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Abstract

Glial cells are important contributors to the hormonal milieu of
the brain, particularly following damage. In birds and mam-
mals, neural injury induces the expression of aromatase in
astroglia at and around the site of damage. This review de-
scribes the progress in our understanding of the incidence,
regulation, and function of estrogens synthesized in glia.
Following a quick discussion of the landmark studies that first
demonstrated steroidogenesis in glia, the author goes on to
describe how the inflammatory response following perturbation
of the brain results in the transcription of aromatase and the
resultant rise in local estradiol. The author ends with several
unresolved questions, the answers to which may reveal the
precise manner in which neurosteroids protect the brain from
injury, both before and immediately after injury.
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Since the discovery of the neurosecretory cell [1],
studies in a diverse set of animal models have recog-
nized the brain as a significant source of hormones. In

the early 1980s, steroidogenesis in the brain was inferred
by a pair of landmark studies on two different steroids by
two different laboratories. More specifically, Corpéchot
et al. [2] documented the presence of dehydroepian-
drosterone sulfate (DHEAS) in the murine brain at
levels higher than the periphery, and despite the
removal of the adrenals and gonads. The same year,
Maclusky and Naftolin [3] described a crucial role for
the hypothalamic conversion of androgens to estrogens
in the organization and activation of masculine neural
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circuits of the rodent brain [3]. These studies, taken
together, laid the foundation for the discovery of mul-
tiple steroids in the CNS of many species across all
vertebrate classes [3e12]. These studies, in turn, have
fueled the continuing search for the function of neural
steroidogenesis under normal and pathological condi-
tions [13e18].
Steroidogenesis in glia
While much research and understanding of neuroendo-
crine function is steeped in neuronal anatomy and
physiology within the central nervous system (CNS),
other cell types have more recently been recruited to
the set of central neurosecretory cells. Indeed, the
secretion of growth factors, cytokines, and other
diffusible signals from non-neuronal cells is well estab-
lished. Among these, astrocytes (types 1 and 2), and

oligodendrocytes have emerged as important contribu-
tors to the neuroendocrine milieu of discreet brain loci
during development, adulthood, and aging. Oligoden-
drocytes and astrocytes were among the first glial cell
types found to concentrate the enzymes 5a-reductase
and 3a-hydroxysteroid dehydrogenase [19e21]. These
studies were replicated more recently, cementing some
glial cells and their precursors as potent metabolizers of
pregnenolone, progesterone, and the androgens DHEA
and testosterone [22]. Indeed, every enzyme necessary
for the synthesis of androgens from cholesterol has been

reported in oligodendrocytes or astrocytes [23,24].

The first description of aromatase (estrogen synthase) of
glial origin came from studies of mixed telencephalic
cultures of hatchling zebra finch brain [25]. Notably,
aromatase activity seemed to be upregulated in older
cultures, a characteristic sustained even after the
apparent depletion of neurons. The coincidental
demonstration of aromatase transcript in cells of the glial
bed in vitro strongly supported the neurosteroidogenic
capabilities of glial cells [25]. The subsequent docu-

mentation of the aromatase transcript, estrone, and 17b-
estradiol (E2) by neurons and astrocytes, but not oli-
godendrocytes in purified, cell-specific cultures of
developing rat brain, mirrored the findings in songbirds
and suggested that the synthesis of estrogens by astro-
cytes was generalizable across vertebrates [26].

This conserved property was later contextualized by
in vivo studies demonstrating the expression of aroma-
tase in astrocytes of murine rodents and songbirds.
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2 Neurosteroids
Specifically, Garcia-Segura et al. [27], first showed, and
Peterson et al. [28,29], later echoed that aromatase
expression is dramatically induced in the CNS following
excitotoxic or mechanical injury. Second, this induction
occurred in astrocytes of the rat, mouse, and zebra finch
brain [30,31]. This induction of aromatase following
injury in the mammalian and passerine brain is largely
but not exclusively restricted to the area immediately

around the injury, where estrogenic signals interact with
several indices of neural metabolism and cell turnover.
Here, the author briefly summarizes the findings that
established a neuroprotective role of glial aromatization
following brain injury. The author then describes the
processes whereby aromatase expression is induced in
reactive astrocytes and the crucial role glial estrogens
play in the regulation of neuroinflammation. This review
will end with unanswered questions and future studies
that may further illuminate the role of astrocytic
aromatization in the damaged brain.
Brain injury and glial aromatase expression
The expression of the CYP19A1 gene in astroglia ap-
pears to be context-dependent in rodents and songbirds.
Specifically, while aromatase expression under normal

conditions is neuronal, perturbation of the neuropil in
rats, mice, and zebra finches results in a dramatic in-
duction of aromatase expression in reactive astrocytes
and radial glia around the site of damage [32,33]. As
mentioned earlier, induction of glial aromatase is most
noticeable immediately around the site of damage but
has also been documented far from the primary location
of injury [28,34]. This induction is clearly de novo, as
increases in the aromatase transcript, protein expres-
sion, and biochemical activity have all been documented
and replicated across numerous experiments on rodents
and songbirds by multiple independent reports [35,36]

and in brain areas where aromatase is undetectable prior
to injury [37,38].
Injury-induced, astrocytic aromatase expression is
neuroprotective. In rodents and songbirds, inhibition of
aromatase at the site of damage and concomitant
replacement with estradiol (E2) exacerbates and miti-

gates the extent of neural damage, respectively [39e42].
Notably, this effect is discernible following penetrating,
excitotoxic, and percussive injury [30,34,43] and appears
to result from the inhibition of necrotic and apoptotic
degeneration following brain damage [41e44]. In addi-
tion to cell death, part if not all the neuroprotective in-
fluence of astrocytic E2 provision may occur due to an
effect on growth factors [39], gliosis [44], and cyto-
genesis at and around the injury [45]. Collectively, these
processes reflect a dramatic modulation of several indices
of cell turnover, perhaps revealing an orchestrated set of
events collectively influencing the survival and resilience

of neural circuits by glial synthesis of E2. The question
remains however, as to what precise aspect or aspects of
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brain injury regulate the synthesis of E2 in glia. Alter-
natively, what about brain injury removes a constitutive
inhibition of aromatase expression in glia, resulting in the
injury-associated synthesis of E2 in astrocytes.
Regulation of glial aromatase expression
As mentioned above, the induction of aromatase in glia
occurs in areas devoid of constitutive aromatase
expression, suggesting that some consequence of brain
injury regulates the transcription of the aromatase gene.
Rats, mice, and zebra finches all have a single aromatase
gene [46e48]. Thus, the de novo expression of aromatase
in astrocytes following injury may involve the specific

induction of an astrocyte-specific aromatase transcript.
Despite the documentation of alternative transcripts
from a single aromatase gene in several species [48e51],
the data suggest that the injury-induced, astrocyte-
specific transcript of aromatase does not differ from that
in neurons, at least in zebra finches [52]. While this
finding needs to be corroborated in other species, the
question of why aromatase is undetectable in astrocytes
in vivo prior to brain injury remains unanswered. Another
question that may provide a similar answer could be
what are the factors specific to brain injury are necessary

for the expression of aromatase in astrocytes?
Brain injury, inflammatory signaling, and
astrocytic aromatase expression
Traumatic brain injury (TBI) of various types consists of
primary and secondary stages. The primary stage is the

injury itself resulting from concussion, penetration, or
twisting. Although there are some differences, a major
similarity across all these types of trauma is the activa-
tion of the innate immune system, including the infil-
tration of immune cells into the site of damage and the
secretion of cytokines and chemokines [see 43]. Any of
all these changes are potential inducers of astrocytic
aromatase following brain injury. However, the most
revealing regulators of injury-associated aromatization
appear to be the inflammatory response initiated by
primary damage to the brain.

An interaction between components of the inflamma-
tory cascade and aromatase has long been recognized in
peripheral cells and tissues, particularly in disease
states. Cytokines and are established as inducers of
aromatase expression in malignant breast tissue [53e
56]. Additionally, prostaglandin E2 dramatically in-
creases aromatase expression in endometrial uterine
cells [50]. Thus, inflammation as a precursor of aroma-
tization may well occur in neural tissue, particularly
when injured and disrupted.

Numerous studies have documented increases in mul-
tiple components of the inflammatory cascade following
brain injury, including but not limited to several cyto-
kines, cyclooxygenase enzymes, and prostanoids. Any of
www.sciencedirect.com
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these moieties may serve as signaling molecules in the
regulation of aromatase expression in astrocytes.
Pedersen et al. [57] directly tested the hypothesis that
injury-induced increases in the inflammatory cascade
increase the astrocytic aromatase expression. Briefly,
using a within-subject experimental design, adult zebra
finches of both sexes received identical penetrating in-
juries in each telencephalic hemisphere. One telence-

phalic lobe received the COX inhibitor indomethacin,
while the contralateral lobe served as a control.
Following a 24hr recovery, each telencephalic lobe was
homogenized, and the expression of aromatase was
measured using qPCR. In both sexes, injury in the
presence of COX inhibition resulted in a lower induc-
tion of aromatase relative to the control hemisphere,
suggesting a potent regulation of astrocytic aromatiza-
tion by prostaglandin E2 synthesis [36,57]. Further work
implicated the receptors EP3 and EP4 in this regulatory
effect. More poignantly, a sex difference was found in

the mechanism providing a mechanism whereby PGE2
may induce aromatase expression in astrocytes following
brain injury. While the induction of aromatase was
dependent on EP3 receptors in the male brain, EP4
seemed to be the critical receptor type in females.

Similar mechanisms may operate in the mammalian
brain. Saldanha [34] describes one experiment exam-
ining the induction of aromatase following penetrating
injury in wild-type, interleukin 1 receptor (IL1R)
knockouts, and tumor necrosis factor-alpha (TNFa)
knockouts. While wild-type and IL1R both showed
robust elevations in aromatase transcript one week after
the injury, no such induction was evident in TNFa
knockouts. The roles of other molecules such as cyto-
kines, chemokines, thromboxanes, and prostacyclins in
the induction of glial aromatase, remain to be tested;
taken together, the data point to injury-induced eleva-
tions of inflammatory markers as one mechanism
capable of increasing aromatization.

In finches and mice, increases in glial aromatase
expression are well matched by concomitant increases in

local E2 levels. Several studies have demonstrated a
robust elevation in local E2 following penetrating brain
injury in the zebra finch [57e59], and global cerebral
ischemia in rats [60e62]. Thus, high levels of local E2
synthesized in glial cells is available to E2-dependent
cells and circuits in and around the site of insult.
Functional consequence of glial
aromatization following brain injury
As mentioned earlier, estrogen provision by glia has
multiple effects on the injured brain, including the in-
hibition of necrosis, apoptosis, and gliosis [43,44]. It is
noteworthy that in the passerine brain, the upregulation
of glial aromatase is rapid and dramatic enough to
completely obscure the characteristic wave of secondary
www.sciencedirect.com Cu
degeneration [63]. Additionally, estrogens of glial origin
increase cytogenesis and neurogenesis following brain
injury in birds, effects that suggest a potentially restor-
ative role [45]. Importantly, work in birds and rodents
has identified potent anti-inflammatory actions of local
aromatization following brain damage. Specifically, in-
creases in neural estrogens after damage lowers the
expression of proinflammatory cytokines and PGE2 in

finches [59] and decreases microglial activation in ro-
dents [61,62,64]. Thus, the neuroprotective effects of
glial estrogens appear multifaceted, involving anti-
inflammatory cascades, cell turnover, and possibly the
migration of new neurons to the site of damage [29,45].
All these effects in concert may reflect the neuro-
protective effects of induced local estrogens following
brain injury.
Unanswered questions and future
directions
Neuroprotection following brain injury seems to be a
conserved role for induced aromatization in glia. How-
ever, there are a number of peculiarities that remain to
be examined and explained. First, while the effects of
glial synthesis of estrogens after brain injury is beyond

doubt, there is very little information about the pro-
tective role of neural estrogens before the damage. Since
peripheral estrogens are known to buffer damage caused
by various perturbations, including focal and global
ischemic insult [60,65], it is possible that constitutive
aromatization may function in a similar manner. One
could imagine, for example, that sites of higher consti-
tutive aromatization may be less vulnerable to damage
than those devoid of aromatase expression. Alterna-
tively, it is possible that the activation of astrocytes
following injury may involve signaling pathways between
neurons and glia. Recently, a role for neuronally derived

fibroblast growth factor, a known inhibitor of astrocytic
activation, has been implicated as a key signaling
mechanism in the E2-mediated neuroprotection
following ischemia [66]. These data suggest that
neuronal signals may regulate not only the activation of
astrocytes but also cellular events within activated as-
trocytes, such as aromatase expression. This hypothesis
awaits direct testing. An associated finding is that lipo-
polysaccharide (LPS) increases neuronal aromatase and
biochemical activity in the absence of brain injury,
suggesting that constitutive, neuronal aromatase may

serve as a mechanism that protects vulnerable targets of
infection such as the brain [36]. Finally, what effects, if
any, does brain injury have on steroidogenesis in other
glial cells. In addition, since females have extremely low
levels of circulating androgens, the androgenic substrate
for aromatization in glia remains unclear. Finally, the
behavioral consequences of glial estrogen provision after
brain injury remain to be more fully understood. The
basic science of glial aromatization and neural injury may
serve as an excellent foundation to inform tractable
rrent Opinion in Endocrine and Metabolic Research 2021, 21:100298
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therapies for various forms of injuries, including
concussive, penetrating, ischemic, and anoxic threats to
the brain.
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