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Cliques with many colors in triple systems

DHRUV MUBAYT* AND ANDREW Suk'

Erdés and Hajnal constructed a 4-coloring of the triples of an N-
element set such that every n-element subset contains 2 triples with
distinct colors, and N is double exponential in n. Conlon, Fox and
R6dl asked whether there is some integer ¢ > 3 and a ¢-coloring of
the triples of an N-element set such that every m-element subset
has 3 triples with distinct colors, and N is double exponential in n.
We make the first nontrivial progress on this problem by providing
a g-coloring with this property for all ¢ > 9, where N is exponential
in n2*°? and ¢ > 0 is an absolute constant.
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1. Introduction

The Ramsey number r(n;q) is the minimum integer N such that for any
g-coloring of the k-tuples of an N-element set V', there is a subset A C V
such that all of the k-tuples of A have the same color. Estimating r3(n;2) is
one of the most central problems in combinatorics. The best known bounds,
due to Erdés, Hajnal and Rado [5, 4], state that there are positive constants
c and ¢ such that

(1) 207" < ra(n; 2) < 92",

Erdos conjectured that the upper bound is closer to the truth, namely,
r3(n;2) grows double exponentially in ©(n), and he even offered a $500
reward for a proof. His conjecture is supported by the fact that a double
exponential growth rate is known when we have 4 colors [3, 4], that is, for
fixed ¢ > 4

(2) r3(n;q) = 227"
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In this paper, we study the following generalization of r3(n; ). For inte-
gers n > q >t > 2, let f(n;q,t) denote the maximum integer N such that
there is a g-coloring of the triples of an N-element set V' with the property
that every subset of V' of size n induces at least ¢ distinct colors. Thus when
t = 2, we have

f(n;q,2) =r3(n;q) — 1,

and for ¢ > t > 3, we have f(n;q,t) < r3(n;q). When ¢t = 3, Conlon, Fox,
and Rodl raised the following problem [2].

Problem 1.1 (Conlon-Fox-Ro6dl). Is there an integer ¢ > 3 and a positive
constant ¢ such that f(n;q,3) > 227" holds for all n > 27

A simple application of the Probabilistic Method (see [1]) shows that
f(n;q,3) > 2¢"° where ¢ = ¢(q). Our main result is the following.

Theorem 1.2. There is an absolute constant ¢ > 0 such that for all integers
n>q>9,

2+c-q

f(nig,3) =2" .
For larger values of ¢, we show the following.

Theorem 1.3. Given integers ¢ >t > 2, there is an ng = no(q,t) such that
for all integers n > ny,

Fn;q,t) > 27/

Both proofs are based on a stepping-up argument introduced by Erdés
and Hajnal [3]. We start with the proof of Theorem 1.3 in the next section,
as it is a direct application of the stepping-up method. The proof of Theorem
1.2 combines a more general stepping-up argument with induction, and is
given in Section 3. Throughout this paper, all logarithms are in base 2.

2. Forcing many colors

In this section, we prove Theorem 1.3. We will need the following lemma.

Lemma 2.1. Given integers ¢ >t > 2, there is an integer mg such that the
following holds. For every m > my, there is a q-coloring ¢ of the pairs of
U=1{0,1,...,|(q/(t—1))™*| =1} such that every subset of size m induces
at least t distinct colors.

Proof. Given q >t > 2, let mo = mq(q,t) be a sufficiently large integer that
will be determined later. Color the pairs of U = {0,1,...,|(q/(t — 1))™/4|
uniformly independently at random with colors {c,..., a4} Let X denote
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the number of subsets A C U of size m that have less than ¢ distinct colors
among their pairs. Then we have

= (U)(0) (5
() (5
- (i)

By setting mo = mo(q, t) sufficiently large, we have for all m > mg, E[X] <
1. Hence, there is a g-coloring ¢ : (g) — {au, ..., aq} such that every subset
A C U of size m has at least ¢ distinct colors among its pairs. O

IN

Proof of Theorem 1.3. Given q >t > 2, let ng = ng(q,t) be a sufficiently
large integer that will be determined later. Set M = [(q/(t — 1))™*|, U =
{0,1,...,M —1}, and let ¢ : ((2]) — {a1,..., a4} be a g-coloring of the pairs
of U with the properties described in Lemma 2.1. Set V = {0, 1,...,2M —1}.
In what follows, we will use ¢ to define a g-coloring ¥ : (‘g) —{a1,..., 04}
of the triples of V' with the desired properties.

For each v € V, write v = Zi]\io_l v(i)2" with v(i) € {0,1} for each i. For
u # v, let §(u,v) € U denote the largest i for which u(i) # v(4). Notice that
we have the following stepping-up properties (see [6]).

Property I: For every triple u < v < w, d(u,v) # §(v, w).
Property II: For v < --- < vy, §(v1,v,) = maxi<j<r—10(vj, Vj+1)-

Using ¢ : (g) — {ai1,..., 04}, we define x : (‘g) — {a1,..., 04} as
follows. For vertices v1 < vy < w3 in V and §; = 6(v;,vi41), we define
X(v1,v2,v3) = a; if and only if ¢(d1,02) = ;. We now need the following
lemma.

Lemma 2.2. For m > 2 set n = 2™. Then for any set of n vertices
V..., Uy €V, where v1 < -+ < vy, there is a subset B C {6(vj,viq1) :
1 < i < n—1} with at least m distinct elements such that for each pair
(0r,05) € (?), there is a triple v; < v; < v in {vi,...,v,} such that
X(Ui7vj7 vk) = (25(57"7 55)

Proof. We proceed by induction on m. The base case m = 2 follows from
Property 1. For the inductive step, assume that the statement holds for all
m' < m. Let v1,...,v, € V such that v; < --- < v, and n = 2™. Let
0i = 0(vi,vip1), for © = 1,...,m — 1. Set &, = max{d; : 1 < i < n—1}
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and notice that, by Properties I and II above, &, > §; for all i # w. Set
S ={v1,...,0p} and T = {vy+1,...,vp}. Then either |S| or |T'| has size at
least 2™~ 1. Without loss of generality, we can assume that |S| > 2™~! since
a symmetric argument would follow otherwise. By the induction hypothesis,
there is a subset By C {d1,...,0p—1} C U with at least m — 1 distinct
elements and for each pair (6,,d5) € ( 2"), there is a triple v; < v; < v in §
such that

X (vi, v, v) = ¢(6r, 0s).

Set B = {d,} U By, which implies |B| > m. Then notice that for each
pair (dy,0r), where 0, € By, by Property I above, we have

X(UT‘7 Ur+1, Uw+1) = (b((sw, 57’)

Hence B C U has the desired properties, and this completes the proof of the
claim. O

Set ng = [2™0] where my is defined in Lemma 2.1. Then for all n > ng we
have m > myg. Thus, by Lemma 2.1 and Lemma 2.2, any set of n vertices in
V induces at least ¢ distinct colors with respect to x. Since |V| = 2la/(t=1)"/
and n = 2™, we have |V| = 27" 7/4, O

3. Forcing three colors

In this section, we prove Theorem 1.2. We will need the following lemma.

Lemma 3.1. Let r > 3 and set V3 = {0,1,...,|27/2*| — 1}. Then there
is a 3-coloring ¢3 : (‘g”) — {p1, B2, B3} of the triples of V3 such that every
subset of size r induces at least three distinct colors.

We omit the proof of Lemma 3.1 as it follows by the same probabilistic
argument used for Lemma 2.1. Hence, Lemma 3.1 implies that f(n;3,3) >
27"/24 Together with the following recursive formula, Theorem 1.2 quickly
follows.

Theorem 3.2. For integers n > q > 9, we have

f(n;4,3) > (f(|n/logn|,q —6,3))" /2.

We will also need the following lemma, whose proof is also omitted since
it follows from the same probabilistic argument as in Lemma 2.1.

Lemma 3.3. Let s > 3 and set Vo = {0,1,...,[2%*|}. Then there is a
3-coloring ¢ : (‘gz) — {a1, a9, a3} of the pairs of Vo such that every subset
of size s induces at least three distinct colors.
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Proof of Theorem 3.2. Given n > ¢ > 9, let r = [n/logn]| and s = [logn].
Set No = |2%/%], N3 = f(r;q — 6,3), and

VQZ{O,I,...,NQ—l} and ‘/:3:{0,1,...,]\[3—1}.

Using Lemma 3.3, we obtain ¢ : (?) — {ai, a9, a3} such that every
subset of V5 of size s induces at least three colors. Likewise, by definition of
f(r,q—6,3), we obtain ¢s3 : (23) — {B1,...,Bg—6} such that every subset of
V3 of size r induces at least three distinct colors. We now apply the following
more general stepping-up procedure.

Set N = NéVQ and V = {0,1,...,N — 1}. For each v € V, write v =
Zfi“o_l (i)(N3)* with v(i) € V3 for each i. For u,v € V with u < v, let
d(u,v) € Vi denote the largest ¢ for which u(i) # v(i). Notice that we no
longer have Property I from the previous stepping-up procedure, but we do
have the following properties.

Property II: For vy < --- < vy, §(v1,v,) = maxi<j<r—1 0(vj, Vjt1)-
Property III: For v; < ve < vz such that 6(vy,v) = §(ve,v3) =4, v1(i) <
UQ(i) < Ug(i).

Using ¢o and ¢3, we define y : (g) — {m,...,7q} as follows. For vertices
v1 < vg < wginV,let §; = 0(vy,v2) and d2 = §(va,v3). Then for i € {1,2,3},

e set x(v1,v2,v3) = if and only if 6; > do and ¢2(01, d2) = oy,
e set x(v1,v2,v3) = Y344 if and only if §; < d2 and ¢2(d1,02) = «;,

and for i € {1,...,q — 6},

e set x(v1,v2,v3) = Y644 if and only if §; = d2 = j and we also have
P3(v1(5), v2(5), v3(5)) = Bis

Notice that n > max{s - r,2°}. We claim that any set of n vertices
v1,...,0, € V induces at least 3 distinct colors with respect to x. For sake
of contradiction, let A = {vy,...,v,} C V such that vy; < -+ < v, and
X(vi,vj,v) € {Va, vy} for all triples (v;, vj,vg) € (g‘) Set §; = §(vi, viy1) for
i=1,...,n— 1. The proof now falls into the following cases.

Case 1. Suppose vz, vy € {71,72,73}. Then we have 61 > 62 > -+ > §,,_1.
However, §; € U = {0,1,...,|2%*] =1} and n = 2° which is a contradiction.
A similar argument follows if 7., vy € {74,735, V6 }-

Case 2. Suppose Vz,vy € {V7,.-,7g—6}. Then we must have §; = --- =
Opn—1 =1 and v1(i) < -+ < vp—1(4). Since n > r, by definition of y and ¢s3,
the set {v1,...,v,} induces at least three distinct colors, contradiction.
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Case 3. Suppose v € {71,72,73} and v, € {74,75,7}. Then in this case,
for any triple v; < vj < vi, we have §(v;,v;) # 6(vj, v) and

$2(0(vi,v5),6(vj,vk)) =

for some fixed z. Set d,, = max{d; : 1 < i < n — 1} and notice that, by
Property II above, §,, > §; for all ¢ # w. Therefore, a straight-forward
adaptation of Lemma 2.2 gives us the following claim.

Claim 3.4. For s > 2, any set of 2° wvertices vi,...,v9s € V, with the
properties described above, there is a subset B C {d(v;,viy1) : 1 <i < 2%—1}
with at least s distinct elements such that ¢2(9;,0;) = « for every pair

(6:,65) € (5)-

However, this contradicts Lemma 3.3.

Case 4. Suppose vz € {71,...,7} and vy € {v7,...,7,}. Without loss of
generality, we can assume that -, = v and -, = 7 since a symmetric argu-
ment would follow otherwise. Notice that there is an integer wy € {1,...,r}
such that 6(vi,vy,) > 0(Vw,,Vw,+1). Indeed, otherwise if 6; = -+ = §,,
by the definition of y and the properties of ¢3 described above, the set
{v1,...,v} induces at least three distinct colors with respect to y, contra-
diction.

The same argument shows that there must be an integer wy € {w; +
1...,wi+r} such that 6(vy,, Vw,) > 0(Vw,, Vuw,+1). Since n > s-r, a repeated
application of the argument above shows that there are integers wy; < --- <
wWs_1, such that

O(v1, Vw, ) > 6(Vw, s Viy) > 6(Vay, V) > -+ > (Vw15 Vo, 41)-

By Property II, x colors every triple in {vi,Vw, ..., Vw, ;s Vw._,+1} With
color ;. However, this implies that the set

S = {6(01? le), 5(’le,vw2), tee 75(’010.;_27 Uw.@-1)7 5(vws—17vws—l+1>} C U,

has the property that |S| = s and ¢ : (‘g) — a1, which is a contradiction.
Since |[V| = N2,

f(n:q,3) > V| > (f(|n/logn];q — 6,3))" /.

This completes the proof of Theorem 3.2. O
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Combining Theorem 3.2 with the fact that f(n;3,3) > 27*/24 gives the
following.

Theorem 3.5. For fized ¢ > 3 and for all n > 3 we have

241 LQT?BJ —o(1)

f(n;q,3) > 2"
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