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Abstract

In this work, we address the liability issues that may arise
due to unauthorized sharing of personal data. We consider a
scenario in which an individual shares their sequential data
(such as genomic data or location patterns) with several ser-
vice providers (SPs). In such a scenario, if their data is shared
with other third parties without their consent, the individual
wants to determine the service provider that is responsible for
this unauthorized sharing. To provide this functionality, we
propose a novel optimization-based watermarking scheme for
sharing of sequential data. The proposed scheme guarantees
with a high probability that (i) the malicious SP that receives
the data cannot understand the watermarked data points, (ii)
when more than one malicious SPs aggregate their data, they
still cannot determine the watermarked data points, (iii) even
if the unauthorized sharing involves only a portion of the
original data or modified data (to damage the watermark), the
corresponding malicious SP can be kept responsible for the
leakage, and (iv) the added watermark is compliant with the
nature of the corresponding data. That is, if there are inherent
correlations in the data, the added watermark still preserves
such correlations. The proposed scheme also minimizes the
utility loss due to changing certain parts of the data while
it provides the aforementioned security guarantees. Further-
more, we conduct a case study of the proposed scheme on
genomic data and show the security and utility guarantees of
the proposed scheme.

1 Introduction

Sequential data includes time-series data such as location
patterns, stock market data, speech, or ordered data such as
genomic data. Individuals share different types of sequential
data for several purposes, typically to receive personalized
services from online service providers (SPs). Data collected
and processed by these SPs may reveal privacy sensitive in-
formation about individuals. Thus, the way these SPs handle
the collected data poses a threat to individuals’ privacy and it
is crucial for individuals to have control on how their data is
collected and handled by the SPs.
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When an individual shares their personal data with an SP
for a particular purpose, they want to make sure that their data
will not be observed by other third parties. Privacy leakage
occurs when personal data of individuals is further shared by
an SP with other third parties (e.g., for financial benefit). To
deter the SPs from such unauthorized sharing, it is required
to develop technical solutions that would keep them liable
for such unauthorized sharing (e.g., by connecting the unau-
thorized sharing to its source). One well-known tool for such
scenarios is watermarking. An individual may add a unique
watermark into their data before sharing it with each SP, and
if their data is further shared without their authorization, they
can associate the unauthorized sharing to the corresponding
SP.

Watermarking is a well-known technique to address the
liability issues especially for multimedia data [18]. Using
the high amount of redundancy in the data and the fact that
human eye cannot differentiate slight differences between the
pixel values, watermark is inserted into multimedia data by
changing some pixel values. However, watermarking is not a
straightforward technique for sequential data such as location
patterns or genomic data. To insert watermark into sequen-
tial data, original data should be modified according to the
watermark which reduces the quality of service provided by
the SPs. Thus, watermarking sequential data while preserving
data utility has unique challenges.

Another challenge for watermarking sequential data is the
identifiability (or robustness) of the watermark. An individual
cannot identify the SP that is responsible for the data leakage
if the SP finds the watermark inserted data points and removes
(or tampers with) the watermark before the unauthorized shar-
ing. Furthermore, an SP may partially share the data (rather
than sharing the whole data of the individual) or modify the
data (to damage the watermark). These make it harder for the
individual to identify the source of the leakage.

An SP may utilize different types of auxiliary information
in order to determine (and hence tamper with) the watermark
in the data. The most common type of such auxiliary infor-
mation may be the inherent correlations in the data. Location
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patterns are correlated in both time and space [9]. Similarly,
genomic data carries inherent correlations (referred as linkage
disequilibrium) inside. A malicious SP may also use external
auxiliary information that is correlated with the data (e.g.,
phenotype or kinship information for genomic data or inter-
dependent check-in information for location data). Thus, an
SP can identify the watermarked data points by identifying
the points that violate the expected correlations in the data.
One other type of auxiliary information is the data shared by
the individual with other SPs. Multiple SPs may collect the
same sequential data from the same individual (with different
watermarks patterns) and they may compare their collected
data in order to identify the watermarked points with higher
probability. Thus, a watermarking algorithm for sequential
data should be robust against these kinds of threats.

To address these robustness and utility challenges, we pro-
pose a novel watermarking scheme to share sequential data.
Initially, we assume the data has no correlations and propose
an algorithm to determine the data points to be watermarked
by solving a non-linear optimization problem. This algorithm
is developed to be robust against collusion of malicious SPs.
Then, we explain how to deal with correlated data in the pro-
posed algorithm. Hence, we minimize the risk of correlation
attacks by malicious SPs who know the pairwise correlations
between data points. We evaluate the security (robustness)
and the utility of the proposed algorithm on a genomic dataset.
The main motivations to choose genomic data sharing as the
use case are as follows: (i) genomic data includes privacy-
sensitive information such as predisposition to diseases [19],
(ii) it is not revokable, and hence it is crucial to make sure
that it is not leaked, and (iii) it has inherent correlations that
makes watermarking even more challenging.

The main contributions of the proposed work are summa-
rized as follows:

e We propose a novel collusion-secure watermarking
scheme for sequential data. The proposed scheme min-
imizes the probability for the identifiability of the wa-
termark by the SPs. We show that even when multiple
SPs join their data together or they use the knowledge of
inherent correlations in the data the watermark cannot
be identified (with a high probability).

e We show that the SPs that are responsible for the unau-
thorized sharing can be detected with a high probability
even when they share a portion of the data or when they
modify the data in order to damage the watermark. We
also show relationship between the probabilistic limits
of this detection and the shared portion of data.

e While providing these security (or robustness) guaran-
tees, the proposed system also minimizes the utility loss
in the sequential data due to watermarking.

e We also implement and evaluate the proposed scheme
for genomic data sharing.
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The rest of the paper is organized as follows. In the next
section, we discuss the related work. In Section 3, we intro-
duce the data model, the system model, and the threat model.
In Section 4, we provide the details of the proposed solu-
tion. In Section 5, we evaluate the security of the proposed
watermarking algorithm. In Section 6, we discuss potential ex-
tensions of the proposed scheme and possible future research
directions. Finally, in Section 7, we conclude the paper.

2 Related Work

Digital watermarking is the act of hiding a message related to
a digital signal (e.g., an image, song, or video) within the sig-
nal itself [7]. While digital watermarks are typically used for
copyright and copy protection [4,6,17, 18], they are also used
in different applications such as broadcast monitoring [15],
transaction tracking [8], and content authentication [27]. Dig-
ital watermarks are prominently used for copy protection and
copy deterrence on multimedia content. Multimedia water-
marking schemes [14] benefit from the high redundancy in
the data and they do not consider sophisticated attacks against
the watermarking scheme. Since the amount of redundancy is
not typically high in non-media data, it is more challenging to
add watermark into such data. The watermarking techniques
proposed for non-media such as text [12] and graphs [26] can-
not be applied to sequential data because they do not consider
robustness of the watermark against various types of attacks
(that are discussed in Section 3.3).

Several works proposed watermarking techniques for se-
quential data such as time-series data and spatiotemporal data.
Kozat et al. proposed a technique for hiding sensitive meta-
data such as SSN or date-of-birth into electrocardiograms
(ECQG) in order to authenticate the ownership of data without
distorting important ECG characteristics [13]. In addition,
Panah et al. [24] introduced a low complexity watermarking
scheme for tamper-proofing of ECG signals at the sensory
nodes. Watermarking spatiotemporal data is also challeng-
ing due to low redundancy of data and works in this area
are mostly focused on watermarking trajectory datasets that
include trajectories of multiple objects [11, 16,25]. However,
we consider the case in which an individual wants to share
their individual data with multiple SPs after watermarking.
This is a more challenging problem since the redundancy in
the shared data is much lower. In general, neither of these
schemes consider the correlations in data nor the possibility
of colluding SPs.

Boneh and Shaw proposed a general fingerprinting (water-
marking) solution that is robust against collusion [5]. Their
scheme constructs fingerprints in such a way that no coali-
tion of attackers can find a fingerprint. However, there are
still some practical drawbacks of this scheme. First, finger-
print length may be very long to guarantee robustness against
collusion, which reduce the utility of the data. Furthermore,
the scheme does not consider complex attacks against the
watermarking algorithms such as the ones using auxiliary
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X1, -+ ,Xg | Setof ordered data points
dy,--- ,dy, | Possible values (states) of a data point
I Index set of the data points that are
! shared with the SP i
Dy, Set of data points in [;
Wi, Set of data points in J; after watermarking
Z Set of watermarked data points in W,

Table 1: Frequently used symbols and notations.

information or the ones tampering the watermark and it does
not consider the correlations in the data. We address these
drawbacks in our proposed scheme.

3 Problem Definition

Here, we describe the data model, system model, and the
threat model. Frequently used symbols and notations are pre-
sented in Table 1.

3.1 Data Model

Sequential data consists of ordered data points x1, ..., Xz, Where
£ is the length of the data. The value of a data point x; can
be in different states from the set {dy,--- ,d,,} according to
the type of the data. For instance, x; can be coordinate pairs
in terms of latitude and longitude for location data, it can be
location semantics (e.g., cafe or restaurant) for check-in data,
or it can be the value of a nucleotide or point mutation for
genomic data.

We approach the problem for two general sequential data
types: (i) sequential data with no correlations in which data
points are independent and identically distributed. In this type,
value of a data point cannot be predicted using the values of
other data points. Sparse check-in data might be a good ex-
ample for this type. And, (ii) sequential data with correlations
between the data points. Correlation between data points may
vary based on the type of data. For example, consecutive data
points that are collected with small differences in time may be
correlated in location patterns. That is, an individual’s loca-
tion at time ¢ can be estimated if their locations at time (t — 1)
and/or (¢t + 1) are known. In genomic data, point mutations
(e.g., single nucleotide polymorphisms or SNPs') may have
pairwise correlations between each other. Such pairwise cor-
relations are referred as linkage disequilibrium [23] and they
are not necessarily between consecutive data points. The cor-
relation value may differ based on the state of each data point
and correlation between the data points is typically asymmet-
ric. Furthermore, it has been shown that correlations in human
genome can also be of higher order [22]. For the clarity of
the presentation, we first build our solution for uncorrelated
sequential data and then extend it for correlated data.

"'We provide a brief background on genomics in Section 5.
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Figure 1: Overview of the system and threat models.

3.2 System Model

We consider a system between a data owner (Alice) and multi-
ple service providers (SPs) as shown in Figure 1. For genomic
data, the SP can be a medical institution, a genetic researcher,
or direct-to-customer service provider. For location data, the
SP can be any location-based service provider. In the descrip-
tion of the scheme, for clarity, we explain some parts of the
algorithm on binary data but the proposed scheme can be
extended for non-binary data. In fact, for the evaluation of
the proposed scheme, we focus on the point mutations in ge-
nomic data that may have values from {0, 1,2}. Alice shares
parts of her data with the SPs to receive different types of
services. Note that the part Alice shares with each SP may
be different and we do not need same data to be shared with
each SP. When we talk about the collusion attack (as will be
detailed in the next section), we consider the intersection of
the data parts owned by all malicious SPs.

On one hand, when Alice shares her data with an SP, she
wants to make sure that her data will not be shared with
other third parties by the corresponding SP. In the case of
further unauthorized sharing, she wants to know the SP that is
responsible from this leak. Therefore, whenever Alice shares
her data with a different SP, she inserts a unique watermark
into it. On the other hand, an SP may share Alice’s data with
third parties without the consent of Alice. While doing so, to
avoid being detected, the SP wants to detect and remove the
watermark from the data. Instead of sharing the whole data
with a third party, an SP may also share a certain portion of
Alice’s data to reduce the risk of detection (but compromising
from the shared data amount). Similarly, malicious SP (or
SPs) may try to damage the watermark by modifying the data.
Furthermore, two or more SPs may join their data to detect
the watermarked points. Security of the watermarking scheme
increases (against the attacks discussed in the next section)
as the length of the watermark increases. However, a long
watermark causes significant modification on the original
data, and hence decreases the utility of the shared data. In our
proposed scheme, utility loss in the data is minimized while
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the watermarking scheme is still robust against the potential
attacks with high probability.

3.3 Threat Model

Different types of attacks are defined for image or text water-
marking such as elimination attack, collusion attack, masking
attack, insertion/deletion attack, and reordering attack [12,21].
We consider the following attacks on the proposed watermark-
ing scheme by adapting previously defined attacks to sequen-
tial data and defining new attacks for sequential data such as
correlation attack.

Single SP attack on uncorrelated data. Assume that Alice
shares her (uncorrelated) sequential data of length £ with an
SP and she includes a watermark of length w into this data.
Since data is uncorrelated, each data point is independent
from other, and hence for each data point, the SP infers the
probability of being watermarked as w/£. Instead of trying to
detect the watermark, the malicious SP may also tamper with
the data in order to damage the watermark.

Correlation attack. If an SP has correlated data points and
it also knows the corresponding correlation values, it may
identify the watermarked points with higher probability. To
be general, we assume pairwise, asymmetric correlations be-
tween different states of data points. The proposed scheme
can be extended to other scenarios (e.g., higher order correla-
tions or symmetric correlations) similarly. For instance, if dg
state of x; (i.e., x; = dg) is correlated with dp state of x; (i.e.,
Xj = dpg), then Pr(x; = dy|xj = dp) is high, but the opposite
does not need to hold. Note that d,, state of x; may be in pair-
wise correlation with other data points as well. We consider
all possible pairwise correlations between different states of
all data points in our analysis. Following this example, assume
the SP has one of the correlated data points as x; = dg, but
x; = dy (where dy # dg). Then, the SP can conclude that x; is
watermarked with probability p(x}) = Pr(x; = dg|x; = dg).
If dy, state of x; is also correlated with other data points (that
the SP can observe), then the SP computes the watermark
probability on x; as the maximum of these probabilities. Sim-
ilarly, dy state of x; may also be correlated with other data
points. Since x; = d,, such correlations imply that data point
x; is not watermarked. Using such correlations, the SP also
computes the probability that x; is not watermarked, p(x?).
Eventually, the SP computes the probability of data point x;
being watermarked as (p(x¥) — p(x?)). Once the SP deter-
mines the probability of being watermarked for each data
point, it sorts them based on the computed probabilities, and
identifies the w watermarked data points as the ones with the
highest probabilities. We assume that the SP knows the wa-
termarking algorithm, and hence the length of the watermark
(w). Thus, the SP may choose w data points corresponding
to the w highest probabilities to infer the watermarked data
points in the shared data.

Collusion attack. Multiple SPs that receive the same data
portion (from the same data owner) with different watermark
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patterns may join their data to identify the watermarked points
with higher probability. In such a scenario, when the SPs ver-
tically align their data points, they will observe some data
points with different states. Such data points will definitely
be marked as watermarked data points by the SPs. Collusion
attack may also benefit from the correlation attack. Mali-
cious SPs may first run the collusion attack to identify some
watermarked points and then they may individually run the
correlation attack to infer the watermark pattern. We also
evaluate the robustness of the proposed scheme against such
an attack. Malicious SPs may also try to modify the data in
order to damage the watermark.

3.4 Watermark Robustness

“Robustness” and “security” terms have been used inter-
changeably for watermarking schemes in different works. For
text watermarking, robustness of a watermarking scheme is
defined as strength of the technique to resist attacks that aim
to retrieve or modify hidden data [12]. For image watermark-
ing, Nyeem et al. define robustness as the ability to withstand
any distortions and they define security as the ability to resist
any hostile attacks that try to circumvent the system or to
destroy the watermark’s purpose(s) [20]. Same authors for-
malize the robustness for image watermarking by defining
three levels of robustness such as robust, fragile, and semi-
fragile by considering detection ability after distortion [21].
Adelsbach et al. provide formal definitions for watermark ro-
bustness [3]. Different from our work, in [3], authors consider
watermarking mechanisms that use a secret embedding key
(that is used when adding watermark to the data). They define
watermark robustness as the information of the watermark
that is revealed to the adversary and watermark security as
the information revealed about the secret embedding key. In-
spired from [3], we come up with the following robustness
definitions for watermarking sequential data.

Robustness against watermark inference. This property
states that watermark should not be inferred by the mali-
cious SP (or SPs) via the aforementioned attack models. In
the proposed scheme, inferring the watermark does not rely
on a computationally hard problem; malicious SP (or SPs)
probabilistically infer the watermark. Thus, we evaluate the
proposed scheme for this property in terms of malicious SPs’
(or SP’s) inference probability for the added watermark. We
provide the following definition to evaluate the robustness of
a watermarking scheme against watermark inference.

Definition 1 p-robustness against f-watermark inference.
A watermarking scheme is p-robust against f-watermark in-
ference if probability of inferring at least f fraction of the
watermark pattern (0 < f < 1) is smaller than p.

Robustness against watermark modification. This prop-
erty states that the malicious SP (or SPs) should not be able
to modify the watermark in such a way that the watermark
detection algorithm of the data owner misclassifies the source
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of the unauthorized data leakage. We evaluate the proposed
scheme for this attribute in terms of precision and recall of the
data owner to detect the malicious SP (or SPs) that leak their
data. For this, we define “false positive” as watermark detec-
tion algorithm classifying a non-malicious SP as a malicious
one and “false negative” as watermark detection algorithm
classifying a malicious SP as a non-malicious one. We pro-
vide the following definition to evaluate the robustness of a
watermarking scheme against watermark modification.

Definition 2 p/C-robustness against watermark modifica-
tion. A watermarking scheme is p/C-robust against water-
mark modification if malicious SP (or SPs), by modifying the
watermark, cannot decrease the precision and recall of the
watermark detection algorithm below p and C, respectively.

For all the aforementioned attack models, we evaluate the
proposed watermarking scheme based on its robustness. In
Section 5, we show the limits of the proposed scheme for
these definitions considering different variables.

4 Proposed Solution

Here, first we present an overview of the proposed protocol
and then describe the details of the proposed watermarking
algorithm. When Alice wants to share her data with an SP i,
they engage in the following protocol. The SP i sends the in-
dices of Alice’s data it requests, denoted by ;. Alice generates
Dy; = Uiy, Xi- Alice finds the data points to be watermarked
considering her previous sharings of her data. This part is done
using our proposed watermarking algorithm as described in
detail in this section. Alice inserts watermark into the data
points in Dy, and generates the watermarked data Wy.. Alice
stores the ID of the SP and Z;, (watermark pattern for the SP
i). Alice sends Wy, to SP 1.

The proposed watermarking algorithm describes the selec-
tion of data points to be watermarked in the sequential data
so that the watermark will be secure against the attacks dis-
cussed in Section 3.3. We insert watermark into a data point
by changing this data point’s state. For instance, if data is
binary, this change is from O to 1, or vice versa. If each data
point can have states from the set {d;,--- ,dy}, the change is
from the current state to some other state d*. In Section 4.1,
since we assume there is no correlation in data, a data point x;
is changed to a state d} uniformly at random. However, due
to the correlation in data, the new state d} of a data point x; is
determined to minimize the probability of correlation attack
in Section 4.2. In the following, we first detail our solution
for sequential data that has no correlations (data points are
independent from each other) and then, we describe how to
extend our solution for correlated sequential data.
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4.1 Watermarking Sequential Data without
Correlations

Before giving the details of the proposed algorithm, we first
provide the following notations to facilitate the discussion.

e n!': number of data points that are watermarked i times

when the whole data is shared with h SPs.

e 9: number of data points that are watermarked i times
when the whole data is shared h times and will not be
watermarked in the (h+ 1)-th sharing.

e y": number of data points that are watermarked i times
when the whole data is shared & times and will be water-
marked in the (h+ 1)-th sharing.

When Alice shares her data with a new SP, first, watermark
locations in the data are determined for the new request ac-
cording to the watermark patterns in previously shared data
and with the goal of minimizing the success of the collusion
attack. From these definitions, it is obvious that nf = $# + y#,
which means that among the n! data points that are water-
marked i times after h sharings, y? of them will be shared in
the (h+ 1)-th sharing and the remaining $# of them will not
be shared in the (h+ 1)-th sharing. Therefore, the proposed
algorithm computes y? and 9% values to minimize the prob-
ability of collusion attack when Alice shares her data with
(h+1)-th SP. After computing these values any y” of n! data
points that are watermarked i times can be selected to insert
the watermark since data points are not correlated.

As discussed, a malicious SP may increase its probability
to find the watermark inserted data points by colluding with
other malicious SPs that received the same data from Alice
with different watermark patterns. For simplicity, assume that
each data point’s state can be either 0 or 1 and & malicious SPs
have the same data portion (belonging to Alice) with different
watermark patterns. They vertically align their data portions,
compare their data, and find the differences. For instance,
for a data point x;, they observe k Os and (h—k) 1s (where
0 < k < h) and they conclude that the corresponding data
point has been watermarked either k or (h— k) times. We as-
sume that the proposed watermarking algorithm is also known
by the malicious SPs. Therefore, these & SPs may run our
proposed algorithm (as discussed next) and find nf and nf_,
values. Once they have these values, they may conclude that
(i) the corresponding data point has been watermarked k times
with probability n'/(nf +nf_,), and (ii) (h — k) times with
probability nf_, /(nf +nf_,). In our algorithm, watermarks
are inserted into the watermark locations that minimizes the
probability of identifying the whole watermark patterns of
all malicious SPs when they collude. To do so, we propose
solving an optimization problem to determine the data points
to be watermarked at each data sharing instance of Alice. The
objective function of this problem for the (k+ 1)-th sharing
can be formulated as follows:
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(i) determines the number of data points that we watermark.
That is, the algorithm does not modify more data points than
the limit defined in this constraint. Constramts (11) (iii), (iv),
and (v) denote the relationship between ”; . :+ y" and y"
In Figure 2, we show this relationship. Constraint (vi) is used
to prevent negative y? and $# values. Finally, constraint (vii)
is to make sure that each SP has a unique watermark pattern.
As the so]ution of this optimization problem, we obtain the
y! and $% values. As mentioned before, for the (h+ 1)-th
sharmg, the algorithm selects any y! of the data points that
are watermarked i times after & sharings.

4.2 Addressing Correlations in the Data

By solving the optimization problem in Section 4.1, we ob-
tain the y/ and y# values. Since this time data is correlated,
watermarks should be inserted in such a way that no mali-
cious SP can understand the watermark inserted data points
by checking the validity of the correlations. To guarantee
this, if a data point x;’s state is changed from dg, to dg (due
to added watermark), the states of other data points that are
correlated with dp state of x; should be also changed (since
we assume asymmetric correlations). Assume data has been
shared for h times before. Watermark insertion algorithm for
the (h+ 1)-th sharing of the data with SP  is summarized as
follows.

From the solution of the optimization problem, we know
the number of data points which are watermarked i times and
will be watermarked in the current sharing (yf-‘). Since a data
point could be watermarked between 0 and k times, we have
the solution set of the optimization problem as Y = {yA, y%, -+,
¥}. Data points to be shared with SP y are Dy, = {x1,--- ,X;}
and the states of a data point are from the set {dy,d, -+ ,dn }.
To add watermarks into data points that are watermarked for
t times (t =0,1,---,h) in the previous h sharings, we find
the set of ¢ times watermarked data points (T;) and sort them
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in ascending order according to their presence probabilities.
Presence probability can be found as follows. Assume d; state
of data point x; is correlated with the set of data points in
C = {x;, =d,,,--- ,X;, = d;,}. Then, the presence probability
for (x; = dj) is computed as [T}_ Pr(x; = d;|x; =d;,).
Then, for each ¢ value from 0 to h, we get the data point
with minimum presence probability (x;) in T;, determine the
state (d}) that maximizes its presence probability, and change
the state of x ;. This way, we choose the most likely state value
for x; according to the whole data. If the state of x; is already
dj, we skip this data point and continue with the next data
point with minimum presence probability. Since we change a
data point that is watermarked for ¢ times, we also decrement
the value of Y [¢] () by 1. After the state of x; is changed to
dj, we find the data points that are correlated with d; state of
x;. That is, we construct a set C with data points that satisfy
Pr(xi|xj =dj) > and change the states of the data points in
C. For each data point in C, we find its “desired state™ (i.e.,
correlated state with d}? state of x;) and change it. During this
process, if we change a data point that is watermarked for ¢*
times, we also decrement the value of Y[t*] (%) by 1. We
continue this process until we add w watermarks to the data.
In this algorithm, we consider pairwise correlations be-
tween the data points. When correlations between the data
points are more complex (e.g., higher order), we can still use
a similar algorithm to handle them. We assume that malicious
SPs also have the same resources we use in this algorithm
to use the correlations (in order to detect the watermarked
points) and evaluate the scheme accordingly in Section 5.

5 Evaluation

We implemented the proposed watermarking scheme on ge-
nomic data and evaluated its security (robustness) and utility
guarantees. To solve the proposed non-linear optimization
problem, we used the APMonitor Optimization Suite [10]. In
this section, we provide the details of the data model we used
in our evaluation and our results.

5.1 Data Model

For the evaluation, we used single-nucleotide polymorphism
(SNP) data on the DNA. The human genome consists of ap-
proximately three billion letters (A, T, C, or G). Even though
more than 99% of these letters are identical in any two in-
dividuals, there are differences between us due to genetic
variations. SNP is the most common DNA variation in human
population. A SNP is a position in the genome holding a
nucleotide, which varies between individuals [2]. For exam-
ple, in Figure 3, two sequenced DNA fragments from two
different individuals contain a single different nucleotide at
a particular SNP position. In general, there are two types of
alleles (nucleotides) observed at a given SNP position: (i) the
major allele is the most frequently observed nucleotide, and
(ii) the minor allele is the rare nucleotide. For instance, the
two alleles for the SNP position in Figure 3 are C and T (G
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and A in the figure are the complementary nucleotides for C
and T, respectively). Almost all common SNPs have only two
alleles, and everyone inherits one allele of every SNP position
from each of their parents. If an individual receives the same
allele from both parents, they are said to be homozygous for
that SNP position. If however, they inherit a different allele
from each parent (one minor and one major), they are called
heterozygous. Depending on the alleles the individual inherits
from their parents, the state (or value) of a SNP position can
be simply represented as the number of minor alleles it pos-
sesses, i.e., 0, 1, or 2. SNPs may have pairwise correlations
between each other. Such pairwise correlations are referred
as linkage disequilibrium [23].

Figure 3: Single nucleotide polymorphism (SNP) with alleles
C and T ((©David Hall, License: Creative Commons).

We obtained SNP data of 99 individuals from 1000
Genomes Project [1]. In the obtained dataset, each individual
has 7690 SNP values meaning that we have a 99 by 7690
matrix and elements of matrix are either 0, 1, or 2. We used
this dataset to learn the statistics (e.g., correlations between
the SNPs) that are used in the proposed algorithm. Thus, the
size of this dataset is not an indicator for the scalability of the
proposed algorithm.

5.2 [Experimental Results

We evaluated the proposed watermarking scheme in vari-
ous aspects. In particular, we evaluated its security (robust-
ness) against watermark inference and watermark modifica-
tion (Section 3.4). Robustness against watermark inference
is evaluated by running collision and correlation attacks (as
discussed in Section 3.3). In all collusion attack scenarios, we
assume that Alice shares the same data portion with the SPs.
This assumption provides the maximum amount of informa-
tion to the malicious SPs. If different set of data points are
shared with the SPs, malicious SPs can use the intersection of

USENIX Association

these data points for the collusion attack. Robustness against
watermark modification is evaluated under various attacks in
terms of the (watermark) detection performance of the data
owner. The results also include evaluation of the loss in data
utility due to watermark addition. We ran all experiments
for 1000 times and report the average values. We denote the
fraction of watermarked data (or watermark ratio) as r = w/£.
Watermark ratio r also represents the utility loss in the shared
data due to the added watermark.

5.2.1 Robustness against watermark inference

Here, we evaluate the robustness of the proposed scheme
against watermark inference under collision and correlation
attacks.

Collusion attack: First, we evaluated the probability of iden-
tifying the whole watermarked points in the collusion attack
(when correlations in data are not considered). We considered
the worst case scenario and assumed that all the SPs that has
Alice’s data are malicious, and hence they exactly know how
many times Alice has shared her data to compute the exact
probabilities for the attack (as discussed in Section 4.1). In
Figure 4, we show the logarithm of this inference probabil-
ity when data is shared with h SPs and they are all malicious
(where h=(1,2,---,10)) and when different fractions of data
is watermarked. Overall, we observed that the probability to
completely identify the watermark via the collusion attack
is significantly low when the proposed technique is used for
watermarking the data. Following our definition of robustness
against watermark inference (in Section 3.4), under this attack
model, the proposed scheme is p-robust against f-watermark
inference for f = 1 and p < 102 when h is as high as 10 and
data utility is as high as 97% (i.e., r is as small as 0.025). As
expected, we observed that the inference probability of the
malicious SPs increases with decreasing r and increasing h
values. That is, as data is shared with more malicious SPs, the
probability to identify the watermarked data increases due to
the collusion attack. Also note that even for significantly low
values of r (that corresponds to high data utility), the proposed
scheme provides high resiliency against collusion attacks.
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Figure 4: Probability of identifying the whole watermarked
points in the collusion attack when i malicious SPs collude.
r represents the fraction of watermarked data.

We also ran the same experiment to observe the proba-
bility of malicious SPs to identify different fractions of the
watermarked positions. In Figure 5, we show this inference
probability. For this experiment, we assume that the malicious
SPs initially try to identify the watermark positions that has
higher probability to be watermarked. Since we assume that
the watermarking algorithm is publicly known by the mali-
cious SPs, once they observe vertically aligned data points,
they can compute the probability of being watermarked for
each data position (as discussed in Section 4.1) and initially
try to identify high probability watermark positions. We also
set the number of colluding malicious SPs h = 6 and wa-
termarked different fractions of the whole data (i.e., varied
the r value). We observed that colluding SPs can identify
small portion of watermark locations with small probabilities
and this probability rapidly decreases with increasing frac-
tion of watermarked data (r). Also, the probability to identify
more than 30% of the watermarked locations is significantly
low even when the malicious SPs collude. Notably, we show
that when r = 0.025 (which means 200 watermarked data
points on a data of size 7690, and hence preserves more than
97% of data utility), even when 6 malicious SPs collude, the
probability to recover more than 30% of the watermark loca-
tions is very small. In other words, under this attack model,
when r = 0.025, the proposed scheme is p-robust against
f-watermark inference for f =0.3 and p < 1071,
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Figure 5: Inference probability to identify different fractions
of the watermarked positions in the collusion attack when the
number of colluding malicious SPs k = 6. r represents the
fraction of watermarked data.

Correlation attack: To evaluate the security of the proposed
scheme against the correlations in the data, we compared two
techniques presented in Sections 4.1 and 4.2. In this analysis,
we focused on a data length (£) of 100 in our dataset. We
find each pairwise correlation Pr(x; = ojx; = B) between
these 100 data points, where a,p € {0,1,2}. To consider
only strong correlations (and to avoid the noise that arise
due to weak correlations), we only consider the ones above a
threshold t (we selected T = 0.9). Note that the correlations in
the data are not symmetric. That is, Pr(x; = d;|x; = d;) being
high does not mean that Pr(x; = d;|x; = d;) is also high.
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(a) Correlations in the data are not considered when selecting the data points
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(b) Correlations in the data are considered using the proposed algorithm
when selecting the data points to be watermarked (i.e., technique proposed in
Section 4.2 is used for watermarking).

Figure 6: Inference probability to identify different fractions
of the watermarked positions in the single SP correlation
attack. r represents the fraction of watermarked data.

First, we compared two schemes for a single SP attack
in terms of the probability of the malicious SP to identify
different fractions of the watermarked positions. Note that
in this attack, the malicious SP also utilizes its knowledge
of correlations in the data.” In Figure 6 we show this com-
parison for different r values. We observed in Figure 6a that
as r increases, the inference probability of the malicious SP
increases for the technique presented in Section 4. 1. This is
expected since (i) if correlations are not considered while

2We assume that knowledge of the malicious SP about the correlations
is the same as the knowledge we utilized while adding the watermark in
Section 4.2.
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selecting the watermarked positions, the probability of the
attacker to identify the watermarked positions also increases,
and (ii) as more data points are watermarked in this way, the
attacker can identify more watermarked position. However,
when we consider the correlations in the data when select-
ing the watermark locations, the inference probability of the
malicious SP significantly decreases as shown in Figure 6b.
Also, in this scenario, inference probability decreases with
increasing r value as expected. For instance, when r = 0.3,
the watermarking scheme is p-robust against f-watermark
inference for f = 0.2 and p ~ 1 when the correlations in the
data are not considered. When we consider the correlations
in the data using the proposed watermarking algorithm, it
becomes p-robust against f-watermark inference for f = 0.2
and p ~0.

Collusion and correlation attack: We also compared two
techniques presented in Sections 4.1 and 4.2 to show the re-
siliency of the proposed watermarking scheme against both
collusion and correlation attacks at the same time. In this
attack, each malicious SP first runs the correlation attack inde-
pendently. As a result of this part, each malicious SP detects
a number of watermarked points. For the advantage of the
malicious SPs (and to consider the worst case scenario), we
consider the outcome of the malicious SP with the highest
number of correct detections. Let the number of watermarks
detected by this malicious SP be m as a result of the first part.
Then, to detect the remaining w —m watermarked points, ma-
licious SPs run the collusion attack.

In Figure 7 we show this comparison for different r values
when the number of colluding malicious SPs # = 6 (and data
has been shared for 6 times). We observed that when the cor-
relations are not considered in the watermarking algorithm,
malicious SPs can identify more than half of the watermarked
data locations with high probability as shown in Figure 7a.
However, when we consider the correlations to select the data
points to be watermarked, the inference probability of the
malicious SPs significantly decreases (as in Figure 7b). For
instance, when r = 0.3, the watermarking scheme is p-robust
against f-watermark inference for f = 0.5 and p ~ 1 when the
correlations in the data are not considered. When we consider
the correlations in the data using the proposed watermarking
algorithm, it becomes p-robust against f-watermark inference
for f = 0.5 and p < 0.1. This shows that the proposed wa-
termarking scheme provides security guarantees against both
collusion and correlation attacks with high probabilities even
when all the SPs that receive the data are malicious and collud-
ing (as in this experiment). Note that in Figure 7b, the reason
inference probabilities for r = 0.2 is larger than the ones for
r = 0.1 is due to the result of the optimization problem.

3 As discussed, malicious SPs may detect less than w watermarked points
as a results of the correlation attack.
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(b) Correlations in the data are considered using the proposed algorithm
when selecting the data points to be watermarked (i.e., technique proposed in
Section 4.2 is used for watermarking).

Figure 7: Inference probability to identify different fractions
of the watermarked positions in collusion attack (when & = 6)
in which the malicious SPs also use the correlations in the
data. r represents the fraction of watermarked data.

5.2.2 Robustness against watermark modification

Here, we evaluate the robustness of the proposed scheme
against watermark modification.
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Figure 8: Precision and recall values for the data owner to
detect the malicious SP when the malicious SP partially shares
Alice’s data.

Partial sharing: We evaluated the detection performance
(and robustness against watermark modification) of the pro-
posed watermarking scheme when a malicious SP partially
shares Alice’s data. In this scenario, we assume that Alice
has shared her data (same data portion at each sharing) with
SPs (SPy,---,SPy). The malicious SP, rather than sharing the
whole data with a third party without Alice’s authorization,
shares different fractions of the data to avoid being detected
by Alice. As we have shown in previous experiments, the
probability for a malicious SP to detect the watermarked data
points is significantly low for our proposed scheme (even
in the existence of collusion attack). Thus, we assume that
the malicious SP randomly selects different fractions of data
points to share with the third party. Here, we assume the mali-
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cious SP does not further modify Alice’s data before sharing
it with a third party as such modification would degrade the
credibility of the data (as we discuss in Section 6). We also
consider and extensively study the impact of such modifica-
tion to the detection performance later in this section.

We quantify the robustness against watermark modification

under this attack using precision and recall metrics. Alice
constructs a set S that includes the malicious SPs detected by
her. We define true positive as a malicious SP that is in set S,
false positive as a non-malicious SP that is in S, true negative
as a non-malicious SP that is not in S, and false negative as a
malicious SP that is not in S. In Figure &, we show the preci-
sion and recall values for varying ratio of shared data by the
malicious SP and for different r and h values. Following our
definition of robustness against watermark modification (in
Section 3.4), under this attack model, the proposed scheme
is p/E-robust against watermark modification with { = 1 for
all considered values of h and r. Furthermore, when r > 0.2,
h < 10, and the ratio of shared data by the malicious SP is
more than 0.2, the proposed scheme is p/C-robust against wa-
termark modification with p ~ 0.97 and £ = 1. We conclude
that the data owner can associate the source of the leakage
to the corresponding SP with high probability in most of the
cases, except when the malicious SP shares very small portion
of user’s data with a third party. However, this particular case
would also reduce the benefit of the malicious SP (due to the
unauthorized sharing) significantly. Furthermore, such partial
sharing may degrade the credibility of data.
Watermark modification: Finally, we studied a stronger at-
tack in which malicious SP (or SPs) modify the data in order
to damage the watermark (and hence, it becomes harder for
the data owner to detect the source of the data leak). Note that
in practice, such modification of data not only reduces data
utility (as we show in our experiments), but it also degrades
data credibility while the malicious SPs share the data with a
third party. Here, malicious SPs (or SP) try to remove or dam-
age the watermark by (i) changing the states of data points that
are different when they aggregate their data (i.e., when they
detect a data point with multiple states in the aggregate data,
they change its state to the majority of the observed states),
and (ii) adding noise to other data points (i.e., changing states
of other random data points). Eventually, data leaked by the
malicious SPs has a watermark pattern represented as Zg.
Using Zy and unique watermark patterns of the SPs (that
previously received the data), Alice constructs the set S that
includes the malicious SPs detected by her. As before, we
evaluate the success of the detection via precision and recall
metrics. For all following experiments we set the watermark
ratio (r) to 0.05.

First, we consider the single SP attack in which data has
been shared with & SPs and there is a single malicious SP.
Watermark length (w) is known by the malicious SP and the
malicious SP randomly changes (m x w) data points in the
data and shares it. For each SP i that received her data, Alice
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computes g; = |Zq NZj;| (Zy, is the watermark pattern of SP
i) and identifies the malicious SP as the one with the highest
gi value. In Figure 9, we show the precision and recall when
the data owner knows that there is a single malicious SP and
for different m and h values. In this scenario, both the preci-
sion and recall values are high even when the malicious SP
significantly damages the watermark. Under this attack, the
proposed scheme is p/C-robust against watermark modifica-
tion with p =~ 1 when ® < 13 and h < 20 (x = 13 means
a utility loss of 65%).
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Figure 9: Precision and recall values for the data owner to
detect the malicious SP in the single SP attack in which data

has been shared with i SPs. Malicious SP randomly changes
7 X w data points to damage the watermark.

We also considered the case in which colluding malicious
SPs compare their aggregated data and change the states of
data points that are different, as discussed before. Colluding
malicious SPs also add random noise in addition to changing
the states of data points that are different in the aggregate data.
We assume data has been shared with 2 SPs and colluding
malicious SPs randomly change (x x w) data points in the
data before they leak it. The data owner Alice may or may not
know the number of malicious SPs. Let the actual number of
malicious SPs be ¢ and the prediction of Alice for the number
of malicious SPs be ¢ which can be any number from 1 to
h. Alice first generates all combinations of & with ¢. Then,
she eliminates the combinations for which the union of the
watermarked points of the SPs (in that particular combina-
tion) does not contain the watermark pattern in the leaked
data (Zy). Next, for each non-eliminated combination c;, she
computes g; =Y. e, |[Zo NZ;;|- That is, she computes the sum
of intersections of watermarked data points for each SP in the
corresponding combination ¢; with Zy. Finally, she selects
the set S as the most likely combination with the highest g;
value and concludes that the SP (or SPs) in the corresponding
combination are malicious.
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Figure 10: Precision and recall values for the data owner to
detect the malicious SPs in the collusion attack in which data
has been shared with & = 10 SPs. Malicious SPs both change
the states of data points that are different in the aggregated
data and they randomly change © x w data points to damage
the watermark. In (a), precision and recall curves for different
¢ values overlap. Also, in (a), we show the percentage of
utility loss due to addition of extra noise by the malicious
SPs.

In Figure 10, we show the precision and recall when & = 10,
® = ¢, and when the data owner does not know ¢, respectively.
In Figure 10a, we also show the percentage of utility loss in
the data due to the noise addition by the malicious SPs (to
damage the watermark). Here, the utility loss is shown when
r=20.05 (i.e., when 5% of original data is watermarked). As r
value increases, the loss in utility (due to extra noise addition
by the malicious SPs) also increases linearly. For instance
when r = 0.1, to decrease the precision and recall values
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down to 0.2, half of the SPs that received the data should be
malicious and they need to add noise to 50% of the original
data to damage the watermark. As shown in Figure 10a, if the
data owner knows the number of malicious SPs, both precision
and recall of detection performance are high up to 30% of the
SPs that received the data are malicious (and colluding) and
up to a utility loss of 15%. That is, the proposed scheme is
p/C-robust against watermark modification with { =p ~ 0.9
up to ¢ = 3 and = = 3. Beyond this, we observed a decrease
in both precision and recall with increasing & and ¢ values.
This behavior gives some idea about the practical limits of
our proposed scheme. When data owner predicts the number
of malicious SPs (Figure 10b), we observed two cases: (i)
when the added noise by the malicious SPs is less than 3
times the watermark length, the proposed scheme includes
the actual malicious SPs in set S with a high probability.
That is, the proposed scheme is p/C-robust against watermark
modification with p ~ 0.7 up to © = 3 and for all § values.
When the added noise by malicious SPs is beyond this value,
both precision and recall values start decreasing. However,
adding noise beyond this value significantly reduces data
utility as discussed before.

6 Discussion

Here, we discuss the potential use of our proposed scheme
in real-life, its potential extensions, and future research direc-
tions.

Usability and Scalability. The proposed system detects the
malicious SPs if data is leaked without the data owner’s con-
sent and if the data owner observes this leakage. Similarly,
the SP that buys the data may keep the malicious SPs liable
from this unauthorized sharing (with the cooperation of the
data owner). It may be practically infeasible for a data owner
to notice their data is leaked. Instead, this can be outsourced
to a third party that continuously analyzes publicly available
datasets that are made available by SPs that collect personal
information.

The data owner can share their data with numerous SPs.
The main constraint of the algorithm described in Section 4 is
that the watermark pattern given to each SP should be unique.
Thus, it is sufficient to change as less as one watermarked
data point between two sharings of the same data with two
SPs. However, as the overlap between watermark patterns in-
crease, the precision and recall of the data owner to detect the
malicious SP(s) decrease (as discussed in Section 5). We will
further study this trade-off between scalability and watermark
robustness in future work.

It is also important to note that the robustness guarantees
of the proposed scheme may vary over time depending on
the data type. For instance, via new discoveries in genomics,
things that are non-sensitive today may turn out to be sensitive
in the future. Similarly, new discoveries may result in new
correlation models in the data. Thus, the evaluations we have
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shown in Section 5 represent the robustness guarantees we
can provide with today’s knowledge.
Data utility. We may include w (i.e., watermark length) as
one of the objectives of the optimization problem and put a
limit on it. When we do so, the problem becomes a multi-
objective optimization problem. Solution of a multi-objective
optimization problem is non-trivial and many proposed tech-
niques suggest converting the multi-objective problem into a
single-objective one. Thus, we transform this multi-objective
problem into single objective problem.

In this new formulation, there are two additions to the
optimization problem introduced in Section 4.1. First, the
objective function is changed as follows:

hil n‘f'H A+l

min{p- g(ﬁ)""

n i

+(1-B)-w}

We use the weighted sum of the watermark length and the in-
ference probability as the new objective function. The weight
(B) determines the tradeoff between the inference probabil-
ity and the watermark length (i.e., data utility). Second, we
add a new constraint as w < w,,, where w,, is the maximum
allowed watermark length. This new constraint puts a thresh-
old to the maximum number of watermark points. This new
optimization problem guarantees the minimum weighted sum
of inference probability and watermark length.

Depending on the data type, other utility constraints may
also be included in the proposed algorithm. For instance, if
adding watermark to two consecutive data points significantly
reduces data utility, once y* and $ values are determined
as a result of the optimization problem, watermark addition
algorithm in Section 4.1 (or Section 4.2) can be tailored to
take this constraint into account while adding the watermarks.
Other applications. The proposed watermarking algorithm
can be applied for any type of sequential data (we describe the
general framework for sequential data in Section 4). However,
implementation for different data types is non-trivial. For
instance, correlations in other types of data may be more
complex. Furthermore, auxiliary information about the data
owner may help a malicious SP to infer the watermarked
positions with higher probability. To address some of these
challenges, we will work on the application of the proposed
scheme for location patterns as future work.

7 Conclusion and Future Work

In this work, we have proposed a scheme to share sequential
data while addressing the liability issues in case of unau-
thorized sharing. The proposed scheme is between a data
owner and one or more service providers. We have shown that
the proposed watermarking scheme provides high security
against collusion and correlation attacks. That is, with high
probability, malicious service providers cannot identify the
watermark on the data even if they collude or try to use the
inherent correlations in the data. We have also shown that the

USENIX Association

proposed scheme does not degrade the utility of data while it
provides the aforementioned security guarantees. We believe
that the proposed work will deter the service providers from
unauthorized sharing of personal data with third parties. The
algorithm proposed in this paper does not consider if mali-
cious SPs share statistics (e.g., average or median) about the
data without the authorization of the data owner. Such statis-
tics can also be shared by aggregating multiple data owners’s
data. In future work, we will also consider this and work to
develop algorithm that also identify the unauthorized sharing
in such scenarios.
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