
Model-Based Reinforcement Learning for Infinite-Horizon Discounted
Constrained Markov Decision Processes

Aria HasanzadeZonuzy1 , Dileep Kalathil1 , Srinivas Shakkottai1
1Texas A & M University

{azonuzy, dileep.kalathil, sshakkot@tamu.edu}@tamu.edu,

Abstract
In many real-world reinforcement learning (RL)
problems, in addition to maximizing the objec-
tive, the learning agent has to maintain some nec-
essary safety constraints. We formulate the prob-
lem of learning a safe policy as an infinite-horizon
discounted Constrained Markov Decision Process
(CMDP) with an unknown transition probability
matrix, where the safety requirements are modeled
as constraints on expected cumulative costs. We
propose two model-based constrained reinforce-
ment learning (CRL) algorithms for learning a safe
policy, namely, (i) GM-CRL algorithm, where the
algorithm has access to a generative model, and (ii)
UC-CRL algorithm, where the algorithm learns the
model using an upper confidence style online ex-
ploration method. We characterize the sample com-
plexity of these algorithms, i.e., the the number of
samples needed to ensure a desired level of accu-
racy with high probability, both with respect to ob-
jective maximization and constraint satisfaction.

1 Introduction
Markov Decision Processes (MDPs) are a powerful approach
to model stochastic systems where stationary control poli-
cies are appropriate. Many cyber-physical (i.e. physical sys-
tems controlled algorithmically) systems bear intrinsic limi-
tations on the nature of control that may be applied. Hence,
Constrained-MDP (CMDP) are an appropriate framework for
the modeling and analysis of such systems [Altman, 1999].

In this paper, we aim to develop simple algorithms to learn
near-optimal policies for a CMDP without knowing the sys-
tem parameters. Although, a regular model-based RL al-
gorithm attempts to collect as few samples as possible to
quickly solve for the optimal policy, minimizing the number
of samples taken is even more essential in the CMDP setting.
This requirement is due to the existence of constraints in the
CMDP setting, and it might be important to violate them as
few times as possible while maximizing the objective of the
system. Therefore, the behavior of a system with respect to
(w.r.t) both objective maximization and safety violation over
time is a crucial performance metric for a proposed RL algo-
rithm for CMDPs.

Main Contributions: Our goal is to upper bound the num-
ber of samples required to learn a near-optimal policy while
nearly satisfying the constraints with high probability (w.h.p.)
in the context of the discounted infinite-horizon setting. Our
contributions are mainly threefold:
(i) We design and analyze two model-based RL algorithms
for CMDPs. One of them pursues a generative model based
approach that obtains samples initially and creates a model.
The other one is based on an online approach in which the
model is updated over time-steps. With both algorithms, the
estimated model might lead to infeasible situation. Thus,
we utilize the idea of a confidence-ball around the estimated
model such that the true model would belong to that ball
w.h.p. This ensures that a solution may be found w.h.p. under
the assumption that the real model has a solution.
(ii) Both algorithms follow a two-stage pattern of model con-
struction and a CMDP solution. The algorithms use linear
programming (LP) to solve the CMDP problem with addi-
tional linear constraints to incorporate the confidence-ball.
(iii) We characterize PAC-type sample complexity bounds
for both algorithms, accounting for both objective maximiza-
tion and constraint satisfaction. Intuitively, the model con-
structed by these algorithms must be more accurate than mod-
els created by unconstrained counterparts, which conjecture
our main results are consistent with. Furthermore, a com-
parison of our main findings with lower bounds on sample
complexity of MDPs [Azar et al., 2013; Dann and Brunskill,
2015] shows an increase in our results by a logarithmic factor
in the number of constraints and the size of the state space.
However, there is no earlier work on lower bound of sample
complexity of learning CMDPs to our best knowledge.

As mentioned above, cyber-physical systems might have
a large number of constraints. However, our results indicate
that the number of constraints should not be a major concern
in implementation, since our bounds scale logarithmically
with number of constraints. Hence, the results suggest that
the constrained RL approach is likely applicable in a straight-
forward manner to cyber-physical systems.

Related Work: There are many articles studying the prob-
lem of controlling CMDPs with an algorithmic approach
and control-theoretic view [Altman, 1999; Altman, 2002;
Borkar, 2005; Borkar and Jain, 2014; Singh and Kumar,
2018; Singh et al., 2014]. The results take the form of proving
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asymptotic convergence of their proposed methods under the
assumption of the known model. There are also extensions
of this approach to the context of an unknown model, where
the focus is still on asymptotic behavior [Bhatnagar and Lak-
shmanan, 2012; Chow et al., 2018; Tessler et al., 2018;
Paternain et al., 2019]. These studies use Lagrangian method
to show zero duality gap asymptotically. Further, [Liu et al.,
2019] also develops an algorithm based on the Lagrangian
method, but with small eventual duality gap. Finally, empir-
ical studies based on the Lagrangian method have also been
presented [Liang et al., 2018].

There are also studies on the constrained bandit case. Al-
though bandits are not MDPs per se, they are strongly re-
lated to them. Articles such as [Badanidiyuru et al., 2013;
Wu et al., 2015; Amani et al., 2019] consider such con-
straints, either in a knapsack sense, or on the type of controls
that may be applied in a linear bandit context.

More related to our work theme are parallel studies on
CMDPs. For example, [Zheng and Ratliff, 2020] and [Wachi
and Sui, 2020] provide results with the assumption of un-
known reward functions, with either a known or deterministic
transition kernel. There are other works [Satija et al., 2020]
focusing on proving asymptotic convergence without provid-
ing a bound on learning rate. Finally, closest related work to
this article is [Efroni et al., 2020] which explores algorithms
similar to ours in finite-horizon setting, but concentrating on
characterizing objective and constrained regret bounds. Now,
regret and sample complexity bounds are not directly translat-
able [Dann et al., 2017], and converting their regret bounds to
our setting gives relatively weak sample complexity bounds.
Specifically, our main results with logarithmic increase in
sample complexity with the number of constraints differen-
tiates our work.

2 Notation and Problem Formulation
Notation and Setup: Our focus is on an infinite-horizon
CMDP defined by a tuple M = 〈S,A, P, r, c, C̄, s0, γ〉. S
and A represent the sets of states and actions respectively.
Additionally, P (s′|s, a) is used to indicate the probability of
reaching state s′ by taking action a while being at state s. We
define r(s, a) as the reward for each state-action pair (s, a).
We assume that there are N constraints. We use c to denote
the cost matrix, where c(i, s, a) is the immediate cost incurred
by the ith constraint in (s, a) where i ∈ {1, . . . , N}. Further,
the value of the constraints (i.e. the bound that must be sat-
isfied) are determined by the vector C̄. Also, initial state is
specified by s0. Finally, we use γ for discount factor. In this
study, the discount factor is unique for both objective function
and constraint functions where they shall be defined later.
Assumption 1. State and action sets S and A are assumed
to be finite with cardinalities |S| and |A|. In addition, the
immediate cost and immediate reward r(s, a) are assumed
to be taken from the interval [0, 1]. Number of constraints is
also assumed to be N which for each i ∈ {1, . . . , N}, C̄i ∈
[0, C̄max].

Now, we define a stationary policy π : S×A→ [0, 1]|A| as
a mapping from state-action space S×A to set of probability
vectors defined over action space in order to choose an action

at any time-step t. Henceforth, π(s, a) represents the proba-
bility of choosing the action a when the system is at state s.
Also, a ∼ π(s, ·) means that action a is chosen according to
stationary policy π while being at state s.

Fixing a policy π transforms the underlying MDP to a
Markov chain. The transition kernel of this Markov chain
is Pπ, which can be viewed as an operator. The operator
Pπf(s) = E[f(st+1)|st = s] =

∑
s′∈S Pπ(s′|s)f(s′) takes

any function f : S → R and returns the expected value of f
in the next time-step. For convenience, we define the multi-
step version P tπf(s) = PπPπ . . . Pπf, which is repeated t
times. Further, we define P 0

π as the identity operator.
For the objective and constraint functions, we consider dis-

counted infinite-horizon criteria with identical discount factor
γ. We define the value function of state s under policy π as

V π(s) = E[
∞∑
t=0

γtr(st, at); at ∼ π(st, ·), st=0 = s0], (1)

where expectation E[·] is taken w.r.t transition kernel P.Next,
the local variance of the value function at time step t under
policy π is

σ2
Vπ (s) = γ2E[(V π(st+1)− PπV π(s))2] (2)

= γ2Pπ[(V π − PπV π)2](s).

Analogous to the definition of the value function (1), the
ith constraint function under policy π is defined as

Cπi (s) = E[
∞∑
t=0

γtc(i, st, at); at ∼ π(st, ·), st=0 = s0]. (3)

Again, the local variance of ith constraint function under pol-
icy π, i.e. σ2

Cπi
is defined similar to local variance of value

function (2).
Eventually, the general infinite-horizon CMDP problem is

max
π

V π(s0) s.t. Cπi (s0) ≤ C̄i, ∀i ∈ {1, . . . , N}. (4)

Assumption 2. We assume that the CMDP problem of (4)
is feasible with optimal policy π∗ and optimal solution
V ∗(s0) = V π

∗
(s0).

Note that we only consider learning feasible CMDPs by
this assumption.
Constrained-RL Problem: The Constrained RL problem
formulation is identical to the CMDP optimization problem
of (4) with one difference. Here, we are not aware of the val-
ues of the transition kernel P.1 We desire to provide model-
based algorithms and determine the sample complexity re-
sults in a PAC sense, which is defined as follows:
Definition 1. For an algorithm A, sample complexity is the
number of samples that A requires to achieve

P
(
V A(s0) ≥ V π

∗
(s0)− ε and

CAi (s0) ≤ C̄i + ε ∀i ∈ {1, . . . , N}
)
≥ 1− δ

for a given ε and δ.
1We only assume that transition kernel is unknown and the ex-

tension to unknown reward and cost matrices is straightforward, and
does not require additional methodology.
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Note that with this definition, we include both objective
maximization and constraint violations as opposed to the tra-
ditional definition that only considers the objective [Strehl
and Littman, 2008].

3 Sample Complexity Result of Generative
Model Based Learning

Generative model based learning is a well known approach
to learn an optimal policy for an MDP. However, naive ap-
plication of this approach to CMDPs may not end with a
feasible solution. Hence, we explore the generative model
based approach for CMDPs, and propose a generative model
based CMDP learning algorithm called Generative Model-
Constrained RL (GM-CRL). According to GM-CRL, each
state-action pair is sampled n number of times uniformly
across all state-action pairs, the number of times each transi-
tion occurs n(s′, s, a) for each next state s′ is counted, and an
empirical model of transition kernel denoted by P̂ (s′|s, a) =
n(s′,s,a)

n ∀(s′, s, a) is constructed.
Unlike MDP problem formulation, there is no guarantee

such that CMDP problem formulation w.r.t. P̂ is feasible. In
order to resolve the feasibility concern, we expand the space
of transition kernels to include the true transition kernel P,
noting that the CMDP problem w.r.t. P is feasible from As-
sumption 2. The algorithmic layout of this approach is as
follows. GM-CRL creates a class of CMDPs using the em-
pirical model. This class is denoted by MδP and contains
CMDPs with identical reward, cost matrices, C̄, initial state
s0 and discount factor of the true CMDP, but with transition
kernels close to true model. This class of CMDPs is defined
as
MδP := (5)

{M ′ : r′(s, a) = r(s, a), c′(i, s, a) = c(i, s, a), γ′ = γ,

|P ′(s′|s, a)− P̂ (s′|s, a)| ≤

min
(√2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n
log

4

δP
+

2

3n
log

4

δP
,

(6)√
log 4/δP

2n

)
∀s, a, s′, i},

where δP is defined in Algorithm 1. Note that for any M ′ ∈
M, objective function V

′π(s0) and cost functions C
′π
i (s0)

are computed w.r.t. the corresponding transition kernel P ′
according to equations (1) and (3) respectively.

At the end, GM-CRL maximizes the objective function
among all possible transition kernels, while satisfying con-
straints (if feasible). More specifically, it solves the optimistic
planning problem below

max
π,M ′∈MδP

V
′π(s0) s.t. C

′π
i (s0) ≤ C̄i ∀i. (7)

To solve the problem of (7), GM-CRL uses Extended Lin-
ear Programming, or ELP. This method takes MδP as in-
put and gives π̃ for the optimal solution. The description of
ELP is provided in supplementary materials. Algorithm 1 de-
scribes GM-CRL.

Algorithm 1 GM-CRL

1: Input: accuracy ε and failure tolerance δ.
2: Set δP = δ

5(N+2)|S|3|A| .

3: Set n(s′, s, a) = 0 ∀(s, a, s′).
4: for each (s, a) ∈ S ×A do
5: Sample (s, a), n = 1152(log 2)2γ2

ε2(1−γ)3 |S|2|A| log 4
δP

and
update n(s′, s, a).

6: P̂ (s′|s, a) = n(s′,s,a)
n ∀s′.

7: end for
8: ConstructMδP according to (5).
9: Output π̃ = ELP(MδP ).

3.1 PAC Analysis of GM-CRL
Here, we present the sample complexity result of GM-CRL.

Theorem 1. Consider any infinite-horizon CMDP M =
〈S,A, P, r, c, C̄, s0, γ〉 satisfying assumptions 1 and 2, and
CMDP problem formulation of (4). Then, for any ε ∈
(0, 0.22γ√

|S|(1−γ)
) and δ ∈ (0, 1), algorithm 1 creates a model

CMDP M̃ = 〈S,A, P̃ , r, c, C̄, s0, γ〉 and outputs policy π̃
such that

P(V π̃(s0) ≥ V π
∗
(s0)− ε and

C π̃i (s0) ≤ C̄i + ε ∀i ∈ {1, 2, . . . , N}) ≥ 1− δ,

with at least total sampling budget of

1152(log 2)2γ2

ε2(1− γ)3
|S|2|A| log

20(N + 2)|S|3|A|
δ

.

The proof of Theorem 1 is different from the traditional
analysis framework of unconstrained RL [Azar et al., 2013]
in the following manner. First, consider the role played by
optimism in model construction. The notion of optimism is
not required for learning unconstrained MDPs with genera-
tive models, because any estimated model is always feasible
[Puterman, 2014]. However, there is no such guarantee for a
general CMDP problem formulation [Altman, 1999]. Specif-
ically, simply substituting the true kernel P by the estimated
one P̂ is not appropriate, since there is no assurance of feasi-
bility of that problem. Hence, GM-CRL converts the CMDP
problem under the estimated transition kernel to an optimistic
planning problem (7) and an ELP-based solution.

Second, the core of the analysis of every unconstrained
MDP is based on being able to characterize the optimal pol-
icy via the Bellman operator. This technique enables one to
obtain a sample complexity that scales with the size of the
state space as O(|S|). However, we cannot use this approach
to characterize the optimal policy in a CMDP [Altman, 1999].
We require a uniform PAC result over set of all policies and
set of value and constraint functions, which in turn leads to
quadratic sample complexity in the size of state space; i.e., a
scaling of O(|S|2).

Corollary 1. In case of N = 0, the problem would become
regular unconstrained MDP. And, the sample complexity re-
sult with N = 0 would also hold for unconstrained case.
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Now, we present some of the lemmas that are essential to
prove Theorem 1. Then we sketch the proof of this theorem.
The detailed proofs are provided in supplementary materials.

First, we show that true CMDP lies inside the MδP with
high probability, w.h.p. Hence, the problem (7) is feasible
w.h.p., since the original CMDP problem is assumed to be
feasible according to Assumption 2.

Lemma 1.

P(M ∈MδP ) ≥ 1− |S|2|A|δP .

Proof Sketch: Fix a state-action pair (s, a) and next state
s′. Then, according to combination of Hoefding’s inequality
[Hoeffding, 1994] and empirical Bernstein’s inequality [Mau-
rer and Pontil, 2009], we obtain that each P (s′|s, a) is in-
side the confidence set defined by (6) with probability at least
1− δP . Applying the union bound yields the result. 2

Now, we present the core lemma required for proving The-
orem 1 and its proof sketch. Using this lemma, we bound
the mismatch in objective and constraint functions when we
have n number of samples from each (s, a). This bound ap-
plies uniformly over the set of policies and set of value and
constraint functions. The result also enables us to bound the
objective and constraint functions individually. Then we ap-
ply the union bound on all objective and constraint functions.
This process is the reason why the number of constraints ap-
pear logarithmically in the sample complexity result.

Lemma 2. Let δP ∈ (0, 1). Then, if n ≥ 11819 |S|
2 log 4/δP
(1−γ)2 ,

under any policy π

‖V π − Ṽ π‖∞ ≤ 3γ log 2

√
32|S| log 4/δP

(1− γ)3n

w.p. at least 1− 5|S|3|A|δP , and for any i ∈ {1, . . . , N},

‖Cπi − C̃πi ‖∞ ≤ 3γ log 2

√
32|S| log 4/δP

(1− γ)3n

w.p. at least 1− 5|S|3|A|δP .

Proof Sketch: We first show that |P̃ (s′|s, a) −
P (s′|s, a)| ≤ O(

√
P (s′|s,a)(1−P (s′|s,a))

n ) for each s′, s, a.

Then, we show that (Pπ − P̃π)V π(s) ≤ O(
√
|S|
n σV π (s)).

Applying this bound to |Ṽ π(s0)− V π(s0)| and from the fact

that σV π (s) is close to σ̃V π (s) by O(

√
|S|

(1−γ)n1/4 ), we obtain
the result. This procedure is also applicable to each constraint
function i. 2

Proof Sketch of Theorem 1: From Lemma 1, we know that
the optimistic planning problem (7) is feasible w.h.p. Hence,
we can obtain an optimistic policy π̃. The rest of this proof
consists of two major parts.

First, we prove ε−optimality of objective function w.h.p.
Considering policy π∗ we obtain |V π∗(s0) − Ṽ π

∗
(s0)| ≤

O(
√

|S|
(1−γ)3n ) w.h.p. by means of Lemma 2. Similarly,

|V π̃(s0) − Ṽ π̃(s0)| ≤ O(
√

|S|
(1−γ)3n ) w.h.p. Next, we use

the fact that Ṽ π
∗
(s0) ≤ Ṽ π̃(s0) and obtain

V π̃(s0) ≥ V π
∗
(s0)−O(

√
|S|

(1− γ)3n
).

Next, we show that each constraint is violated at most by
ε w.h.p. Here, we use the second part of Lemma 2 to bound
constraint violation. Thus, for each i ∈ {1, . . . , N} we have

|C π̃i (s0) − C̃ π̃i (s0)| ≤ O(
√

|S|
(1−γ)3n ) w.h.p. Also, we know

that C̃ π̃i (s0) ≤ C̄i, since π̃ is solution of the ELP. Hence, we
obtain

C π̃i (s0) ≤ C̄i +O(

√
|S|

(1− γ)3n
)

w.h.p. Finally, we obtain the end result by applying the union

bound, and obtaining n by solving ε = O(
√

|S|
(1−γ)3n ). 2

4 Sample Complexity Result of Online
Learning

The GM-CRL approach operates in a way that every state-
action pair in the system is sampled a certain number of times
before a policy is computed. However, there are applications
that are not capable of utilizing this approach, since it may
not be possible to reach those states without the employment
of some policy, or they might be unsafe, and so should not be
sampled often. Hence, we have to find an approach that can
collect samples from the environment by means of an online
algorithm.

Upper Confidence Constrained-RL, or UC-CRL described
in Algorithm 2, is an online method proceeding over time-
steps. At each time-step t, UC-CRL constructs an empir-
ical model P̂ using state-action visitation frequencies, i.e.,
P̂ (s′|s, a) = n(s′,s,a)

n(s,a) , where n(s′, s, a) and n(s, a) are vis-

itation frequencies. Then, we use P̂ to create a confidence
interval around each element P̂ (s′|s, a) using same concen-
tration inequalities of GM-CRL defined by (6). Next, UC-
CRL constructs set of infinite-horizon CMDPsMt which any
CMDP M ′ ∈ Mt has identical discount factor and reward
and cost matrices to the true CMDP M, but different transi-
tion kernels from the concentration inequalities. Mt is iden-
tical toMδP except for the use of n(s, a) instead of n. Thus
the class of CMPDs is defined as below at each time-step t :

Mt :=

{M ′ : r′(s, a) = r(s, a), c′(i, s, a) = c(i, s, a), γ′ = γ,

|P ′(s′|s, a)− P̂ (s′|s, a)| ≤

min
(√2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n(s, a)
log

4

δ1
+

2

3n(s, a)
log

4

δ1
,

√
log 4/δ1
2n(s, a)

)
∀s, s′, a, i},

(8)
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where δ1 is defined in Algorithm 2.
Subsequently, UC-CRL uses ELP to solve the optimistic

CMDP problem below and get the optimistic policy π̃t :

max
π,M ′∈Mt

V
′π(s0) s.t. C

′π
i (s0) ≤ C̄i ∀ i.

This problem is identical to the problem of (7), except
for substituting MδP with Mt. Here, for any M ′ ∈ Mt,
V ′π(s0) and C ′πi (s0) are computed according to (1) and (3)
w.r.t. underlying transition kernel P ′, respectively.

Algorithm 2 UC-CRL

1: Input: accuracy ε and failure tolerance δ.
2: Set m according to (9) and (10).
3: Set t = 1, wmin = ε(1−γ)

4|S| , Umax = |S|2|A|m, δ1 =
δ

4(N+1)|S|Umax
.

4: Set n(s, a) = n(s′, s, a) = 0 ∀s, s′ ∈ S, a ∈ A.
5: while there is (s, a) with n(s, a) < |S|m

1−γ do

6: P̂ (s′|s, a) = n(s′,s,a)
n(s,a) ∀(s, a) with n(s, a) > 0 and

s′ ∈ S.
7: ConstructMt according to (8).
8: π̃t = ELP(Mt).
9: at ∼ π̃t(st), st+1 ∼ P (·|st, at)

10: if n(st, at) <
|S|m
1−γ then

11: n(st, at) + +, n(st+1, st, at) + +.
12: end if
13: t+ +
14: end while

UC-CRL is inspired by the infinite-horizon algorithm
UCRL−γ [Lattimore and Hutter, 2014] and its finite-horizon
equivalent UCFH [Dann and Brunskill, 2015] with differ-
ences. Similar to UCRL−γ, Algorithm 2 uses a combina-
tion of the empirical Bernstein’s and Hoeffding’s inequali-
ties. These concentration inequalities allow us to ensure lin-
earity of constraints (i.e., we can indeed use an extended lin-
ear program to solve for the constrained optimistic policy).
However, the constraints of UCFH contain non-linear expres-
sions preventing us from employing ELP. Furthermore, un-
like UCRL−γ and UCFH, Algorithm 2 updates the model at
each time-step rather than at the beginning of long phases.
This procedure allows for faster model construction. Finally,
since we are solving a CMDP, this algorithm utilizes ELP in-
stead of Extended Value Iteration which is used by UCRL−γ.

4.1 PAC Analysis of UC-CRL
We now present the PAC bound of Algorithm 2.
Theorem 2. Consider CMDP M = 〈S,A, P, r, c, C̄, s0, γ〉
satisfying assumptions 1 and 2. For any 0 < ε, δ < 1, under
UC-CRL we have:

P(V π̃t(s0) ≥ V π
∗
(s0)− ε and

C π̃ti (s0) ≤ C̄i + ε ∀i ∈ {1, 2, . . . , N}) ≥ 1− δ,
for all but at most

Õ(
|S|2|A|

ε2(1− γ)3
log

(N + 1)

δ
)

time-steps.

We follow an approach motivated by [Lattimore and Hut-
ter, 2014] and its finite-horizon version [Dann and Brunskill,
2015] to prove Theorem 2. However, there are several dif-
ferences in our technique, and we need to accommodate the
frequent model update in our proof. We will show that, unlike
existing approaches, we can update the model at each time-
step, without increasing the sample complexity. Thus, we are
able to obtain PAC bounds that match the unconstrained case,
and only increase by logarithmic factor with the number of
constraints.

There are also recent works on characterizing the regret
of constrained-RL in a finite-horizon setting [Efroni et al.,
2020] with an algorithm similar to Algorithm 2. An impor-
tant emerging question is whether one can immediately con-
vert these regret results into sample complexity bounds? A
naive translation of the regret bounds of [Efroni et al., 2020]

would give us a PAC result Õ( |S|
2|A|H4

ε2 ). For comparing
finite-horizon setting with infinite-horizon one, we can re-
place H with 1

1−γ to obtain a PAC result for the equivalent
infinite-horizon algorithm. Considering this, the approach
followed by [Efroni et al., 2020] gives a PAC bound which
is looser than our result by a factor of 1

(1−γ)2 . Therefore, this
alternative option does not lead to the strong bounds that we
are able to obtain, and matches existing PAC results of the
unconstrained case.

Now, we present the notions of knownness and importance
for state-action pairs and base our proof on these notions.
Then we present the key lemmas needed for proving Theo-
rem 2. Finally, we provide a proof sketch for Theorem 2. The
detailed analysis is provided in supplementary materials.

Let the weight of (s, a)−pair under any policy π be its dis-
counted expected frequency

wπ(s, a|s′)

:= I{(s′, π(s′)) = (s, a)}+ γ
∑
s′′

Pπ(s′′|s′)wπ(s, a|s′′).

Using this general definition, we define the weight of (s, a)
under policy π̃t as

wt(s, a) = wπ̃t(s, a|st).

Then, the importance ιt of (s, a) at time-step t is defined as
its relative weight compared towmin := ε(1−γ)

4|S| on a log-scale

ιt(s, a) := min{zj : zj ≥
wt(s, a)

wmin
}

where z1 = 0 and zj = 2j−2 ∀j = 2, 3, . . . .

Note that ιt(s, a) ∈ {0, 1, 2, 4, 8, 16, . . . } is an integer in-
dicating the influence of the state-action pair on the value
function of π̃t. Similarly, we define knownness as

κt(s, a) := max{zi : zi ≤
nt(s, a)

mwt(s, a)
} ∈ {0, 1, 2, 4, . . . },

which indicates how often (s, a) has been observed relative to
its importance. Value of m is defined in Algorithm 2. Now,
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we can categorize (s, a)−pairs into subsets
Xt,κ,ι := {(s, a) ∈ Xt : κt(s, a) = κ, ιt(s, a) = ι}
and X̄t = S ×A \Xt,

where Xt = {(s, a) : ιt(s, a) > 0} is the active set and
X̄t is the set of (s, a)−pairs that are very unlikely under pol-
icy π̃t. We will show that if the criteria |Xt,κ,ι| ≤ κ is met,
then the model of UC-CRL would achieve near-optimal poli-
cies where these policies would violate constraints at most by
ε w.h.p. This condition specifies that important state-action
pairs under policy π̃t are visited a sufficiently large number of
times. Thus, the model of UC-CRL will be accurate enough
to obtain PAC bounds.

Now, we first show that the true model lies inMt for every
time-step t w.h.p.
Lemma 3. M ∈ Mt for all time-steps t with probability at
least 1− δ

2(N+1) .

Proof Sketch: Let consider a fixed (s, a), next state s′ and
a time-step t. Then, P (s′|s, a) belongs to the confidence set
constructed by the combined Bernstein’s and Hoeffding’s in-
equalities. By taking the union bound over maximum number
of model updates, Umax, and next states we obtain the result.
2

Next, we bound the number of time-steps in which the con-
dition |Xt,κ,ι| ≤ κ is violated w.h.p.
Lemma 4. SupposeE is the number of time-steps t for which
there are κ and ιwith |Xt,κ,ι| > κ, i.e. E =

∑∞
t=1 I{∃(κ, ι) :

|Xt,κ,ι| > κ} and let

m ≥ 4

ε(1− γ)3
log

2(N + 1)Emax

δ
, (9)

where Emax = log2
1

wmin(1−γ) log2 |S|. Then, P(E ≤
6|S||A|mEmax) ≥ 1− δ

2(N+1) .

Proof sketch: This lemma is proven in two stages. First,
we bound the total number of times a fixed (s, a) could be
observed in a particular Xt,κ,ι over all time-steps. Then, we
provide a high probability bound on the number of time-steps
that |Xt,κ,ι| > κ for a fixed (κ, ι). Finally, we get the result
using of martingale concentration and union bound. 2

Finally, the next lemma bounds the mismatch between ob-
jective and constraint functions of the optimistic model and
true model. This lemma functions similarly to Lemma 2 for
GM-CRL. It provides a uniform PAC result over value and
constraint functions. Hence, it enables us to have individual
PAC results for any objective and constraint functions. As
discussed in GM-CRL section, this process is responsible for
a logN increase in the PAC result.
Lemma 5. Assume M ∈ Mt. If |Xt,κ,ι| ≤ κ for all (κ, ι)
and 0 < ε ≤ 1 and

m ≥1280
|S|

ε2(1− γ)2
(log2 log2(

1

1− γ
))2 log2

2

( 8|S|2

ε(1− γ)2

)
× log

4

δ1
, (10)

then |Ṽ π̃t(s0) − V π̃t(s0)| ≤ ε and for any i, |C̃ π̃ti (s0) −
C π̃ti (s0)| ≤ ε.

Proof Sketch: First, we show |P̃ (s′|s, a) − P (s′|s, a)| ≤
O(
√

P (s′|s,a)(1−P (s′|s,a))
n ) for each s′, s, a. Then we prove

that at each time-step t, (Pπ−P̃π)V π(s) ≤ O(
√
|S|
n σV π (s)).

Next we partition the state-action based on knownness, i.e.,
whether they belong toXt or not. By using all bounds and se-
quence of CMDPs, we obtain a bound on |Ṽ π(s0)−V π(s0)|.
Eventually, we use the definition of weights to get the final
result. This procedure is also applicable to each constraint
function i. 2

Proof Sketch of Theorem 2: We first use Lemma 3 and
show that true CMDP is admissible ,i.e. M ∈ Mt for ev-
ery time-step, w.p. at least 1− δ

2(N+1) . Hence, the optimistic
planning problem becomes feasible and an optimistic policy
π̃t exists w.h.p. Further, we use Lemma 4 to bound the num-
ber of time-steps where |Xt,κ,ι| > κ w.h.p. Thus, for other
time-steps where |Xt,κ,ι| ≤ κ, we apply Lemma 5 we show
that objective function is ε−optimal and all constraint func-
tions are violated by ε. Eventually, we obtain the result by
means of union bound. 2

5 Conclusion
In this paper, we presented the notion of sample complex-
ity in objective maximization and constraint satisfaction in
order to understand the performance of RL algorithms for
safety-constrained applications. We proposed and analyzed
two types of algorithms—GM-CRL and UC-CRL. The main
finding of a logarithmic factor increase in sample complexity
compared to unconstrained regime indicates the value of the
algorithms in applying them to real systems.
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