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Abstract

This paper addresses the problem of model-free
reinforcement learning for Robust Markov Deci-
sion Process (RMDP) with large state spaces. The
goal of the RMDP framework is to find a policy
that is robust against the parameter uncertainties
due to the mismatch between the simulator model
and real-world settings. We first propose the Ro-
bust Least Squares Policy Evaluation algorithm,
which is a multi-step online model-free learning
algorithm for policy evaluation. We prove the
convergence of this algorithm using stochastic ap-
proximation techniques. We then propose Robust
Least Squares Policy Iteration (RLSPI) algorithm
for learning the optimal robust policy. We also
give a general weighted Euclidean norm bound on
the error (closeness to optimality) of the resulting
policy. Finally, we demonstrate the performance
of our RLSPI algorithm on some standard bench-
mark problems.

1. Introduction

Model-free Reinforcement Learning (RL) algorithms typ-
ically learn a policy by training on a simulator. In the RL
literature, it is nominally assumed that the testing environ-
ment is identical to the training environment (simulator
model). However, in reality, the parameters of the simulator
model can be different from the real-world setting. This can
be due to the approximation errors incurred while modeling,
due to the changes in the real-world parameters over time,
and can even be due to possible adversarial disturbances
in the real-world. For example, in many robotics appli-
cations, the standard simulator parameter settings (mass,
friction, wind conditions, sensor noise, action delays) can
be different from that of the actual robot in the real-world.
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This mismatch between the training and testing environment
parameters can significantly degrade the real-world perfor-
mance of the model-free learning algorithms trained on a
simulator model.

The RMDP framework (Iyengar, 2005; Nilim & El Ghaoui,
2005) addresses the planning problem of computing the
optimal policy that is robust against parameter uncertainties
that cause the mismatch between the training and testing
environment parameters. The RMDP problem has been ana-
lyzed extensively in the tabular case (Iyengar, 2005; Nilim
& El Ghaoui, 2005; Wiesemann et al., 2013; Xu & Man-
nor, 2010; Yu & Xu, 2015) and under the linear function
approximation (Tamar et al., 2014). Algorithms for learning
the optimal robust policy with provable guarantees have
been proposed, both in the model-free (Roy et al., 2017)
and model-based (Lim et al., 2013) reinforcement learning
settings. However, the theoretical guarantees from these
works are limited to the tabular RMDP settings. Learning
policies for problems with large state spaces is computa-
tionally challenging. RL algorithms typically overcome this
issue by using function approximation architectures, such
as linear basis functions (Lagoudakis & Parr, 2003), repro-
ducing kernel Hilbert spaces (RKHS) (Yang & Wang, 2020)
and deep neural networks (Lillicrap et al., 2016). Recently,
robust reinforcement learning problem has been addressed
using deep RL methods (Pinto et al., 2017; Mankowitz et al.,
2020; Zhang et al., 2020; Derman et al., 2018; Vinitsky et al.,
2020). However, these works are empirical in nature and do
not provide any theoretical guarantees for the learned poli-
cies. The problem of learning optimal robust policies with
provable performance guarantees for RMDPs with large
state spaces has not been well studied in the literature.

In this paper, we address the problem of learning a policy
that is provably robust against the parameter uncertainties
for RMDPs with large state spaces. In particular, we pro-
pose an online model-free reinforcement learning algorithm
with linear function approximation for learning the opti-
mal robust policy, and provide theoretical guarantees on
the performance of the learned policy. Our choice of lin-
ear function approximation is motivated by its analytical
tractability while providing the scaling to large state spaces.
Indeed, linear function approximation based approaches
have been successful in providing algorithms with provable
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guarantees for many challenging problems in RL, includ-
ing online model-free exploration (Jin et al., 2020; Yang &
Wang, 2020), imitation learning (Abbeel & Ng, 2004; Arora
et al., 2020), meta reinforcement learning (Wang et al., 2020;
Kong et al., 2020), and offline reinforcement learning (Wang
et al., 2021; Duan et al., 2020). Robust RL is much more
challenging than the standard (non-robust) RL problems due
to the inherent nonlinearity associated with the robust dy-
namic programming. We overcome this issue by a cleverly
designed approximate dynamic programming approach. We
then propose a model-free robust policy iteration using this
approach with provable guarantees. Our algorithmic and
technical contributions are as follows:

(i) Robust Least Squares Policy Evaluation (RLSPE(�)) al-
gorithm: A learning-based policy iteration algorithm needs
to learn the value of a policy for performing (greedy) policy
improvement. For this, we first propose RLSPE(�) algo-
rithm, a multi-step, online, model-free policy evaluation
algorithm with linear function approximation. This can
be thought as the robust version of classical least squares
based RL algorithms for policy evaluation, like LSTD(�)
and LSPE(�). We prove the convergence of this algorithm
using stochastic approximation techniques, and also charac-
terize its approximation error due to the linear architecture.

(ii) Robust Least Squares Policy Iteration (RLSPI) algo-
rithm: We propose the RLSPI algorithm for learning the
optimal robust policy. We also give a general L2-norm
bound on the error (closeness to optimality) of the resulting
policy at any iterate of the algorithm. To the best of our
knowledge, this is the first work that presents a learning
based policy iteration algorithm for robust reinforcement
learning with such provable guarantees.

(iii) Finally, we demonstrate the performance of the RLSPI
algorithm on various standard RL test environments.

1.1. Related Work

RMDP formulation to address the parameter uncertainty
problem was first proposed by (Iyengar, 2005) and (Nilim &
El Ghaoui, 2005). (Iyengar, 2005) showed that the optimal
robust value function and policy can be computed using the
robust counterparts of the standard value iteration and policy
iteration. To tackle the parameter uncertainty problem, other
works considered distributionally robust setting (Xu & Man-
nor, 2010), modified policy iteration (Kaufman & Schaefer,
2013), and more general uncertainty set (Wiesemann et al.,
2013). We note that the focus of these works were mainly
on the planning problem in the tabular setting. Linear func-
tion approximation method to solve large RMDPs was pro-
posed in (Tamar et al., 2014). Though this work suggests
a sampling based approach, a general model-free learning
algorithm and analysis was not included. (Roy et al., 2017)
proposed the robust versions of the classical model-free rein-

forcement learning algorithms such as Q-learning, SARSA,
and TD-learning in the tabular setting. They also proposed
function approximation based algorithms for the policy eval-
uation. However, this work does not have a policy iteration
algorithm with provable guarantees for learning the optimal
robust policy. (Derman et al., 2018) introduced soft-robust
actor-critic algorithms using neural networks, but does not
provide any global convergence guarantees for the learned
policy. (Tessler et al., 2019) proposed a min-max game
framework to address the robust learning problem focusing
on the tabular setting. (Lim & Autef, 2019) proposed a
kernel-based RL algorithm for finding the robust value func-
tion in a batch learning setting. (Mankowitz et al., 2020)
employed an entropy-regularized policy optimization algo-
rithm for continuous control using neural network, but does
not provide any provable guarantees for the learned policy.

Our work differs from the above in two significant ways.
Firstly, we develop a new multi-step model-free reinforce-
ment learning algorithm, RLSPE(�), for policy evaluation.
Extending the classical least squares based policy evaluation
algorithms, like LSPE(�) and LSTD(�) (Bertsekas & Ioffe,
1996; Nedić & Bertsekas, 2003; Bertsekas, 2012), to the
robust case is very challenging due to the nonlinearity of the
robust TD(�) operator. We overcome this issue by a cleverly
defined approximate robust TD(�) operator that is amenable
to online learning using least squares approaches. Also, as
pointed out in (Bertsekas, 2011), convergence analysis of
least squares style algorithms for RL is different from that of
the standard temporal difference (TD) algorithm. Secondly,
we develop a new robust policy iteration algorithm with
provable guarantees on the performance of the policy at any
iterate. In particular, we give a general weighted Euclidean
norm bound on the error of the resulting policy. While
similar results are available for the non-robust settings, this
is the first work to provide such a characterization in the
challenging setting of robust reinforcement learning.

2. Background and Problem Formulation

A Markov Decision Process is a tuple M = (S,A, r, P, ↵)
where S is the state space, A is the action space, r :
S ⇥ A ! R is the reward function, and ↵ 2 (0, 1) is the
discount factor. The transition probability matrix Ps,a(s0)
represents the probability of transitioning to state s

0 when
action a is taken at state s. We consider a finite MDP setting
where the cardinality of state and action spaces are finite
(but very large). A (deterministic) policy ⇡ maps each state
to an action. The value of a policy ⇡ evaluated at state s is
given by

V⇡,P (s) = E⇡,P [
1X

t=0

↵
t
r(st, at) | s0 = s],
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where at ⇠ ⇡(st) and st+1 ⇠ Pst,at(·). The optimal value
function and the optimal policy of an MDP with the tran-
sition probability P are defined as V

⇤
P = max⇡ V⇡,P and

⇡
⇤
P = arg max⇡ V⇡,P .

The RMDP formulation considers a set of model parame-
ters (uncertainty set) under the assumption that the actual
parameters lie in this uncertainty set, and the algorithm com-
putes a robust policy that performs best under the worst
model. More precisely, instead of a fixed transition proba-
bility matrix P , we consider a set of transition probability
matrices P . We assume that the set P satisfies the standard
rectangularity condition (Iyengar, 2005). The objective is
to find a policy that maximizes the worst-case performance.
Formally, the robust value function V⇡ corresponding to
a policy ⇡ and the optimal robust value function V

⇤ are
defined as (Iyengar, 2005; Nilim & El Ghaoui, 2005)

V⇡ = inf
P2P

V⇡,P , V
⇤ = sup

⇡
inf
P2P

V⇡,P . (1)

The optimal robust policy ⇡
⇤ is such that the robust value

function corresponding to it matches the optimal robust
value function, that is, V⇡⇤ = V

⇤.

A generic characterization of the set P makes the RMDPs
problems intractable to solve by model-free methods. In the
standard model-free methods, the algorithm has access to a
simulator that can simulate the next state given the current
state and current action, according to a fixed transition prob-
ability matrix (that is unknown to the algorithm). However,
generating samples according to each and every transition
probability matrix from the set P is clearly infeasible. To
overcome this difficulty, we use the characterization of the
uncertainty set used in (Roy et al., 2017).

Assumption 1 (Uncertainty Set). Each P 2 P can be repre-
sented as Ps,a(·) = P

o
s,a(·) +Us,a(·) for some Us,a 2 Us,a,

where P
o
s,a(·) is the unknown transition probability matrix

corresponding to the nominal (simulator) model and Us,a is
a confidence region around it.

Using the above characterization, we can write P = {P o +
U : U 2 U}, where U = [s,aUs,a. So, U is the set of all
possible perturbations to the nominal model P o.

An example of the uncertainty set U can be the spherical
uncertainty set with a radius parameter. Define Us,a :=
{x | kxk2  r,

P
s2S xs = 0,�P o

s,a(s
0)  xs0  1 �

P
o
s,a(s

0), 8s0 2 S}, for all (s, a) 2 (S,A), for some r > 0.
Notice that, this uncertainty set uses the knowledge of the
nominal model P o in its construction. In practice, we do not
know P

o. So, in Section 3.2, we introduce an approximate
uncertainty set without using this information.

We consider robust Bellman operator for policy evaluation,

defined as (Iyengar, 2005)

T⇡(V )(s) = r(s, ⇡(s)) + ↵ inf
P2P

X

s0

Ps,⇡(s)(s
0)V (s0), (2)

a popular approach to solve (1). Using our characterization
of the uncertainty set, we can rewrite (2) as

T⇡(V )(s) = r(s, ⇡(s)) + ↵

X

s0

P
o
s,⇡(s)(s

0)V (s0)

+ ↵ inf
U2Us,⇡(s)

X

s0

Us,⇡(s)(s
0)V (s0). (3)

For any set B and a vector v, define �B(v) = inf{u>
v : u 2

B}. We denote |S| as the cardinality of the set S . Let �U⇡ (v)
and r⇡ be the |S| dimensional column vectors defined as
(�Us,⇡(s)

(v) : s 2 S)> and (r(s, ⇡(s)) : s 2 S)>, respec-
tively. Let P o

⇡ be the stochastic matrix corresponding to the
policy ⇡ where for any s, s

0 2 S, P o
⇡(s, s0) = P

o
s,⇡(s)(s

0).
Then, (3) can be written in the matrix form as

T⇡(V ) = r⇡ + ↵P
o
⇡V + ↵�U⇡ (V ). (4)

It is known (Iyengar, 2005) that T⇡ is a contraction in sup
norm and the robust value function V⇡ is the unique fixed
point of T⇡. The robust Bellman operator T can also be
defined in the same way as in the non-robust setting,

T (V ) = max
⇡

T⇡(V ). (5)

It is also known (Iyengar, 2005) that T is a contraction in
sup norm, and the optimal robust value function V

⇤ is its
unique fixed point.

The goal of the robust RL is to learn the optimal robust
policy ⇡

⇤ without knowing the nominal model P o or the
uncertainty set P .

3. Robust Least Squares Policy Evaluation

In this section, we develop the RLSPE(�) algorithm for
learning the robust value function.

3.1. Robust TD(�) Operator and the Challenges

In RL, a very useful approach for analyzing the multi-step
learning algorithms like TD(�), LSTD(�), and LSPE(�) is to
define a multi-step Bellman operator called TD(�) operator
(Tsitsiklis & Van Roy, 1997; Bertsekas, 2012). Following
the same approach, we can define the robust TD(�) operator
as well. For a given policy ⇡, and a parameter � 2 [0, 1),

the robust TD(�) operator denoted by T
(�)
⇡ : R|S| ! R|S|

is defined as

T
(�)
⇡ (V ) = (1� �)

1X

m=0

�
m
T

m+1
⇡ (V ). (6)

Note that for � = 0, we recover T⇡ . The following result is
straightforward.
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Proposition 1 (informal). T (�)
⇡ is a contraction in sup norm

and the robust value function V⇡ is its unique fixed point,
for any ↵ 2 (0, 1), � 2 [0, 1).

For RMDPs with very large state space, exact dynamic
programming methods which involve the evaluation of
(3) or (6) are intractable. A standard approach to over-
come this issue is to approximate the value function us-
ing some function approximation architecture. Here we
focus on linear function approximation architectures (Bert-
sekas, 2012). In linear function approximation architec-
tures, the value function is represented as the weighted
sum of features as, V̄ (s) = �(s)>w, 8s 2 S, where
�(s) = (�1(s), �2(s), . . . , �L(s))> is an L dimensional
feature vector with L < |S|, and w = (w1, · · · , wL)> is
a weight vector. In the matrix form, this can be written as
V̄ = �w where � is an |S| ⇥ L dimensional feature matrix
whose s

th row is �(s)>. We assume linearly independent
columns for �, i.e., rank(�) = L.

The standard approach to find an approximate (robust) value
function is to solve for a w⇡, with V̄⇡ = �w⇡, such that
�w⇡ = ⇧T

(�)
⇡ �w⇡, where ⇧ is a projection onto the sub-

space spanned by the columns of �. The projection is with
respect to a d-weighted Euclidean norm. This norm is de-
fined as kV k2d = V

>
DV , where D is a diagonal matrix

with non-negative diagonal entries (d(s), s 2 S), for any
vector V . Under suitable assumptions, (Tamar et al., 2014)
showed that ⇧T⇡ is a contraction in a d-weighted Euclidean
norm. We also use a similar assumption stated below.
Assumption 2. (i) For any given policy ⇡, there exists an
exploration policy ⇡e = ⇡exp(⇡) and a � 2 (0, 1) such that
↵Ps,⇡(s)(s

0)  �P
o
s,⇡e(s)

(s0), for all transition probability
matrices P 2 P and for all states s, s0 2 S .
(ii) There exists a steady state distribution d⇡e =
(d⇡e(s), s 2 S) for the Markov chain with transition proba-
bility P

o
⇡e

with d⇡e(s) > 0, 8s 2 S .

In the following, we will simply use d instead of d⇡e .

Though the above assumption appears restrictive, it is nec-
essary to show that ⇧T⇡ is a contraction in the d-weighted
Euclidean norm, as proved in (Tamar et al., 2014). Also, a
similar assumption is used in proving the convergence of off-
policy reinforcement learning algorithm (Bertsekas & Yu,
2009). In the robust case, we can expect a similar condition
because we are learning a robust value function for a set of
transition probability matrices instead of a single transition
probability matrix. We can now show the following.

Proposition 2 (informal). Under Assumption 2, ⇧T
(�)
⇡ is a

contraction mapping in the d-weighted Euclidean norm for
any � 2 [0, 1).

The linear approximation based robust value function V̄⇡ =
�w⇡ can be computed using the iteration, �wk+1 =

⇧T
(�)
⇡ �wk. Since ⇧T

(�)
⇡ is a contraction, wk will con-

verge to w
⇤. A closed form solution for wk+1 given

wk can be found by least squares approach as wk+1 =

arg minw k�w � ⇧T
(�)
⇡ �wkk2d. It can be shown that (de-

tails are given in the supplementary material), we can get a
closed form solution for wk+1 as

wk+1 = wk + (�>
D�)�1�>

D(T (�)
⇡ �wk � �wk). (7)

This is similar to the projected equation approach (Bertsekas,
2012) in the non-robust setting. Even in the non-robust
setting, iterations using the (7) is intractable for MDPs with
large state space. Moreover, when the transition matrix is
unknown, it is not feasible to use (7) exactly even for small
RMDPs. Simulation-based model-free learning algorithms
are developed for addressing this problem in the non-robust
case. In particular, LSPE(�) algorithm (Nedić & Bertsekas,
2003; Bertsekas, 2012) is used to solve the iterations of the
above form.

However, compared to the non-robust setting, there are two
significant challenges in learning the robust value function
by using simulation-based model-free approaches.

(i) Non-linearity of the robust TD(�) operator: The non-
robust T⇡ operator and the TD(�) operator do not involve
any nonlinear operations. So, they can be estimated effi-
ciently from simulation samples in a model-free way. How-
ever, the robust TD(�) operator when expanded will have
the following form (derivation is given in the supplementary
material).

T
(�)
⇡ (V ) = (1� �)

1X

m=0

�
m(

mX

k=0

(↵P o
⇡)kr⇡ + (↵P o

⇡)m+1
V

+ ↵

mX

k=0

(↵P o
⇡)k�U⇡ (T (m�k)

⇡ V )). (8)

The last term is very difficult to estimate using simulation-
based model-free approaches due to the composition of
operations �U⇡ and T⇡. In addition, nonlinearity of the T⇡

operator by itself adds to the complexity.

(ii) Unknown uncertainty region U : In our formulation, we
assumed that the transition probability uncertainty set P is
given by P = P

o +U . So, for each U 2 U , P o +U should
be a valid transition probability matrix. However, in the
model-free setting, we do not know the nominal transition
probability P

o. So, it is not possible to know U exactly
a priori. One can only use an approximation bU instead of
U . This can possibly affect the convergence of the learning
algorithms.

3.2. Robust Least Squares Policy Evaluation

(RLSPE(�)) Algorithm

We overcome the challenges of learning the robust value
function by defining an approximate robust TD(�) operator,
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and by developing a robust least squares policy evaluation
algorithm based on that.

Let bU be the approximate uncertainty set we use instead of
the actual uncertainty set. An example of the approximate
uncertainty set bU can be the spherical uncertainty set defined
without using the knowledge of the model P o as bUs,a :=
{x | kxk2  r,

P
s2S xs = 0} for all (s, a) 2 (S,A).

Note that P o + U for U 2 bU need not be a valid transition
probability matrix and this poses challenges both for the
algorithm and analysis.

For a given policy ⇡ and a parameter � 2 [0, 1), approxi-
mate robust TD(�) operator denoted by eT (�)

⇡ : R|S| ! R|S|
,

is defined as

eT (�)
⇡ (V ) = (1� �)

1X

m=0

�
m

"
mX

t=0

(↵P o
⇡)tr⇡

+↵

mX

t=0

(↵P o
⇡)t �bU⇡

(V ) + (↵P o
⇡)m+1

V

#
. (9)

Note that even with bU⇡ = U⇡ , (9) is different from (8). We
will show that this clever approximation helps to overcome
the challenges due to the nonliterary associated with (8).

However, we emphasize that (9) is not an arbitrary definition.
Note that, for bU⇡ = U⇡ , with � = 0, we recover the operator
T⇡ . Moreover, the robust value function V⇡ is a fixed point
of eT (�)

⇡ when bU⇡ = U⇡ for any � 2 [0, 1). We state this
formally below.

Proposition 3. Suppose bU⇡ = U⇡ . Then, for any ↵ 2 (0, 1)
and � 2 [0, 1), the robust value function V⇡ is a fixed point
of eT (�)

⇡ , i.e., eT (�)
⇡ (V⇡) = V⇡.

Intuitively, the convergence of any learning algorithm us-
ing the approximate robust TD(�) operator will depend on
the difference between the actual uncertainty set U and its
approximation bU . To quantify this, we use the following
metric. Let ⇢ = maxs2S,a2A ⇢s,a where

⇢s,a = max

(
maxx2bUs,a

maxy2Us,a\bUs,a
kx� ykd/dmin,

maxx2Us,a maxy2bUs,a\Us,a
kx� ykd/dmin

)

and dmin := mins2S d(s). By convention, we set ⇢s,a =

0 when bUs,a = Us,a for all (s, a) 2 (S,A). So, ⇢ = 0

if bU = U . Using this characterization and under some
additional assumptions on the discount factor, we show that
the approximate robust TD(�) operator is a contraction in
the d-weighted Euclidean norm.

Theorem 1. Under Assumption 2, for any V1, V2 2 R|S|

and � 2 [0, 1),

k⇧ eT (�)
⇡ V1 �⇧ eT (�)

⇡ V2kd  c(↵, �, ⇢, �) kV1 � V2kd, (10)

where c(↵, �, ⇢, �) = (�(2� �) + ⇢↵)/(1� ��). So, if
c(↵, �, ⇢, �) < 1, ⇧ eT (�)

⇡ is a contraction in the d-weighted
Euclidean norm. Moreover, there exists a unique w⇡ such
that �w⇡ = ⇧ eT (�)

⇡ (�w⇡). Furthermore, for this w⇡ ,

kV⇡ � �w⇡kd 
1

1� c(↵, �, ⇢, �)

✓
kV⇡ �⇧V⇡kd +

�⇢kV⇡kd
1� ��

◆
. (11)

We note that despite the assumption on the discount factor,
we empirically show in Section 5 that our learning algo-
rithm converges to a robust policy even if this assumption is
violated. We also note that the upper bound in (11) quanti-
fies the error of approximating the robust value function V⇡

with the approximate robust value function �w⇡. We will
later use this error bound in in characterizing performance
of both RLSPE and RLSPI algorithms.

Using the contraction property of approximate robust TD(�)
operator, the linear approximation based robust value func-
tion V̄⇡ = �w⇡ can be computed using the iteration,
�wk+1 = ⇧ eT (�)

⇡ �wk. Similar to (7), we can get a closed
form solution for wk+1 using least squares approach as

wk+1 = wk + (�>
D�)�1�>

D( eT (�)
⇡ �wk � �wk). (12)

This can be written in a more succinct matrix form as given
below (derivation is given in the supplementary material).

wk+1 = wk + B
�1(Awk + C(wk) + b), where, (13)

A = �>
D(↵P o

⇡ � I)
1X

m=0

(↵�P o
⇡)m�, (14)

B = �>
D�, (15)

C(w) = ↵�>
D

1X

t=0

(↵�P o
⇡)t�bU⇡

(�w), (16)

b = �>
D

1X

t=0

(↵�P o
⇡)tr⇡. (17)

Iterations by evaluating (13) exactly is intractable for MDPs
with large state space, and infeasible if we do not know
the transition probability P

o
⇡ . To address this issue, we

propose a simulation-based model-free online reinforcement
learning algorithm, which we call robust least squares policy
evaluation (RLSPE(�)) algorithm, for learning the robust
value function.

RLSPE(�) algorithm: Generate a sequence of states and
rewards, (st, rt, t � 0), using the policy ⇡. Update the



Robust Reinforcement Learning using Least Squares Policy Iteration with Provable Performance Guarantees

parameters as

wt+1 = wt + �tB
�1
t (Atwt + bt + Ct(wt)), where, (18)

At =
1

t + 1

tX

⌧=0

z⌧ (↵�>(s⌧+1)� �
>(s⌧ )), (19)

Bt =
1

t + 1

tX

⌧=0

�(s⌧ )�
>(s⌧ ), (20)

Ct(w) =
↵

t + 1

tX

⌧=0

z⌧ �bUs⌧ ,⇡(s⌧ )
(�w), (21)

bt =
1

t + 1

tX

⌧=0

z⌧r(s⌧ , ⇡(s⌧ )), (22)

z⌧ =
⌧X

m=0

(↵�)⌧�m
�(sm), (23)

where �t is a deterministic sequence of step sizes. We
assume that the step size satisfies the the standard Robbins-
Munro stochastic conditions for stochastic approximation,
i.e.,

P1
t=0 �t =1,

P1
t=0 �

2
t <1.

We use the on-policy version of the RLSPE(�) algorithm
in the above description. So, we implicitly assume that the
given policy ⇡ is an exploration policy according to the As-
sumption 2. This is mainly for the clarity of the presentation
and notational convenience. Also, this simplifies the presen-
tation of the policy iteration algorithm introduced in the next
section. An off-policy version of the above algorithm can
be implemented using the techniques given in (Bertsekas
& Yu, 2009). We now give the convergence result of the
RLSPE(�) algorithm.

Theorem 2. Let Assumption 2 hold. Also, let
c(↵, �, ⇢, �) < 1 so that ⇧ eT (�)

⇡ is a contraction accord-
ing to Theorem 1. Let {wt} be the sequence generated by
the RLSPE(�) algorithm given in (18). Then, wt converges
to w⇡ with probability 1 where w⇡ satisfies the fixed point
equation �w⇡ = ⇧ eT (�)

⇡ �w⇡ .

The key idea of the proof is to show that the RLSPE(�)
update (18) approximates the exact update equation (12)
and both converge to the same value w⇡. One particularly
challenging task is in analyzing the behavior of the term
Ct(w) due to the non-linearity of the function �bU⇡

(.). We
use the tools from stochastic approximation theory (Borkar,
2009; Nedić & Bertsekas, 2003) to show this rigorously
after establishing the tractable properties of the function
�bU⇡

(.).

Note that Theorem 2 and Theorem 1 together give an error
bound for the converged solution of the RLSPE(�) algo-
rithm. More precisely, Theorem 2 shows the convergence
of the RLSPE(�) algorithm to w⇡ and Theorem 1 gives the
bound on kV⇡ � �w⇡kd, which is the error due to linear

function approximation. We will use this bound in the the
convergence analysis of the RLSPI algoirthm presented in
the next section.

4. Robust Least Squares Policy Iteration

In this section, we introduce the robust least squares pol-
icy iteration (RLSPI) algorithm for finding the optimal ro-
bust policy. RLSPI algorithm can be thought as the robust
version of the LSPI algorithm (Lagoudakis & Parr, 2003).
RLSPI algorithm uses the RLSPE(�) algorithm for policy
evaluation. However, model-free policy improvement is
difficult when working with value functions since the policy
update step will require us to solve

⇡k+1 = arg max
⇡

eT (�)
⇡ (V̄k), (24)

where V̄k is the approximate robust value function corre-
sponding to the policy ⇡k, in the (k + 1)th policy iteration
loop. To overcome this, we first introduce the robust state-
action value function (Q-function).

For any given policy ⇡ and state-action pair (s, a), we define
the robust Q-value as,

Q⇡(s, a) = inf
P2P

EP [
1X

t=0

↵
t
r(st, at) |s0 = s, a0 = a]. (25)

Instead of learning the approximate robust value func-
tion V̄⇡, we can learn the approximate robust Q-value
function Q̄⇡ using RLSPE(�). This can be done by
defining the feature vector �(s, a) where �(s, a) =
(�1(s, a), . . . , �L(s, a))> and the linear approximation of
the form Q̄⇡(s, a) = w

>
�(s, a) where w is a weight vector.

The results from the previous section on the convergence
of the RLSPE(�) algorithm applies for the case of learning
Q-value function as well.

RLSPI is a policy iteration algorithm that uses RLSPE(�) for
policy evaluation at each iteration. It starts with an arbitrary
initial policy ⇡0. At the kth iteration, RLSPE(�) returns
a weight vector that represents the approximate Q-value
function Q̄⇡k = �w⇡k corresponding to the policy ⇡k. The
next policy ⇡k+1 is the greedy policy corresponding to Q̄⇡k ,
defined as ⇡k+1(s) = arg maxa2A Q̄⇡k(s, a). For empiri-
cal evaluation purposes, we terminate the policy iteration
for some finite value K. RLSPI algorithm is summarized in
Algorithm 1.

We make the following assumptions for the convergence
analysis of the RLSPI algoirthm. We note that we work with
value functions instead of Q-value functions for notational
convenience and consistency.
Assumption 3. (i) Each policy ⇡k is an exploration policy,
i.e. ⇡exp(⇡k) = ⇡k.
(ii) The Markov chain P

o
⇡k

has a stationary distribution d⇡k



Robust Reinforcement Learning using Least Squares Policy Iteration with Provable Performance Guarantees

Algorithm 1 RLSPI Algorithm
1: Initialization: Policy evaluation weights error ✏0, initial

policy ⇡0.
2: for k = 0 . . .K do

3: Initialize the policy weight vector w0. Initialize time
step t 0.

4: repeat

5: Observe the state st, take action at = ⇡k(st),
observe reward rt and next state st+1.

6: Update the weight vector wt according to
RLSPE(�) algorithm (c.f. (18)-(23))

7: t t + 1
8: until kwt � wt�1k2 < ✏0

9: w⇡k  wt

10: Update the policy

⇡k+1(s) = arg max
a2A

�(s, a)>w⇡k

11: end for

such that d⇡k(s) > 0, 8s 2 S.
(iii) There exists a finite scalar � such that kV⇡k �
⇧d⇡k

V⇡kkd⇡k
< � for all k, where ⇧d⇡k

is a projection
onto the subspace spanned by the columns of � under the
d⇡k -weighted Euclidean norm.
(iv) For any probability distribution µ, define another prob-
ability distribution µk = µHk where Hk is a stochastic
matrix defined with respect to ⇡k. Also assume that there
exists a probability distribution µ̄ and finite positive scalars
C1, C2 such that µk  C1µ̄ and d⇡k � µ̄/C2 for all k.

We note that these are the standard assumptions used in the
RL literature to provide theoretical guarantees for approxi-
mate policy/value iteration algorithms with linear function
approximation in the non-robust settings (Munos, 2003;
Munos & Szepesvári, 2008; Lazaric et al., 2012). We make
no additional assumptions even though we are addressing
the more difficult robust RL problem. The specific form
of the stochastic matrix Hk specified in Assumption 3.(iv)
is deferred to the proof of Theorem 3 for brevity of the
presentation.

We now give the asymptotic convergence result for the RL-
SPI algorithm. We assume that, similar to the non-robust
setting (Munos, 2003), the policy evaluation step (inner
loop) is run to the convergence. We only present the case
where ⇢ = 0. The proof for the general case is straightfor-
ward, but involves much more detailed algebra. So, we omit
those details for the clarity of presentation.

Theorem 3. Let Assumption 2 and Assumption 3 hold. Let
{⇡k} be the sequence of the policies generated by the RL-
SPI algorithm. Let V⇡k and V̄k = �w⇡k be true robust
value function and the approximate robust value function

corresponding to the policy ⇡k. Also, let V ⇤ be the optimal
robust value function. Then, with c(↵, �, 0, �) < 1,

lim sup
k!1

kV ⇤ � V⇡kkµ

 2
p
C1C2 c(↵, �, 0, �)

(1� c(↵, �, 0, �))2
lim sup
k!1

kV⇡k � V̄kkd⇡k
. (26)

Moreover, from Theorem 1 and Assumption 3.(iii), we have

lim sup
k!1

kV ⇤ � V⇡kkµ 
2
p
C1C2 c(↵, �, 0, �)

(1� c(↵, �, 0, �))3
�. (27)

The above theorem, in particular (27), gives a (worst case)
guarantee for the performance of the policy learned using
the RLSPI algorithm. Note that the upper bound in (27)
is a constant where � represents the (unavoidable) error
due to the linear function approximation. We also note that
using ‘lim sup’ is necessary due to the policy chattering phe-
nomenon in approximate policy iteration algorithms which
exists even in the non-robust case (Bertsekas, 2012).

Instead of the asymptotic bound given in Theorem 3, we
can actually get a bound for any K given in the RLSPI
algorithm by modifying Assumption 3.(iv). We defer the
precise statements of the assumption and theorem to Section
C in the supplementary material due to page limitation.

5. Experiments

We implemented our RLSPI algorithm using the Mush-
roomRL library (D’Eramo et al., 2020), and evaluated its
performance against Q-learning algorithm for an environ-
ment with discrete action space, deep deterministic policy
gradient (DDPG) (Lillicrap et al., 2016) algorithm for con-
tinuous action space, and LSPI algorithm (Lagoudakis &
Parr, 2003). For comparing with the performance of our RL-
SPI algorithm against another robust RL algorithm, we im-
plemented the soft-robust algorithms proposed in (Derman
et al., 2018) which use deep neural networks for function
approximation.

We chose a spherical uncertainty set with a radius r. For
such a set bU , a closed form solution of �bU (�w) can be com-
puted for faster simulation. We note that in all the figures
shown below, the quantity in the vertical axis is averaged
over 100 runs, with the thick line showing the averaged
value and the band around shows the ±0.5 standard de-
viation. These figures act as the performance criteria for
comparing results. We provide more details and additional
experiment results in Section D of supplementary.

We used the CartPole, MountainCar, and Acrobot environ-
ments from OpenAI Gym (Brockman et al., 2016). We
trained LSPI algorithm and our RLSPI algorithm on these
environments with nominal parameters (default parame-
ters in OpenAI Gym (Brockman et al., 2016)). We also
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Figure 1: CartPole
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Figure 2: MoutainCar
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Figure 3: Acrobot
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Figure 4: CartPole
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Figure 5: CartPole
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Figure 6: CartPole

trained Q-learning with linear function approximation and
soft-robust deep Q-network(DQN) (Derman et al., 2018)
algorithms on CartPole environment, DQN and soft-robust
DQN (Derman et al., 2018) algorithms on Acrobot envi-
ronment, and DDPG and soft-robust DDPG (Derman et al.,
2018) algorithms on MountainCar environment. Then, to
evaluate the robustness of the polices obtained, we changed
the parameters of these environments and tested the perfor-
mance of the learned polices on the perturbed environment.

In Figures 1-3, we show the robustness against action per-
turbations. In real-world settings, due to model mismatch
or noise in the environments, the resulting action can be dif-
ferent from the intended action. We model this by picking
a random action with some probability at each time step.
Figure 1 shows the change in the average episodic reward
against the probability of picking a random action for the
CartPole environment. Figure 2 shows the average number
of time steps to reach the goal in the MountainCar environ-
ment. Figure 3 shows the average episodic reward in the
Acrobot environment. In all three cases, RLSPI algorithm
shows robust performance against the perturbations.

Figures 4-6 show the test performance on CartPole, by
changing the parameters force mag (external force distur-
bance), gravity, length (length of pole on the cart). The
nominal values of these parameters are 10, 9.8, and 0.5 re-
spectively. RLSPI again exhibits robust performance.

The performance of our RLSPI algorithm is consistently
superior to that of the non-robust algorithms. Moreover, the
performance of RLSPI algorithm is comparable with that
of the soft-robust algorithms (Derman et al., 2018), even

though the latter uses deep neural networks for function
approximation while our algorithm uses only linear function
approximation architecture. We also would like to empha-
size that our work gives provable guarantees for the policy
learned by the algorithm whereas (Derman et al., 2018) does
not provide any such guarantees.

6. Conclusion and Future Work

We have presented an online model-free reinforcement learn-
ing algorithm to learn control policies that are robust to
the parameter uncertainties of the model, for system with
large state spaces. While there have been interesting empir-
ical works on robust deep RL using neural network, they
only provide convergence guarantees to a local optimum.
Different from such empirical works, we proposed a learn-
ing based robust policy iteration algorithm called RLSPI
algorithm with explicit theoretical guarantees on the perfor-
mance of the learned policy. To the best of our knowledge,
this is the first work that presents model-free reinforcement
learning algorithm with function approximation for learning
the optimal robust policy. We also empirically evaluated
the performance of our RLSPI algorithm on standard bench-
mark RL problems.

In future, we plan to extend our theoretical results to nonlin-
ear function approximation architectures. We also plan to
characterize the sample complexity of robust reinforcement
learning algorithms. Extending offline RL approaches to
robust setting is another research area that we plan to pursue.
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