follows from the same probabilistic argument as in Lemma 2.1.

Lemma 3.3. Let s > 3 and set V2 = {0, 1, . . . , �2s/4�}. Then there is a
3-coloring φ2 :

(
V2

2

)
→ {α1, α2, α3} of the pairs of V2 such that every subset

of size s induces at least three distinct colors.
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Proof of Theorem 3.2. Given n > q ≥ 9, let r = �n/ log n� and s = �log n�.
Set N2 = �2s/4�, N3 = f(r; q − 6, 3), and

V2 = {0, 1, . . . , N2 − 1} and V3 = {0, 1, . . . , N3 − 1}.

Using Lemma 3.3, we obtain φ2 :
(
V2

2

)
→ {α1, α2, α3} such that every

subset of V2 of size s induces at least three colors. Likewise, by definition of
f(r, q− 6, 3), we obtain φ3 :

(
V3

3

)
→ {β1, . . . , βq−6} such that every subset of

V3 of size r induces at least three distinct colors. We now apply the following
more general stepping-up procedure.

Set N = NN2

3 and V = {0, 1, . . . , N − 1}. For each v ∈ V , write v =∑N2−1
i=0 v(i)(N3)

i with v(i) ∈ V3 for each i. For u, v ∈ V with u < v, let
δ(u, v) ∈ V2 denote the largest i for which u(i) 	= v(i). Notice that we no
longer have Property I from the previous stepping-up procedure, but we do
have the following properties.

Property II: For v1 < · · · < vr, δ(v1, vr) = max1≤j≤r−1 δ(vj , vj+1).
Property III: For v1 < v2 < v3 such that δ(v1, v2) = δ(v2, v3) = i, v1(i) <

v2(i) < v3(i).

Using φ2 and φ3, we define χ :
(
V
3

)
→ {γ1, . . . , γq} as follows. For vertices

v1 < v2 < v3 in V , let δ1 = δ(v1, v2) and δ2 = δ(v2, v3). Then for i ∈ {1, 2, 3},
• set χ(v1, v2, v3) = γi if and only if δ1 > δ2 and φ2(δ1, δ2) = αi,
• set χ(v1, v2, v3) = γ3+i if and only if δ1 < δ2 and φ2(δ1, δ2) = αi,

and for i ∈ {1, . . . , q − 6},
• set χ(v1, v2, v3) = γ6+i if and only if δ1 = δ2 = j and we also have
φ3(v1(j), v2(j), v3(j)) = βi,

Notice that n ≥ max{s · r, 2s}. We claim that any set of n vertices
v1, . . . , vn ∈ V induces at least 3 distinct colors with respect to χ. For sake
of contradiction, let A = {v1, . . . , vn} ⊂ V such that v1 < · · · < vn and
χ(vi, vj , vk) ∈ {γx, γy} for all triples (vi, vj , vk) ∈

(
A
3

)
. Set δi = δ(vi, vi+1) for

i = 1, . . . , n− 1. The proof now falls into the following cases.

Case 1. Suppose γx, γy ∈ {γ1, γ2, γ3}. Then we have δ1 > δ2 > · · · > δn−1.
However, δi ∈ U = {0, 1, . . . , �2s/4�−1} and n = 2s which is a contradiction.
A similar argument follows if γx, γy ∈ {γ4, γ5, γ6}.

Case 2. Suppose γx, γy ∈ {γ7, . . . , γq−6}. Then we must have δ1 = · · · =
δn−1 = i and v1(i) < · · · < vn−1(i). Since n ≥ r, by definition of χ and φ3,
the set {v1, . . . , vn} induces at least three distinct colors, contradiction.
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Case 3. Suppose γx ∈ {γ1, γ2, γ3} and γy ∈ {γ4, γ5, γ6}. Then in this case,
for any triple vi < vj < vk, we have δ(vi, vj) 	= δ(vj , vk) and

φ2(δ(vi, vj), δ(vj , vk)) = αz

for some fixed z. Set δw = max{δi : 1 ≤ i ≤ n − 1} and notice that, by
Property II above, δw > δi for all i 	= w. Therefore, a straight-forward
adaptation of Lemma 2.2 gives us the following claim.

Claim 3.4. For s ≥ 2, any set of 2s vertices v1, . . . , v2s ∈ V , with the
properties described above, there is a subset B ⊂ {δ(vi, vi+1) : 1 ≤ i ≤ 2s−1}
with at least s distinct elements such that φ2(δi, δj) = αz for every pair

(δi, δj) ∈
(
B
2

)
.

However, this contradicts Lemma 3.3.

Case 4. Suppose γx ∈ {γ1, . . . , γ6} and γy ∈ {γ7, . . . , γq}. Without loss of
generality, we can assume that γx = γ1 and γy = γ7 since a symmetric argu-
ment would follow otherwise. Notice that there is an integer w1 ∈ {1, . . . , r}
such that δ(v1, vw1

) > δ(vw1
, vw1+1). Indeed, otherwise if δ1 = · · · = δr,

by the definition of χ and the properties of φ3 described above, the set
{v1, . . . , vr} induces at least three distinct colors with respect to χ, contra-
diction.

The same argument shows that there must be an integer w2 ∈ {w1 +
1 . . . , w1+r} such that δ(vw1

, vw2
) > δ(vw2

, vw2+1). Since n ≥ s·r, a repeated
application of the argument above shows that there are integers w1 < · · · <
ws−1, such that

δ(v1, vw1
) > δ(vw1

, vw2
) > δ(vw2

, vw3
) > · · · > δ(vws−1

, vws−1+1).

By Property II, χ colors every triple in {v1, vw1
, . . . , vws−1

, vws−1+1} with
color γ1. However, this implies that the set

S = {δ(v1, vw1
), δ(vw1

, vw2
), . . . , δ(vws−2

, vws−1
), δ(vws−1

, vws−1+1)} ⊂ U,

has the property that |S| = s and φ2 :
(
S
2

)
→ α1, which is a contradiction.

Since |V | = NN2

3 ,

f(n; q, 3) ≥ |V | ≥ (f(�n/ log n�; q − 6, 3))n
1/4/2 .

This completes the proof of Theorem 3.2.
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Combining Theorem 3.2 with the fact that f(n; 3, 3) > 2n
2/24 gives the

following.

Theorem 3.5. For fixed q ≥ 3 and for all n > 3 we have

f(n; q, 3) > 2n
2+ 1

4� q−3
6 �−o(1)

.
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