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Abstract. For a finite Coxeter system and a subset of its diagram nodes, we define spher-
ical elements (a generalization of Coxeter elements). Conjecturally, for Weyl groups, spherical
elements index Schubert varieties in a flag manifold G/B that are spherical for the action of a
Levi subgroup. We evidence the conjecture, employing the combinatorics of Demazure modules,
and work of R.Avdeev and A.Petukhov, M.Can and R.Hodges, R.Hodges and V. Lakshmibai,
P. Karuppuchamy, P.Magyar and J. Weyman and A.Zelevinsky, N.Perrin, J.Stembridge, and
B. Tenner. In type A, we establish connections with the key polynomials of A.Lascoux and M.-
P. Schiitzenberger, multiplicity-freeness, and split-symmetry in algebraic combinatorics. Thereby,
we invoke theorems of A.Kohnert, V. Reiner and M. Shimozono, and C. Ross and A. Yong.
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1. Introduction

1.1. Main definition. Let (W, S) be a finite Coxeter system, where S = {sq, ..., s, }
are minimal generators of the Coxeter group W. Biject [r] := {1,2,...,r} with the
nodes of the Coxeter diagram G. To each I € 2I'1 let G; be the induced subdiagram
of G. Suppose

G =|Jc® (1)

is the decomposition into connected components. Let wé’z) be the long element of
the parabolic subgroup W) generated by ) = {s;:j € C®}.

Every w € W has a reduced expression w = s;, - - - s;, where k = {(w) is the Coxeter
length of w. Let Red(w) := Redw,s)y(w) be the set of these expressions. The left

descents of w are
J(w)=A{j € r]: l(s;w) < l(w)}.

Definition 1.1 (/-spherical elements). Let w € W and fix I C J(w). Then w
is I-spherical if there exists R = s;, -+ s;,,, € Red(w) such that:

(S.1) #{t:iy=j}<1forall je[r]—1I,and
(S.2) #{t:i; €CP} < f(w(()z)) + #vertices(C)) for 1 < z < m.

Such an R is called I -witness. Call w mazimally spherical if it is J(w)-spherical. =
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Example 1.2 (Coxeter elements). A Cozxeter element ¢ of W is the product of
all s;’s (in some order). Trivially, ¢ is I-spherical for any I C J(c).

2
Example 1.3. The Eg Coxeter diagram is -—o—I—o—o—o—c . Let
1 3 45 6 7 8
R = $953545253545554525351545556575658575¢ € Red(w).
2
Then J(w) = {2,3,4,5,7,8}. If I = J(w) then CV) = 57< and C? = —s.
5

Here W;a) is the D, Coxeter group and w(()l) = $35954835254555453595485 Wwith
E(w(()l)):12. Also, Wi is the Ay Coxeter group 63, w(()2)2573887 and f(w((f)):?).

R is not a J(w)-witness for w; it fails (S.1) as sg appears thrice. However,

R = §95354525354555459535154555657565857S56

525385452535455545253515455575657585756
= 598535459535455545925351545557565857585¢6
= 59535459253545554525351545557585657S6S58
= 595354525354555452535154555758575657S58.
The latter expression is a J(w)-witness.
Example 1.4 (Bs, B3).  For By, all elements are J(w)-spherical (Proposition 2.8).
For Bs, the diagram is e—e=s  and #W(B;) = 233! = 48. The 8 non-J(w)-
1 2 3
spherical elements are: 535253515953, 595352515253, S$35253525152S53, S$35253515253S9,
528535251525352, 5352535251525352, 5253525152, 5352535152535251 -
Example 1.5 (F;). The F, diagram is e—ese— . Of the 1152 Weyl group
1 2 3 4

elements, 290 are J(w)-spherical. An example is

W = $4535452535452535951528384; here J(w) = {2,3,4}.
A non-example is

W = $98154535951535254535251 (J(w') = {2,4}); here #Red(w') = 29.

This paper will concentrate mainly on type A, 4 P T W(A,1) = 6&,,
ne

the symmetric group on {1,2,...,n}. Each s; is identified with the transposition

(ii+1).

Example 1.6. All we,, are J(w)-spherical, if n<4. In &5 the non-examples are
24531, 25314, 25341, 34512, 34521, 35412, 35421, 42531, 45123, 45213, 45231,

45312, 52314, 52341, 53124, 53142, 53412, 53421, 54123, 54213, 54231.

There are 320 non-examples in &g, and 3450 in &7 (the latter computed by J. Hu).
We suspect that, for n large, nearly all w € &,, are non-examples (Conjecture 3.8).
Notice 2453171 = 51423 is not on the list. Being maximally spherical is not inverse
invariant.
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Example 1.7 (321-avoiding permutations). w € &,, is 321-avoiding if there
does not exist ¢ < j < k such that w(i) > w(j) > w(k). Such w are fully
commutative, i.e., no expression in Red(w) contains s;8;118; nor s;118;8;41. Any two
elements of Red(w) can be obtained from one another by a sequence of commutation
relations s;s; = s;s; where |i — j| > 2 (see, e.g., [39, Proposition 2.2.15]). Hence,
for any I € 27(") the property of being an I-witness is independent of the choice
of si, -+ si,,, € Red(w).

1.2. Spherical elements and Schubert geometry. Let G be a connected
complex reductive algebraic group. Fix a choice of maximal torus T and Borel
subgroup B in G with root system ® and decomposition into positive and negative
roots ® = ®* U P~. Let A be the base of the root system. The finite Coxeter
group of interest is the Weyl group of G, namely W = N(T')/T. Let rank(G) be
the semisimple rank of G. Then W is generated by r = rank,(G) many simple
reflections S = {s1,...,s,}, where 1,2,... r is some indexing of A.

This paper builds on and extends earlier work of, e.g., P. Magyar & J. Weyman &
A. Zelevinsky [38], J. Stembridge [49], P. Karuppuchamy [32], as well as work of the
first author with V. Lakshmibai [26, 27] and with M. Can [15]. It combines study of
two topics of combinatorial algebraic geometry:

(A) The generalized flag variety is G/B. The Schubert varieties are the B-orbit
closures X,, = BwB/B where w € W. Schubert varieties are well-studied
in algebraic combinatorics, representation theory and algebraic geometry; see,

e.g., [22, 6].

(B) A variety X is H -spherical for the action of a complex reductive algebraic
group H if X is normal and it contains a open dense orbit of a Borel sub-
group of H. Spherical varieties generalize toric varieties. Classifying spher-
ical varieties is of significant interest; see, e.g., [12, 37], and the survey by
N. Perrin [42].

Foundational work from the 1980s, by C.DeConcini & V.Lakshmibai [16], as well
as S.Ramanan & A.Ramanathan [43], established that every Schubert variety is
normal. Thus to be within (B)’s scope, it remains to introduce a reductive group
H acting on X,, (H = B being invalid, as B is not reductive).

We study a natural choice of H acting on X,,. Recall, for any parabolic subgroup
P of G, the Levi decomposition is

P =L x Ry(P) (2)

where L is a Levi subgroup of P and R,(P) is P’s unipotent radical. For each
I € 2" there is a standard parabolic P; D B; let L; be the associated standard
Levi from (2) that contains 7'. With respect to the left action of G on G/B,

Pjwy = staba(Xuw); (3)
see [6, Lemma 8.2.3]. For any
I C J(w),L; < Pr < Py

Hence by (3) each of the reductive groups H = L; acts on X,,.
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Definition 1.8. Let I C J(w). X, € G/B is Ly-spherical if X,, has an open
dense orbit of a Borel subgroup of L; under left translations. X, is maxzimally
spherical if it is L j(,)-spherical.

Which Schubert varieties X,, are spherical for the action of L;?

Conjecture 1.9. Let I C J(w). X, is Ly-spherical if any only if w is I-spherical.

Condition (S.2) has the following Lie theoretic origin: if G is semisimple and B
is a Borel subgroup, then dim B = {(wg) + rank(G). However, Conjecture 1.9
predicts that being L;-spherical only depends on the Coxeter data. In particular,
this suggests the sphericality classification is the same for SOq,.1/B vs. Sps,/B.
To summarize earlier work, it seems nontrivial to certify sphericality of X,,, even
in specific instances. A certificate that X,, is not I-spherical is implicit in [42]. We
expound upon it using research from algebraic combinatorics (see Theorem 4.13).

Example 1.10. M. Can and the first author [15, Theorems 6.2, 6.3] proved
that all Schubert varieties in SL3/B and SL,/B are maximally spherical. This
is consistent with Example 1.6. The methods of Section 4 allow one to verify
that the non-spherical cases shown in &5 (and those alluded to in &g) are indeed
geometrically non-spherical.

Example 1.11 (Toric Schubert varieties). The inspiration for (S.1) is P. Karuppu-
chamy’s [32]. In ibid., the author classified when X, is toric with respect to 7', that
is, X, contains a dense orbit of T'. Identically, this is classifying Ly-spherical X, .
Indeed when I = (), (S.2) is a vacuous condition, and “ X, is toric <= (S.1)” is
precisely his classification. Earlier, B. Tenner [50] proved (without reference to toric
Schubert geometry) that w satisfies (S.1) if and only if w avoids 321 and 3412. See
Theorem 4.12 and the discussion thereafter.

Recently, the first author and V. Lakshmibai [27] characterized spherical Schubert
varieties in the Grassmannian Grg(C™). This implies some necessary conditions for
a Schubert variety in the flag variety to be spherical.

Since this work was submitted, Y. Gao and the authors have proved Conjecture 1.9
for type A [24].

1.3. Summary of the remainder of this paper. In Section 2, we describe some
basic properties of Definition 1.1. These are used to confirm agreement of Conjec-
ture 1.9 in other examples, as well as with geometric properties of Definition 1.8.
Our initial result is

(I) Theorem 2.4, a characterization of when wy € W is I-spherical. This is
connected to [38] and [49], supplying some general-type evidence for Conjec-
ture 1.9.

We characterize maximally spherical elements of dihedral groups (Proposition 2.8).
This result and (I) are used to prove:

(IT) Conjecture 1.9 holds for rank two simple cases (Theorem 2.10).
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In Section 3, we turn to G = GL,,. We state

(III) Theorem 3.6, which confirms Conjecture 1.9 for the class of bigrassmannian
permutations introduced by A. Lascoux & M.-P. Schiitzenberger [36].

(IV) Conjecture 3.9, which suggests Definition 1.1 is a pattern avoidance property.
(Since this work was submitted, this has been proved by C. Gaetz [23], using
the aforementioned results of [24].)

Section 4 offers a novel perspective on the sphericality problem in terms of the al-
gebraic framework of split-symmetric polynomial theory. The latter interpolates
between symmetric polynomial theory and asymmetric polynomial theory.! Within
this viewpoint, we discuss a unified notion of multiplicity-free problems, and con-
tribute to the subject of key polynomials. We present

(V) Theorem 4.10, which characterizes multiplicity-free key polynomials. This
supports some sphericality ideas we propose.

The proof of this result is found in the companion paper [28], where we also derive
a multiplicity-free result about the quasi-key polynomials of S. Assaf-D. Searles [1].
Using the fact that these polynomials are characters of Demazure modules, as well
as a result of N. Perrin [42], we derive:

(VI) Theorem 4.13, which translates the geometric sphericality problem to one
about split multiplicity-freeness of infinitely many key polynomials.

A consequence of (VI) is

(VII) Theorem 4.16, which gives sufficient conditions, close to those of (V), for a key
polynomial to be split multiplicity-free. In comparison to [28], the geometric
and representation-theoretic input of (VI) allows for a relatively short proof.

Although (V) does not give, per se, an algorithm to decide sphericality, we suggest

(VIII) Conjecture 4.19, which asserts that checking the “staircase” key polynomial
suffices. This conjecture reduces to a combinatorial question about the split
symmetry of key polynomials; see Conjecture 4.20, Conjecture 4.21 and
Proposition 4.23. (V) is a solution of this problem in the “most-split” case.

We exhaustively verified that Conjecture 1.9 is mutually consistent with Conjec-
ture 4.19 for n < 6 (and many larger cases).

Section 5 is the culmination of the methods developed. We prove Theorem 3.6 about
bigrassmannian permutations. The argument uses Theorem 4.13, a combinatorial
formula for splitting key polynomials due to C. Ross and the second author [46], as
well as an algebraic groups argument (Proposition 2.19).

2. Basic properties and more examples

Let < denote the (strong) Bruhat order on W. The following is a standard result
(see, e.g., [8, Theorem 2.2.2]):

Theorem 2.1 (Subword property). — Fix s;si, -« 8i,,, € Red(v). u < v if and
only if there exists 1 < ji < ja < ... < Jyu) Such that Sigy Sisy """ iy € Red(u).

!Borrowing the terminology of [41].
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Proposition 2.2.  Suppose v € W and I C J(v). If there exists u € W such
that w < v, and every element of Red(u) fails (S.1) or (S.2) (with respect to I,
ignoring whether or not I C J(u)), then v is not I-spherical.

Proof.  Suppose v is [-spherical and R = s;, -~ s;,,, € Red(v) is an I-witness.
Then by Theorem 2.1, some subexpression R’ of R is in Red(u). However, by
hypothesis, R’ fails (S.1) or (S.2) with respect to /. Hence so must R, a contradic-
tion. [ |

If W is a Weyl group, Bruhat order is the inclusion order on Schubert varieties.
That is, X, C X, <= u < v. In particular, X,,, = G/B and X;; = B/B is
the Schubert point. Both of these Schubert varieties are maximally spherical. In the
former case, H = G and in the latter case H = T'. This is consistent with:

Lemma 2.3. Both w = id,wy are mazximally spherical.

Proof. If w = id, (S.1) is trivial while (S.2) is vacuous (since J(w) = 0). If
w = wy then (S.1) is vacuous (since J(w) = [r]) while (S.2) is trivial. ]

Extending Lemma 2.3, we characterize [-sphericality of wy. This is a nontrivial
confirmation of Conjecture 1.9.

Theorem 2.4 (The long element wy).  Let n > 4. Suppose I C [n — 1] then
wy € 6, is I-spherical if and only if I = [L,n—1],1 =[2,n—1] or I =[1,n —2].
If W is a finite, irreducible Weyl group not of type A,_1, then wy € W is I -spherical
if and only if [ =S

Hence, Conjecture 1.9 holds for all Levi subgroup actions on G/B (where G is
simple).

Proof.  We first prove the type A,_; statement.
(=) (By contrapositive) Assume I is not one of the three listed cases.

First suppose there exists 2 < j < n —2 such that j € I. For 1 <i <n —3,
let w(()Z> = 8;Si11Si+25iSi+15; € G,. So w(<)1> =432156 ... n—2n—-—1n,
w(<)2> =1543267 ...n—1n, etc. That is, each is a “shifted copy” of 4321 € &,.

If n = 4 one checks directly that sy appears twice in any reduced word for wy
(there are sixteen such words). It follows that every R € Red(wéj ~Y contains S;

twice. Thus R fails (S.1) with respect to I. Since wéj_l) < wp, we may apply
Proposition 2.2 to conclude wq is not I-spherical.

The remaining possibility is that I = [2,n—2]. Consider R® = s;59---s,_1 €Red(c),
the unique reduced expression for the Coxeter element c. Since ¢ < wqy, by Theo-
rem 2.1, for any R*° € Red(wy), R appears as a subexpression of R*°. In particular,
there is an s, to the left of s,_; in R*. Now, if R® = s,_15,_5--- 525 € Red()
then by the same reasoning there is an s, _; left of s; in R*°. Hence either s;
appears at least twice or s,,_; appears at least twice in R*°. Therefore R"® cannot
be an [-witness, as it fails (S.1). Thus wy cannot be I-spherical.

(<) When I = [n — 1] = J(wp), we apply Lemma 2.3. Next we prove wqg is
I-spherical for I = [1,n — 2] (the remaining case is similar).
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The reduced expression

(5182 e Snfl)(5132 N 877,72) e (3182 e S]) e (Sl) (= Red(wo)
uses S,_1 exactly once, and so (S.1) holds. Here G; is the A, o Dynkin diagram.
Now (S.2) requires that (g) —1< (";1) +n — 2; in fact this holds with equality.

The argument for other types follows from a proof of K. Fan [20] posted in answer to
a question asked on MathOverflow by J. Humphreys. For the sake of completeness
we explicate his argument below. Let A = {ay,...,a,} be the simple roots.

Claim 2.5. Let I =[r] —{d} and o € ®F with o=, a;;.

Suppose wy = wySqwy for wi,wy € Wi. Then wisqws s a reduced product, i.e.,
U(wisqwy) = L(wy) + €(sq) + l(wy). Further, if ag > 0 and wo(a) = —«, then
wa(a) = ag and sqwa(a) = —ay.

Proof.  We first show that w;s;wsy is a reduced product. Since wy € Wr, sqws
is a reduced product. There exists a reduced expression R = s;, ---s;, where
n = l(wp) — (sqws) = £(wy) — £(ws) — 1 such that wy = s;, - - - 8, Sqwa .

Since we assumed wy = w;sqwy, we conclude that in fact R € Red(w;). Finally
l(wo) = L(w1Sqwa) = n+ 1+ l(wg) = L(wy) + £(sq) + (w2), as desired.

Let 8 be a root. By definition,

(073 /B
si(B) =8 —2 (@, 9)

(v, i)

o (4)

o € Red(w,).
Let ol := o and ol/! the result of applying the rightmost f-many reflections of

where (-, -) is the Euclidean inner product on V' =span(®). Pick s;...s

R = (si, -+ 5i,)84(s04 -+ sy, ) € Red(wp)

(w2)

to a from right to left (e.g., ol = S, O and ol = S 10,1 Sit(uy) O etc.). olfl € @
U12 U)2 -

since it is a basic root-system fact that each reflection permutes &.

Let aEﬁ be the coefficient of a; in alfl. By (4), if s; is the f-th generator of R’
from the right, then
al =l for i € [r] - {4} (5)

7

Since s, appears exactly once in R’ by (5), the coefficient of a4 changes exactly

once, and exactly at the step f = ¢(wq)+ 1. This implies that first, aﬁ{ M =a;>0

and thus ol ¢ &+, Second, since wy(a) = —a, it implies a([jf] = —aq < 0.

However, since ay] = ay_u > 0 for i # d, a2+l € & is possible if and only if
a; =0 for i # d and ag = 1 (recall, agog € @ if and only if ay = +1, by the axioms
of root systems). Hence wy(a) = g and sqwq(a) = —ayy. n

Claim 2.6.  Suppose W s a finite, irreducible Weyl group, not type A. Define
I =1[r] —{d}. Then wy # wisqws with wy,ws € Wr.

Proof.  Suppose otherwise. Let v = Y7 a; € ®F and let § be the highest
root in ®*. Outside of type A, v # 6 [29, Section 4.9, Table 1]. In the case of
the exceptional groups, one checks by direct computation that wy(y) = —v and
wo(f) = —0. In types B, and C,, as well as D,, for even n, wy(a) = —a for all
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roots « [9, Chap. VI, §4 no. 5,6,8]. In type D,, for odd n, wy corresponds to the
automorphism of the roots which interchanges «, and «,_;, and then negates the
result [9, Chap. VI, §4 no. 8|. Hence, wy(y) = —v and wy(#) = —60. Thus in
all cases, v and 6 both satisfy the hypotheses of Claim 2.5. That claim says that
wo(y) = we(0) = ag. Hence wy(y) = wp(0), which is impossible. n

Concluding, if I C [r], there exists a d € [r] —I. By Claim 2.6, wy fails (S.1) for d.

In [2, Lemma 5.4], R.S. Avdeev and A. V. Petukhov show that G/P; is L;-spherical
if and only if G/P; x G/Pjy is G-spherical (where the latter action is the diagonal
G-action). These diagonal spherical actions are classified in type A by P. Magyar &
J. Weyman & A. Zelevinsky [38]. In particular, [38, Theorem 2.4] shows that SL, /B
is L-spherical only for the I in the statement of the theorem. The diagonal spherical
actions in all other types were given by J. Stembridge in [48, 49], whose work implies
that if G is simple and not of type A, then the only Levi that acts spherically on
G/B is G. ]

In our proof of Theorem 3.6 we will need the notions from this next example:

Example 2.7 (The canonical reduced expression).  The diagram D(w) of w € &,,
is the subset of [n] x [n] given by

D(w) = {(i,5) € [n]* : j <w(i), i <w™(j)} (6)

(in matrix coordinates). Fill the boxes of row i from left to right by s;, $;11, Sit2, - . .-

Define Reanonical(y) to be the canonical reduced expression for w obtained by reading
this filling from right to left along rows and from top to bottom. In &4, w is
maximally spherical if and only if Remenical(y) is a J(w)-witness for w, unless
w = 3421,4213,4231. For instance R°Mcal(3421) = 555835953 fails (S.1) when
I =J(3421) = {1,2}. However R = 5152815352 is a {1,2}-witness in this case.

Proposition 2.8 (Dihedral groups). In type Is(n) and n > 2 (where W is
the the dihedral group of order 2n), w € W is maximally spherical if and only if
l(w) <3 or w=wy.

Proof. The Coxeter diagram is e”s. W is generated by S = {s1,s2} with the
relations s? = s = id and (s;s9)" = id. Each element of W has a unique reduced
word, except wy. Now id, wy are maximally spherical by Lemma 2.3. Thus suppose
w # id,wy. If w=sy--- then J(w) ={2}. If {(w) < 3 then w = sy, 5951 Or 525152,
and it contains at most one s;, and hence (S.1) is satisfied. (S.2) says there are at
most two sy in the reduced word of w, which is true. Thus w is J(w)-spherical.

However, if 4 < {(w) < n then w = s951595; -+ and w contains at least two s1’s,
violating (S.1). Thus such w are not J(w)-spherical. Similarly, one argues the cases
where w = 87 ---. [ ]

Corollary 2.9.  Conjecture 1.9 holds for types By and G.

Proof.  First let us assume I = J(w). The associated Coxeter groups are dihe-
dral, and hence Proposition 2.8 applies.

In type By ( == ) that proposition states that all w € W are maximal-spherical.
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In type Go 1&&; , it says that only id, s1, 59, 5159, S251, S15251, 5251592, Wy are maximal-

spherical. This agrees with the geometric findings of M. Can and the first author
[15, Sections 7,8]. Thus we may assume [ C J(w). If #1 =1 and I C {1,2} then
w = wy. In By, wg = $1525182 € W(By) fails (S.2) and is not I-spherical. This
agrees with Theorem 2.4. Similarly we handle G5. Finally, if T = (), we may appeal
to the toric classification of P. Karuppuchamy (see Example 1.11). |

Theorem 2.10 (Rank two).  Conjecture 1.9 holds for G/B where G is simple of
rank two.

Proof. The B, and G4 cases are covered by Corollary 2.9.

For the root system As, first suppose I = J(w). All elements of &3 are maximally
spherical (see Example 1.6). Now we apply the results of M. Can and the first author
(Example 1.10). If #7 =1 and I C J(w) then w = wy and w = $15251 = $25152 is
I-spherical. This agrees with [38]. Finally if 7 = () then we use the toric classification
of P. Karuppuchamy (see Example 1.11). n

We now record facts that infer one kind of sphericality from another. Consistency
between the combinatorial predictions and the geometry are checked.

Proposition 2.11. Fiz 2,y € W with x <y and I C J(x)NJ(y). If y is
I -spherical, then x is I-spherical.

Proof. The contrapositive claim is Proposition 2.2. |

Proposition 2.11 is consistent with geometry. A normal H-variety Y is H -spherical
if and only if there are finitely many By-orbits in Y (here By is a Borel subgroup
of H) [42, Theorem 2.1.2]. Now, suppose X is a subvariety of Y, where Y is H-
spherical and X is H-stable. Then Y must have finitely many Bpg-orbits, which
implies X must have finitely many By orbits. Hence, X is H-spherical as well. In
our case, if x <y and I C J(x)NJ(y) then H = Ly actson X = X, and Y = X,,.

Proposition 2.12 (Monotonicity).  Let w € W and suppose I' C I C J(w). If
w 1s I'-spherical then it is I-spherical.

Proof.  Suppose R = s,, - s;,,, € Red(w) is an [I'-witness. We show R is an
I-witness. Trivially, R satisfies (S.1) with respect to I. Let

m/

Gr=JC" and g = 6 c)
z=1

2'=1

be the decomposition (1) for I’ and I, respectively. Suppose z € [m] is such that
#{iy iy € CD} > 0wl + #vertices(C). (7)

Let 24,25, ..., 2, € [m] be such that ¢ CCH. Let Eézj) be the longest element of
the Coxeter group W(E(zj)) associated to E(Zj), for 1 < j <s. Now, each W(E(Zj))
is a parabolic subgroup of W (C®)) and

[Im <uf.
j=1
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Thus, > ° E(@ézé)) < ¢(w{?), and hence

j=1
() () ) (2
Z (E(wo ) + #vertices(C )) < l(wy”) + #vertices(C™), (8)
=1

Combining (7), (8) and the pigeonhole principle implies (S.2), with respect to I’,
fails for some 27, a contradiction. Thus R satisfies (S.2) with respect to I, and
therefore R is an I-witness. [ |

Proposition 2.12 is consistent with the following (known) fact:

Proposition 2.13 (Geometric monotonicity). Suppose w € W and I' C I C J(w).
If X, is Ly -spherical, then X, is Ly-spherical.

Proof.  Any Borel subgroup in L is of the form By := L; N B for some Borel
subgroup B of G. Then B; C By := LN B. Clearly if By has an open dense orbit
in X,,, then B; must have an open dense orbit in X,,. Thus if X, is Lp-spherical,
then X,, is L;-spherical. [ |

Remark 2.14. An anonymous referee points out to us that, in view of Propo-
sition 2.13, the terminology we use of X, being “maximally spherical” if it is
Ly spherical is, in a sense, backwards. By Proposition 2.13, X, being L j,)-
spherical is a necessary condition for it to be L;-spherical for any I C J(w). Hence,
L j(w)-spherical is “least spherical”, and the “most spherical” are those that are Lg-
spherical since they are L -spherical for any I' C J(w). Due to Proposition 2.12,
a similar remark applies to our notion of w being “maximally spherical”.

Proposition 2.15.  Suppose X,Y C [r] where [s;,s,] =id forallz € X,y €Y .
Let w = wv where u € Wx and v € Wy . If I C J(w) then w is an I-spherical
element of W if and only if u is an (I N X)-spherical element of Wx and v is an
(I NY)-spherical element of Wy .

Proof.  This follows since J(u) = J(w)NX and J(v) = J(w)NY, and since any
component of Gy is a component of the induced subdiagram of Gx on the nodes
I N X or the induced subdiagram of Gy on the nodes INY. [ |

Suppose D, D’ are two Coxeter diagrams and ¢ : D < D’ is an embedding of
Coxeter diagrams (preserving edge multiplicities). Then ¢ induces an embedding
of Coxeter groups (Wp,Sp) — (Wps, Spr), their labellings [rp] < [rp/], and root
systems (®p,Ap) — (Pp, Ap/). Abusing notation, we use ¢ to indicate all of
these injections.

Proposition 2.16 (Diagram embedding).  Ifw € Wp is I -spherical for I C J(w)
then ¢(w) € Wpr is ¢(I)-spherical.

Proof.  Suppose R = s;, -5, € Redw,sp)(w) is an [-witness. We may
suppose that the ¢ sends D to the nodes of D’ labelled by 1’2", ... ,7%,. Then
S € Red(w,,.s,,,)(¢(w)) and clearly

o(I) € ¢(J(w)) = J(d(w))
(thus it makes sense to ask if ¢(w) is ¢(I)-spherical).
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§1525351545351 §152535152545351 §1853515253545351
518253515253545351 5152835154535152 52583515254535152
515253515254535152 52535254535152 5158351525354535152
§525351595354535152 51525351525354535152 §98535152545352
5152535152545352 525352545352 5153515253545352
§9535152535453S52 §152535152535453592 §152535154535152S53
515351525453515253 525351525453515253 515283515254535152853
53525453515283 5253525453515253 538152535453515253
§5153515925354535152S53 59853515253545351592S3 §15925351525354535152S53
51535152535453 51525351545351525354 51535152545351525354
§9535152545351525354 §152535152545351525354 §352545351525354
528352545351525354 53515253545351525354 5153515283545351525354

§9253515953545351525354 515253515253545351595354

Table 1: Non J(w)-spherical elements of D,

Since we have ¢([rp] — 1) ={1",2",...,rh} —¢(I), (S.1) holds for ¢(I). Now (S.2)
holds since Gy = G4y (Coxeter diagram isomorphism). [

Example 2.17 (Dy). Of the 234! = 192 many elements of the Weyl group of

2
type §< , the 38 that are not J(w)-spherical are given in Table 1. One can
4

check that the list is consistent with Propositions 2.15 and 2.16. For instance, from
Example 1.6, all elements of the Weyl groups for A;, Ay, and As are maximally
spherical. This combined with the two propositions says that any w € W (D,) that
is in a (strict) parabolic subgroup is spherical. That is why all of the words in the
table use the entirety of S.

Proposition 2.16 is consistent with Conjecture 1.9. In our proof of Theorem 3.6, we
will require the geometric version of Proposition 2.16 for the general linear group;
this is Proposition 2.19 which we prepare for now. The result holds for reductive
groups in other types. We omit the general proof as the algebraic groups setup
required is substantial.

Let n, f,N € Z-y be such that n + f < N. We now define maps between the
root systems, Weyl groups, and labelings of GL,, and GLy. Let T,, and Ty be the
subspaces of diagonal matrices in GL, and GLy, respectively.

Wn — WN
Si > Sfqg

(I)n — q)N
QG = Oy

[n—1] — [N —1]
= f4i

(9)

Abusing notation, we use ¢ to indicate all of these maps. Let h : GL,, — GLy be
given by
Id,
g+ g : (10)
Idenff

where Id; is the k x k identity matrix. The map h is compatible with the maps ¢.

That is, h(w) = t(w) for w € W,; (11)
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here we abuse notation and write h(w) to mean the image, under h, of a coset
representative of w in N(7),) is equal to a coset representative of «(w) in N(Ty).
Further, h(U,) = U,(o) where U, is the root subgroup of o € ®,,. Since h(B,) C By,
h descends to an injective map

h:GL,/B, — GLx/By. (12)
We now prove a lemma inspired by E. Richmond and W. Slofstra’s [45, Lemma 4.8].

Lemma 2.18.  The map h : GL, /B, — GLy/By induces a L j(w) -equivariant
isomorphism Xup, — X,w)py for all w € W, (the action of Lju on the right
hand side is h(L ) ).

Proof. That h : X,p, — X, (w)By follows from (11) and the Bruhat decom-
position. Thus, since X,,)p, is normal, to show that X,p, — X,y is an
isomorphism we need only show surjectivity (by Zariski’s Main Theorem).

Let K ={f+1,...,f+n—1}. The parabolic Px = LxUg, where Ux = R,(Px)
is the unipotent radical of Px. Let Bg := Lx N By be a Borel subgroup of L.
From, e.g., the proof of [45, Lemma 4.8], we recall that

By = B Uk, (13)

and that Uy is stable under conjugation by any v € (Wx)x (parabolic subgroup),

and in particular .
v UKUBN:BN. (14)

An element b € By has the form

t

where r € Ty, s € By, and t € Ty_,,_¢ (where T}, denotes the subspace of diagonal
matrices in GLy ). Thus for any such b, there exists a

rt A
ty = Id,, € H:= Id,, A€ Tf, B e Tanff
t! C
Idy
such that bt, = s = h(s). (15)
IdN—n—f
This allows us to conclude that h(B,)H = Bg. (16)
Also, notice that Hv =vH forve (Wy)k. (17)

Consider the Schubert cell of v € (Wy) k. We have v = «(w) for some w € W,.

(13 )

BNUBN/BN :) BKUKUBN/BN = BK(’UU_l)UKUBN/BN (g BKUBN/BN
Y (B, HvBy/By = h(B,)vBy/By  (17) and H C B

— h(B,)(w)Bx /By 2 h(B,w)Bx /By 2 h(BywBn/B,).
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Thus h induces a surjection from the Schubert cell of w € W, onto the Schubert
cell of t(w) = v. Since the same holds for all u = ((w') < ((w) =v € (Wy)g, the
Bruhat decomposition implies X,,p, < X,(w)By is surjective.

The map h is GL,-equivariant (where the action on the right hand side is given
by h(GL,)). Thus L;u,) C stabqr, (Xws,) implies h(Ljw)) C stabary (Xyw)sy)-
Thus the isomorphism X5, < X,(wBy 18 Lj@w)-equivariant. [ |

Proposition 2.19 (Diagram embedding; geometric version).  If X,,5, € GL, /B,
is Ly-spherical for I C J(w), then X,y € GLn/Bn is L, -spherical.

Proof. Lemma 2.18 implies that X,p, = X,(w)By as Ljw)-varieties (and hence
as Lj-varieties for I C J(w)). If I C [n — 1], then h(L;) € L,y. In particular,
since ¢(J(w)) = J(¢(w)), this implies

h(L1) € L1y C Lugw) = L)) C stabery (Xiw)sy)-

We conclude that, if X, p, is L;-spherical, then X,,p, is L;-spherical, which in
turn implies X, (,)By 18 L, -spherical. [

3. The general linear group
In what remains, G = GL,,. This is type A, _1, hence
S={si=@0i+1):1<i<n-—1}.
We express w € W(A,_1) =2 &,, in one-line notation. Here,
Jw)= e h—1:w() > w (G +1)} (18)

(7 € J(w) if j 4 1 appears to the left of j in w’s one-line notation). Indeed, the

description (18) is saying the that left descents of w are the right descents of w™?.

Let €2/ and Di=n—1]—-1={d <dy <ds3<...<d}.
By convention, dy := 0,dj1 :=n.

Definition 3.1 (GL,-version of Definition 1.1).

w € &, is I-spherical if R = s;,8;,++si,,, € Red(w) exists such that

(S.1’) sg4, appears at most once in R

(8.2) #{m:diy <ipm<d}< (") for 1<t <k+1.

w is mazximally spherical if it is J(w)-spherical.

Clearly (S.17) is the specialization of (S.1). For (S.2), the Coxeter graph induced by
the nodes of the A,,_; diagram strictly between d;_, and d; is type Ag4,—q, ,—1. In
type Ag,—a, -1, L(wo) = (dt_;lt”). Now l(wy) + (dy — dy—1 — 1) = (dt_dt*ﬁl) -1,

2
which agrees with (S.2”), once one accounts for the strict inequality used.

Let T be invertible diagonal matrices and B be the invertible upper triangular
matrices in G = GL,. Hence G/B is the variety Flags(C™) of complete flags of
subspaces in C". Here, Ly is the Levi subgroup of invertible block matrices

L[ = GLdlfdo X GLdzfdl X+ X GLdkfdk,l X GLkorl*dk' (19)

Conjecture 3.2 (GL,-version of Conjecture 1.9). Let I C J(w). X, is L;-
spherical if and only if w is I-spherical.
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Example 3.3. Let w = 35246781 € Gg. Here J(w) = {1,2,4}. If [ = J(w)
then D = {3,5,6,7}. Now, R = 51525153545352555¢57 € Red(w), but it fails (S.17).

Instead consider ,
R’ = 51595154535954555657 € Red(w).

(S.1°) holds. To verify (S.2") we check that
e d=#{m:0<r, <3} < (") =6
e 2=#{m:3<r, <5} < (>
e 0=#{m:5<r, <6< (") =1
« 0=#{m:6<r,<7}< (")
e« O0=#{m:7<r, <8 < (>

Hence w is maximally spherical.

Example 3.4. Let n =5,w = 24531. Here [ = J(w) = {1,3} and D = {2,4}.
Let R = 535152835453 € Red(w). R satisfies (S.17) but fails (S.2’) since we have
#{m : 2 <, <4} = (*77) = 3. One checks no expression in Red(w) is an
I-witness. Hence Conjecture 3.2 predicts that Xoss31 is not L j(,)-spherical. We
will prove this is true in Example 4.18. [ |

A permutation w € &,, is bigrassmannian if both w and w~! have a unique descent.
A. Lascoux-M.-P. Schiitzenberger [36] initiated the study of these permutations and
identified a number of their nice (Bruhat) order-theoretic properties.? The code of
weG,,
code(w) = (c1,¢2, ..., ¢n),

is defined by letting ¢; be the number of boxes in the i-th row of D(w) (as defined
in (6)). In fact, w is bigrassmannian if and only if its diagram consists of an b x a
rectangle. More precisely, code(w) = (07, a% 09) where f +b+g=n.

For later reference, we record a simple (and well-known) observation:

Lemma 3.5. If w is bigrassmannian with code(w) = (07, a®,09) where f+b+g=n,
then the unique descent of w is at position f + b, the unique descent of w=! is at
f+a, and in particular J(w) = {f +a}. Moreover, f+a+1 appears left of f+a
in w’s one-line notation.

Proof. The first sentence follows from elementary considerations about D(w)
(defined in (6)); see [39, Section 2.1] and more specifically [39, Proposition 2.1.2].
The second sentence is the parenthetical immediately after (18), for the case at
hand. [

Theorem 3.6. Let w € S,, be bigrassmannian. Conjecture 3.2 holds for I = J(w).
Moreover, w is J(w)-spherical if and only if

code(w) € {(07,a,09),(07,1°,09), (07,22,09)}. (20)

When w is bigrassmannian, #.J(w) = 1. Thus, the remaining bigrassmannian case
of Conjecture 1.9 (equivalently, Conjecture 3.2) not covered in the statement of

2For example, w € &,, is bigrassmannian if and only if it is join-irreducible.
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Theorem 3.6 is I = (). However, that case is covered by the toric classification of
P. Karuppuchamy (see Example 1.11). We will delay the proof of Theorem 3.6 until
Section 5, after building up the framework used for the proof.

Example 3.7. A permutation w € &,, is dominant if code(w) is a partition. For
n =5, the codes of the non J(w)-spherical dominant permutations are:

(27 27 27 07 0)7 (27 27 27 17 O)? (37 37 O? 07 0)7 (37 37 17 O? 0)7 (37 3? 17 17 0)
(3,3,2,0,0), (4,1,1,0,0), (4,1,1,1,0), (4,2,0,0,0), (4, 2,2,0,0)
(4,2,2,1,0), (4,3,0,0,0), (4,3,1,0,0), (4,3,1,1,0)

What is the general classification of these partitions? In M. Develin & J. Martin &
V. Reiner’s [18], the associated X, are called Ding’s Schubert varieties (in reference
to K. Ding’s [19]). Hence we are asking which of Ding’s Schubert varieties are L -
spherical (and more generally, one can ask which of these Schubert varieties are
L;-spherical).

We expect that Schubert varieties X, are rarely L j(,)-spherical. Theorem 3.6 gives
some concrete indication of this assertion. In view of Conjecture 3.2, we believe the
following enumerative assertion is true:

Conjecture 3.8.  lim,, o, #{w € &, : w is J(w)-spherical}/n! — 0.3

(Conjecture 3.8 should also hold for other Weyl groups of classical type.)

Suppose u € S, and v € Sy. Let u — v denote a pattern embedding, i.e., there
exists ¢ < ¢ < ... < ¢, such that v(¢1),...,v(¢,) are in the same relative order
as u(l),...,u(n). One says v avoids u if no such embedding exists.

Conjecture 3.9 (Pattern avoidance). If u € &, is not J(u)-spherical and
u— v € Gy (N > n) then v € Gy is not J(v)-spherical. Moreover, the
complete list of bad patterns are the not maximally spherical elements of &5 (listed
in Example 1.6).4

With the assistance of J. Hu, we verified that all bad cases in &,, for n < 7 can be
blamed on the G5 patterns. It seems plausible to attack this problem by extending
the ideas in Section 5. We hope to return to this in future work.

4. Polynomials

We formalize a “split-symmetry” framework on algebraic combinatorics of polyno-
mials in order to study the Levi sphericality problem.

4.1. Split-symmetry in algebraic combinatorics. Algebraic combinatorics
has, at its core, the study of elements/bases of the ring of symmetric polynomials
Sym(n) (see, e.g., [47, Chapter 7]). Obversely, A. Lascoux & M.-P. Schiitzenberger
introduced numerous asymmetric families in the polynomial ring Pol(n); see, e.g.,
[35, 41] and the references therein. We now discuss an interpolation between Sym(n)
and Pol(n):

3Since this work was submitted, Conjecture 3.8 has been proved in work of D. Brewster and the
authors [10].
4As mentioned in the Introduction, Conjecture 3.9 has since been proved by C.Gaetz [23].
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Definition 4.1 (Split-symmetry).  Fix integers

dy:=0<dy <dy<...<dp<djy1:=n
with D = {dy,...,dy}. Ilp is the subring of Pol(n) consisting of polynomials
separately symmetric in X; := {x4,_,4+1,...,24,} for 1 <i <k +1. A polynomial is
D-split-symmetric if f € Ilp.

Proposition 4.2.  IIp = Sym(d;) ® Sym(dy — dy) ® -+ - ® Sym(dy1 — di) .
This is obvious.

A partition of length n is a sequence A = (\1,..., ;) of non-negative integers with
A > -+ > \,. Let Par, be the set of such partitions. The Schur polynomial is
sy = y_pa’, where the sum is over semistandard Young tableaux of shape A with
" xS The set {sy(z1,...,2,) : A € Par,} is a

=11

entries from [n]. Here, 27 =[]
Z-linear basis of Sym(n).

Definition 4.3. The D-Schur polynomials are syi__ e 1= s31(X1)s32(X2)...550 (Xk),
where (A!, ..., A\%) € Parp := Parg,_q, X -+ X Parg,,_q, .

By Proposition 4.2, and the basis property of (classical) Schur polynomials, we have

Corollary 4.4.  {sy__: (AY,...,\¥) € Parp} forms a basis of Ip.

4.2. Key polynomials. The Demazure operator is

xjf - xj+13jf

m; : Pol,, = Pol, f— ,
Lj— XjH
where s;f = f(z1,..., 241,24, ...,%n).
A weak composition of length n is a sequence a = (i, ...,a,) € Z%,. Let Comp,

denote the set of these weak compositions. Given o € Comp,,, the key polynomial
Ko 18 % =" 20, if « is weakly decreasing. Otherwise, set

Ko = T;j(ka) where @ = (aq, ..., 0541, 05,...,04) and o1 > ;. (21)

The key polynomials for a € Comp,, form a Z-basis of Z[z1,...,z,]; see work of
V.Reiner & M. Shimozono [44] (and references therein) for more on k,. Since it
is known that the m; operators satisfy the commutation relations mw; = m;m; (for
|i — j| > 1) and the braid relations m;m; 17 = mmmiey (for 1 < i <n—1), the
above recurrence is well-defined.

Define a descent of a composition o to be an index j where «; > oj;;. Let
Comp,, (D) be those a € Comp,, with descents contained in D = {dy,...,d;} with
dy < ...<dy.

Although we will not need it in this paper, let us take this opportunity to prove:

Proposition 4.5.  {k, : « € Comp,, (D)} forms a Z-linear basis of 1.

Proof. If d; < j < di;1, then mj(ko) = mj(mj(ka)) = mj(ka) = Ka (since it is
also true that 73 = 7;). Thus,
. Tjka — Tj4+1SjRa

Ko = <= (Tj — Tjt1)Ra = TjKq — Tj+15jKq
Tj— Tjp1

<= (Ko — 8jKa)Tjit1 =0 <= Ko = SjKaq.
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Hence k, € IIp. Suppose a nonzero g € Ilp is given. By Corollary 4.4,

g = E CAL X2 AkSAL . Ak,
ALA2, Ak

where each ¢y 2y« is a scalar and (A, A2,..., \F) € Parp.

Let A be the parts of A" be written in non-decreasing order (i.e., a “reverse
partition”). Then let a = A, N e Comp,, be obtained as the concatenation
of these reverse partitions. Thus, a will have descents at positions contained in D.
Hence, by the first paragraph of this proof, x, € IIp. It is well-known, and not
hard to show, that

[2%kq =1 (22)

(this can be deduced from, e.g., Kohnert’s rule [33]). Let < be the reverse lexico-
graphic order on monomials. Among (A, ..., A\*) € Parp such that cyye e # 0,
pick the unique one such that « (as constructed above) is largest under <. Now, «
is the largest (monomial) exponent vector appearing in g under <. This follows by
an easy induction. The base case is that that & is the < largest exponent vector of
s, which is well-known.

Hence in view of (22), g1 := g — cu2. akka € Ilp and the largest monomial
appearing in g¢; is strictly smaller in <. Therefore we may repeat this argument
with ¢g; to obtain g and so on. As this process eventually terminates with g, = 0.
The result follows. |

Example 4.6. Let n =4 and D = {2}, then
g= xla:%m + x?xgm + xlxgacg + .T%IQIB + x%x% ellp
= 5(2,1),(1,0) T 5(2,2),(0,0) = K1,2,0,1 T K2,2,0,0-

Now, (1,2,0,1),(2,2,0,0) € Comp,,(D), in agreement with Theorem 4.5.

Essentially the same argument for Proposition 4.5 establishes an analogous result
for Schubert and Grothendieck polynomials. Split-symmetry of these polynomials
was studied in connection to degeneracy loci, in [13, 14].

4.3. Split-symmetry and multiplicity-free problems. Consider two disparate
notions of multiplicity-freeness that have been studied in algebraic combinatorics:

(MF1) Suppose f € Sym(n) and f = Z CAS)-
AEPary,
Then f is multiplicity-free if ¢, € {0,1} for all A. J.Stembridge [48]
classified multiplicity-freeness when f = s,s,. For more such classifications
see, e.g., [3, 51, 25, 5, 7, 4].

(MF2) Now let f = Z cax® € Pol,.
acComp,,
[ is multiplicity-free if ¢, € {0,1} for all a. In recent work of A.Fink &
K. Mészéaros & A. St. Dizier [21], multiplicity-free Schubert polynomials are
characterized.

We unify problems of type (MF1) and (MF2), as follows:
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Definition 4.7 (D-multiplicity-freeness).
[= Z Cxaksa ke € 1p (23)
(Al,..,\F)eParp
is D-multiplicity-free if cyi y« € {0,1} for all (A,...,\F) € Parp.

If D =0, Definition 4.7 is (MF1). When D = [n — 1], notice Parp = Comp,, and
we recover (MF2).

Definition 4.8 (Composition patterns).  Let

Comp := G Comp,,.

n=1

For ao = (ay,...,qp), 8 = (B1,...,0k) € Comp, a contains the composition pattern
B if there exists integers j; < jo < --- < ji that satisfy:

e (aj,,...,qj,) is order isomorphic to 8 (a;, < ay, if and only if 55 < 5;),
* ’&js_&jt’ Z |ﬁ8_ﬁt|
The first condition is the naive notion of pattern containment, while the second

allows for minimum relative differences. If o does not contain 3, then «a avoids 3.
For S C Comp, a avoids S if a avoids all the compositions in 5.

Example 4.9.  The composition (3,1,4,2,2) contains (0,1,1). It avoids (0,2, 2).

Define KM = {(0,1,2), (0,0,2,2),(0,0,2,1), (1,0,3,2), (1,0,2,2)}.
Let KM,, be those o € Comp,, that avoid KM.

Theorem 4.10.  k, is [n — 1]-multiplicity-free if and only if o € KM,,.

The proof is given in the companion paper [28]. The following problem asks for a
complete generalization of Theorem 4.10:

Problem 4.11. Fix D C [n — 1]. Characterize o € Comp,, (D) such that x, is
D-multiplicity-free.

C. Ross and the second author [46, Theorem 1.1] provide a (positive) combinatorial
rule for computing the D-split expansion of k,; this rule is reproduced in Sec-
tion 5.°> As we explain in the next subsection, this problem is of significance to the
sphericality question.

In Example 1.11, we referred to the following compound result:

Theorem 4.12 (cf. [32] [50]). Let w e W =&,,. The following are equivalent:
(I) X C GL,/B is a toric variety (with respect to the maximal torus T, i.e.,
Xy is Lg-spherical).
(II) w=s,, -8, with r; #r; foralli#j.
(III) w avoids 321 and 3412.

® Similarly, it would also be interesting to generalize [21]. There is a formula of A.Buch &
A. Kresch & H. Tamvakis and the second author [13] for the split expansion of Schubert polynomials.
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Proof.  The equivalence of (I) and (II) is in [32], whereas the equivalence of (II)
and (III) is proved in [50]. n

Using Theorem 4.10 we have an independent proof of (I) <= (III), that we omit
for sake of brevity. Since each of the 21 bad patterns in &5 from Example 1.6
contains 321 or 3412, Theorem 4.12 gives evidence for Conjecture 3.9, because of
Proposition 2.13.

4.4. Sphericality and multiplicity-free key polynomials. The key poly-
nomials have a representation-theoretic interpretation [30, 40, 44]. Let X(T) =
Hom(T,C) be the character group of T, with X(T)" the dominant integral weights.
For A € X(T"), £, denotes the associated line bundle on G/B, as well as its restric-
tion to Schubert subvarieties (cf. [6, Chapter 2]). Given w € W and A € X(T')*"
the Demazure module is the dual of the space of sections of L, H*(X,, L£y)* [17].
This space has a natural B-module structure induced by the action of B on X, .
In [44], the authors show that

Kw» is the B-character of HY(X,, £3)%, (24)
where WA = ()\w—l(l), ey )\w—l(n)). (25)

(A similar statement holds for all other finite types.)

The following summarizes the fundamental relationship between Levi spherical Schu-
bert varieties, Levi subgroup representation theory, Demazure modules, and split-
symmetry:

Theorem 4.13. Let A€ Par,, and we&,,. Suppose I C J(w) and D = [n—1]—1.

(I) H°(Xy, L))" is an L;-module with character k.. Hence kyy is a nonnegative
integer combination of D -Schur polynomials in Ilp .

(IT) X, is Ly-spherical if and only if kyx is D -multiplicity-free for all A € Par,.

Proof. Since I C J(w), (3) implies L; acts on X, .

(I) The action of B on H°(X,,, £))* is induced by the left multiplication action of B
on X, [17]. In the same way, the left multiplication action of L; on X, induces the
L; action on H°(X,,, £y)*. By (24), a diagonal matrix x € B acts on H°(X,,, £,)*
with trace k.. The same diagonal matrix z € L; acts identically on H°(X,,, £y)*,
and thus also has trace k.. Thus k) is the character of an L;-module. Since L;
is reductive, and we work over a field of characteristic zero, character theory implies
Kwx May be written a nonnegative integer combination of characters of irreducible
Lr-modules. That is, a nonnegative integer combination of D-Schurs in IIp.

(II) There are numerous equivalent characterizations of spherical varieties found
in the literature and collected in [42, Theorem 2.1.2]. Of primary interest for us is
the following: A quasi-projective, normal R-variety Y is R-spherical for a reductive
group R if and only if the R-module H°(Y, £) is multiplicity-free for all R-linearized
line bundles L.

All Schubert varieties are quasi-projective and normal [31]. The line bundles on
G /B, when G is of type A, are indexed by partitions in Par,. Every line bundle
on X, is the restriction of a line bundle on G/B [11, Proposition 2.2.8].
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Since Ly, for A € Par,, is G-linearized [11, §1.4], its restriction to X,,, which
we also denote by L), is Ly-linearized. Since L; is a product of general linear
groups, H%(X,, L) is a multiplicity-free L;-module if and only if H°(X,,, £y)* is a
multiplicity-free L;-module. Thus, via the equivalent characterization of spherical
varieties, we have that X,, is Lr-spherical if and only if the L;-module H°(X,,, £))*
is multiplicity-free for all A € Par,. By (I), this holds if and only if k) is D-
multiplicity-free for all A € Par,,. [ |

Remark 4.14.  We similarly expect that Theorem 4.13 holds for X, in any G/B
and that X, is Ly-spherical if and only if all Demazure modules are multiplicity-free
L;-modules. We plan to explicate this in future work (with Y. Gao).

4.5. Consequences of Theorem 4.13. First, we illustrate how to reprove Propo-
sition 2.13, in type A,_1, but from symmetric function considerations:

Corollary 4.15 (Geometric monotonicity (type A,_1)).  Suppose w € &,, and
I'CICJ(w). If X is Ly -spherical, then X,, is Lj-spherical.

Proof. Suppose X, is not Lj-spherical. By Theorem 4.13(II), there exists
A € Par, such that k., is not D-multiplicity-free, where

D=n—-1]-I={d <dy <...<d}.
That iS, Ry = Z CAL, AFSXL )k (26)

(A\L,...,\k)eParp
and there exists (A',..., \*) € Parp such that cy
By induction, we may assume #(I — I') = 1. Thus

D = [n—l]—I’:{dI<d2<...<df<d}<df+1<...<dk}2D.
In general, let p € Par,. Then it is standard (see, e.g., [47, (7.66)]) that

Su(z1, ... xm) = Z Cr gsn(T1, -, Ta)80(Tanty - -+, Tm) (27)
m,0

-----

where C’j:ﬂ > 0 is the Littlewood-Richardson coefficient. Now apply (27) to each
term of (26): u = X, m = d; —d;_; and a = dp — dy. Thereby, we obtain a
D’-Schur expansion of k), in IIp/ which also must have multiplicity. Now apply
Theorem 4.13(II) once more. n

Second, towards Problem 4.11, we offer:

Theorem 4.16. Suppose o€ KM, NComp, (D). ko is D-multiplicity-free if either:
(I) o € Comp,, has all parts distinct, that is, o; # o for i # j; or
(II) « also avoids (0,0,1,1).

Proof.  (I): Let A be the partition obtained by sorting the parts of a in decreasing
order. Let w € &,, be such that wA = « (this permutation is unique by the distinct
parts hypothesis). We claim w avoids 321 and 3412. Suppose not. Observe that
since 321 and 3412 are self-inverse, this means w™! contains a 321 or 3412 pattern.
In the former case, let i < j < k be the indices of the 321 pattern.
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Then (az, o, o) = (Ay-1(3), Aw-1(j)s Aw—1(y) and since w=(i) > w(j) > w(k),
we have Ay,-13) < Ay-1(j) < Aw-1(x) Which means o; < a; < oy, is a (0, 1, 2)-pattern,
a contradiction. Similarly, one argues that if w™! contains a 3412 pattern, then «
contains (1,0, 3,2), another contradiction.

Hence w avoids 321 and 3412. So, by Theorem 4.12, X, is Ly-spherical. Thus,
by Theorem 4.13(I1), kyx = Ko is multiplicity-free. Now apply Corollary 4.15 (or
Proposition 2.13).

(IT) Let X be as above. Since o might not have distinct parts, there is a choice of
w such that wA = a. Choose w such that if

a; =ajand i < j=w (i) <w (). (28)

We claim w (equivalently w™!) avoids 321 and 3412. Suppose not. Say w™!

contains 321 at positions i < j < k. This means (Ay-1(5) < Ap-1(j) < Aw-1(k))
by (28) and hence a; < a; < oy forms a (0,1,2) pattern, a contradiction. Thus
suppose w~ ! contains a 3412 pattern at i < j < k < £. By the same reasoning, we
know «a; > aj, 05 < ap > g, 04 > ay.

Case 1: (o = o) If ap = a; + 1 then oy = o (otherwise we contradict (28).
Then « contains (0,0, 1,1), a contradiction. Otherwise oy, > o;+2, and « contains
(0,0,2,2) or (0,0,2,1).

Case 2: (a; > «j) Since oy > ay > «;, « contains (1,0,3,2),(1,0,2,2), a
contradiction.

Hence w™! avoids 321 and 3412, and we conclude as in (I). n

Combining Theorem 4.16 with the arguments of [28, Section 3.1] gives a relatively
short proof of Theorem 4.10 under the additional hypothesis (I) or (II). However,
there is an obstruction to carrying out the argument to prove Theorem 4.10 com-
pletely. Consider o = (0,0,1,1). Indeed &, is [n — 1]-multiplicity-free. Following
the reasoning of the argument, A = (1,1,0,0). The permutations w € &4 such that
wA = a are 3412,4312,3421,4321, but each of these contains 321 or 3412. In [28],
we prove Theorem 4.10 using a different, purely combinatorial approach.

Third, we examine the following observation that is immediate from Theorem 4.13(1I):

Corollary 4.17. Let we&,,, I C J(w), and N3¢ = (n. n—1,n—2,...,3,2,1).
If Kypstairease 18 mot D -multiplicity-free then X, is not Ly-spherical.

Example 4.18. Let n = 5 and w = 24531. Then X, C GLs;/B. In Ex-
ample 3.4, we showed w is not J(w)-spherical. We now show this agrees with
Conjecture 1.9. Let I = J(w) = {1,3} and thus D = {2,4}. Since w™' = 51423,
wAstIrease — qy(5.4.3,2.1) = (1,5,2,4,3). Now, Kystairease € IIp and
R15243 = S(54),2,1),3) T 5(5.4),32),(1) T 5(5.2),(32),3) T 25(5,3),(3,2),(2)

T 5(5,9),22),3) T 5(5,2),33),2) T 256.2),(4.2),2) T 5(53),3:3),(1) T 5(5,3),(4,1),(2)

T 5(5,3),3.1),3) T 55:3),(4,2),1) T 5(5,2),(4,3),(1) T 5(5,2),(4,1),(3)

+5(5,4),2,2),2) T 5(5.4,3.1,(2) T 5(6,1),4.2),8) T 5(5,1),(48).(2) (29)

By Corollary 4.17, the multiplicity in (29) says that X,, is not L j(,)-spherical.

A theorem of V. Lakshmibai & B. Sandhya [34] states that X, is smooth if and only
if w avoids the patterns 3412 and 4231. Hence Xs4531 is smooth, but not spherical.
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Theorem 4.13 does not give an algorithm to prove X, is [I-spherical, because it
demands that one check k,, is D-multiplicity-free for infinitely many A. A complete
solution to Problem 4.11 should give a characterization of when X,, is I-spherical.
However, one can obtain an algorithm without solving that problem. The next claim
asserts this infinite check can be reduced to a single check.

Conjecture 4.19.  The converse of Corollary 4.17 is true.

Let us also state a weaker assertion:

Conjecture 4.20. If X,, is not Lj-spherical, there exists Adstinct — (A, > \; >
... > \,) such that k,yaistinee is not D-multiplicity-free.

Conjecture 4.21. Fix D = {d; < dy < ... < d},} and suppose «,a' € Comp, (D)
where o = (ay,...,q;_1,;+ 1,aj41,...,q,) for some j such that a; +1 # «; for
all i # j. If Kk, is not D-multiplicity-free, then k,+ is not D-multiplicity-free.

Lemma 4.22.  Suppose I C J(w) and D =[n—1]—1I.
Let \¥stinet — (X; > Xy > ... > \,). Then wA¥'"t € Comp, (D).

Proof. If d ¢ D then d € I C J(w). Hence w'(d) > w™'(d+ 1) and
)\fjitfl(‘j)t < )\ifitf‘(lc‘;il). So all descents of wA¥ ™t must be in D, as desired. ]
Proposition 4.23.  Conjecture 4.21 = Conjecture 4.19.

Proof.  Suppose X, is not L;-spherical for some I C J(w).

First we show the weaker claim that Conjecture 4.21 = Conjecture 4.20: By
Theorem 4.13(II), there exists A such that wA € Comp, (D) and kK, is not D-
multiplicity-free. If \© := X\ has distinct parts, let Adstinet .— X\ If not, consider
the smallest jo such that A\;; = A;,41. Then define for 1 < 35 < j

)\(O’j) = ()\1 + 1, /\2 + ]., ceey /\j + 17 /\j-l—la )‘j+27 cee )\jO’ )‘jo-l-la ceey /\n> (30)

We let A0 = X0 Since A% and A%~V only differ at position j (by a
single increment), it is immediate from the definitions (25) and (30) as well as the
minimality of j, that the set of descent positions Desc(wA(®7)) of wA(®7) contains
Desc(wA®7 =) for 1 < j < jo. Now repeat this modification with A1) := \(0o)
replacing the role of A(®). The minimal j; such that )\ﬁ) = )‘;i)ﬂ satisfies 71 > Jjo;
we similarly construct new partitions A7) where 1 < j < j;. Hence after a finite
number of iterations, we arrive at \3stnct .= \(@) .= \(9=1Ja-1) with distinct parts.

Inductively, Desc(wA®)) C Desc(wA?) C D,

where the rightmost containment is by Lemma 4.22. Hence, wA®7) € Comp, (D) for
0<p<gqgand 1<j<j, Conjecture 4.21 says that if « = wA®7~Y € Comp, (D)
and o = wA®7) € Comp, (D) such that x, is not D-multiplicity-free, then r,+ is
not D-multiplicity-free. Applying Conjecture 4.19 repeatedly we see by induction
that K, ydaistines is not D-multiplicity-free, as desired.

Conjecture 4.21 = Conjecture 4.19: By the previous paragraph, assume there exists
AOF = ©distinct gch that ki yaisinee is not D-multiplicity-free.
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If MY .= (/\[10]—1—1, )\[20], o )\L?]), then by Conjecture 4.21, k) is not D-multiplicity-
free. Iterating this argument, it follows that if Al := (/\[10] +h, )\[20], e )\E]) for any
h > 1, the same conclusion holds. For the same reason, if A > h’ we can ensure
A2 = O A AT A has that ke is not  D-multiplicity-free.
Continuing this line of reasoning, we can conclude that there is » € N such that
N o= pstairease 4 (p ) and Ky is not D-multiplicity-free.

Now, either directly from the definition of key polynomials from Section 4.2, or, e.g.,
from Kohnert’s rule [33] we have:

n
KL’U}X — <H I:) X /ﬁ;w)\staircase. (31)
=1

If o € Pary then it is easy to see from the definition of Schur polynomials that

W1 ya) X su(W1, - ¥a) = Spar, (Y15 -, Ya), (32)
where r? + = (r+ p, 7+ po, .., 7+ Ha).

Combining (31), (32) and the presumption that  y is not D-multiplicity-free, we
see that Ky ystaircase is not D-multiplicity-free, as desired. [ ]

In turn, it seems plausible to prove Conjecture 4.21 using [46, Theorem 1.1]. We
hope to address this in a sequel. For now, we offer the following evidence for its
correctness.

Proposition 4.24.  Conjecture 4.21 holds for D = [n — 1].

Proof.  This follows from Theorem 4.10 in this fashion: Suppose &, is not [n—1]-
multiplicity-free since (aq, ap, ac, ag) is the pattern (1,0,3,2). If j & {a, b, c,d} then
al still contains (1,0,3,2). If j = a then (by the hypothesis of Conjecture 4.21)
aqa+1 # ag hence ol contains (1,0, 3,2) at the same positions. The same conclusion
holds if j = b, ¢,d. Hence by Theorem 4.10, £, is not [n — 1]-multiplicity-free. The
other cases are left to the reader. [ |

5. Proof of the bigrassmannian theorem

Using the preparation in Sections 2 and 4, we are now ready to prove Theorem 3.6.
First, we prove that three classes (20) of bigrassmannian w € &,, are J(w)-spherical.
Suppose code(w) = (07, a,09). Then the canonical reduced word (see Example 2.7) is

Rcanonlcal(w) = SftaSfta—1 " SF+2Sf41.

By Lemma 3.5, J(w) = {f+a}. Since R®°mi¢al(y)) uses distinct generators, it is the
J(w)-witness, as desired. Similarly, one argues the case that code(w) = (04, 1°,09).
Finally, suppose code(w) = (0/,22,09). In this case,

Rcanonlcal(w) = S/1287 4157435 f10-

Since (by Lemma 3.5) J(w) = {f + 2} we see that R°mcal(y) is again a J(w)-
witness, as desired.
Conversely, suppose that w € G,, is bigrassmannian, but not one of the three cases

(20). Thus, D(w) either has at least three columns, or at least three rows. Assume
it is the former case (the argument for the latter case is similar).
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Look at the canonical filling of D(w). In the northwest 2 x 3 subrectangle, the
filling, read right to left and top down is

Sf+35f+25f+15[+4Sf+35f+2- (33)

Let u be the associated permutation and R* € Red(u) be the expression (33). R" is
a subexpression of Re°mical(y)) . Hence by Theorem 2.1, u < v. By inspection, any
R" € Red(u) has at least two sfio’s. By assumption, J(w) = {d} where d > f 43
(here we are again using Lemma 3.5). So every R’ fails (S.1’) (with respect to
J(w)). Thus by Proposition 2.2, w is not J(w)-spherical.

Next, we show that for w € &,, satisfying (20), X, is L) -spherical. First suppose
code(w) € {(07,a,0%), (07,1°,09)}.

The above analysis shows that Reemical(y)) satisfies Theorem 4.12(I1). Hence X, is
a toric variety (by the equivalence (I) <= (II) of said theorem). By Corollary 4.15
(or Proposition 2.13), X,, is L ) -spherical. Lastly, suppose

code(w) = (0/,2%,09).

First, assume f = 0. Hence in this case the permutation is w' = $5815352 € S4.
Now w’ = 3412 in one-line notation, and J(w') = {2}.

Claim 5.1. X349 C GLy/B is Loy -spherical.

Proof of Claim 5.1: Fix B* := SL,N B, and T% := SL,;NT as our choice of
Borel subgroup and maximal Torus in SLs. For I C 2[3], let L3® < P7® denote the
associated Levi and parabolic subgroups in SL;. We prove Xgyjopss C SLy/B* is
L?g}—spherical. Since SL,/B* = GL,/B as SL,-varieties, this induces an L?‘;}—
equivariant isomorphism between Xssiopss and Xzuiop. Thus if Xsu19pss is L‘E‘;}—
spherical, then Xs4i9p is Lf{;}-spherical. Since L?‘;} < Lygy, this in turn implies
X3412B is L{gy-spherical.

The canonical projection 7 : SLy/B* — SLys/ P 5, induces a birational morphism

Xanzpes = Xaanopes, = SLa/ Pl gy

Since 7 is SLs-equivariant, this birational morphism is L?Z}—equivariant. Thus
X3419pss 1S L?g}—spherical if and only if SLy/ P{sf’3} is L?g}—spherical. As noted in
the proof of Theorem 2.4, the latter holds if and only if SLs/Pg, x SLi/PF 4
is spherical for the diagonal SL, action. Finally, by [49][Corollary 1.3.A(ii)] this
diagonal action is spherical. [ |

For general f, since w = Syi087415£43Sr42, in fact w = ¢(w') where ¢ is the

Dynkin diagram embedding of S into P that sends 1’ — f 41,

2'— f+2, 3+ f+ 3. This induces a map of the Weyl groups that sends w’ to
w. Now Claim 5.1 and Proposition 2.19 imply that X, is L j,)-spherical.

It remains to show that if w € &,, does not satisfy (20), then X, is not L yw)-
spherical. Now, D(w) either contains a 2 x 3 rectangle or a 3 x 2 rectangle. Let us
assume we are in the former case (the other case is similar, and left to the reader).
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Claim 5.2. If D ={1,2,3,...,a—1,a+1,a+ 2}, and a > 3, then Kpaga1 is
not D -multiplicity-free. Spa—s (1),(1),(1,0),0,...0 appears in the expansion (23) of Kpao1,
with multiplicity (at least) 2.

Proof of Claim 5.2: We recall [46, Theorem 1.1] which gives a nonnegative
combinatorial rule to compute the expansion (23) of f = k, for any a € Comp,,(D).
Let w[a] be the unique permutation in &, such that code(w[a]) = a (ignoring any
trailing 0’s). That such a permutation exists and is unique follows from, e.g., [39,
Proposition 2.1.2].

We now construct a tableau T[a]. Given w® = wla], let i; be the position of the
last descent of w) | and let i5 be the location of the rightmost descent left of iy in
wWs;, (so iy < i1). Repeat, defining i; to be the position of the rightmost descent
to the left of ;1 in wWs; s, - Si;_,- Suppose no descent appears left of 7; in
wWs; 55, -+ 5;,. In that case, stop, and, we define the first column of T'[a] to be
filled by i; > iy > ... > i; (from bottom to top). Now let w® = wWs;s;, - - Si,
and similarly we determine the entries of the second column. We repeat until we
arrive at k such that w® = id.

An increasing tableau T of shape A is a filling of the Young diagram A\ with positive
integers that is strictly increasing, left to right along rows, and top to bottom along

columns. Let row(7T) be the right to left, top to bottom row reading word of T'.
Also let min(7") be the value of the minimum entry of 7',

Given a = (ay,as,...) such that s, s, -+ is a reduced expression (for some per-
mutation), we will let EGLS(a) be the Edelman-Greene column insertion tableau; we
refer to [46, Section 2.1] for a summary of this well-known concept from algebraic
combinatorics. Below, we will mildly abuse notation and refer to a and s, sg, - - -
interchangeably.

Theorem 5.3 (Theorem 1.1 of [46]). Let o € Comp, (D) and f = k. The
coefficient cy1__y» in the expansion (23) counts the number of sequences of increasing
tableauz (T, ..., Ty) such that

(a) T; is of shape \'
(b)
(¢) row(Ty) - row(T3) - - - row(Ty) € Red(w|al]); and
(d) EGLS(row(Th) - row(T3) - - - row(Ty)) = Tla].

min(Ty) > 0, min(Tz) > dy, ..., min(Ty) > dp—1;

In our particular case, a = (0%,2,1). Hence,
wla] =12---aa+3 a+2 a+1 (one line notation) = S,41Sa+25+1 = Sat+2Sa+15a+2-

Then the two tableau sequences are

@3 la+1]a+2],|a+1],0,...,0), 0% |a+2]|[a+1]|a+2]0,...,0).

a+1l|a+2
Here T'[a] = . It is straightforward to check the conditions of Theorem 5.3

a+2

are satisfied. In particular, condition (d) is requiring that the Edelman-Greene
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column insertions of a +1 a+2a+1 and a+2 a+ 1 a + 2 both give T[a]; this
is true. (In fact these are the only valid tableau sequences for the datum, although
we do not need this.) ]

Claim 5.4. Let

D={1,23,....f,f+ L, f+2,....f+(a=1),f+(a+ 1), f+ (a+2)}
and o = (3/,0%,2,1). Then k, is not D' -multiplicity-free.

Proof of Claim 5.4: Straightforwardly from Kohnert’s rule [33],

f
Ra = H@)’ X Koo 2,1 (T 41, Tpt2, - - s Tfp(at2))- (34)
i=1
Suppose cy1 2 s 4 is the coefficient of sy1 2334 . in the D-expansion (23) of
Koa,1- Let c(3),3),..3) 02,0808, be the D’'-split-expansion of k. (here there are
f-many (3)’s). Then (34) implies

C(3),(3),-,(3),ALAZ A3 A4 = CX1 32 A3 24 .

Now apply Claim 5.2. [ |
Since code(w) = (04, a’,09) where a > 3 and b > 2,
wl=123---f f+b+1 f+b+2 -+ f4+bta f+1 f4+2 -+ f+b -+,
where the rightmost “---” contains the remaining numbers from [n] listed in in-
creasing order. Let A=3,3,...,3,2,1, 0,0,...,0

S—— ——

f-many (n — f — 2)-many

Thus WA 1= (Ny1(1), - -+ s Aui(my) = (37,0%,2,1,0"7/7272),

Set D" = D'U{f+(a+3), f+(a+4), f+(a+5),...}. Hence it follows from Claim 5.4
that K,y is not D”-multiplicity-free. By Lemma 3.5, J(w) = {f + a}, and hence
[n—1] — J(w) = D"; therefore, X,, is not L j(,)-spherical, by Theorem 4.13(II). =
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