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Abstract. For a finite Coxeter system and a subset of its diagram nodes, we define spher-
ical elements (a generalization of Coxeter elements). Conjecturally, for Weyl groups, spherical
elements index Schubert varieties in a flag manifold G/B that are spherical for the action of a
Levi subgroup. We evidence the conjecture, employing the combinatorics of Demazure modules,
and work of R. Avdeev and A. Petukhov, M. Can and R. Hodges, R. Hodges and V. Lakshmibai,
P. Karuppuchamy, P. Magyar and J. Weyman and A. Zelevinsky, N. Perrin, J. Stembridge, and
B. Tenner. In type A , we establish connections with the key polynomials of A. Lascoux and M.-
P. Schützenberger, multiplicity-freeness, and split-symmetry in algebraic combinatorics. Thereby,
we invoke theorems of A. Kohnert, V. Reiner and M. Shimozono, and C. Ross and A. Yong.
Mathematics Subject Classification: Primary 14M15; secondary 05E05, 05E10, 14L30.
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1. Introduction
1.1. Main definition. Let (W,S) be a finite Coxeter system, where S = {s1, ..., sr}
are minimal generators of the Coxeter group W . Biject [r] := {1, 2, . . . , r} with the
nodes of the Coxeter diagram G . To each I ∈ 2[r] , let GI be the induced subdiagram
of G . Suppose

GI =
m⋃

z=1

C(z) (1)

is the decomposition into connected components. Let w
(z)
0 be the long element of

the parabolic subgroup WI(z) generated by I(z) = {sj : j ∈ C(z)} .
Every w ∈ W has a reduced expression w = si1 · · · sik where k = ℓ(w) is the Coxeter
length of w . Let Red(w) := Red(W,S)(w) be the set of these expressions. The left
descents of w are

J(w) = {j ∈ [r] : ℓ(sjw) < ℓ(w)}.

Definition 1.1 (I -spherical elements). Let w ∈ W and fix I ⊆ J(w) . Then w
is I -spherical if there exists R = si1 · · · siℓ(w)

∈ Red(w) such that:
(S.1) #{t : it = j} ≤ 1 for all j ∈ [r]− I , and

(S.2) #{t : it ∈ C(z)} ≤ ℓ(w
(z)
0 ) + #vertices(C(z)) for 1 ≤ z ≤ m .

Such an R is called I -witness. Call w maximally spherical if it is J(w)-spherical.
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Example 1.2 (Coxeter elements). A Coxeter element c of W is the product of
all si ’s (in some order). Trivially, c is I -spherical for any I ⊆ J(c) .

Example 1.3. The E8 Coxeter diagram is
1

2

3 4 5 6 7 8
. Let

R = s2s3s4s2s3s4s5s4s2s3s1s4s5s6s7s6s8s7s6 ∈ Red(w).

Then J(w) = {2, 3, 4, 5, 7, 8} . If I = J(w) then C(1) =
3 4

2

5

and C(2) =
7 8

.

Here WI(1) is the D4 Coxeter group and w
(1)
0 = s3s2s4s3s2s4s5s4s3s2s4s5 with

ℓ(w
(1)
0 )=12 . Also, WI(2) is the A2 Coxeter group S3 , w(2)

0 =s7s8s7 and ℓ(w
(2)
0 )=3 .

R is not a J(w)-witness for w ; it fails (S.1) as s6 appears thrice. However,

R = s2s3s4s2s3s4s5s4s2s3s1s4s5s6s7s6s8s7s6

≡ s2s3s4s2s3s4s5s4s2s3s1s4s5s7s6s7s8s7s6

≡ s2s3s4s2s3s4s5s4s2s3s1s4s5s7s6s8s7s8s6

≡ s2s3s4s2s3s4s5s4s2s3s1s4s5s7s8s6s7s6s8

≡ s2s3s4s2s3s4s5s4s2s3s1s4s5s7s8s7s6s7s8.

The latter expression is a J(w)-witness.

Example 1.4 (B2, B3 ). For B2 , all elements are J(w)-spherical (Proposition 2.8).
For B3 , the diagram is

1 2 3
, and #W (B3) = 233! = 48 . The 8 non-J(w)-

spherical elements are: s3s2s3s1s2s3, s2s3s2s1s2s3, s3s2s3s2s1s2s3, s3s2s3s1s2s3s2,
s2s3s2s1s2s3s2, s3s2s3s2s1s2s3s2, s2s3s2s1s2, s3s2s3s1s2s3s2s1 .

Example 1.5 (F4 ). The F4 diagram is
1 2 3 4

. Of the 1152 Weyl group

elements, 290 are J(w)-spherical. An example is
w = s4s3s4s2s3s4s2s3s2s1s2s3s4 ; here J(w) = {2, 3, 4} .

A non-example is
w′ = s2s1s4s3s2s1s3s2s4s3s2s1 (J(w′) = {2, 4}); here #Red(w′) = 29 .

This paper will concentrate mainly on type An−1
1 2 n−1

. W (An−1) ∼= Sn ,

the symmetric group on {1, 2, . . . , n} . Each si is identified with the transposition
(i i+ 1) .

Example 1.6. All w∈Sn are J(w)-spherical, if n≤4 . In S5 the non-examples are
24531, 25314, 25341, 34512, 34521, 35412, 35421, 42531, 45123, 45213, 45231,

45312, 52314, 52341, 53124, 53142, 53412, 53421, 54123, 54213, 54231.

There are 320 non-examples in S6 , and 3450 in S7 (the latter computed by J. Hu).
We suspect that, for n large, nearly all w ∈ Sn are non-examples (Conjecture 3.8).
Notice 24531−1 = 51423 is not on the list. Being maximally spherical is not inverse
invariant.
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Example 1.7 (321-avoiding permutations). w ∈ Sn is 321-avoiding if there
does not exist i < j < k such that w(i) > w(j) > w(k) . Such w are fully
commutative, i.e., no expression in Red(w) contains sisi+1si nor si+1sisi+1 . Any two
elements of Red(w) can be obtained from one another by a sequence of commutation
relations sisj ≡ sjsi where |i − j| ≥ 2 (see, e.g., [39, Proposition 2.2.15]). Hence,
for any I ∈ 2J(w) , the property of being an I -witness is independent of the choice
of si1 · · · siℓ(w)

∈ Red(w) .

1.2. Spherical elements and Schubert geometry. Let G be a connected
complex reductive algebraic group. Fix a choice of maximal torus T and Borel
subgroup B in G with root system Φ and decomposition into positive and negative
roots Φ = Φ+ ∪ Φ− . Let ∆ be the base of the root system. The finite Coxeter
group of interest is the Weyl group of G , namely W ∼= N(T )/T . Let rankss(G) be
the semisimple rank of G . Then W is generated by r = rankss(G) many simple
reflections S = {s1, . . . , sr} , where 1, 2, . . . , r is some indexing of ∆ .
This paper builds on and extends earlier work of, e.g., P. Magyar & J. Weyman &
A. Zelevinsky [38], J. Stembridge [49], P. Karuppuchamy [32], as well as work of the
first author with V. Lakshmibai [26, 27] and with M. Can [15]. It combines study of
two topics of combinatorial algebraic geometry:

(A) The generalized flag variety is G/B . The Schubert varieties are the B -orbit
closures Xw = BwB/B where w ∈ W . Schubert varieties are well-studied
in algebraic combinatorics, representation theory and algebraic geometry; see,
e.g., [22, 6].

(B) A variety X is H -spherical for the action of a complex reductive algebraic
group H if X is normal and it contains a open dense orbit of a Borel sub-
group of H . Spherical varieties generalize toric varieties. Classifying spher-
ical varieties is of significant interest; see, e.g., [12, 37], and the survey by
N. Perrin [42].

Foundational work from the 1980s, by C. DeConcini & V. Lakshmibai [16], as well
as S. Ramanan & A. Ramanathan [43], established that every Schubert variety is
normal. Thus to be within (B)’s scope, it remains to introduce a reductive group
H acting on Xw (H = B being invalid, as B is not reductive).
We study a natural choice of H acting on Xw . Recall, for any parabolic subgroup
P of G , the Levi decomposition is

P = L⋉Ru(P ) (2)

where L is a Levi subgroup of P and Ru(P ) is P ’s unipotent radical. For each
I ∈ 2[r] there is a standard parabolic PI ⊃ B ; let LI be the associated standard
Levi from (2) that contains T . With respect to the left action of G on G/B ,

PJ(w) = stabG(Xw); (3)

see [6, Lemma 8.2.3]. For any

I ⊆ J(w), LI ≤ PI ≤ PJ(w).

Hence by (3) each of the reductive groups H = LI acts on Xw .
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Definition 1.8. Let I ⊆ J(w) . Xw ⊆ G/B is LI -spherical if Xw has an open
dense orbit of a Borel subgroup of LI under left translations. Xw is maximally
spherical if it is LJ(w) -spherical.

Which Schubert varieties Xw are spherical for the action of LI ?

Conjecture 1.9. Let I ⊆ J(w) . Xw is LI -spherical if any only if w is I -spherical.

Condition (S.2) has the following Lie theoretic origin: if G is semisimple and B
is a Borel subgroup, then dimB = ℓ(w0) + rank(G) . However, Conjecture 1.9
predicts that being LI -spherical only depends on the Coxeter data. In particular,
this suggests the sphericality classification is the same for SO2n+1/B vs. Sp2n/B .
To summarize earlier work, it seems nontrivial to certify sphericality of Xw , even
in specific instances. A certificate that Xw is not I -spherical is implicit in [42]. We
expound upon it using research from algebraic combinatorics (see Theorem 4.13).

Example 1.10. M. Can and the first author [15, Theorems 6.2, 6.3] proved
that all Schubert varieties in SL3/B and SL4/B are maximally spherical. This
is consistent with Example 1.6. The methods of Section 4 allow one to verify
that the non-spherical cases shown in S5 (and those alluded to in S6 ) are indeed
geometrically non-spherical.

Example 1.11 (Toric Schubert varieties). The inspiration for (S.1) is P. Karuppu-
chamy’s [32]. In ibid., the author classified when Xw is toric with respect to T , that
is, Xw contains a dense orbit of T . Identically, this is classifying L∅ -spherical Xw .
Indeed when I = ∅ , (S.2) is a vacuous condition, and “Xw is toric ⇐⇒ (S.1)” is
precisely his classification. Earlier, B. Tenner [50] proved (without reference to toric
Schubert geometry) that w satisfies (S.1) if and only if w avoids 321 and 3412 . See
Theorem 4.12 and the discussion thereafter.

Recently, the first author and V. Lakshmibai [27] characterized spherical Schubert
varieties in the Grassmannian Grk(C

n) . This implies some necessary conditions for
a Schubert variety in the flag variety to be spherical.
Since this work was submitted, Y. Gao and the authors have proved Conjecture 1.9
for type A [24].

1.3. Summary of the remainder of this paper. In Section 2, we describe some
basic properties of Definition 1.1. These are used to confirm agreement of Conjec-
ture 1.9 in other examples, as well as with geometric properties of Definition 1.8.
Our initial result is

(I) Theorem 2.4, a characterization of when w0 ∈ W is I -spherical. This is
connected to [38] and [49], supplying some general-type evidence for Conjec-
ture 1.9.

We characterize maximally spherical elements of dihedral groups (Proposition 2.8).
This result and (I) are used to prove:

(II) Conjecture 1.9 holds for rank two simple cases (Theorem 2.10).
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In Section 3, we turn to G = GLn . We state
(III) Theorem 3.6, which confirms Conjecture 1.9 for the class of bigrassmannian

permutations introduced by A. Lascoux & M.-P. Schützenberger [36].
(IV) Conjecture 3.9, which suggests Definition 1.1 is a pattern avoidance property.

(Since this work was submitted, this has been proved by C. Gaetz [23], using
the aforementioned results of [24].)

Section 4 offers a novel perspective on the sphericality problem in terms of the al-
gebraic framework of split-symmetric polynomial theory. The latter interpolates
between symmetric polynomial theory and asymmetric polynomial theory.1 Within
this viewpoint, we discuss a unified notion of multiplicity-free problems, and con-
tribute to the subject of key polynomials. We present
(V) Theorem 4.10, which characterizes multiplicity-free key polynomials. This

supports some sphericality ideas we propose.
The proof of this result is found in the companion paper [28], where we also derive
a multiplicity-free result about the quasi-key polynomials of S. Assaf-D. Searles [1].
Using the fact that these polynomials are characters of Demazure modules, as well
as a result of N. Perrin [42], we derive:
(VI) Theorem 4.13, which translates the geometric sphericality problem to one

about split multiplicity-freeness of infinitely many key polynomials.
A consequence of (VI) is
(VII) Theorem 4.16, which gives sufficient conditions, close to those of (V), for a key

polynomial to be split multiplicity-free. In comparison to [28], the geometric
and representation-theoretic input of (VI) allows for a relatively short proof.

Although (V) does not give, per se, an algorithm to decide sphericality, we suggest
(VIII) Conjecture 4.19, which asserts that checking the “staircase” key polynomial

suffices. This conjecture reduces to a combinatorial question about the split
symmetry of key polynomials; see Conjecture 4.20, Conjecture 4.21 and
Proposition 4.23. (V) is a solution of this problem in the “most-split” case.

We exhaustively verified that Conjecture 1.9 is mutually consistent with Conjec-
ture 4.19 for n ≤ 6 (and many larger cases).
Section 5 is the culmination of the methods developed. We prove Theorem 3.6 about
bigrassmannian permutations. The argument uses Theorem 4.13, a combinatorial
formula for splitting key polynomials due to C. Ross and the second author [46], as
well as an algebraic groups argument (Proposition 2.19).

2. Basic properties and more examples
Let ≤ denote the (strong) Bruhat order on W . The following is a standard result
(see, e.g., [8, Theorem 2.2.2]):
Theorem 2.1 (Subword property). Fix si1si2 · · · siℓ(v) ∈ Red(v). u ≤ v if and
only if there exists 1 ≤ j1 < j2 < . . . < jℓ(u) such that sij1sij2 · · · sijℓ(u) ∈ Red(u).

1Borrowing the terminology of [41].



6 Hodges, Yong

Proposition 2.2. Suppose v ∈ W and I ⊆ J(v). If there exists u ∈ W such
that u ≤ v , and every element of Red(u) fails (S.1) or (S.2) (with respect to I ,
ignoring whether or not I ⊆ J(u)), then v is not I -spherical.

Proof. Suppose v is I -spherical and R = si1 · · · siℓ(v) ∈ Red(v) is an I -witness.
Then by Theorem 2.1, some subexpression R′ of R is in Red(u) . However, by
hypothesis, R′ fails (S.1) or (S.2) with respect to I . Hence so must R , a contradic-
tion.

If W is a Weyl group, Bruhat order is the inclusion order on Schubert varieties.
That is, Xu ⊆ Xv ⇐⇒ u ≤ v . In particular, Xw0 = G/B and Xid = B/B is
the Schubert point. Both of these Schubert varieties are maximally spherical. In the
former case, H = G and in the latter case H = T . This is consistent with:

Lemma 2.3. Both w = id, w0 are maximally spherical.

Proof. If w = id , (S.1) is trivial while (S.2) is vacuous (since J(w) = ∅). If
w = w0 then (S.1) is vacuous (since J(w) = [r]) while (S.2) is trivial.

Extending Lemma 2.3, we characterize I -sphericality of w0 . This is a nontrivial
confirmation of Conjecture 1.9.

Theorem 2.4 (The long element w0 ). Let n ≥ 4. Suppose I ⊆ [n − 1] then
w0 ∈ Sn is I -spherical if and only if I = [1, n− 1], I = [2, n− 1] or I = [1, n− 2].
If W is a finite, irreducible Weyl group not of type An−1 , then w0 ∈ W is I -spherical
if and only if I = S .
Hence, Conjecture 1.9 holds for all Levi subgroup actions on G/B (where G is
simple).

Proof. We first prove the type An−1 statement.
(⇒) (By contrapositive) Assume I is not one of the three listed cases.
First suppose there exists 2 ≤ j ≤ n − 2 such that j 6∈ I . For 1 ≤ i ≤ n − 3 ,
let w

⟨i⟩
0 = sisi+1si+2sisi+1si ∈ Sn . So w

⟨1⟩
0 = 4 3 2 1 5 6 . . . n − 2 n − 1 n ,

w
⟨2⟩
0 = 1 5 4 3 2 6 7 . . . n− 1 n , etc. That is, each is a “shifted copy” of 4321 ∈ S4 .

If n = 4 one checks directly that s2 appears twice in any reduced word for w0

(there are sixteen such words). It follows that every R ∈ Red(w⟨j−1⟩
0 ) contains sj

twice. Thus R fails (S.1) with respect to I . Since w
⟨j−1⟩
0 ≤ w0 , we may apply

Proposition 2.2 to conclude w0 is not I -spherical.
The remaining possibility is that I = [2, n−2] . Consider Rc = s1s2 · · · sn−1∈Red(c) ,
the unique reduced expression for the Coxeter element c . Since c ≤ w0 , by Theo-
rem 2.1, for any Rw0 ∈Red(w0) , Rc appears as a subexpression of Rw0 . In particular,
there is an s1 to the left of sn−1 in Rw0 . Now, if Rc′ = sn−1sn−2 · · · s2s1 ∈ Red(c′)
then by the same reasoning there is an sn−1 left of s1 in Rw0 . Hence either s1
appears at least twice or sn−1 appears at least twice in Rw0 . Therefore Rw0 cannot
be an I -witness, as it fails (S.1). Thus w0 cannot be I -spherical.
(⇐) When I = [n − 1] = J(w0) , we apply Lemma 2.3. Next we prove w0 is
I -spherical for I = [1, n− 2] (the remaining case is similar).
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The reduced expression

(s1s2 · · · sn−1)(s1s2 · · · sn−2) · · · (s1s2 · · · sj) · · · (s1) ∈ Red(w0)

uses sn−1 exactly once, and so (S.1) holds. Here GI is the An−2 Dynkin diagram.
Now (S.2) requires that

(
n

2

)
− 1 ≤

(
n−1
2

)
+ n− 2 ; in fact this holds with equality.

The argument for other types follows from a proof of K. Fan [20] posted in answer to
a question asked on MathOverflow by J. Humphreys. For the sake of completeness
we explicate his argument below. Let ∆ = {α1, . . . , αr} be the simple roots.

Claim 2.5. Let I = [r]− {d} and α ∈ Φ+ with α =
∑r

i=1 aiαi .
Suppose w0 = w1sdw2 for w1, w2 ∈ WI . Then w1sdw2 is a reduced product, i.e.,
ℓ(w1sdw2) = ℓ(w1) + ℓ(sd) + ℓ(w2). Further, if ad > 0 and w0(α) = −α , then
w2(α) = αd and sdw2(α) = −αd .

Proof. We first show that w1sdw2 is a reduced product. Since w2 ∈ WI , sdw2

is a reduced product. There exists a reduced expression R = si1 · · · sin where
n = ℓ(w0)− ℓ(sdw2) = ℓ(w0)− ℓ(w2)− 1 such that w0 = si1 · · · sinsdw2 .
Since we assumed w0 = w1sdw2 , we conclude that in fact R ∈ Red(w1) . Finally
ℓ(w0) = ℓ(w1sdw2) = n+ 1 + ℓ(w2) = ℓ(w1) + ℓ(sd) + ℓ(w2) , as desired.
Let β be a root. By definition,

si(β) = β − 2
(αi, β)

(αi, αi)
αi (4)

where (·, ·) is the Euclidean inner product on V =span(Φ) . Pick si′1 ...si′ℓ(w2)
∈Red(w2) .

Let α[0] := α and α[f ] the result of applying the rightmost f -many reflections of

R′ = (si1 · · · sin)sd(si′1 · · · si′ℓ(w2)
) ∈ Red(w0)

to α from right to left (e.g., α[1] = si′
ℓ(w2)

α and α[2] = si′
ℓ(w2)−1

siℓ(w2)
α , etc.). α[f ] ∈ Φ

since it is a basic root-system fact that each reflection permutes Φ .
Let a

[f ]
i be the coefficient of αi in α[f ] . By (4), if sj is the f -th generator of R′

from the right, then
a
[f ]
i = a

[f−1]
i for i ∈ [r]− {j} . (5)

Since sd appears exactly once in R′ , by (5), the coefficient of αd changes exactly
once, and exactly at the step f = ℓ(w2) + 1 . This implies that first, a[f−1]

d = ad > 0

and thus α[ℓ(w2)] ∈ Φ+ . Second, since w0(α) = −α , it implies a
[f ]
d = −ad < 0 .

However, since a
[f ]
i = a

[f−1]
i ≥ 0 for i 6= d , α[ℓ(w2)+1] ∈ Φ is possible if and only if

ai = 0 for i 6= d and ad = 1 (recall, adαd ∈ Φ if and only if ad = ±1 , by the axioms
of root systems). Hence w2(α) = αd and sdw2(α) = −αd .

Claim 2.6. Suppose W is a finite, irreducible Weyl group, not type A. Define
I = [r]− {d}. Then w0 6= w1sdw2 with w1, w2 ∈ WI .

Proof. Suppose otherwise. Let γ =
∑r

i=1 αi ∈ Φ+ and let θ be the highest
root in Φ+ . Outside of type A , γ 6= θ [29, Section 4.9, Table 1]. In the case of
the exceptional groups, one checks by direct computation that w0(γ) = −γ and
w0(θ) = −θ . In types Bn and Cn , as well as Dn for even n , w0(α) = −α for all
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roots α [9, Chap. VI, §4 no. 5,6,8]. In type Dn for odd n , w0 corresponds to the
automorphism of the roots which interchanges αr and αr−1 , and then negates the
result [9, Chap. VI, §4 no. 8]. Hence, w0(γ) = −γ and w0(θ) = −θ . Thus in
all cases, γ and θ both satisfy the hypotheses of Claim 2.5. That claim says that
w2(γ) = w2(θ) = αd . Hence w0(γ) = w0(θ) , which is impossible.

Concluding, if I ( [r] , there exists a d ∈ [r]− I . By Claim 2.6, w0 fails (S.1) for d .
In [2, Lemma 5.4], R. S. Avdeev and A. V. Petukhov show that G/PJ is LI -spherical
if and only if G/PI × G/PJ is G-spherical (where the latter action is the diagonal
G-action). These diagonal spherical actions are classified in type A by P. Magyar &
J. Weyman & A. Zelevinsky [38]. In particular, [38, Theorem 2.4] shows that SLn/B
is LI -spherical only for the I in the statement of the theorem. The diagonal spherical
actions in all other types were given by J. Stembridge in [48, 49], whose work implies
that if G is simple and not of type A , then the only Levi that acts spherically on
G/B is G .

In our proof of Theorem 3.6 we will need the notions from this next example:

Example 2.7 (The canonical reduced expression). The diagram D(w) of w ∈ Sn

is the subset of [n]× [n] given by

D(w) = {(i, j) ∈ [n]2 : j < w(i), i < w−1(j)} (6)

(in matrix coordinates). Fill the boxes of row i from left to right by si, si+1, si+2, . . . .
Define Rcanonical(w) to be the canonical reduced expression for w obtained by reading
this filling from right to left along rows and from top to bottom. In S4 , w is
maximally spherical if and only if Rcanonical(w) is a J(w)-witness for w , unless
w = 3421, 4213, 4231 . For instance Rcanonical(3421) = s2s1s3s2s3 fails (S.1) when
I = J(3421) = {1, 2} . However R = s1s2s1s3s2 is a {1, 2}-witness in this case.

Proposition 2.8 (Dihedral groups). In type I2(n) and n ≥ 2 (where W is
the the dihedral group of order 2n), w ∈ W is maximally spherical if and only if
ℓ(w) ≤ 3 or w = w0 .

Proof. The Coxeter diagram is n . W is generated by S = {s1, s2} with the
relations s21 = s22 = id and (s1s2)

n = id . Each element of W has a unique reduced
word, except w0 . Now id, w0 are maximally spherical by Lemma 2.3. Thus suppose
w 6= id, w0 . If w = s2 · · · then J(w) = {2} . If ℓ(w) ≤ 3 then w = s2, s2s1 or s2s1s2 ,
and it contains at most one s1 , and hence (S.1) is satisfied. (S.2) says there are at
most two s2 in the reduced word of w , which is true. Thus w is J(w)-spherical.
However, if 4 ≤ ℓ(w) < n then w = s2s1s2s1 · · · and w contains at least two s1 ’s,
violating (S.1). Thus such w are not J(w)-spherical. Similarly, one argues the cases
where w = s1 · · · .

Corollary 2.9. Conjecture 1.9 holds for types B2 and G2 .

Proof. First let us assume I = J(w) . The associated Coxeter groups are dihe-
dral, and hence Proposition 2.8 applies.
In type B2 (

1 2
) that proposition states that all w ∈ W are maximal-spherical.
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In type G2
1 2

, it says that only id, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, w0 are maximal-

spherical. This agrees with the geometric findings of M. Can and the first author
[15, Sections 7,8]. Thus we may assume I ( J(w) . If #I = 1 and I ( {1, 2} then
w = w0 . In B2 , w0 = s1s2s1s2 ∈ W (B2) fails (S.2) and is not I -spherical. This
agrees with Theorem 2.4. Similarly we handle G2 . Finally, if I = ∅ , we may appeal
to the toric classification of P. Karuppuchamy (see Example 1.11).

Theorem 2.10 (Rank two). Conjecture 1.9 holds for G/B where G is simple of
rank two.
Proof. The B2 and G2 cases are covered by Corollary 2.9.
For the root system A2 , first suppose I = J(w) . All elements of S3 are maximally
spherical (see Example 1.6). Now we apply the results of M. Can and the first author
(Example 1.10). If #I = 1 and I ( J(w) then w = w0 and w = s1s2s1 ≡ s2s1s2 is
I -spherical. This agrees with [38]. Finally if I = ∅ then we use the toric classification
of P. Karuppuchamy (see Example 1.11).

We now record facts that infer one kind of sphericality from another. Consistency
between the combinatorial predictions and the geometry are checked.

Proposition 2.11. Fix x, y ∈ W with x ≤ y and I ⊆ J(x) ∩ J(y). If y is
I -spherical, then x is I -spherical.
Proof. The contrapositive claim is Proposition 2.2.

Proposition 2.11 is consistent with geometry. A normal H -variety Y is H -spherical
if and only if there are finitely many BH -orbits in Y (here BH is a Borel subgroup
of H ) [42, Theorem 2.1.2]. Now, suppose X is a subvariety of Y , where Y is H -
spherical and X is H -stable. Then Y must have finitely many BH -orbits, which
implies X must have finitely many BH orbits. Hence, X is H -spherical as well. In
our case, if x ≤ y and I ⊆ J(x)∩J(y) then H = LI acts on X = Xx and Y = Xy .

Proposition 2.12 (Monotonicity). Let w ∈ W and suppose I ′ ⊂ I ⊆ J(w). If
w is I ′ -spherical then it is I -spherical.
Proof. Suppose R = sr1 · · · srℓ(w)

∈ Red(w) is an I ′ -witness. We show R is an
I -witness. Trivially, R satisfies (S.1) with respect to I . Let

GI′ =
m′⋃

z′=1

C
(z′) and GI =

m⋃

z=1

C(z)

be the decomposition (1) for I ′ and I , respectively. Suppose z ∈ [m] is such that

#{it : it ∈ C(z)} > ℓ(w
(z)
0 ) + #vertices(C(z)). (7)

Let z′1, z
′
2, . . . , z

′
s ∈ [m′] be such that C

(z′j) ⊆ C(z) . Let w
(z′j)

0 be the longest element of
the Coxeter group W (C

(z′j)) associated to C
(z′j) , for 1 ≤ j ≤ s . Now, each W (C

(z′j))
is a parabolic subgroup of W (C(z)) and

s∏

j=1

w
(z′j)

0 ≤ w
(z)
0 .
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Thus,
∑s

j=1 ℓ(w
(z′j)

0 ) ≤ ℓ(w
(z)
0 ) , and hence

s∑

j=1

(
ℓ(w

(z′j)

0 ) + #vertices(C(z′j))
)
< ℓ(w

(z)
0 ) + #vertices(C(z)

), (8)

Combining (7), (8) and the pigeonhole principle implies (S.2), with respect to I ′ ,
fails for some z′j , a contradiction. Thus R satisfies (S.2) with respect to I , and
therefore R is an I -witness.

Proposition 2.12 is consistent with the following (known) fact:

Proposition 2.13 (Geometric monotonicity). Suppose w ∈ W and I ′ ⊆ I ⊆ J(w).
If Xw is LI′ -spherical, then Xw is LI -spherical.

Proof. Any Borel subgroup in LI′ is of the form BI′ := LI′ ∩ B for some Borel
subgroup B of G . Then BI′ ⊆ BI := LI∩B . Clearly if BI′ has an open dense orbit
in Xw , then BI must have an open dense orbit in Xw . Thus if Xw is LI′ -spherical,
then Xw is LI -spherical.

Remark 2.14. An anonymous referee points out to us that, in view of Propo-
sition 2.13, the terminology we use of Xw being “maximally spherical” if it is
LJ(w) spherical is, in a sense, backwards. By Proposition 2.13, Xw being LJ(w) -
spherical is a necessary condition for it to be LI -spherical for any I ( J(w) . Hence,
LJ(w) -spherical is “least spherical”, and the “most spherical” are those that are L∅ -
spherical since they are LI′ -spherical for any I ′ ⊆ J(w) . Due to Proposition 2.12,
a similar remark applies to our notion of w being “maximally spherical”.

Proposition 2.15. Suppose X, Y ⊆ [r] where [sx, sy] = id for all x ∈ X, y ∈ Y .
Let w = uv where u ∈ WX and v ∈ WY . If I ⊆ J(w) then w is an I -spherical
element of W if and only if u is an (I ∩X)-spherical element of WX and v is an
(I ∩ Y )-spherical element of WY .

Proof. This follows since J(u) = J(w)∩X and J(v) = J(w)∩Y , and since any
component of GI is a component of the induced subdiagram of GX on the nodes
I ∩X or the induced subdiagram of GY on the nodes I ∩ Y .

Suppose D,D′ are two Coxeter diagrams and φ : D →֒ D′ is an embedding of
Coxeter diagrams (preserving edge multiplicities). Then φ induces an embedding
of Coxeter groups (WD, SD) →֒ (WD′ , SD′) , their labellings [rD] →֒ [rD′ ] , and root
systems (ΦD,∆D) →֒ (ΦD′ ,∆D′) . Abusing notation, we use φ to indicate all of
these injections.

Proposition 2.16 (Diagram embedding). If w ∈ WD is I -spherical for I ⊆ J(w)
then φ(w) ∈ WD′ is φ(I)-spherical.

Proof. Suppose R = si1 · · · siℓ(w)
∈ Red(WD,SD)(w) is an I -witness. We may

suppose that the φ sends D to the nodes of D′ labelled by 1′, 2′, . . . , r′D . Then
si′1 · · · si′ℓ(w)

∈ Red(WD′ ,SD′ )(φ(w)) and clearly

φ(I) ⊆ φ(J(w)) = J(φ(w))

(thus it makes sense to ask if φ(w) is φ(I)-spherical).
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s1s2s3s1s4s3s1 s1s2s3s1s2s4s3s1 s1s3s1s2s3s4s3s1
s1s2s3s1s2s3s4s3s1 s1s2s3s1s4s3s1s2 s2s3s1s2s4s3s1s2
s1s2s3s1s2s4s3s1s2 s2s3s2s4s3s1s2 s1s3s1s2s3s4s3s1s2
s2s3s1s2s3s4s3s1s2 s1s2s3s1s2s3s4s3s1s2 s2s3s1s2s4s3s2
s1s2s3s1s2s4s3s2 s2s3s2s4s3s2 s1s3s1s2s3s4s3s2
s2s3s1s2s3s4s3s2 s1s2s3s1s2s3s4s3s2 s1s2s3s1s4s3s1s2s3
s1s3s1s2s4s3s1s2s3 s2s3s1s2s4s3s1s2s3 s1s2s3s1s2s4s3s1s2s3
s3s2s4s3s1s2s3 s2s3s2s4s3s1s2s3 s3s1s2s3s4s3s1s2s3
s1s3s1s2s3s4s3s1s2s3 s2s3s1s2s3s4s3s1s2s3 s1s2s3s1s2s3s4s3s1s2s3
s1s3s1s2s3s4s3 s1s2s3s1s4s3s1s2s3s4 s1s3s1s2s4s3s1s2s3s4
s2s3s1s2s4s3s1s2s3s4 s1s2s3s1s2s4s3s1s2s3s4 s3s2s4s3s1s2s3s4
s2s3s2s4s3s1s2s3s4 s3s1s2s3s4s3s1s2s3s4 s1s3s1s2s3s4s3s1s2s3s4
s2s3s1s2s3s4s3s1s2s3s4 s1s2s3s1s2s3s4s3s1s2s3s4

Table 1: Non J(w)-spherical elements of D4

Since we have φ([rD]− I) = {1′, 2′, . . . , r′D} − φ(I) , (S.1) holds for φ(I) . Now (S.2)
holds since GI

∼= Gϕ(I) (Coxeter diagram isomorphism).

Example 2.17 (D4 ). Of the 234! = 192 many elements of the Weyl group of

type
1 3

2

4

, the 38 that are not J(w)-spherical are given in Table 1. One can

check that the list is consistent with Propositions 2.15 and 2.16. For instance, from
Example 1.6, all elements of the Weyl groups for A1, A2, and A3 are maximally
spherical. This combined with the two propositions says that any w ∈ W (D4) that
is in a (strict) parabolic subgroup is spherical. That is why all of the words in the
table use the entirety of S .

Proposition 2.16 is consistent with Conjecture 1.9. In our proof of Theorem 3.6, we
will require the geometric version of Proposition 2.16 for the general linear group;
this is Proposition 2.19 which we prepare for now. The result holds for reductive
groups in other types. We omit the general proof as the algebraic groups setup
required is substantial.
Let n, f,N ∈ Z>0 be such that n + f ≤ N . We now define maps between the
root systems, Weyl groups, and labelings of GLn and GLN . Let Tn and TN be the
subspaces of diagonal matrices in GLn and GLN , respectively.

Φn →֒ ΦN Wn →֒ WN [n− 1] →֒ [N − 1]
αi 7→ αf+i si 7→ sf+i i 7→ f + i

(9)

Abusing notation, we use ι to indicate all of these maps. Let h : GLn →֒ GLN be
given by

g 7→



Idf

g
IdN−n−f


 , (10)

where Idk is the k × k identity matrix. The map h is compatible with the maps ι .

That is, h(w) = ι(w) for w ∈ Wn ; (11)
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here we abuse notation and write h(w) to mean the image, under h , of a coset
representative of w in N(Tn) is equal to a coset representative of ι(w) in N(TN) .
Further, h(Uα) = Uι(α) where Uα is the root subgroup of α ∈ Φn . Since h(Bn) ⊆ BN ,
h descends to an injective map

h : GLn/Bn →֒ GLN/BN . (12)

We now prove a lemma inspired by E. Richmond and W. Slofstra’s [45, Lemma 4.8].

Lemma 2.18. The map h : GLn/Bn →֒ GLN/BN induces a LJ(w) -equivariant
isomorphism XwBn

→֒ Xι(w)BN
for all w ∈ Wn (the action of LJ(w) on the right

hand side is h(LJ(w))).

Proof. That h : XwBn
→֒ Xι(w)BN

follows from (11) and the Bruhat decom-
position. Thus, since Xι(w)BN

is normal, to show that XwBn
→֒ Xι(w)BN

is an
isomorphism we need only show surjectivity (by Zariski’s Main Theorem).
Let K = {f + 1, . . . , f + n− 1} . The parabolic PK = LKUK , where UK = Ru(PK)
is the unipotent radical of PK . Let BK := LK ∩ BN be a Borel subgroup of LK .
From, e.g., the proof of [45, Lemma 4.8], we recall that

BN = BKUK , (13)

and that UK is stable under conjugation by any v ∈ (WN)K (parabolic subgroup),
and in particular

v−1UKvBN = BN . (14)
An element b ∈ BK has the form 


r

s
t


 ,

where r ∈ Tf , s ∈ Bn , and t ∈ TN−n−f (where Tk denotes the subspace of diagonal
matrices in GLk ). Thus for any such b , there exists a

tb =



r−1

Idn
t−1


 ∈ H :=







A

Idn
C


 : A ∈ Tf , B ∈ TN−n−f





such that btb =



Idf

s
IdN−n−f


 = h(s). (15)

This allows us to conclude that h(Bn)H = BK . (16)
Also, notice that Hv = vH for v ∈ (WN)K . (17)

Consider the Schubert cell of v ∈ (WN)K . We have v = ι(w) for some w ∈ Wn .

BNvBN/BN

(13)
= BKUKvBN/BN = BK(vv

−1)UKvBN/BN

(14)
= BKvBN/BN

(16)
= h(Bn)HvBN/BN = h(Bn)vBN/BN (17) and H ⊆ B

= h(Bn)ι(w)BN/BN

(11)
= h(Bnw)BN/BN

(12)
= h(BnwBn/Bn).
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Thus h induces a surjection from the Schubert cell of w ∈ Wn onto the Schubert
cell of ι(w) = v . Since the same holds for all u = ι(w′) ≤ ι(w) = v ∈ (WN)K , the
Bruhat decomposition implies XwBn

→֒ Xι(w)BN
is surjective.

The map h is GLn -equivariant (where the action on the right hand side is given
by h(GLn)). Thus LJ(w) ⊆ stabGLn

(XwBn
) implies h(LJ(w)) ⊆ stabGLN

(Xι(w)BN
) .

Thus the isomorphism XwBn
→֒ Xι(w)BN

is LJ(w) -equivariant.

Proposition 2.19 (Diagram embedding; geometric version). If XwBn
⊆ GLn/Bn

is LI -spherical for I ⊆ J(w), then Xι(w)BN
⊆ GLN/BN is Lι(I) -spherical.

Proof. Lemma 2.18 implies that XwBn
∼= Xι(w)BN

as LJ(w) -varieties (and hence
as LI -varieties for I ⊆ J(w)). If I ⊆ [n − 1] , then h(LI) ⊆ Lι(I) . In particular,
since ι(J(w)) = J(ι(w)) , this implies

h(LI) ⊆ Lι(I) ⊆ Lι(J(w)) = LJ(ι(w)) ⊆ stabGLN
(Xι(w)BN

).

We conclude that, if XwBn
is LI -spherical, then Xι(w)BN

is LI -spherical, which in
turn implies Xι(w)BN

is Lι(I) -spherical.

3. The general linear group
In what remains, G = GLn . This is type An−1 , hence

S = {si = (i i+ 1) : 1 ≤ i ≤ n− 1} .
We express w ∈ W (An−1) ∼= Sn in one-line notation. Here,

J(w) = {j ∈ [n− 1] : w−1(j) > w−1(j + 1)} (18)
(j ∈ J(w) if j + 1 appears to the left of j in w ’s one-line notation). Indeed, the
description (18) is saying the that left descents of w are the right descents of w−1 .
Let I ∈ 2J(w) and D := [n− 1]− I = {d1 < d2 < d3 < . . . < dk} .
By convention, d0 := 0, dk+1 := n .
Definition 3.1 (GLn -version of Definition 1.1).
w ∈ Sn is I -spherical if R = si1si2 · · · siℓ(w)

∈ Red(w) exists such that
(S.1’) sdi appears at most once in R

(S.2’) #{m : dt−1 < im < dt} <
(
dt−dt−1+1

2

)
for 1 ≤ t ≤ k + 1 .

w is maximally spherical if it is J(w)-spherical.

Clearly (S.1’) is the specialization of (S.1). For (S.2), the Coxeter graph induced by
the nodes of the An−1 diagram strictly between dt−1 and dt is type Adt−dt−1−1 . In
type Adt−dt−1−1 , ℓ(w0) =

(
dt−dt−1

2

)
. Now ℓ(w0) + (dt − dt−1 − 1) =

(
dt−dt−1+1

2

)
− 1 ,

which agrees with (S.2’), once one accounts for the strict inequality used.
Let T be invertible diagonal matrices and B be the invertible upper triangular
matrices in G = GLn . Hence G/B is the variety Flags(Cn) of complete flags of
subspaces in Cn . Here, LI is the Levi subgroup of invertible block matrices

LI = GLd1−d0 ×GLd2−d1 × · · · ×GLdk−dk−1
×GLdk+1−dk . (19)

Conjecture 3.2 (GLn -version of Conjecture 1.9). Let I ⊆ J(w) . Xw is LI -
spherical if and only if w is I -spherical.
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Example 3.3. Let w = 35246781 ∈ S8 . Here J(w) = {1, 2, 4} . If I = J(w)
then D = {3, 5, 6, 7} . Now, R = s1s2s1s3s4s3s2s5s6s7 ∈ Red(w) , but it fails (S.1’).
Instead consider

R′ = s1s2s1s4s3s2s4s5s6s7 ∈ Red(w).
(S.1’) holds. To verify (S.2’) we check that

• 4 = #{m : 0 < rm < 3} <
(
3−0+1

2

)
= 6

• 2 = #{m : 3 < rm < 5} <
(
5−3+1

2

)
= 3

• 0 = #{m : 5 < rm < 6} <
(
6−5+1

2

)
= 1

• 0 = #{m : 6 < rm < 7} <
(
7−6+1

2

)
= 1

• 0 = #{m : 7 < rm < 8} <
(
8−7+1

2

)
= 1

Hence w is maximally spherical.

Example 3.4. Let n = 5, w = 24531 . Here I = J(w) = {1, 3} and D = {2, 4} .
Let R = s3s1s2s3s4s3 ∈ Red(w) . R satisfies (S.1’) but fails (S.2’) since we have
#{m : 2 < im < 4} =

(
4−2+1

2

)
= 3 . One checks no expression in Red(w) is an

I -witness. Hence Conjecture 3.2 predicts that X24531 is not LJ(w) -spherical. We
will prove this is true in Example 4.18.

A permutation w ∈ Sn is bigrassmannian if both w and w−1 have a unique descent.
A. Lascoux-M.-P. Schützenberger [36] initiated the study of these permutations and
identified a number of their nice (Bruhat) order-theoretic properties.2 The code of
w ∈ Sn ,

code(w) = (c1, c2, . . . , cn),

is defined by letting ci be the number of boxes in the i-th row of D(w) (as defined
in (6)). In fact, w is bigrassmannian if and only if its diagram consists of an b× a
rectangle. More precisely, code(w) = (0f , ab, 0g) where f + b+ g = n .
For later reference, we record a simple (and well-known) observation:

Lemma 3.5. If w is bigrassmannian with code(w) = (0f , ab, 0g) where f+b+g = n,
then the unique descent of w is at position f + b, the unique descent of w−1 is at
f + a, and in particular J(w) = {f + a}. Moreover, f + a+1 appears left of f + a
in w ’s one-line notation.

Proof. The first sentence follows from elementary considerations about D(w)
(defined in (6)); see [39, Section 2.1] and more specifically [39, Proposition 2.1.2].
The second sentence is the parenthetical immediately after (18), for the case at
hand.

Theorem 3.6. Let w ∈ Sn be bigrassmannian. Conjecture 3.2 holds for I = J(w).
Moreover, w is J(w)-spherical if and only if

code(w) ∈ {(0f , a, 0g), (0f , 1b, 0g), (0f , 22, 0g)}. (20)

When w is bigrassmannian, #J(w) = 1 . Thus, the remaining bigrassmannian case
of Conjecture 1.9 (equivalently, Conjecture 3.2) not covered in the statement of

2For example, w ∈ Sn is bigrassmannian if and only if it is join-irreducible.
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Theorem 3.6 is I = ∅ . However, that case is covered by the toric classification of
P. Karuppuchamy (see Example 1.11). We will delay the proof of Theorem 3.6 until
Section 5, after building up the framework used for the proof.

Example 3.7. A permutation w ∈ Sn is dominant if code(w) is a partition. For
n = 5 , the codes of the non J(w)-spherical dominant permutations are:

(2, 2, 2, 0, 0), (2, 2, 2, 1, 0), (3, 3, 0, 0, 0), (3, 3, 1, 0, 0), (3, 3, 1, 1, 0)

(3, 3, 2, 0, 0), (4, 1, 1, 0, 0), (4, 1, 1, 1, 0), (4, 2, 0, 0, 0), (4, 2, 2, 0, 0)

(4, 2, 2, 1, 0), (4, 3, 0, 0, 0), (4, 3, 1, 0, 0), (4, 3, 1, 1, 0)

What is the general classification of these partitions? In M. Develin & J. Martin &
V. Reiner’s [18], the associated Xw are called Ding’s Schubert varieties (in reference
to K. Ding’s [19]). Hence we are asking which of Ding’s Schubert varieties are LJ(w) -
spherical (and more generally, one can ask which of these Schubert varieties are
LI -spherical).

We expect that Schubert varieties Xw are rarely LJ(w) -spherical. Theorem 3.6 gives
some concrete indication of this assertion. In view of Conjecture 3.2, we believe the
following enumerative assertion is true:

Conjecture 3.8. limn→∞ #{w ∈ Sn : w is J(w)-spherical}/n! → 0 .3

(Conjecture 3.8 should also hold for other Weyl groups of classical type.)
Suppose u ∈ Sn and v ∈ SN . Let u →֒ v denote a pattern embedding, i.e., there
exists φ1 < φ2 < . . . < φn such that v(φ1), . . . , v(φn) are in the same relative order
as u(1), . . . , u(n) . One says v avoids u if no such embedding exists.

Conjecture 3.9 (Pattern avoidance). If u ∈ Sn is not J(u)-spherical and
u →֒ v ∈ SN (N > n) then v ∈ SN is not J(v)-spherical. Moreover, the
complete list of bad patterns are the not maximally spherical elements of S5 (listed
in Example 1.6).4

With the assistance of J. Hu, we verified that all bad cases in Sn for n ≤ 7 can be
blamed on the S5 patterns. It seems plausible to attack this problem by extending
the ideas in Section 5. We hope to return to this in future work.

4. Polynomials
We formalize a “split-symmetry” framework on algebraic combinatorics of polyno-
mials in order to study the Levi sphericality problem.

4.1. Split-symmetry in algebraic combinatorics. Algebraic combinatorics
has, at its core, the study of elements/bases of the ring of symmetric polynomials
Sym(n) (see, e.g., [47, Chapter 7]). Obversely, A. Lascoux & M.-P. Schützenberger
introduced numerous asymmetric families in the polynomial ring Pol(n) ; see, e.g.,
[35, 41] and the references therein. We now discuss an interpolation between Sym(n)
and Pol(n) :

3Since this work was submitted, Conjecture 3.8 has been proved in work of D. Brewster and the
authors [10].

4As mentioned in the Introduction, Conjecture 3.9 has since been proved by C. Gaetz [23].
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Definition 4.1 (Split-symmetry). Fix integers
d0 := 0 < d1 < d2 < . . . < dk < dk+1 := n

with D := {d1, . . . , dk} . ΠD is the subring of Pol(n) consisting of polynomials
separately symmetric in Xi := {xdi−1+1, . . . , xdi} for 1 ≤ i ≤ k + 1 . A polynomial is
D -split-symmetric if f ∈ ΠD .

Proposition 4.2. ΠD
∼= Sym(d1)⊗ Sym(d2 − d1)⊗ · · · ⊗ Sym(dk+1 − dk).

This is obvious.
A partition of length n is a sequence λ = (λ1, . . . , λn) of non-negative integers with
λ1 ≥ · · · ≥ λn . Let Parn be the set of such partitions. The Schur polynomial is
sλ =

∑
T xT , where the sum is over semistandard Young tableaux of shape λ with

entries from [n] . Here, xT :=
∏n

i=1 x
#i∈T
i . The set {sλ(x1, . . . , xn) : λ ∈ Parn} is a

Z-linear basis of Sym(n) .

Definition 4.3. The D -Schur polynomials are sλ1,...,λk := sλ1(X1)sλ2(X2)...sλk(Xk) ,
where (λ1, . . . , λk) ∈ ParD := Pard1−d0 × · · · × Pardk+1−dk .

By Proposition 4.2, and the basis property of (classical) Schur polynomials, we have

Corollary 4.4. {sλ1,...,λk : (λ1, . . . , λk) ∈ ParD} forms a basis of ΠD .

4.2. Key polynomials. The Demazure operator is

πj : Poln → Poln f 7→
xjf − xj+1sjf

xj − xj+1

,

where sjf := f(x1, . . . , xj+1, xj, . . . , xn) .
A weak composition of length n is a sequence α = (α1, . . . , αn) ∈ Zn

≥0 . Let Compn
denote the set of these weak compositions. Given α ∈ Compn , the key polynomial
κα is xα := xα1

1 · · · xαn
n , if α is weakly decreasing. Otherwise, set

κα = πj(κα̂) where α̂ = (α1, . . . , αj+1, αj, . . . , αn) and αj+1 > αj . (21)
The key polynomials for α ∈ Compn form a Z-basis of Z[x1, . . . , xn] ; see work of
V. Reiner & M. Shimozono [44] (and references therein) for more on κα . Since it
is known that the πj operators satisfy the commutation relations πiπj = πjπi (for
|i − j| > 1) and the braid relations πiπi+1πi = πi+1πiπi+1 (for 1 ≤ i ≤ n − 1), the
above recurrence is well-defined.
Define a descent of a composition α to be an index j where αj > αj+1 . Let
Compn(D) be those α ∈ Compn with descents contained in D = {d1, . . . , dk} with
d1 < . . . < dk .
Although we will not need it in this paper, let us take this opportunity to prove:

Proposition 4.5. {κα : α ∈ Compn(D)} forms a Z-linear basis of ΠD .
Proof. If di ≤ j < di+1 , then πj(κα) = πj(πj(κα̂)) = πj(κα̂) = κα (since it is
also true that π2

j = πj ). Thus,

κα =
xjκα − xj+1sjκα

xj − xj+1

⇐⇒ (xj − xj+1)κα = xjκα − xj+1sjκα

⇐⇒ (κα − sjκα)xj+1 = 0 ⇐⇒ κα = sjκα.
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Hence κα ∈ ΠD . Suppose a nonzero g ∈ ΠD is given. By Corollary 4.4,

g =
∑

λ1,λ2,...,λk

cλ1,λ2,...,λksλ1,...,λk ,

where each cλ1,λ2,...,λk is a scalar and (λ1, λ2, . . . , λk) ∈ ParD .
Let λi be the parts of λi be written in non-decreasing order (i.e., a “reverse
partition”). Then let α = λ1, . . . , λk ∈ Compn be obtained as the concatenation
of these reverse partitions. Thus, α will have descents at positions contained in D .
Hence, by the first paragraph of this proof, κα ∈ ΠD . It is well-known, and not
hard to show, that

[xα]κα = 1 (22)
(this can be deduced from, e.g., Kohnert’s rule [33]). Let ≺ be the reverse lexico-
graphic order on monomials. Among (λ1, . . . , λk) ∈ ParD such that cλ1,λ2,...,λk 6= 0 ,
pick the unique one such that α (as constructed above) is largest under ≺ . Now, α
is the largest (monomial) exponent vector appearing in g under ≺ . This follows by
an easy induction. The base case is that that µ is the ≺ largest exponent vector of
sµ , which is well-known.
Hence in view of (22), g1 := g − cλ1,λ2,...,λkκα ∈ ΠD and the largest monomial
appearing in g1 is strictly smaller in ≺ . Therefore we may repeat this argument
with g1 to obtain g2 and so on. As this process eventually terminates with gr = 0 .
The result follows.

Example 4.6. Let n = 4 and D = {2} , then

g = x1x
2
2x4 + x2

1x2x4 + x1x
2
2x3 + x2

1x2x3 + x2
1x

2
2 ∈ ΠD

= s(2,1),(1,0) + s(2,2),(0,0) = κ1,2,0,1 + κ2,2,0,0.

Now, (1, 2, 0, 1), (2, 2, 0, 0) ∈ Compn(D) , in agreement with Theorem 4.5.

Essentially the same argument for Proposition 4.5 establishes an analogous result
for Schubert and Grothendieck polynomials. Split-symmetry of these polynomials
was studied in connection to degeneracy loci, in [13, 14].

4.3. Split-symmetry and multiplicity-free problems. Consider two disparate
notions of multiplicity-freeness that have been studied in algebraic combinatorics:

(MF1) Suppose f ∈ Sym(n) and f =
∑

λ∈Parn

cλsλ.

Then f is multiplicity-free if cλ ∈ {0, 1} for all λ . J. Stembridge [48]
classified multiplicity-freeness when f = sµsν . For more such classifications
see, e.g., [3, 51, 25, 5, 7, 4].

(MF2) Now let f =
∑

α∈Compn

cαx
α ∈ Poln .

f is multiplicity-free if cα ∈ {0, 1} for all α . In recent work of A. Fink &
K. Mészáros & A. St. Dizier [21], multiplicity-free Schubert polynomials are
characterized.

We unify problems of type (MF1) and (MF2), as follows:
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Definition 4.7 (D -multiplicity-freeness).

f =
∑

(λ1,...,λk)∈ParD

cλ1,...,λksλ1,...,λk ∈ ΠD (23)

is D -multiplicity-free if cλ1,...,λk ∈ {0, 1} for all (λ1, . . . , λk) ∈ ParD .

If D = ∅ , Definition 4.7 is (MF1). When D = [n − 1] , notice ParD = Compn and
we recover (MF2).

Definition 4.8 (Composition patterns). Let

Comp :=
∞⋃

n=1

Compn.

For α = (α1, . . . , αℓ), β = (β1, . . . , βk) ∈ Comp , α contains the composition pattern
β if there exists integers j1 < j2 < · · · < jk that satisfy:

• (αj1 , . . . , αjk) is order isomorphic to β (αjs ≤ αjt if and only if βs ≤ βt) ,
• |αjs − αjt | ≥ |βs − βt| .

The first condition is the naïve notion of pattern containment, while the second
allows for minimum relative differences. If α does not contain β , then α avoids β .
For S ⊂ Comp , α avoids S if α avoids all the compositions in S .

Example 4.9. The composition (3, 1, 4, 2, 2) contains (0, 1, 1) . It avoids (0, 2, 2) .

Define KM = {(0, 1, 2), (0, 0, 2, 2), (0, 0, 2, 1), (1, 0, 3, 2), (1, 0, 2, 2)} .
Let KMn be those α ∈ Compn that avoid KM .

Theorem 4.10. κα is [n− 1]-multiplicity-free if and only if α ∈ KMn .

The proof is given in the companion paper [28]. The following problem asks for a
complete generalization of Theorem 4.10:

Problem 4.11. Fix D ⊆ [n − 1] . Characterize α ∈ Compn(D) such that κα is
D -multiplicity-free.

C. Ross and the second author [46, Theorem 1.1] provide a (positive) combinatorial
rule for computing the D -split expansion of κα ; this rule is reproduced in Sec-
tion 5.5 As we explain in the next subsection, this problem is of significance to the
sphericality question.
In Example 1.11, we referred to the following compound result:

Theorem 4.12 (cf. [32] [50]). Let w ∈ W = Sn . The following are equivalent:
(I) Xw ⊂ GLn/B is a toric variety (with respect to the maximal torus T , i.e.,

Xw is L∅ -spherical).
(II) w = sr1 · · · srn with ri 6= rj for all i 6= j .

(III) w avoids 321 and 3412.

5 Similarly, it would also be interesting to generalize [21]. There is a formula of A. Buch &
A. Kresch & H. Tamvakis and the second author [13] for the split expansion of Schubert polynomials.
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Proof. The equivalence of (I) and (II) is in [32], whereas the equivalence of (II)
and (III) is proved in [50].

Using Theorem 4.10 we have an independent proof of (I) ⇐⇒ (III), that we omit
for sake of brevity. Since each of the 21 bad patterns in S5 from Example 1.6
contains 321 or 3412 , Theorem 4.12 gives evidence for Conjecture 3.9, because of
Proposition 2.13.

4.4. Sphericality and multiplicity-free key polynomials. The key poly-
nomials have a representation-theoretic interpretation [30, 40, 44]. Let X(T ) =
Hom(T,C) be the character group of T , with X(T )+ the dominant integral weights.
For λ ∈ X(T ) , Lλ denotes the associated line bundle on G/B , as well as its restric-
tion to Schubert subvarieties (cf. [6, Chapter 2]). Given w ∈ W and λ ∈ X(T )+

the Demazure module is the dual of the space of sections of Lλ , H0(Xw,Lλ)
∗ [17].

This space has a natural B -module structure induced by the action of B on Xw .
In [44], the authors show that

κwλ is the B-character of H0(Xw,Lλ)
∗, (24)

where wλ = (λw−1(1), . . . , λw−1(n)). (25)

(A similar statement holds for all other finite types.)
The following summarizes the fundamental relationship between Levi spherical Schu-
bert varieties, Levi subgroup representation theory, Demazure modules, and split-
symmetry:

Theorem 4.13. Let λ∈Parn , and w∈Sn . Suppose I ⊆ J(w) and D = [n−1]−I .

(I) H0(Xw,Lλ)
∗ is an LI -module with character κwλ . Hence κwλ is a nonnegative

integer combination of D -Schur polynomials in ΠD .

(II) Xw is LI -spherical if and only if κwλ is D -multiplicity-free for all λ ∈ Parn .

Proof. Since I ⊆ J(w) , (3) implies LI acts on Xw .
(I) The action of B on H0(Xw,Lλ)

∗ is induced by the left multiplication action of B
on Xw [17]. In the same way, the left multiplication action of LI on Xw induces the
LI action on H0(Xw,Lλ)

∗ . By (24), a diagonal matrix x ∈ B acts on H0(Xw,Lλ)
∗

with trace κwλ . The same diagonal matrix x ∈ LI acts identically on H0(Xw,Lλ)
∗ ,

and thus also has trace κwλ . Thus κwλ is the character of an LI -module. Since LI

is reductive, and we work over a field of characteristic zero, character theory implies
κwλ may be written a nonnegative integer combination of characters of irreducible
LI -modules. That is, a nonnegative integer combination of D -Schurs in ΠD .
(II) There are numerous equivalent characterizations of spherical varieties found
in the literature and collected in [42, Theorem 2.1.2]. Of primary interest for us is
the following: A quasi-projective, normal R-variety Y is R-spherical for a reductive
group R if and only if the R-module H0(Y,L) is multiplicity-free for all R-linearized
line bundles L .
All Schubert varieties are quasi-projective and normal [31]. The line bundles on
G/B , when G is of type A , are indexed by partitions in Parn . Every line bundle
on Xw is the restriction of a line bundle on G/B [11, Proposition 2.2.8].
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Since Lλ , for λ ∈ Parn , is G-linearized [11, §1.4], its restriction to Xw , which
we also denote by Lλ , is LI -linearized. Since LI is a product of general linear
groups, H0(Xw,Lλ) is a multiplicity-free LI -module if and only if H0(Xw,Lλ)

∗ is a
multiplicity-free LI -module. Thus, via the equivalent characterization of spherical
varieties, we have that Xw is LI -spherical if and only if the LI -module H0(Xw,Lλ)

∗

is multiplicity-free for all λ ∈ Parn . By (I), this holds if and only if κwλ is D -
multiplicity-free for all λ ∈ Parn .

Remark 4.14. We similarly expect that Theorem 4.13 holds for Xw in any G/B
and that Xw is LI -spherical if and only if all Demazure modules are multiplicity-free
LI -modules. We plan to explicate this in future work (with Y. Gao).

4.5. Consequences of Theorem 4.13. First, we illustrate how to reprove Propo-
sition 2.13, in type An−1 , but from symmetric function considerations:

Corollary 4.15 (Geometric monotonicity (type An−1 )). Suppose w ∈ Sn and
I ′ ⊆ I ⊆ J(w). If Xw is LI′ -spherical, then Xw is LI -spherical.

Proof. Suppose Xw is not LI -spherical. By Theorem 4.13(II), there exists
λ ∈ Parn such that κwλ is not D -multiplicity-free, where

D = [n− 1]− I = {d1 < d2 < . . . < dk}.

That is, κwλ =
∑

(λ1,...,λk)∈ParD

cλ1,...,λksλ1,...,λk (26)

and there exists (λ1, . . . , λk) ∈ ParD such that cλ1,...,λk > 1 .
By induction, we may assume #(I − I ′) = 1 . Thus

D′ := [n− 1]− I ′ = {d1 < d2 < . . . < df < d′f < df+1 < . . . < dk} ⊇ D.

In general, let µ ∈ Parm . Then it is standard (see, e.g., [47, (7.66)]) that

sµ(x1, . . . , xm) =
∑

π,θ

Cµ
π,θsπ(x1, . . . , xa)sθ(xa+1, . . . , xm) (27)

where Cµ
π,θ ≥ 0 is the Littlewood-Richardson coefficient. Now apply (27) to each

term of (26): µ = λf , m = df − df−1 and a = df ′ − df . Thereby, we obtain a
D′ -Schur expansion of κwλ in ΠD′ which also must have multiplicity. Now apply
Theorem 4.13(II) once more.

Second, towards Problem 4.11, we offer:

Theorem 4.16. Suppose α∈KMn∩Compn(D). κα is D -multiplicity-free if either:
(I) α ∈ Compn has all parts distinct, that is, αi 6= αj for i 6= j ; or

(II) α also avoids (0, 0, 1, 1).
Proof. (I): Let λ be the partition obtained by sorting the parts of α in decreasing
order. Let w ∈ Sn be such that wλ = α (this permutation is unique by the distinct
parts hypothesis). We claim w avoids 321 and 3412 . Suppose not. Observe that
since 321 and 3412 are self-inverse, this means w−1 contains a 321 or 3412 pattern.
In the former case, let i < j < k be the indices of the 321 pattern.
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Then (αi, αj, αk) = (λw−1(i), λw−1(j), λw−1(k)) and since w−1(i) > w−1(j) > w−1(k) ,
we have λw−1(i) < λw−1(j) < λw−1(k) which means αi < αj < αk is a (0, 1, 2)-pattern,
a contradiction. Similarly, one argues that if w−1 contains a 3412 pattern, then α
contains (1, 0, 3, 2) , another contradiction.
Hence w avoids 321 and 3412 . So, by Theorem 4.12, Xw is L∅ -spherical. Thus,
by Theorem 4.13(II), κwλ = κα is multiplicity-free. Now apply Corollary 4.15 (or
Proposition 2.13).
(II) Let λ be as above. Since α might not have distinct parts, there is a choice of
w such that wλ = α . Choose w such that if

αi = αj and i < j ⇒ w−1(i) < w−1(j) . (28)

We claim w (equivalently w−1 ) avoids 321 and 3412 . Suppose not. Say w−1

contains 321 at positions i < j < k . This means (λw−1(i) < λw−1(j) < λw−1(k))
by (28) and hence αi < αj < αk forms a (0, 1, 2) pattern, a contradiction. Thus
suppose w−1 contains a 3412 pattern at i < j < k < ℓ . By the same reasoning, we
know αi ≥ αj, αj < αk ≥ αℓ, αℓ > αi .
Case 1: (αi = αj ) If αk = αj + 1 then αℓ = αk (otherwise we contradict (28).
Then α contains (0, 0, 1, 1) , a contradiction. Otherwise αk ≥ αj+2 , and α contains
(0, 0, 2, 2) or (0, 0, 2, 1) .
Case 2: (αi > αj ) Since αk ≥ αℓ > αi , α contains (1, 0, 3, 2), (1, 0, 2, 2) , a
contradiction.
Hence w−1 avoids 321 and 3412 , and we conclude as in (I).

Combining Theorem 4.16 with the arguments of [28, Section 3.1] gives a relatively
short proof of Theorem 4.10 under the additional hypothesis (I) or (II). However,
there is an obstruction to carrying out the argument to prove Theorem 4.10 com-
pletely. Consider α = (0, 0, 1, 1) . Indeed κα is [n − 1]-multiplicity-free. Following
the reasoning of the argument, λ = (1, 1, 0, 0) . The permutations w ∈ S4 such that
wλ = α are 3412, 4312, 3421, 4321 , but each of these contains 321 or 3412 . In [28],
we prove Theorem 4.10 using a different, purely combinatorial approach.
Third, we examine the following observation that is immediate from Theorem 4.13(II):

Corollary 4.17. Let w∈Sn , I ⊆ J(w), and λstaircase = (n, n−1, n−2, . . . , 3, 2, 1).
If κwλstaircase is not D -multiplicity-free then Xw is not LI -spherical.

Example 4.18. Let n = 5 and w = 24531 . Then Xw ⊂ GL5/B . In Ex-
ample 3.4, we showed w is not J(w)-spherical. We now show this agrees with
Conjecture 1.9. Let I = J(w) = {1, 3} and thus D = {2, 4} . Since w−1 = 51423 ,
wλstaircase = w(5, 4, 3, 2, 1) = (1, 5, 2, 4, 3) . Now, κwλstaircase ∈ ΠD and

κ1,5,2,4,3 = s(5,4),(2,1),(3) + s(5,4),(3,2),(1) + s(5,2),(3,2),(3) + 2s(5,3),(3,2),(2)

+ s(5,3),(2,2),(3) + s(5,2),(3,3),(2) + 2s(5,2),(4,2),(2) + s(5,3),(3,3),(1) + s(5,3),(4,1),(2)

+ s(5,3),(3,1),(3) + s(5,3),(4,2),(1) + s(5,2),(4,3),(1) + s(5,2),(4,1),(3)

+ s(5,4),(2,2),(2) + s(5,4),(3,1),(2) + s(5,1),(4,2),(3) + s(5,1),(4,3),(2). (29)

By Corollary 4.17, the multiplicity in (29) says that Xw is not LJ(w) -spherical.
A theorem of V. Lakshmibai & B. Sandhya [34] states that Xw is smooth if and only
if w avoids the patterns 3412 and 4231 . Hence X24531 is smooth, but not spherical.
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Theorem 4.13 does not give an algorithm to prove Xw is I -spherical, because it
demands that one check κwλ is D -multiplicity-free for infinitely many λ . A complete
solution to Problem 4.11 should give a characterization of when Xw is I -spherical.
However, one can obtain an algorithm without solving that problem. The next claim
asserts this infinite check can be reduced to a single check.

Conjecture 4.19. The converse of Corollary 4.17 is true.

Let us also state a weaker assertion:

Conjecture 4.20. If Xw is not LI -spherical, there exists λdistinct = (λ1 > λ2 >
. . . > λn) such that κwλdistinct is not D -multiplicity-free.

Conjecture 4.21. Fix D = {d1 < d2 < . . . < dk} and suppose α, α↑∈Compn(D)
where α↑ = (α1, . . . , αj−1, αj +1, αj+1, . . . , αn) for some j such that αj +1 6= αi for
all i 6= j . If κα is not D -multiplicity-free, then κα↑ is not D -multiplicity-free.

Lemma 4.22. Suppose I ⊆ J(w) and D = [n− 1]− I .
Let λdistinct = (λ1 > λ2 > . . . > λn). Then wλdistinct ∈ Compn(D).

Proof. If d 6∈ D then d ∈ I ⊆ J(w) . Hence w−1(d) > w−1(d + 1) and
λdistinct
w−1(d) < λdistinct

w−1(d+1) . So all descents of wλdistinct must be in D , as desired.

Proposition 4.23. Conjecture 4.21 ⇒ Conjecture 4.19.

Proof. Suppose Xw is not LI -spherical for some I ⊆ J(w) .
First we show the weaker claim that Conjecture 4.21 ⇒ Conjecture 4.20: By
Theorem 4.13(II), there exists λ such that wλ ∈ Compn(D) and κwλ is not D -
multiplicity-free. If λ(0) := λ has distinct parts, let λdistinct := λ . If not, consider
the smallest j0 such that λj0 = λj0+1 . Then define for 1 ≤ j ≤ j0

λ(0,j) = (λ1 + 1, λ2 + 1, . . . , λj + 1, λj+1, λj+2, . . . , λj0 , λj0+1, . . . , λn). (30)

We let λ(0,0) := λ(0) . Since λ(0,j) and λ(0,j−1) only differ at position j (by a
single increment), it is immediate from the definitions (25) and (30) as well as the
minimality of j0 that the set of descent positions Desc(wλ(0,j)) of wλ(0,j) contains
Desc(wλ(0,j−1)) for 1 < j ≤ j0 . Now repeat this modification with λ(1) := λ(0,j0)

replacing the role of λ(0) . The minimal j1 such that λ
(1)
j1

= λ
(1)
j1+1 satisfies j1 > j0 ;

we similarly construct new partitions λ(1,j) where 1 ≤ j ≤ j1 . Hence after a finite
number of iterations, we arrive at λdistinct := λ(q) := λ(q−1,jq−1) with distinct parts.

Inductively, Desc(wλ(p,j)) ⊆ Desc(wλ(q)) ⊆ D,

where the rightmost containment is by Lemma 4.22. Hence, wλ(p,j) ∈ Compn(D) for
0 ≤ p < q and 1 ≤ j ≤ jp . Conjecture 4.21 says that if α = wλ(p,j−1)∈Compn(D)
and α↑ = wλ(p,j) ∈ Compn(D) such that κα is not D -multiplicity-free, then κα↑ is
not D -multiplicity-free. Applying Conjecture 4.19 repeatedly we see by induction
that κwλdistinct is not D -multiplicity-free, as desired.
Conjecture 4.21 ⇒ Conjecture 4.19: By the previous paragraph, assume there exists
λ[0] = λdistinct such that κwλdistinct is not D -multiplicity-free.
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If λ[1] := (λ
[0]
1 +1, λ

[0]
2 , . . . , λ

[0]
n ) , then by Conjecture 4.21, κwλ[1] is not D -multiplicity-

free. Iterating this argument, it follows that if λ[1] := (λ
[0]
1 + h, λ

[0]
2 , . . . , λ

[0]
n ) for any

h ≥ 1 , the same conclusion holds. For the same reason, if h > h′ we can ensure
λ[2] = (λ

[0]
1 + h, λ

[0]
2 + h′, λ

[0]
3 , . . . , λ

[0]
n ) has that κwλ[2] is not D -multiplicity-free.

Continuing this line of reasoning, we can conclude that there is r ∈ N such that
λ := λstaircase + (r, r, . . . , r) and κwλ is not D -multiplicity-free.
Now, either directly from the definition of key polynomials from Section 4.2, or, e.g.,
from Kohnert’s rule [33] we have:

κwλ =

(
n∏

i=1

xr
i

)
× κwλstaircase . (31)

If µ ∈ Pard then it is easy to see from the definition of Schur polynomials that

(y1 . . . yd)
r × sµ(y1, . . . , yd) = srd+µ(y1, . . . , yd), (32)

where rd + µ = (r + µ1, r + µ2, . . . , r + µd) .
Combining (31), (32) and the presumption that κwλ is not D -multiplicity-free, we
see that κwλstaircase is not D -multiplicity-free, as desired.

In turn, it seems plausible to prove Conjecture 4.21 using [46, Theorem 1.1]. We
hope to address this in a sequel. For now, we offer the following evidence for its
correctness.

Proposition 4.24. Conjecture 4.21 holds for D = [n− 1].
Proof. This follows from Theorem 4.10 in this fashion: Suppose κα is not [n−1]-
multiplicity-free since (αa, αb, αc, αd) is the pattern (1, 0, 3, 2) . If j 6∈ {a, b, c, d} then
α↑ still contains (1, 0, 3, 2) . If j = a then (by the hypothesis of Conjecture 4.21)
αa+1 6= αd hence α↑ contains (1, 0, 3, 2) at the same positions. The same conclusion
holds if j = b, c, d . Hence by Theorem 4.10, κα↑ is not [n−1]-multiplicity-free. The
other cases are left to the reader.

5. Proof of the bigrassmannian theorem
Using the preparation in Sections 2 and 4, we are now ready to prove Theorem 3.6.
First, we prove that three classes (20) of bigrassmannian w∈Sn are J(w)-spherical.
Suppose code(w) = (0f , a, 0g) . Then the canonical reduced word (see Example 2.7) is

Rcanonical(w) = sf+asf+a−1 · · · sf+2sf+1.

By Lemma 3.5, J(w) = {f+a} . Since Rcanonical(w) uses distinct generators, it is the
J(w)-witness, as desired. Similarly, one argues the case that code(w) = (0f , 1b, 0g) .
Finally, suppose code(w) = (0f , 22, 0g) . In this case,

Rcanonical(w) = sf+2sf+1sf+3sf+2.

Since (by Lemma 3.5) J(w) = {f + 2} we see that Rcanonical(w) is again a J(w)-
witness, as desired.
Conversely, suppose that w ∈ Sn is bigrassmannian, but not one of the three cases
(20). Thus, D(w) either has at least three columns, or at least three rows. Assume
it is the former case (the argument for the latter case is similar).
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Look at the canonical filling of D(w) . In the northwest 2 × 3 subrectangle, the
filling, read right to left and top down is

sf+3sf+2sf+1sf+4sf+3sf+2. (33)

Let u be the associated permutation and Ru ∈ Red(u) be the expression (33). Ru is
a subexpression of Rcanonical(w) . Hence by Theorem 2.1, u ≤ v . By inspection, any
R′ ∈ Red(u) has at least two sf+2 ’s. By assumption, J(w) = {d} where d ≥ f + 3
(here we are again using Lemma 3.5). So every R′ fails (S.1’) (with respect to
J(w)). Thus by Proposition 2.2, w is not J(w)-spherical.
Next, we show that for w ∈ Sn satisfying (20), Xw is LJ(w) -spherical. First suppose

code(w) ∈ {(0f , a, 0g), (0f , 1b, 0g)}.

The above analysis shows that Rcanonical(w) satisfies Theorem 4.12(II). Hence Xw is
a toric variety (by the equivalence (I) ⇐⇒ (II) of said theorem). By Corollary 4.15
(or Proposition 2.13), Xw is LJ(w) -spherical. Lastly, suppose

code(w) = (0f , 22, 0g).

First, assume f = 0 . Hence in this case the permutation is w′ = s2s1s3s2 ∈ S4 .
Now w′ = 3412 in one-line notation, and J(w′) = {2} .

Claim 5.1. X3412B ⊂ GL4/B is L{2} -spherical.

Proof of Claim 5.1: Fix Bss := SL4 ∩ B , and T ss := SL4 ∩ T as our choice of
Borel subgroup and maximal Torus in SL4 . For I ⊆ 2[3] , let Lss

I ≤ P ss
I denote the

associated Levi and parabolic subgroups in SL4 . We prove X3412Bss ⊂ SL4/B
ss is

Lss
{2} -spherical. Since SLn/B

ss ∼= GLn/B as SLn -varieties, this induces an Lss
{2} -

equivariant isomorphism between X3412Bss and X3412B . Thus if X3412Bss is Lss
{2} -

spherical, then X3412B is Lss
{2} -spherical. Since Lss

{2} ≤ L{2} , this in turn implies
X3412B is L{2} -spherical.
The canonical projection π : SL4/B

ss → SL4/P
ss
{1,3} induces a birational morphism

X3412Bss → X3412P ss
{1,3}

∼= SL4/P
ss
{1,3}.

Since π is SL4 -equivariant, this birational morphism is Lss
{2} -equivariant. Thus

X3412Bss is Lss
{2} -spherical if and only if SL4/P

ss
{1,3} is Lss

{2} -spherical. As noted in
the proof of Theorem 2.4, the latter holds if and only if SL4/P

ss
{2} × SL4/P

ss
{1,3}

is spherical for the diagonal SL4 action. Finally, by [49][Corollary 1.3.A(ii)] this
diagonal action is spherical.

For general f , since w = sf+2sf+1sf+3sf+2 , in fact w = φ(w′) where φ is the
Dynkin diagram embedding of

1′ 2′ 3′
into

1 2 n− 1 n
that sends 1′ 7→ f + 1 ,

2′ 7→ f + 2 , 3′ 7→ f + 3 . This induces a map of the Weyl groups that sends w′ to
w . Now Claim 5.1 and Proposition 2.19 imply that Xw is LJ(w) -spherical.
It remains to show that if w ∈ Sn does not satisfy (20), then Xw is not LJ(w) -
spherical. Now, D(w) either contains a 2× 3 rectangle or a 3× 2 rectangle. Let us
assume we are in the former case (the other case is similar, and left to the reader).
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Claim 5.2. If D = {1, 2, 3, . . . , a − 1, a + 1, a + 2}, and a ≥ 3, then κ0a,2,1 is
not D -multiplicity-free. s∅a−3,(1),(1),(1,0),∅,...,∅ appears in the expansion (23) of κ0a,2,1 ,
with multiplicity (at least) 2.

Proof of Claim 5.2: We recall [46, Theorem 1.1] which gives a nonnegative
combinatorial rule to compute the expansion (23) of f = κα for any α ∈ Compn(D) .
Let w[α] be the unique permutation in S∞ such that code(w[α]) = α (ignoring any
trailing 0 ’s). That such a permutation exists and is unique follows from, e.g., [39,
Proposition 2.1.2].
We now construct a tableau T [α] . Given w(1) = w[α] , let i1 be the position of the
last descent of w(1) , and let i2 be the location of the rightmost descent left of i1 in
w(1)si1 (so i2 < i1 ). Repeat, defining ij to be the position of the rightmost descent
to the left of ij−1 in w(1)si1si2 · · · sij−1

. Suppose no descent appears left of ij in
w(1)si1si2 · · · sij . In that case, stop, and, we define the first column of T [α] to be
filled by i1 > i2 > . . . > ij (from bottom to top). Now let w(2) = w(1)si1si2 · · · sij
and similarly we determine the entries of the second column. We repeat until we
arrive at k such that w(k) = id .
An increasing tableau T of shape λ is a filling of the Young diagram λ with positive
integers that is strictly increasing, left to right along rows, and top to bottom along
columns. Let row(T ) be the right to left, top to bottom row reading word of T .
Also let min(T ) be the value of the minimum entry of T .
Given a = (a1, a2, . . .) such that sa1sa2 · · · is a reduced expression (for some per-
mutation), we will let EGLS(a) be the Edelman-Greene column insertion tableau; we
refer to [46, Section 2.1] for a summary of this well-known concept from algebraic
combinatorics. Below, we will mildly abuse notation and refer to a and sa1sa2 · · ·
interchangeably.

Theorem 5.3 (Theorem 1.1 of [46]). Let α ∈ Compn(D) and f = κα . The
coefficient cλ1,...,λk in the expansion (23) counts the number of sequences of increasing
tableaux (T1, . . . , Tk) such that

(a) Ti is of shape λi

(b) min(T1) > 0,min(T2) > d1, . . . ,min(Tk) > dk−1 ;
(c) row(T1) · row(T2) · · · row(Tk) ∈ Red(w[α]); and
(d) EGLS(row(T1) · row(T2) · · · row(Tk)) = T [α].

In our particular case, α = (0a, 2, 1) . Hence,

w[α] = 12 · · · a a+ 3 a+ 2 a+ 1 (one line notation) = sa+1sa+2sa+1 ≡ sa+2sa+1sa+2.

Then the two tableau sequences are

(∅a−3, a+ 1 , a+ 2 , a+ 1 , ∅, . . . , ∅), (∅a−3 , a+ 2 , a+ 1 , a+ 2 , ∅, . . . , ∅).

Here T [α] =
a+ 1 a+ 2

a+ 2

. It is straightforward to check the conditions of Theorem 5.3

are satisfied. In particular, condition (d) is requiring that the Edelman-Greene
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column insertions of a + 1 a + 2 a + 1 and a + 2 a + 1 a + 2 both give T [α] ; this
is true. (In fact these are the only valid tableau sequences for the datum, although
we do not need this.)

Claim 5.4. Let
D′ = {1, 2, 3, . . . , f, f + 1, f + 2, . . . , f + (a− 1), f + (a+ 1), f + (a+ 2)}

and α = (3f , 0a, 2, 1). Then κα is not D′ -multiplicity-free.

Proof of Claim 5.4: Straightforwardly from Kohnert’s rule [33],

κα =

f∏

i=1

x3
i × κ0a,2,1(xf+1, xf+2, . . . , xf+(a+2)). (34)

Suppose cλ1,λ2,λ3,λ4,... is the coefficient of sλ1,λ2,λ3,λ4,... in the D -expansion (23) of
κ0a,2,1 . Let c(3),(3),...,(3),λ1,λ2,λ3,λ4,... be the D′ -split-expansion of κα (here there are
f -many (3) ’s). Then (34) implies

c(3),(3),...,(3),λ1,λ2,λ3,λ4,... = cλ1,λ2,λ3,λ4,....

Now apply Claim 5.2.

Since code(w) = (0f , ab, 0g) where a ≥ 3 and b ≥ 2 ,

w−1 = 1 2 3 · · · f f + b+1 f + b+2 · · · f + b+ a f +1 f +2 · · · f + b · · · ,

where the rightmost “ · · · ” contains the remaining numbers from [n] listed in in-
creasing order. Let λ = 3, 3, . . . , 3︸ ︷︷ ︸

f -many

, 2, 1, 0, 0, . . . , 0︸ ︷︷ ︸
(n− f − 2) -many

.

Thus wλ := (λw−1(1), . . . , λw−1(n)) = (3f , 0a, 2, 1, 0n−f−a−2).

Set D′′ = D′∪{f+(a+3), f+(a+4), f+(a+5), . . .} . Hence it follows from Claim 5.4
that κwλ is not D′′ -multiplicity-free. By Lemma 3.5, J(w) = {f + a} , and hence
[n− 1]− J(w) = D′′ ; therefore, Xw is not LJ(w) -spherical, by Theorem 4.13(II).
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