
Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year

Manuscript Category

Genome privacy and security

Robust Fingerprinting of Genomic Databases

Tianxi Ji,1 Erman Ayday 1,#, Emre Yilmaz*2 and Pan Li 1

1Case Western Reserve University, Cleveland, OH, USA and 2University of Houston-Downtown, Houston, TX, USA.

To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Database fingerprinting has been widely used to discourage unauthorized redistribution

of data by providing means to identify the source of data leakages. However, there is no fingerprinting

scheme aiming at achieving liability guarantees when sharing genomic databases. Thus, we are motivated

to fill in this gap by devising a vanilla fingerprinting scheme specifically for genomic databases. Moreover,

since malicious genomic database recipients may compromise the embedded fingerprint (distort the

steganographic marks, i.e., the embedded fingerprint bit string) by launching effective correlation

attacks which leverage the intrinsic correlations among genomic data (e.g., Mendel’s law and linkage

disequilibrium), we also augment the vanilla scheme by developing mitigation techniques to achieve

robust fingerprinting of genomic databases against correlation attacks.

Results: Via experiments using a real-world genomic database, we first show that correlation

attacks against fingerprinting schemes for genomic databases are very powerful. In particular, the

correlation attacks can distort more than half of the fingerprint bits by causing a small utility loss (e.g.,

database accuracy and consistency of SNP-phenotype associations measured via p-values). Next, we

experimentally show that the correlation attacks can be effectively mitigated by our proposed mitigation

techniques. We validate that the attacker can hardly compromise a large portion of the fingerprint bits

even if it pays a higher cost in terms of degradation of the database utility. For example, with around 24%

loss in accuracy and 20% loss in the consistency of SNP-phenotype associations, the attacker can only

distort about 30% fingerprint bits, which is insufficient for it to avoid being accused. We also show that

the proposed mitigation techniques also preserve the utility of the shared genomic databases, e.g., the

mitigation techniques only lead to around 3% loss in accuracy.

Availability and implementation: https://github.com/xiutianxi/robust-genomic-fp-github†

1 Introduction

Genomic database sharing is critical in modern biomedical research,

clinical practice, and customized healthcare. However, it is generally not

viable due to the copyright and intellectual property concerns from the

database owners. In other words, the requirements of copyright protection

and anti-piracy may prevent genomic data holders from sharing their data,

which may hinder the progress of cooperative scientific research.

*Part of this research was undertaken while the author was at Case Western
Reserve University.
†Research reported in this publication was partly supported by the National
Library Of Medicine of the National Institutes of Health under Award
Number R01LM013429 and by the National Science Foundation (NSF)
under grant number 2050410.

Digital fingerprinting is a technology that allows to claim copyright,

deter illegal redistribution, and identify the source of data breaches (i.e.,

the guilty party who is responsible for the leakage) by embedding a

unique mark into each shared copy of a digital object. Although the

most prominent usage of fingerprinting is for multimedia Cox et al. (1997,

2002); Johnson et al. (2001), fingerprinting techniques for databases have

also been developed Li et al. (2005); Guo et al. (2006); Liu et al. (2004);

Lafaye et al. (2008). These techniques change database entries at different

positions when sharing a database copy with a new service provider (SP). If

the SP shares its received copy without authorization, the database owner

can use the inserted fingerprints to hold the guilty SP responsible.

1.1 Challenges in Genomic Database Fingerprinting
Existing fingerprinting schemes for databases have been developed to

embed fingerprints in continuous numerical entries (floating points) in

relational databases, e.g., Li et al. (2005); Guo et al. (2006); Li et al.

(2003). Whereas, fingerprinting discrete (or categorical) values is more
© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

https://github.com/xiutianxi/robust-genomic-fp-github

2 Tianxi Ji,1 Erman Ayday 1,#, Emre Yilmaz1 2 and Pan Li 1

difficult, as the number of possible values (or instances) for a data point is

much fewer. Hence, in such databases, a small change in data points (as

a fingerprint) can significantly affect the utility. Fingerprinting becomes

even more challenging when it comes to a genomic databases, which

contain even fewer values, e.g., 4 instances (A, G, C, T) when considering

nucleobases, and 3 instances (0, 1, 2) when considering number of minor

alleles for each single nucleotide polymorphism - SNP (Section 3 gives

more details about the type of genomic data considered in this work). In

real world, leaked genomic databases often end up being sold or publicly

shared on the internet McGee and Ross (2016). Once that happens, the

genomic database owner wants to find out the traitors who should be

responsible for the data leakage by extracting the their fingerprints in the

leaked databases. Thus, in this paper, we first propose a vanilla genomic

database fingerprinting scheme by (i) taking into account of the abundant

attributes of genomic sequence, and (ii) extending the state-of-the-art

database fingerprinting scheme Li et al. (2005). Our vanilla scheme is

more robust against common attacks targeted on database fingerprinting

schemes (e.g., random bit flipping attack and subset attack Li et al.

(2003); Agrawal et al. (2003)) than previously developed fingerprinting

schemes for generic relational databases such as Li et al. (2005); Guo et al.

(2006); Liu et al. (2004), because we can insert denser fingerprint for each

selected genomic data by introducing a new parameter, which controls

the percentage of fingerprinted entries for selected rows (see Section 4.1).

Whereas, Li et al. (2005) only fingerprints one attribute for all selected

rows. Compared with Li et al. (2005), we also assign higher confidence

score during fingerprint extraction considering that genomic databases

usually contains more attributes than generic databases (see Section 4.2).

In addition, existing fingerprinting schemes for databases do not

consider various inherent correlations between the data records in a

database. In our previous work Ji et al. (2021a), we have shown that

a malicious party having a fingerprinted copy of a database can detect

and distort the embedded fingerprints using its knowledge about the

correlations in the data entries. Genomic databases contain even richer

row- and column-wise correlations due to the biological characteristics.

In particular, the row-wise correlations arise from (i) the Mendel’s law,

and (ii) similarities of genomes among family members. The column-wise

correlations are the pairwise correlation between genomic data points at

different locations (e.g., linkage disequilibrium Naveed et al. (2015)). In

this paper, we use Atkrow(S) and Atkcol(J) to represent the correlation

attacks using the row- and column-wise correlations, respectively, whereS

andJ denote the corresponding correlation model and they are assumed to

be publicly known (in Section 3.2, we describe these two attacks in detail).

In Section 6, we consider a real world genomic database and show that by

launching Atkrow(S) and Atkcol(J) in sequence, a malicious SP can

easily compromise more than half of the bits in a fingerprint string at the

cost of only changing about 5% of the entries in the genomic databases.

As a result, we also need to make the proposed vanilla genomic database

fingerprinting scheme be robust against the correlation attacks in order to

lay a solid foundation for genomic data sharing.

1.2 Our Solution
In this work, to address the unique challenges of robust fingerprinting

of genomic databases, i.e., mitigating Atkrow(S) and Atkcol(J), we

develop mitigation techniques for each of them, i.e., Mtgrow(S) and

Mtgcol(J). These techniques utilize the correlations among genomic

data, i.e., Mendel’s law, S, and J , and they work as post-processing

steps for our developed vanilla scheme. Besides, they only modify non-

fingerprinted entries in the genomic databases. Thus, they do not reduce the

robustness of the vanilla scheme. Note that the proposed robust genomic

database fingerprinting scheme in this paper is not just a simple application

of our previous work Ji et al. (2021a) for genomic databases, because

the correlation models considered in this paper are different compared

to the generic models we have Ji et al. (2021a), and thus they require

new mitigation techniques to make the fingerprinted genomic databases

match the Mendel’s law and genome-specific correlations. In Table 1, we

summarize the differences between the proposed robust genomic database

fingerprinting scheme and previous schemes.

Properties Li et al. (2005) Ji et al. (2021a)
this

paper

Flexible density in marked attributes ✗ ✗ ✓

Higher confidence in extraction ✗ ✗ ✓

Genome-specific correlation ✗ ✗ ✓

Table 1. Differences between the robust genomic

database fingerprinting and the previous schemes.

✓indicates the scheme has a certain property, and

✗indicates the opposite.

In particular,Mtgrow(S)

is composed of two phases.

First, it checks all fingerprinted

genomic data-tuples of family

members. If a tuple violates

Mendel’s law, the database

owner changes the non-

fingerprinted entries in this tuple to make it compliant with the Mendel’s

law. Second, it checks all family sets in the genomic database, calculates

the empirical correlations among family members after the vanilla

fingerprinting, and changes the non-fingerprinted entries in each family

set to push the empirical correlations close to the publicly known model

(S) by solving a distance minimization problem. Note that the second

phase of Mtgrow(S) is different with the row-wise mitigation developed

in our previous work Ji et al. (2021a), because the second phase is able

to perfectly defend against Atkrow(S) if the objective function of the

distance minimization problem reaches to 0. Whereas, our previous row-

wise mitigation technique Ji et al. (2021a) (formulated as a set function

maximization problem) can only mislead the malicious SP when launching

the row-wise correlation attack. More details are deferred to Section 5.1.

Mtgcol(J) considers all attributes (columns) of the genomic

databases, obtains the empirical marginal distributions after the vanilla

fingerprinting, and changes non-fingerprinted entries in each attribute

to make the empirical marginal distributions resemble the marginal

distributions obtained by marginalizing the joint distributions provided

in J . Similar to our previous work Ji et al. (2021a), the database owner

selects the non-fingerprinted entries and modifies their value by solving a

linear programming problem which is discussed in Section 5.2.

In Section 6, we show that by applying Mtgrow(S) and Mtgcol(J)

after our proposed vanilla fingerprinting scheme, the malicious SP can

hardly distort large portion of the fingerprint bits anymore, even if it

introduces significant utility loss in the database (e.g., by decreasing

database accuracy and making the SNP-phenotype associations less

consistent compared to the ground-truth measured on the original

- non-fingerprinted - database). For example, if the malicious SP

compromises around 24% accuracy and 20% consistency in SNP-

phenotype associations, it can only distort about 30% fingerprint bits.

This implies that the malicious SP will be held responsible for the genomic

database leakage with high probability Ji et al. (2021a).

Contributions and Broader Impact. To the best of our knowledge,

our work is the first to investigate the liability issue when sharing genomic

relational databases (i.e., the collection of genomic data of individuals with

the same attributes) and at the same time address the threats of correlation

attacks due to the unique biological characteristics.

Our proposed robust genomic database fingerprinting scheme helps

facilitate the development of genomic research which requires large-scale

genomic data analyses, and is increasingly relying upon the sharing of

genomic databases with various SPs. The ideas developed in this paper

also shed light on sharing other sensitive biomedical databases, e.g.,

electrocardiogram and electrooculogram data samples, where the data

correlations are determined by the spatio-temporal dependency between

data records. In this case the correlations can be characterized by

autocorrelation and cross-correlations or they are modeled as a Markov

process. We will also study these types of databases in the future.

Paper organization. We review related works on database

fingerprinting schemes in Section 2. In Section 3, we present the system

and threat models, and evaluation metrics. Section 4 introduces the

foundation of our scheme, i.e., the vanilla fingerprinting scheme for

3

genomic databases. Then, in Section 5, we consolidate this foundation

by developing mitigation techniques against various correlation attacks

on the genomic database. In Section 6, we show the vulnerabilities of the

vanilla fingerprinting scheme for genomic databases, and also demonstrate

the performance of mitigation techniques from both database utility and

fingerprint robustness perspective. Section 7 discusses the limitations of

the proposed scheme and points out future research directions. Finally,

Section 8 concludes the paper.

2 Related Work

The seminal work of database fingerprinting is proposed by Agrawal et al.

(2003), which assumes that the database consumer can tolerate a small

amount of error in the marked databases. Then, based on Agrawal et al.

(2003), some variants have been proposed Li et al. (2005); Guo et al.

(2006); Liu et al. (2004). For instance, Li et al. (2005) develop a database

fingerprinting scheme by extending Agrawal et al. (2003) to enable the

insertion and extraction of arbitrary bit-strings in relations. However,

these works do not consider the correlations among data entries, which

makes them vulnerable to correlation attacks Ji et al. (2021a). Records

in Genomic databases usually have much stronger correlations caused

by Mendel’s law and linkage disequilibrium, which make the genomic

database prone to correlation attacks.

Recently, some works have explicitly taken the genomic data

correlations into account in fingerprinting scheme design. In particular,

Yilmaz and Ayday (2020) develop a probabilistic fingerprinting scheme

by considering the conditional probabilities between genomic data points

of a single individual. Ayday et al. (2019) propose an optimization-based

fingerprinting scheme for sharing personal genomic sequential data by

jointly considering collusion attack and data correlation. However, these

two works focus on the genomic data of an individual, instead of a genomic

database, where individuals may have kinship relationships. Öksüz et al.

(2021) develop a watermarking scheme for sequential genomic data

based on belief propagation which considers the privacy of data and the

robustness of watermark requirements at the same time. Ji et al. (2021a)

propose mitigation techniques against general correlation attacks targeted

on generic relational databases and show that the proposed technique can

be applied after any existing relational database fingerprinting scheme to

achieve robustness against correlation attacks.

However, the above mentioned works cannot be directly applied

to genomic database fingerprinting, because they fail to consider the

characteristics that are unique to the genomic data. Particularly, (i)

hereditary units governed by the Mendel’s law can be utilized by the

malicious SP to further infer the potentially fingerprinted locations.

(ii) limited values of genomic data also makes the utility-preserving

fingerprinting a challenging task. Thus, in this paper, we first show the

vulnerability of genomic database fingerprinting against correlation attacks

that take advantage of the Mendel’s law and linkage disequilibrium. Then,

we discuss how to mitigate the identified attacks in a way that the utility

of the database is preserved.

3 System, Threat Model, and Success Metrics

Now, we discuss the genomic database fingerprinting system, the

considered various threats, and fingerprint robustness and utility metrics.

3.1 Genomic Database Fingerprinting System Model

We consider a database owner (Alice) with a genomic database (e.g.,

dbSNP Wheeler et al. (2007)) including single-nucleotide polymorphisms

(SNPs) of a certain population, i.e., each row corresponds to the SNP

sequence of a specific individual. Each individual has two alleles for

each SNP position, and each of these alleles are inherited from one of

their parents. Thus, each SNP (i.e., each entry of the database) can be

represented by the number of its minor alleles as 0, 1, or 2, and can be

encoded as “00”, “01”, or “10”, respectively. In this paper, we focus

on sharing SNP databases, because such databases are critical to many

genomic and medical research Mitchell et al. (2004), e.g., genome-wide

association studies Carlson et al. (2003). The techniques developed in

this paper can be applied to other types of genomic databases (e.g., ones

including nucleotides that may contain 4 values A, G, C, or T) by simply

changing the data coding.

Fig. 1. The genomic database fingerprinting

system, where Alice adds a unique fingerprint

in each copy of her genomic database R when

sharing. The inserted fingerprint will change

entries at different locations (indicated by the

yellow dots) in R. She is able to identify the

malicious SP who pirates and redistributes her

database using the customized fingerprint.

We present the system

model for genomic database

fingerprinting in Figure 1.

We denote the genomic database

owned by Alice as R.

When Alice wants to share

the database with various

medical service providers

(SPs), she includes a unique

fingerprint in each copy of

her database. The fingerprint

bit-string customized for each

SP is a randomly generated

binary bit-string (elaborated

in Section 4.1). The fingerprint essentially changes different entries in

R at various positions (indicated by the yellow dots). The fingerprint

generated for the ith SP (SPi) is fSPi
, and the fingerprinted genomic

database received by SPi is represented as R̃fSPi
. We also use R̃ to

represent a generic fingerprinted genomic database.

In real world applications, some of the SPs may be malicious (e.g.,

SPi in Figure 1) who will redistribute its received genomic database copy

after conducting certain attacks (discussed in Section 3.2) on top of it.

System with Vanilla Fingerprinting. If SPi compromise R̃fSPi
via

random bit flipping attack, Alice is able to identify SPi as the traitor by

extracting a large portion of its fingerprint from the leaked database by

only using the proposed vanilla fingerprint scheme (Section 4). However,

if SPi launches correlation-based attacks on R̃fSPi
, it can avoid being

accused of data leakage with large probability.

System with Robust Fingerprinting. The correlation-based attacks can

be effectively mitigated, if R̃fSPi
is generated by adopting our proposed

robust fingerprinting scheme, and thus, SPi will still be held responsible

for illegal redistribution. We will empirically evaluate these using a real

world genomic database in Section 6.

3.2 Threat Model

Fingerprinted databases are subject to various attacks summarized in

the following. Note that in all considered attacks, a malicious SP can

change/modify most of the entries in R̃ to distort the fingerprint (and

to avoid being accused). However, such a pirated database will have

significantly poor utility measured in terms of database accuracy and

consistency of SNP-phenotype association (see Section 3.4). Thus, a

rational SP will try to get away with making pirated copies of the genomic

databases by changing as few entries as possible in order to maintain high

utility for the pirated database and gain illegal profit.

Random Bit Flipping Attack. In this attack, to pirate a database, a

malicious SP selects random entries in its received copy of the genomic

database and flips their bit values Agrawal et al. (2003). For example, a

SNP value 2 (“10”) becomes 0 (“00”) after the attack.

Row-wise correlation attack Atkrow(S). As discussed in Section 1,

a malicious SP may utilize Mendel’s law and similarities among family

members’ genomes to infer the potentially changed loci in the fingerprinted

database. Thus, we assume that the malicious SP has access to the sets of

families in the database as well as the genome similarities (denoted as S)

among family members in each set. Note that this is a valid assumption,

because quite a few works have shown that kinship or familial relationships

from SNP genotyping data can be inferred with very high accuracy for

small and medium size groups (e.g., dozens or hundreds of individuals

4 Tianxi Ji,1 Erman Ayday 1,#, Emre Yilmaz3 2 and Pan Li 1

Goudet et al. (2018); Park et al. (2013), large size populations Wang et al.

(2017), or even worldwide Li et al. (2008)) or such information can be

obtained directly from the metadata.

Thus, upon receiving a fingerprinted copy of the genomic database, the

malicious SP will check all SNPs at the same loci of family members and

then flips SNPs at the loci that violate Mendel’s law. For example, if both

parents have SNP value 0, but their children have SNP value 1 at the same

locus, then, the malicious SP knows that one or more family members’ SNP

values have been changed with high probability due to fingerprint insertion,

since such change can be due to a mutation with a slight probability. Next,

the malicious SP can further calculates the empirical row-wise correlations

(denoted as S′) from the received fingerprinted copy, compares S′ with

S, and changes entries that leads to large discrepancy between them.

Column-wise correlation attack Atkcol(J). We model the publicly

known allelic associations (linkage disequilibrium) between SNP values at

different loci as a set of joint distributionsJ . Once a malicious SP receives

the fingerprinted database, it can calculate a new set of empirical pair-wise

joint distributions J ′. Then, it compares J ′ and J , and flips the entries

in the fingerprinted copy that leads to large discrepancy between them.

In this paper we do not consider other common attacks, such as

the subset attack and superset attack Li et al. (2005), because they

are usually much weaker than the random bit flipping attack as shown

in Yilmaz and Ayday (2020). Another widely investigated attack is the

collusion attack Boneh and Shaw (1998, 1995); Pfitzmann and Waidner

(1997). Our proposed robust fingerprinting scheme for genomic databases

can also be extended to collusion-resistant genomic database fingerprinting

by incorporating collusion-resistant codewords when generating the

fingerprint Boneh and Shaw (1995). We will extend our work in the

scenario of colluding medical SPs in future.

3.3 Fingerprint Robustness Metrics

The primary goal of a malicious SP is to distort the fingerprint in its received

copy to avoid being accused. We use the percentage of compromised

fingerprint bits, i.e., Percmp, to measure the robustness of the fingerprint

scheme. Percmp calculates the percentage of mismatches between

the fingerprint bit-sting extracted from the compromised fingerprinted

database and the original fingerprint bit-string that is used to generate

the fingerprinted genomic database. In our previous work Ji et al. (2021a),

we have shown that if the malicious SP can compromise more than 50%

of the fingerprint bits, it can cause the database owner to accuse other

innocent SPs who also received the databases. In this paper, we only focus

on Percmp, because other robustness metrics (e.g., the accusable ranking

of a malicious SP) directly depends on Percmp Ji et al. (2021a).

3.4 Utility Metrics

Fingerprinting naturally changes the content of databases (i.e., the values

of the SNPs), and hence degrades its utility. We quantify the utility of a

fingerprinted genomic database using the following metrics.

Accuracy of the database, i.e., Acc. It calculates the percentage of

matched data entries between the original genomic database and the

fingerprinted copy (or the compromised fingerprinted copy, i.e., the pirated

copy generated by a malicious SP). The higher Acc, the fewer entries

are changed due to fingerprint insertion, attack from the malicious SP, or

mitigation to resist the attacks, and thus, the higher the utility.

Consistency of SNP-phenotype association. GWAS (genome-wide

association study) is a widely adopted method to identify genetic variations

that are associated with a particular phenotype (e.g., a disease). In GWAS,

a researcher usually quantifies the associations between a phenotype and

each SNP in the database using a p-value with a confidence level of 95%

Sheskin (2003); Halimi et al. (2021). In particular, SNPs with low p-values

(typically smaller than 0.05) are considered to have strong associations

with the phenotype (i.e., the association cannot be due to chance). In

general, a larger utility loss in terms of accuracy degradation will lead to

less accurate SNP-phenotype association. To evaluate the p-value of each

SNP in the genomic database, we first randomly divide the database into

non-overlapping case (denoted as S) and control (denoted as C) groups,

and then follow the steps listed in (1) to perform the calculations.

OR =
C0(S1 + S2)

S0(C1 + C2)
,

StdErr(ln(OR))

=

√√√√ 1

S1 + S2

+
1

S0

+
1

C1 + C2

+
1

C0

,

z =
ln(OR)

StdErr(ln(OR))
,

p = Ψ(−z) + 1 − Ψ(z).

(1)

In particular, in (1),

OR is the odd ratio,

C0, C1, and C2

(or S0, S1, and

S2) are the numbers

representing a specific

SNP taking a value

of 0, 1, and 2 in

the control (or case)

group. StdErr(ln(OR)) is the standard error of the logarithm of the odd

ratio, and z is interpreted as the standard normal deviation (i.e., z-value).

Finally, the p-value is the area (probability) of the normal distribution

that falls outside ±z, and it can be obtained using Ψ(·); the cumulative

distribution function of the standard normal distribution.

To evaluate the utility of the genomic database, we identify the top-

50 SNPs (i.e., the 50 SNPs with the lowest p-values) from the original

(non-fingerprinted) database. Then, we check how many of such SNPs

are preserved (i.e., remains to be the top-50 SNPs) after fingerprinting

or various attacks. Note that we only consider the consistency of SNP-

phenotype association for individual SNPs (i.e., not the consistency of

SNP-phenotype association for SNP tuples). This is because the proposed

mitigation techniques can preserve the Pearson’s correlations among each

pair of SNPs (see Section 5.2 for details).

4 The Foundation: Vanilla Genomic
Fingerprinting Scheme

Now, we establish the foundation of our robust fingerprinting scheme for

genomic database. Our developed vanilla scheme is inspired by Li et al.

(2005), which enables the insertion and extraction of arbitrary bit-strings

in databases. However, our scheme differs from Li et al. (2005) and its

variants, e.g., Guo et al. (2006); Ji et al. (2021a), as they only mark one bit

position in each selected row, which leads to less fingerprinting robustness

due to significantly larger number of attributes (e.g., number of SNPs in a

genomic database) and strong correlation patterns in genomic data.

4.1 Fingerprint Insertion Phase of the Vanilla Scheme

When the database owner shares a fingerprinted copy of the genomic

database R with a SP (whose id is n), it first generates the fingerprint

bit string fSPn
= Hash(K|n), where K is the secret key of the database

owner and | stands for the concatenation operator.2 The database owner

uses a cryptographic pseudorandom sequence generatorU to select specific

bit positions of specific SNPs from some individuals and fingerprint these

bits using mark bitsm’s, which are the result of the XOR operation between

the random mask bits (x’s) and randomly selected fingerprint bits (fl’s),

i.e., m = x⊕ fl, where fl is the lth bit in fSPn
.

To be more specific, for all individuals in the genomic

database, the database owner fingerprints the SNP sequence if

U1(K|ri.primary key) mod ⌊1/γr⌋ = 0, where γr ∈ (0, 1) is

the row fingerprint density. As a result, the fraction of fingerprinted

SNP sequences in R is approximately γr . For all SNPs in a selected

sequence (i.e., ri), the element with attribute p (i.e., the SNP

value at loci p of ri represented by ri[p]) will be fingerprinted if

2 In this paper, we use MD5 to generate a 128-bits fingerprint string,
because if the database owner shares C copies of its database, then as long
as L ≥ lnC, the fingerprinting mechanism can thwart exhaustive search
and various types of attacks, and in most cases a 64-bits fingerprint string
is shown to provide high robustness Li et al. (2005).

5

U2(K|ri.primary key|p) mod ⌊1/γl⌋ = 0, where γl ∈ (0, 1) is the

column fingerprint density. Then, the database owner sets the binary mask

bit x = U3(K|ri.primary key|p) mod 2, and selects one bit position of

fSPn
via l =

(
U4(K|ri.primary key|p) mod L

)
+ 1. Next, it obtains

the mark bit m as m = x ⊕ fSPn
[l], and selects a bit position (count

backwards) of ri[p] via t =
(
U5(K|ri.primary key|p) mod 2

)
+ 1.

Finally, it fingerprints ri[p] by replacing the tth to the last bit of ri[p]

with m. We summarize the steps of the fingerprint insertion phase of the

vanilla fingerprinting scheme in Algorithm 1.

Algorithm 1: Vanilla scheme: fingerprint insertion

Input : The original genomic relational database R, row fingerprinting density

γr , column fingerprinting density γl , database owner’s secret key K,

pseudorandom number sequence generator U , and the SP’s series

number n (which can be public).

Output: The vanilla fingerprinted genomic relational database R.

1 Generate the fingerprint bit string of SP n, i.e., fSPn
= Hash(K|n);

2 forall individual ri ∈ R do

3 if U1(K|ri.primary key) mod ⌊1/γr⌋ = 0 then

4 //fingerprint the SNP sequence of the ith

individual

5 forall SNP element ri[p] ∈ ri do

6 if U2(K|ri.primary key|p) mod ⌊1/γl⌋ = 0 then

7 //fingerprint the pth SNP of the ith

individual

8 Set mask_bit x = 0, if U3(K|ri.primary key|p) is even;

otherwise set x = 1.

9 fingerprint_index l = U4(K|ri.primary key|p) mod L.

10 fingerprint_bit fl = fSPn
(l).

11 mark_bit m = x ⊕ fl .

12 Set t =
(
U5(K|ri.primary key|p) mod 2

)
+ 1.

13 Set the tth to the last bit of ri[p] to m.

Different from Li et al. (2005); Guo et al. (2006); Ji et al. (2021a), by

involving γl, our vanilla scheme can mark more bits in each selected

row. In our recent work Ji et al. (2021b), we also derived a closed-form

expression to characterize the relationship between fingerprint robustness

and database utility. Thus, by jointly tuning γr and γl we can also achieve

desired tradeoff between robustness and utility. We will theoretically and

empirically investigate this in the future.

4.2 Fingerprint Extraction Phase of the Vanilla Scheme

When the database owner observes a leaked (or pirated) genomic database

denoted as R, it tries to identify the traitor (i.e., the malicious SP) by

extracting the fingerprint from R and comparing it with the fingerprints

of all SPs who have received its genomic database.

We present the fingerprint extraction phase of the vanilla scheme in

Algorithm 2. Specifically, the database owner first initiates a fingerprint

template f = (f1, f2, · · · , fL) = (?, ?, · · · , ?). Here, “?” means that

the fingerprint bit at that position remains to be determined.4 Then, the

database owner determines the mask bit (x), obtains the corresponding

indices of fingerprint bits (l’s), locates the bit positions of the fingerprinted

SNP elements exactly as in the fingerprint insertion phase, and finally

fills in each “?” using a voting scheme. To be more precise, for each

fingerprinted SNP ri[p], the database owner obtains the corresponding

mark bit m by reading the tth to the last bit of ri[p], and recovers one

instance of the lth bit of the fingerprint bit string via fl = m ⊕ x. Since

the value of fl may be changed by the malicious SP, the database owner

maintains and updates two counting arrays c0 and c1, where c0(l) and

4 Similar symbol has also been used in other works Boneh and Shaw
(1995); Li et al. (2005); Agrawal et al. (2003); Ji et al. (2021a).

c1(l) record the number of times fl is recovered as 0 and 1, respectively.

Finally, the database owner sets f(l) = 1 if c1(l)/(c1(l) + c0(l)) ≥

τ , and f(l) = 0 if c0(l)/(c1(l) + c0(l)) ≥ τ , otherwise f(l) =?

(i.e., this fingerprint bit cannot be determined due to the database owner’s

low confidence), where τ ∈ (0.5, 1] is the parameter that quantifies the

database owner’s confidence in the fingerprint recovery phase.5

Algorithm 2: Vanilla scheme: fingerprint extraction

Input : The leaked genomic database R, row fingerprinting density γr , column

fingerprinting density γl , database owner’s secret key K, pseudorandom

number sequence generator U , and a fingerprint template

(?, ?, · · · , ?), where ? represents unknown value.

Output: The extracted fingerprint bit string f from the leaked database.

1 Initialize c0(l) = c1(l) = 0, ∀l ∈ [1, L].

2 forall individual ri ∈ R do

3 if U1(K|ri.primary key) mod ⌊1/γr⌋ = 0 then

4 forall SNP element ri[p] ∈ ri do

5 if U2(K|ri.primary key|p) mod ⌊1/γl⌋ = 0 then

6 Set mask_bit x = 0, if U3(K|ri.primary key|p) is even;

otherwise set x = 1.

7 fingerprint_index l = U4(K|ri.primary key|p) mod L.

8 Set t =
(
U5(K|ri.primary key|p) mod 2

)
+ 1.

9 Set the mark_bit m as the tth to the last bit of ri[p].

10 Recover the fingerprint bit fl = m ⊕ x.

11 c1(l) + +, if fl = 1; otherwise c0(l) + +.

12 forall l ∈ [1, L] do

13 f(l) = 1, if c1(l)/(c1(l) + c0(l)) ≥ τ , and f(l) = 0, if

c0(l)/(c1(l) + c0(l)) ≥ τ .

5 Consolidating the Foundation: Making the
Vanilla Genomic Fingerprinting Scheme Robust
Against Correlation Attacks

Here, we propose a robust fingerprinting scheme for genomic databases

against the correlation attacks identified in Section 3.2. The robust scheme

is developed by augmenting the vanilla scheme using two mitigation

techniques which can serve as the post-processing steps after the vanilla

fingerprinting. It brings us two benefits: (i) fingerprint robustness of the

vanilla scheme is maintained, because the devised mitigation techniques

only change non-fingerprinted entries and (ii) the mitigation techniques

can be applied to any vanilla fingerprinting schemes to resist correlation

attacks on genomic databases. As discussed in Section 4.1, we choose our

developed vanilla scheme to have more control over the fingerprint density

on each selected SNP sequence. In practice, one can develop their own

vanilla scheme depending on the content of their genomic database and

then apply our proposed mitigation techniques to make their scheme also

robust against the correlation attack.

In highlevel, to provide robustness against the row-wise correlation

Atkrow(S) and column-wise correlation attack Atkcol(J), the

database owner (Alice) will perform mitigation steps (after the vanilla

fingerprinting) by utilizing Mendel’s law and her prior knowledge S

(correlation of genomic data among different individuals), J (correlation

of SNP values at different loci) to reduce the discrepancy caused by

fingerprinting insertion. We will show that to implement the proposed

mitigation steps, Alice needs to change only a few entries after the vanilla

fingerprinting (e.g., less than 3% as shown in Table 3 in Section 6.3).

5.1 Mitigating the Row-wise Correlation Attack

To mitigate the row-wise correlation attack (in Section 3.2), we develop

Mtgrow(S), which is composed of two phases. The first phase tries to

eliminate all SNP loci that violate the Mendel’s law, and the second phase

5 In this paper, we set τ = 0.7, which implies the database owner has
higher confidence during fingerprint extraction than the other works, e.g.,
in Ji et al. (2021a); Li et al. (2005) τ is slightly higher than 0.5.

6 Tianxi Ji,1 Erman Ayday 1,#, Emre Yilmaz7 2 and Pan Li 1

makes the similarities of genome data among family members close to

that before the fingerprint (generated by the vanilla scheme) is inserted.

In particular, for each family set denoted as fmly, Mtgrow(S) checks

all fingerprinted SNPs of all family members. If the SNP-tuple at a locus

violates the Mendel’s law, Mtgrow(S) changes other non-fingerprinted

entries in the tuple to make them comply with the Mendel’s law. For

example, if a mother-father-child SNP tuple at a specific locus takes

value “2-1-0” (2 for mother, 1 for father, and 0 for child, which violates

the Mendel’s law), and “1” (value of the SNP for the mother) is the

fingerprinted SNP, then, Mtgrow(S) can modify this tuple as “2-1-1”.

In the second phase, for each family set (i.e., fmly) in

the genomic database, Alice changes the SNP values of the

family members such that the cumulative similarities between

individuals with kinship relation is close to their original similarities.

This can be formulated as the following optimization problem

min
˜̃
ri

∑

i,j∈fmly

∣∣∣sij fmly − ˜̃sij
fmly

∣∣∣

s.t. ˜̃
ri = value change(r̃i),

˜̃sij
fmly

= 〈 ˜̃ri, ˜̃rj〉.
(2)

In (2), sij fmly stands for the

publicly known similarities

between two family members

in fmly and ˜̃sij
fmly

stands

for the similarities after row-

wise mitigation.6 We denote

the SNP sequence of an individual i after the mitigation as ˜̃
ri. Also,

value change(·) is the function that changes each SNP attribute of r̃i,

and it will be elaborated later. (2) is an integer programming problem.

Since each SNP sequence may contain thousands of SNPs, it will be

computationally expensive to obtain the optimal value of ˜̃
ri. Thus, we

solve it heuristically. Particularly, if sij
fmly > s̃ij

fmly (s̃ij
fmly is

the empirical similarity calculated after the vanilla fingerprinting), the

database owner needs to post-process r̃i, ∀i ∈ fmly to increase the

similarity. On the other hand, if sij fmly < s̃ij
fmly , the database owner

needs to post-process r̃i, ∀i ∈ fmly to decrease the similarity.

We use the example of SNP sequences from mother-father-child to

further explain how to increase or decrease the similarity. To increase

s̃ij
fmly, we randomly select a certain number of non-fingerprinted 3-

SNP-tuples (i.e., mother-father-child) with value “0-0-0” and then change

it to “1-0-1” or “0-1-1” depending on whether s̃ij
fmly is a mother-

child or father-child similarity. We only change 3-SNP-tuples with value

“0-0-0”, because this is the one of the most common 3-tuples in all

families, and modification of mother-child tuples will not have an impact

on the father-child similarity (vice-versa). To decrease s̃ij
fmly , we let

the database owner change a certain number of 3-tuples with value “1-0-

1” (or “0-1-1”) to “0-0-0” if s̃ij
fmly is the mother-child (or father-child)

similarity. The reasons are exactly the same as the case of increasing

s̃ij
fmly. Although there are also higher degrees of relatedness among

family members (e.g., the SNP correlations between grandparents and

grandchildren), those correlation (or similarity) are usually much weaker

than the first order correlations (e.g., mother-father-child). The vanilla

fingerprinting is subject to destroying the strong correlations the most

(and hence an attacker can easily infer the fingerprint due to the distorted

correlations). For higher degree family members, the original correlations

are not high and fingerprint will not destroy such correlation too much.

We will experimentally verify this in Section 6.1.

Note that the row-wise mitigation technique for genomic databases

is different than the one developed for general databases in our previous

work Ji et al. (2021a), which changes entries of non-fingerprinted data

records to make the newly obtained similarities as far away from Alice’s

6 In this paper, the similarity between two individuals is defined as the
inner product between their SNP sequences. One can also define the
similarity using a common metric adopted in biology, e.g., the allele shared
distance (i.e., ASD) (page 308 Park et al. (2013)), which is also related to
the considered inner product.

prior knowledge S to mislead the malicious SP. In contrast, here, we

make the new similarities close to S in order to alleviate Atkrow(S)

(try to make Atkrow(S) distort less fingerprint bits), and if the objective

function on (2) equals 0, Atkrow(S) is completely invalidated. The reason

that we can pursue this in genomic database is because each row has much

more attributes then general databases and the number of unique values is

small (i.e., only 3 options: 0, 1, and 2). Besides, the row-wise mitigation

techniques developed in Ji et al. (2021a) solves an NP-hard combinatorial

search problem greedily, which introduces large computation overhead.

5.2 Mitigating Column-wise Correlation Attack

To make the vanilla scheme robust against column-wise correlation

attack, we proposeMtgcol(J), which transforms the vanilla fingerprinted

genomic database to have column-wise joint distributions (e.g., linkage

disequilibrium between the SNPs) close to the publicly known joint

distributions in J . Inspired by Ji et al. (2021a), we develop Mtgcol(J)

using the idea of “optimal transport” Cuturi (2013), which moves the

probability mass of the marginal distribution of each SNP attribute of

the vanilla fingerprinted genomic database to resemble the distribution

obtained from the marginalization of each reference joint distribution in

J . Then, the optimal transport plan is used to change the entries in the

genomic database after the vanilla fingerprinting.

In particular, for a specific SNP (column, i.e., locus of SNP

sequence) p, we denote its marginal distribution obtained after the vanilla

fingerprinting as Pr(Cp̃), and that obtained from the marginalization of

a joint distribution Jp,q distribution in J as Pr(Cp) = Jp,q1T (here q

can be any attribute that is different from p, because the marginalization

with respect to p using different Jp,q will lead to the identical marginal

distribution of p). To move the mass of Pr(Cp̃) to resemble Pr(Cp),

we need to find another joint distribution (i.e., the mass transport plan)

Gp̃,p ∈ R3×3, whose marginal distributions are identical to Pr(Cp̃) and

Pr(Cp). Then, Gp̃,p(a, b), a, b ∈ {0, 1, 2} indicates that the database

owner should change Gp̃,p(a, b) percentage of entries in the vanilla

fingerprinted genomic database whose attribute p (SNP p) takes value

a to value b, so as to make Pr(Cp̃) close to Pr(Cp). In practice, such a

transport plan can be obtained by solving a regularized optimal transport

problem, i.e., the entropy regularized Sinkhorn distance minimization

Cuturi (2013) as follows:

d
(
Pr(Cp̃),Pr(Cp), λp

)
= min

Gp̃,p

〈Gp̃,p,Θp̃,p〉F −
H(Gp̃,p)

λp
, (3)

where Gp̃,p ∈ G
(
Pr(Cp̃),Pr(Cp)

)
=

{
G ∈ Rkp×kp

∣∣G1 =

Pr(Cp̃), G
T1 = Pr(Cp)

}
is the set of all joint probability distributions

whose marginal distributions are the probability mass functions ofPr(Cp̃)

and Pr(Cp). 〈·, ·〉F denotes the Frobenius inner product of two matrices.

Also, Θp̃,p is the transport cost matrix and Θp̃,p(a, b) > 0 representing

the cost to move a unit percentage of mass from Pr(Cp̃ = a) to

Pr(Cp̃ = b). Finally, H(Gp̃,p) = −〈Gp̃,p, logGp̃,p〉F calculates the

information entropy ofGp̃,p andλp > 0 is a tuning parameter. In practice,

(3) can be efficiently solved by linear programming Cuturi (2013). The

obtained Gp̃,p is more heterogeneous for larger values of λp, i.e., the

database owner will change less entries after the vanilla fingerprinting,

which preserves more database utility. On the contrary, Gp̃,p is more

homogeneous for smaller values of λp, i.e., it causes more SNP entries

to be changed, which leads to more utility loss. Although (3) processes

each column (attribute) of the genomic database independently, as shown

in Ji et al. (2021a), the post-processed fingerprinted database will have

the Pearson’s correlations among attribute pairs that are close to the prior

knowledge J . This further suggests that the mitigation step can boost the

utility of the fingerprinted genomic databases.

Mitigation against additional auxiliary information. The developed

row- and column-wise mitigation techniques focus on the correlation

attacks that use generic correlations among genome data. In some task-

dependent applications, the malicious SP can also use specific auxiliary

7

information, e.g., race-specific information determined by genome and

population structure, to compromise the fingerprinted database. This can

be alleviated by involving additional mitigation steps before Mtgrow(S)

and Mtgcol(J) to make the vanilla fingerprinted database also match

those auxiliary information. More discussion on the availability of these

information to the database owner is deferred to Section 7.

6 Experiment results

In this section, we first show that the vanilla fingerprinting scheme can

resist random bit flipping attacks, but it is vulnerable to the correlation

attacks developed specific for genomic databases. The correlation attacks

are more powerful, as they can easily distort more than half of the

embedded fingerprint bits at only a small cost of database utility (i.e.,

introducing less error and preserving the SNP-phenotype association).

Then, we demonstrate that the proposed mitigation techniques can thwart

correlation attacks and make the vanilla scheme robust against them. Since

the mitigation techniques only change limited entries on top of the vanilla

scheme, they also maintain a high utility for the genomic database. More

importantly, we show that if the attacker conducts correlation attacks after

the proposed robust fingerprinting scheme, it cannot succeed even if at a

significant cost of database utility loss. Similar to Ji et al. (2021a), since the

row-wise correlation attack and mitigation are computationally light and

modify less database entries, we let the malicious SP launchesAtkrow(S)

followed byAtkcol(J)when compromising a fingerprinted database, and

let the database owner performMtgrow(S) followed byMtgcol(J)when

making a vanilla fingerprinted database robust.

6.1 Genomic Database Description

10 20 30

fingerprinting density (%)

0

0.05

0.1

0.15

0.2

a
v
e

ra
g

e
 s

im
ila

ri
ty

 d
if
fe

re
n

c
e

1st generation

2nd generation

3rd generation

4th generation

5th generation

Fig. 2. Average absolute value of the

SNP cosine similarity difference, before

and after fingerprint insertion, among

family members and their different

generations of simulated descendants.

We use the SNP data belonging to

1500 individuals from the HapMap

dataset Gibbs et al. (2003). Each

individual has 156 data points (i.e.,

SNPs). In this population, there

are 150 families, each of which

is composed of 3 individuals, i.e.,

mother, father, and child. We

assume that both the database

owner and the malicious SP know

the members of each family and the

pairwise correlations (e.g., linkage disequilibrium) among SNPs (Section

3.2 discusses why this assumption is valid in practice).

The importance to consider the correlations due to the first degree

relationships among family members. As discussed in Section 5.1,

row-wise correlations are the strongest among the first degree family

members and the vanilla fingerprinting potentially destroys such strong

correlations the most (compared to the correlations between more distant

family members). Here, we verify this claim by generating new generations

of family members from the offsprings of the 150 families and checking

the SNP similarities between these new generations and the original 150

pairs of parents before and after fingerprint insertion. In Figure 2, by

varying the overall fingerprinting density (γrγl ∈ {10%, 20%, 30%}),

we plot the average absolute difference of cosine similarity between the

150 parents and various generations of their descendants due to the vanilla

fingerprinting. Clearly, the average change in the similarity with the first

generation is the most significant for all considered fingerprinting density,

which suggests that mother-father-child trio has the strongest correlation

and it provides the most prior knowledge for the malicious SP to launch the

row-wise correlation attack, and hence the row-wise mitigation techniques

should preserve the correlations between first degree family members

as much as possible. Thus, in the following experiment, we focus on

the similarity change between individuals and their first generation of

descendants during row-wise correlation attack and mitigation.

6.2 Vulnerability of Vanilla Fingerprinting Scheme Against

Correlation Attack

6.2.1 Performance against Correlation Attack

0 5 10 15 20 25 30

Percentage of changed entries (%)

20

30

40

50

60

70

P
e
rc

e
n
ta

g
e
 o

f
c
o
m

p
ro

m
is

e
d
 b

it
s
 (

%
)

Attack success boundary

vanilla scheme after correlation attack

vanilla scheme after random bit flipping

robust scheme after correlation attack

r
 =

l
 = 0.09

r
 =

l
 = 0.09

Fig. 3. Fingerprint robustness (i.e., percentage of

compromised bits) versus utility loss (i.e., percentage

of changed entries) when the vanilla scheme is

compromised by the correlation attack (blue dots),

the vanilla scheme is compromised by the random

bit flipping attack (black dots), and the robust

scheme is compromised by the correlation attack (red

dots). Each dot represents a different experiment.

Dots above the attack success boundary (green line)

represent a successful attack (in which the database

owner incorrectly blames an honest SP for the

unauthorized sharing).

We first show the vulnerability

of the vanilla scheme

under the correlation attacks.

To change sufficient number

of database entries during

fingerprint insertion, we

let both row- and column-

wise fingerprint density

(i.e., γr and γl) vary in

{0.05, 0.06, 0.07, 0.08,

0.09, 0.1}, which gives

36 different fingerprinted

databases. Then, we

let these databases be

compromised byAtkrow(S)

followed by Atkcol(J).

For each compromised

database, we record its

percentage of changed

entries (i.e., Perchg =

1−Acc) caused by the correlation attack as well as the resulting fingerprint

robustness measured in terms of Percmp (percentage of compromised

fingerprint bits), and scatter the results as blue dots in Figure 3 (we will

discuss the black and red dots in the figure in later experiments). As

discussed in Section 3.3 and empirically shown in Ji et al. (2021a), as

long as the malicious SP can compromise more than 50% fingerprint bits,

it is able to avoid being detected as the traitor and cause the database

owner to accuse other innocent SPs who have also received the database.

Thus, we say an attack is successful if Percmp > 50%, and the green

horizontal line in Figure 3 represents the attack success boundary. From

Figure 3, we observe that in most of the cases, the identified correlation

attacks can compromise more than 50% fingerprint bits (blue points that

are above the green line) at the cost of changing only less 5% SNPs in the

vanilla fingerprinted database (i.e., an attacker can distort the majority of

the fingerprint bits by also keeping the utility of the database high).

p-value

consistency

γr = γl
0.05 0.06 0.07 0.08 0.09 0.1

vanilla scheme 100% 98% 98% 98% 98% 96%

vanilla after corr. attacks 98% 96% 96% 96% 96% 92%

robust scheme 92% 94% 94% 88% 94% 92%

robust after corr. attacks 84% 92% 84% 80% 86% 82%

Table 2. Consistency of SNP-phenotype

association compared with the ground-truth.

In Table 2, we show the

consistency of SNP-phenotype

association study (discussed in

Section 3.4) after the vanilla

fingerprinting and the correlation

attacks. In particular, we first

obtain the set of top-50 SNPs

having strong associations with a phenotype (i.e., the 50 SNPs with the

lowest p-values) from the original (non-fingerprinted) database and denote

this set as the ground-truth set. Next, we get the new sets of top-50

SNPs from the vanilla fingerprinted database and the correlation attack-

compromised database. Then, we evaluate the consistency by counting the

percentage of overlapping SNPs between them and the ground-truth set.

From the upper panel of Table 2, we observe that the vanilla fingerprinting

preserves high utility of the consistency and the correlation attacks on

vanilla fingerprinting scheme also maintain such utility. For example,

one of the successful attacks happens when γr = γl = 0.09 (blue dot

indicated by the blue arrow in Figure 3), and the resultant pirated database

copy still preserves more than 96% SNP-phenotype association.

6.2.2 Performance against Random Bit Flipping Attack

Next, we compare the attack ability of the random bit flipping attack

with our identified correlation attacks. To show the effectiveness of the

correlation attacks, we let the random bit flipping attack change more

8 Tianxi Ji,1 Erman Ayday 1,#, Emre Yilmaz8 2 and Pan Li 1

percentage of entries in the vanilla fingerprinted genomic database than

the correlation attacks. We also record the fingerprint robustness after

the vanilla fingerprinted database is subject to random bit flipping attack.

In particular, we set γr = γl ∈ {0.05, 0.06, 0.07, 0.08, 0.09, 0.1},

and let the malicious SP randomly change a certain percentage (i.e.,

Perchg ∈ {5%, 7%, 9%, 11%, 13%15%}) of entries in its received copy

of the vanilla fingerprinted genomic database. Thus, we also obtain 36

instance of vanilla fingerprinted databases compromised by random bit

flipping attacks. We scatter the recorded results as black dots in Figure 3.

Clearly, the random bit flipping attack can hardly compromise more than

half of the fingerprint bits if the database owner inserts dense fingerprint

in the genomic database, i.e., when γr = γl ≥ 0.06. In particular, when

γr = γl = 0.09, the malicious SP can only distort 35.16% fingerprint

bits at the cost of changing 15% of the SNPs if it launches the random bit

flipping attack (indicated by the black arrow in Figure 3). In contrast, it can

compromise 52.34% of the fingerprint bits at the cost of only changing

the values of 3.11% of the SNPs if it launches the correlation attacks

(indicated by the blue arrow in Figure 3). This clearly suggests that our

vanilla fingerprint scheme developed specially for genomic databases is

robust against random bit flipping attacks, but is vulnerable to the attacks

using correlations among genome data. Compared with our previous work

Ji et al. (2021a), the identified correlation attacks for genomic data are even

more powerful than the ones identified for a general relational database.

The reason is that the correlation patterns in genomic data (e.g., Mendel’s

law and linkage disequilibrium) are much stronger than the patterns in a

general relational database (i.e., census database in Ji et al. (2021a)). Thus,

the robust fingerprinting for genomic databases is critical.

6.3 Robust Genomic Database Fingerprinting Against

Correlation Attacks

Now, we investigate the impact of the proposed robust genomic database

fingerprinting scheme. Recall that the robust fingerprinting is achieved

by post-process the vanilla fingerprinted genomic database using two

mitigation techniques, i.e., Mtgrow(S) and Mtgcol(J).

6.3.1 Impact on Database Utility

γr

γl 0.05 0.06 0.07 0.08 0.09 0.1

0.05 2.87% 2.89% 2.91% 3.10% 3.02% 3.05%

0.06 2.89% 2.82% 2.85% 2.98% 2.97% 2.99%

0.07 2.86% 2.85% 2.92% 3.06% 3.00% 3.03%

0.08 2.93% 2.95% 2.98% 3.17% 3.09% 3.20%

0.09 2.87% 2.87% 2.91% 3.13% 2.89% 3.10%

0.1 2.98% 2.95% 3.07% 3.29% 3.17% 3.36%

Table 3. Additional change caused by

mitigation.

In Table 3, we record the additional

percentage of entries being changed

due to the post-processing steps

(Mtgrow(S) and Mtgcol(J)).

Clearly, as shown in Table 3, the

mitigation techniques only need to

change about 3% of the SNPs in order to make the post-processed database

has row-wise and column-wise correlation close to S and J and at the

same time comply with the Mendel’s law. Thus, the robust fingerprint

scheme can preserve high utility of the genomic database, i.e., the database

accuracy and the consistency of SNP-phenotype association. For example,

as shown in the lower panel of Table 2, in most of the cases, robust scheme

achieves more than 90% top-50 SNPs match with the original database.

6.3.2 Impact on Fingerprinting Robustness

In Figure 3, using red dots, we scatter the fingerprint robustness and

the percentage of changed entries when the robust scheme is under the

identified correlation attacks (which are identical with that considered in

Section 6.2). In particular, comparing with the blue dots, we see that the

number of successful attacks (red dots above the green line) is significantly

reduced by the proposed mitigation techniques. This suggests that it is

very difficult for the malicious SP to compromise more than half of the

fingerprint bits using the correlation attacks under the proposed robust

scheme, even if the malicious SP has changed more than 20% of the SNPs

in the received database. Moreover, correlation attacks on top of the robust

fingerprinted genomic database also significantly reduce the utility of SNP-

phenotype association study. As shown in Table 2 (the row corresponding

to robust after correlation attacks), the percentage of matched top-50 SNPs

drops more than 10% compared to the original database. This suggests

that the proposed robust genomic database fingerprinting scheme can

effectively thwart the identified correlation attacks by just changing about

3% of the SNPs in the post-processing steps and at the same time maintain

high database accuracy and consistency of SNP-phenotype association.

6.4 Scalability

Now, we investigate the performance of the proposed robust fingerprinting

scheme for larger genomic databases, where each individual has a higher

number of SNPs (i.e., 234). In particular, we consider 8000 individuals

among which there are 1333 families (due to the same reasoning in Section

6.1, we also focus on the correlation between mother-child-father tuple).

In this experiment, we let γr = γl ∈ {0.06, 0.08, 0.1}. We scatter

the pair of percentage of changed entries and percentage of compromised

fingerprint bits in Figure 4. We also plot the p-value consistency before

and after the robust scheme is subject to the identified correlation attacks

in Figure 5. From Figure 4, we see that the robustness increases as the

database increases (in terms of both rows and columns), because the

correlation attacks cannot distort more than 12% of the fingerprint bits even

though more than 20% entries are modified. Figure 5 further suggests that if

the malicious SP launches the correlation attacks on a robust fingerprinted

genomic database, the p-value consistency will drop by 10% on average.

This experiment shows that our proposed robust fingerprinting scheme is

also promising when sharing large genomic databases.

20 22 24 26 28 30

Percentage of changed entries (%)

0

2

4

6

8

10

12

P
e

rc
e

n
ta

g
e

 o
f

c
o

m
p

ro
m

is
e

d
 b

it
s
 (

%
)

Fig. 4. Fingerprint robustness versus utility

loss when the proposed robust scheme is

compromised by the correlation attacks.

Fig. 5. p-value consistency before and after

the proposed robust scheme is compromised

by the correlation attacks.

7 Discussion

Independent treatment of elements in SNP sequence. Note that by

checking the change of inner product before and after fingerprinting,

(2) essentially treats each element in the SNP sequence independently.

However, in practice, blocks of SNP elements may also contain inherent

structure, e.g., two or more individuals are identical by descent (IBD)

if they have inherited blocks of SNPs from a common ancestor without

genetic recombination. Thus, a malicious SP may also use this structural

information during an attack. In future work, we will extend the proposed

robust fingerprinting scheme to incorporate the recombination of IBD

segments during meiosis.

Limited side-effect of row-wise mitigation. In the row-wise mitigation,

we post-process each pair of first degree family members in a family set.

This may impact the similarity of other pairs in which either individual

is involved. For example, updating mother-child pair may increase the

similarity of grandfather-grandchild pair. However, as discussed in Section

6.1, such impact is very limited for higher degree family members.

Assumption on prior knowledge. To the advantage of the malicious

SP, we assume that it has at least equally accurate knowledge about

the genomic database (i.e., Mendel’s law, row-wise and column-wise

correlation) compared with the database owner. We do not consider

specific auxiliary information (such as SNP population frequencies, rare

disease-associated variants, population stratification, and SNP-phenotype

associations) in this paper. If the malicious SP has more auxiliary

information than the database owner (which rarely happens in real world

applications), the robustness of the proposed scheme may be compromised.

9

Such robustness degradation will be limited for generic relational database,

i.e., the malicious SP still cannot distort more than half of the fingerprint

bits Ji et al. (2021a). We will empirically investigate this for genomic

databases by considering various case studies in the future work.

Privacy concerns in genomic database sharing. The primary goal of

database fingerprinting is to claim copyright and prevent unauthorized

redistribution, however, privacy concerns and regulations may also impede

genomic data sharing. In our recent work Ji et al. (2021b), we developed a

novel scheme which can leverage the intrinsic randomness introduced by

fingerprinting to provide provable privacy guarantees in relational database

sharing, i.e., copyright and privacy protection can be achieved in one

shot. In future, we will also study privacy-preserving genomic database

fingerprinting by adapting the scheme in Ji et al. (2021b).

Computational complexity. If the genomic database contains M

individuals, each of which has N SNPs, then the computation complexity

for Mtgrow(S) is O(MN), because solving (2) requires checking all

SNPs of each mother-child-father tuple. The computation complexity for

Mtgcol(J) is O(3N
α

), where 3 is the number of possible instances of

SNP values and α is the desired error in Sinkhorn-based optimal transport

Le et al. (2021).

8 Conclusion

In this paper, we have proposed robust fingerprinting for genomic

databases composed of SNP sequences. To this end, we first identified the

row-wise and column-wise correlation attack which utilize Mendel’s law

and linkage disequilibrium to distort the embedded fingerprint bits. Next,

we developed a vanilla fingerprinting scheme specifically for genomic

database by allowing the database owner to embed more fingerprint in

each selected SNP sequence. Then, we further made this vanilla scheme

robust against the identified correlation attacks by augmenting it with

two mitigation techniques, which serve as post-processing steps for the

vanilla scheme. In particular, the row-wise mitigation is achieved via

solving a cumulative absolute distance minimization, and the column-

wise mitigation is realized using optimal mass transport of distributions.

Via experiments, we have shown that the identified correlation attacks are

much more powerful than common attacks against fingerprinting schemes;

they can easily distort more than half of the fingerprint bits at a small cost

of database utility. However, these attacks are effectively alleviated by our

developed mitigation techniques. The proposed scheme has the potential

to further motivate researchers to share their genomic databases with each

other, knowing that the shared database is of high utility and the recipient

will be hesitant to leak the database due to the provided liability guarantees

via the proposed robust fingerprinting scheme.

References

Agrawal, R. et al. (2003). Watermarking relational data: framework,

algorithms and analysis. The VLDB journal, 12(2), 157–169.

Ayday, E. et al. (2019). Robust optimization-based watermarking scheme

for sequential data. In 22nd International Symposium on Research in

Attacks, Intrusions and Defenses ({RAID} 2019), pages 323–336.

Boneh, D. and Shaw, J. (1995). Collusion-secure fingerprinting for digital

data. In Annual International Cryptology Conference, pages 452–465.

Boneh, D. and Shaw, J. (1998). Collusion-secure fingerprinting for digital

data. IEEE Transactions on Information Theory, 44(5), 1897–1905.

Carlson, C. S. et al. (2003). Additional snps and linkage-disequilibrium

analyses are necessary for whole-genome association studies in humans.

Nature genetics, 33(4), 518–521.

Cox, I. J. et al. (1997). Secure spread spectrum watermarking for

multimedia. IEEE transactions on image processing, 6(12), 1673–1687.

Cox, I. J. et al. (2002). Digital watermarking, volume 53. Springer.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal

transport. In Advances in neural information processing systems, pages

2292–2300.

Gibbs, R. A. et al. (2003). The international hapmap project.

Goudet, J. et al. (2018). How to estimate kinship. Molecular ecology,

27(20), 4121–4135.

Guo, F. et al. (2006). Fingerprinting relational databases. In Proceedings

of the 2006 ACM symposium on Applied computing, pages 487–492.

Halimi, A. et al. (2021). Privacy-preserving and efficient verification

of the outcome in genome-wide association studies. arXiv preprint

arXiv:2101.08879.

Ji, T. et al. (2021a). The curse of correlations for robust fingerprinting of

relational databases. In 24th International Symposium on Research in

Attacks, Intrusions and Defenses, RAID ’21, page 412–427.

Ji, T. et al. (2021b). Differentially-private fingerprinting of relational

databases. arXiv preprint arXiv:2109.02768.

Johnson, N. F. et al. (2001). Information Hiding: Steganography

and Watermarking-Attacks and Countermeasures: Steganography and

Watermarking: Attacks and Countermeasures, volume 1. Springer

Science & Business Media.

Lafaye, J. et al. (2008). Watermill: An optimized fingerprinting system

for databases under constraints. IEEE Transactions on Knowledge and

Data Engineering, 20(4), 532–546.

Le, K. et al. (2021). On robust optimal transport: Computational

complexity and barycenter computation. Advances in Neural

Information Processing Systems, 34.

Li, J. Z. et al. (2008). Worldwide human relationships inferred from

genome-wide patterns of variation. science, 319(5866), 1100–1104.

Li, Y. et al. (2003). Constructing a virtual primary key for fingerprinting

relational data. In Proceedings of the 3rd ACM workshop on Digital

rights management, pages 133–141.

Li, Y. et al. (2005). Fingerprinting relational databases: Schemes and

specialties. IEEE Transactions on Dependable and Secure Computing,

2(1), 34–45.

Liu, S. et al. (2004). A block oriented fingerprinting scheme in relational

database. In International conference on information security and

cryptology, pages 455–466. Springer.

McGee, M. K. and Ross, R. (2016). 4 stolen health databases reportedly

for sale on dark web.

Mitchell, A. A. et al. (2004). Discrepancies in dbsnp confirmation rates

and allele frequency distributions from varying genotyping error rates

and patterns. Bioinformatics, 20(7), 1022–1032.

Naveed, M. et al. (2015). Privacy in the genomic era. ACM Computing

Surveys (CSUR), 48(1), 1–44.

Öksüz, A. Ç. et al. (2021). Privacy-preserving and robust watermarking

on sequential genome data using belief propagation and local differential

privacy. Bioinformatics, 37(17), 2668–2674.

Park, S.-J. et al. (2013). Inference of kinship coefficients from korean snp

genotyping data. BMB reports, 46(6), 305.

Pfitzmann, B. and Waidner, M. (1997). Asymmetric fingerprinting

for larger collusions. In Proceedings of the 4th ACM conference on

Computer and communications security, pages 151–160.

Sheskin, D. J. (2003). Inferential statistical tests employed

with two or more independent samples (and related measures of

association/correlation). In Handbook of Parametric and Nonparametric

Statistical Procedures, pages 699–828. Chapman and Hall/CRC.

Wang, B. et al. (2017). Efficient estimation of realized kinship from single

nucleotide polymorphism genotypes. Genetics, 205(3), 1063–1078.

Wheeler, D. L. et al. (2007). Database resources of the national center

for biotechnology information. Nucleic acids research, 36(suppl_1),

D13–D21.

Yilmaz, E. and Ayday, E. (2020). Collusion-resilient probabilistic

fingerprinting scheme for correlated data. arXiv preprint

arXiv:2001.09555.

	Introduction
	Challenges in Genomic Database Fingerprinting
	Our Solution

	Related Work
	System, Threat Model, and Success Metrics
	Genomic Database Fingerprinting System Model
	Threat Model
	Fingerprint Robustness Metrics
	Utility Metrics

	The Foundation: Vanilla Genomic Fingerprinting Scheme
	Fingerprint Insertion Phase of the Vanilla Scheme
	Fingerprint Extraction Phase of the Vanilla Scheme

	Consolidating the Foundation: Making the Vanilla Genomic Fingerprinting Scheme Robust Against Correlation Attacks
	Mitigating the Row-wise Correlation Attack
	Mitigating Column-wise Correlation Attack

	Experiment results
	Genomic Database Description
	Vulnerability of Vanilla Fingerprinting Scheme Against Correlation Attack
	Performance against Correlation Attack
	Performance against Random Bit Flipping Attack

	Robust Genomic Database Fingerprinting Against Correlation Attacks
	Impact on Database Utility
	Impact on Fingerprinting Robustness

	Scalability

	Discussion
	Conclusion

