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Abstract

Motivation: Database fingerprinting has been widely used to discourage unauthorized redistribution
of data by providing means to identify the source of data leakages. However, there is no fingerprinting
scheme aiming at achieving liability guarantees when sharing genomic databases. Thus, we are motivated
to fill in this gap by devising a vanilla fingerprinting scheme specifically for genomic databases. Moreover,
since malicious genomic database recipients may compromise the embedded fingerprint (distort the
steganographic marks, i.e., the embedded fingerprint bit string) by launching effective correlation
attacks which leverage the intrinsic correlations among genomic data (e.g., Mendel’'s law and linkage
disequilibrium), we also augment the vanilla scheme by developing mitigation techniques to achieve
robust fingerprinting of genomic databases against correlation attacks.

Results: Via experiments using a real-world genomic database, we first show that correlation
attacks against fingerprinting schemes for genomic databases are very powerful. In particular, the
correlation attacks can distort more than half of the fingerprint bits by causing a small utility loss (e.g.,
database accuracy and consistency of SNP-phenotype associations measured via p-values). Next, we
experimentally show that the correlation attacks can be effectively mitigated by our proposed mitigation
techniques. We validate that the attacker can hardly compromise a large portion of the fingerprint bits
even if it pays a higher cost in terms of degradation of the database utility. For example, with around 24%
loss in accuracy and 20% loss in the consistency of SNP-phenotype associations, the attacker can only
distort about 30% fingerprint bits, which is insufficient for it to avoid being accused. We also show that
the proposed mitigation techniques also preserve the utility of the shared genomic databases, e.g., the
mitigation techniques only lead to around 3% loss in accuracy.

Availability and implementation: https: //github.com/xiutianxi/robust—-genomic—fp-github'

1 Introduction Digital fingerprinting is a technology that allows to claim copyright,
deter illegal redistribution, and identify the source of data breaches (i.e.,
the guilty party who is responsible for the leakage) by embedding a
unique mark into each shared copy of a digital object. Although the
most prominent usage of fingerprinting is for multimedia Cox et al. (1997,
2002); Johnson et al. (2001), fingerprinting techniques for databases have
also been developed Li et al. (2005); Guo et al. (2006); Liu et al. (2004);
Lafaye er al. (2008). These techniques change database entries at different
positions when sharing a database copy with a new service provider (SP). If

Genomic database sharing is critical in modern biomedical research,
clinical practice, and customized healthcare. However, it is generally not
viable due to the copyright and intellectual property concerns from the
database owners. In other words, the requirements of copyright protection
and anti-piracy may prevent genomic data holders from sharing their data,
which may hinder the progress of cooperative scientific research.
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1.1 Challenges in Genomic Database Fingerprinting
Existing fingerprinting schemes for databases have been developed to

embed fingerprints in continuous numerical entries (floating points) in
relational databases, e.g., Liet al. (2005); Guo et al. (2006); Li et al.
(2003). Whereas, fingerprinting discrete (or categorical) values is more

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1


https://github.com/xiutianxi/robust-genomic-fp-github

Tianxi Ji,' Erman AydayV:#, Emre Yilmaz' 2 and Pan Li1

difficult, as the number of possible values (or instances) for a data point is
much fewer. Hence, in such databases, a small change in data points (as
a fingerprint) can significantly affect the utility. Fingerprinting becomes
even more challenging when it comes to a genomic databases, which
contain even fewer values, e.g., 4 instances (A, G, C, T) when considering
nucleobases, and 3 instances (0, 1, 2) when considering number of minor
alleles for each single nucleotide polymorphism - SNP (Section 3 gives
more details about the type of genomic data considered in this work). In
real world, leaked genomic databases often end up being sold or publicly
shared on the internet McGee and Ross (2016). Once that happens, the
genomic database owner wants to find out the traitors who should be
responsible for the data leakage by extracting the their fingerprints in the
leaked databases. Thus, in this paper, we first propose a vanilla genomic
database fingerprinting scheme by (i) taking into account of the abundant
attributes of genomic sequence, and (ii) extending the state-of-the-art
database fingerprinting scheme Li ef al. (2005). Our vanilla scheme is
more robust against common attacks targeted on database fingerprinting
schemes (e.g., random bit flipping attack and subset attack Li er al.
(2003); Agrawal et al. (2003)) than previously developed fingerprinting
schemes for generic relational databases such as Li et al. (2005); Guo et al.
(2006); Liu et al. (2004), because we can insert denser fingerprint for each
selected genomic data by introducing a new parameter, which controls
the percentage of fingerprinted entries for selected rows (see Section 4.1).
Whereas, Li er al. (2005) only fingerprints one attribute for all selected
rows. Compared with Li et al. (2005), we also assign higher confidence
score during fingerprint extraction considering that genomic databases
usually contains more attributes than generic databases (see Section 4.2).
In addition, existing fingerprinting schemes for databases do not
consider various inherent correlations between the data records in a
database. In our previous work Ji et al. (2021a), we have shown that
a malicious party having a fingerprinted copy of a database can detect
and distort the embedded fingerprints using its knowledge about the
correlations in the data entries. Genomic databases contain even richer
row- and column-wise correlations due to the biological characteristics.
In particular, the row-wise correlations arise from (i) the Mendel’s law,
and (ii) similarities of genomes among family members. The column-wise
correlations are the pairwise correlation between genomic data points at
different locations (e.g., linkage disequilibrium Naveed ef al. (2015)). In
this paper, we use Atkrow (S) and Atk () to represent the correlation
attacks using the row- and column-wise correlations, respectively, where S
and J denote the corresponding correlation model and they are assumed to
be publicly known (in Section 3.2, we describe these two attacks in detail).
In Section 6, we consider a real world genomic database and show that by
launching Atkyow (S) and Atkeo;(J) in sequence, a malicious SP can
easily compromise more than half of the bits in a fingerprint string at the
cost of only changing about 5% of the entries in the genomic databases.
As a result, we also need to make the proposed vanilla genomic database
fingerprinting scheme be robust against the correlation attacks in order to
lay a solid foundation for genomic data sharing.
1.2 Our Solution
In this work, to address the unique challenges of robust fingerprinting
of genomic databases, i.e., mitigating Atkrow (S) and Atkeo1(J), we
develop mitigation techniques for each of them, i.e., Mtgrow (S) and
Mtgco1(J). These techniques utilize the correlations among genomic
data, i.e., Mendel’s law, S, and 7, and they work as post-processing
steps for our developed vanilla scheme. Besides, they only modify non-
fingerprinted entries in the genomic databases. Thus, they do not reduce the
robustness of the vanilla scheme. Note that the proposed robust genomic
database fingerprinting scheme in this paper is not just a simple application
of our previous work Ji ef al. (2021a) for genomic databases, because
the correlation models considered in this paper are different compared
to the generic models we have Ji er al. (2021a), and thus they require

new mitigation techniques to make the fingerprinted genomic databases
match the Mendel’s law and genome-specific correlations. In Table 1, we
summarize the differences between the proposed robust genomic database
fingerprinting scheme and previous schemes.

In particular, Mtgrow (S) "
Properties Li et al. (2005) | Ji et al. 2021a) | "™
. paper
is composed of two phases.
Flexible density in marked attributes X X v
First, it checks all ﬁngerprinted Higher confidence in extraction X X v
Genome-specific correlation x x v

nomi -tuples of famil
genomic data-tup eSO. amily Table 1. Differences between the robust genomic
members. If a tuple violates
Mendel’s law, the database

owner changes the non-

database fingerprinting and the previous schemes.
Vindicates the scheme has a certain property, and
Xindicates the opposite.

fingerprinted entries in this tuple to make it compliant with the Mendel’s
law. Second, it checks all family sets in the genomic database, calculates
the empirical correlations among family members after the vanilla
fingerprinting, and changes the non-fingerprinted entries in each family
set to push the empirical correlations close to the publicly known model
(S) by solving a distance minimization problem. Note that the second
phase of Mtgrow (S) is different with the row-wise mitigation developed
in our previous work Ji ef al. (2021a), because the second phase is able
to perfectly defend against Atk,ow(S) if the objective function of the
distance minimization problem reaches to 0. Whereas, our previous row-
wise mitigation technique Ji ef al. (2021a) (formulated as a set function
maximization problem) can only mislead the malicious SP when launching
the row-wise correlation attack. More details are deferred to Section 5.1.

Mtgco1(J) considers all attributes (columns) of the genomic
databases, obtains the empirical marginal distributions after the vanilla
fingerprinting, and changes non-fingerprinted entries in each attribute
to make the empirical marginal distributions resemble the marginal
distributions obtained by marginalizing the joint distributions provided
in J. Similar to our previous work Ji e al. (2021a), the database owner
selects the non-fingerprinted entries and modifies their value by solving a
linear programming problem which is discussed in Section 5.2.

In Section 6, we show that by applying Mtgrow (S) and Mtgco1 (J)
after our proposed vanilla fingerprinting scheme, the malicious SP can
hardly distort large portion of the fingerprint bits anymore, even if it
introduces significant utility loss in the database (e.g., by decreasing
database accuracy and making the SNP-phenotype associations less
consistent compared to the ground-truth measured on the original
- non-fingerprinted - database). For example, if the malicious SP
compromises around 24% accuracy and 20% consistency in SNP-
phenotype associations, it can only distort about 30% fingerprint bits.
This implies that the malicious SP will be held responsible for the genomic
database leakage with high probability Ji et al. (2021a).

Contributions and Broader Impact. To the best of our knowledge,
our work is the first to investigate the liability issue when sharing genomic
relational databases (i.e., the collection of genomic data of individuals with
the same attributes) and at the same time address the threats of correlation
attacks due to the unique biological characteristics.

Our proposed robust genomic database fingerprinting scheme helps
facilitate the development of genomic research which requires large-scale
genomic data analyses, and is increasingly relying upon the sharing of
genomic databases with various SPs. The ideas developed in this paper
also shed light on sharing other sensitive biomedical databases, e.g.,
electrocardiogram and electrooculogram data samples, where the data
correlations are determined by the spatio-temporal dependency between
data records. In this case the correlations can be characterized by
autocorrelation and cross-correlations or they are modeled as a Markov
process. We will also study these types of databases in the future.

Paper organization.
fingerprinting schemes in Section 2. In Section 3, we present the system
and threat models, and evaluation metrics. Section 4 introduces the

We review related works on database

foundation of our scheme, i.e., the vanilla fingerprinting scheme for



genomic databases. Then, in Section 5, we consolidate this foundation
by developing mitigation techniques against various correlation attacks
on the genomic database. In Section 6, we show the vulnerabilities of the
vanilla fingerprinting scheme for genomic databases, and also demonstrate
the performance of mitigation techniques from both database utility and
fingerprint robustness perspective. Section 7 discusses the limitations of
the proposed scheme and points out future research directions. Finally,
Section 8 concludes the paper.

2 Related Work

The seminal work of database fingerprinting is proposed by Agrawal et al.
(2003), which assumes that the database consumer can tolerate a small
amount of error in the marked databases. Then, based on Agrawal er al.
(2003), some variants have been proposed Li et al. (2005); Guo et al.
(2006); Liu et al. (2004). For instance, Li et al. (2005) develop a database
fingerprinting scheme by extending Agrawal et al. (2003) to enable the
insertion and extraction of arbitrary bit-strings in relations. However,
these works do not consider the correlations among data entries, which
makes them vulnerable to correlation attacks Ji ef al. (2021a). Records
in Genomic databases usually have much stronger correlations caused
by Mendel’s law and linkage disequilibrium, which make the genomic
database prone to correlation attacks.

Recently, some works have explicitly taken the genomic data
correlations into account in fingerprinting scheme design. In particular,
Yilmaz and Ayday (2020) develop a probabilistic fingerprinting scheme
by considering the conditional probabilities between genomic data points
of a single individual. Ayday et al. (2019) propose an optimization-based
fingerprinting scheme for sharing personal genomic sequential data by
jointly considering collusion attack and data correlation. However, these
two works focus on the genomic data of an individual, instead of a genomic
database, where individuals may have kinship relationships. Oksiiz et al.
(2021) develop a watermarking scheme for sequential genomic data
based on belief propagation which considers the privacy of data and the
robustness of watermark requirements at the same time. Ji et al. (2021a)
propose mitigation techniques against general correlation attacks targeted
on generic relational databases and show that the proposed technique can
be applied after any existing relational database fingerprinting scheme to
achieve robustness against correlation attacks.

However, the above mentioned works cannot be directly applied
to genomic database fingerprinting, because they fail to consider the
characteristics that are unique to the genomic data. Particularly, (i)
hereditary units governed by the Mendel’s law can be utilized by the
malicious SP to further infer the potentially fingerprinted locations.
(ii) limited values of genomic data also makes the utility-preserving
fingerprinting a challenging task. Thus, in this paper, we first show the
vulnerability of genomic database fingerprinting against correlation attacks
that take advantage of the Mendel’s law and linkage disequilibrium. Then,
we discuss how to mitigate the identified attacks in a way that the utility
of the database is preserved.

3 System, Threat Model, and Success Metrics
Now, we discuss the genomic database fingerprinting system, the
considered various threats, and fingerprint robustness and utility metrics.
3.1 Genomic Database Fingerprinting System Model

We consider a database owner (Alice) with a genomic database (e.g.,
dbSNP Wheeler et al. (2007)) including single-nucleotide polymorphisms
(SNPs) of a certain population, i.e., each row corresponds to the SNP
sequence of a specific individual. Each individual has two alleles for
each SNP position, and each of these alleles are inherited from one of
their parents. Thus, each SNP (i.e., each entry of the database) can be
represented by the number of its minor alleles as 0, 1, or 2, and can be
encoded as “00”, “01”, or “10”, respectively. In this paper, we focus
on sharing SNP databases, because such databases are critical to many

genomic and medical research Mitchell et al. (2004), e.g., genome-wide
association studies Carlson et al. (2003). The techniques developed in
this paper can be applied to other types of genomic databases (e.g., ones
including nucleotides that may contain 4 values A, G, C, or T) by simply

changing the data coding. g () = o -] [
<—>4-—
We present the system Database owner] ¥ Lt
. fsp, = [01100 sp, = [10001- -]
model for genomic database ol \ fors = 10010+
fingerprinting in Figure 1. g % :§
We denote the genomic database S % R, P
-
owned by Alice as R. l!\sr. !!wu |B'sv,1 °e l'ﬁ"»'
. (unauthorized redistribution of database|
When Alice wants to share |__combined with potential attacks __J

[(gerrit | ¢y, (Tgeri [ database sharing |
\insort _detection ) 3 [accuse maiicious SP )

the database with various
medical service providers Fig. 1. The genomic database fingerprinting

(SPs), she includes a unique system, where Alice adds a unique fingerprint

fingerprint in each copy of in each copy of her genomic database R when

her database. The fingerprint
bit-string customized for each

sharing. The inserted fingerprint will change
entries at different locations (indicated by the
yellow dots) in R. She is able to identify the
SP is a randomly generated malicious SP who pirates and redistributes her
binary bit-string (elaborated

in Section 4.1). The fingerprint essentially changes different entries in

database using the customized fingerprint.

R at various positions (indicated by the yellow dots). The fingerprint
generated for the ith SP (SP;) is fsp,, and the fingerprinted genomic
database received by SP; is represented as R fsp, We also use R to
represent a generic fingerprinted genomic database.

In real world applications, some of the SPs may be malicious (e.g.,

SP; in Figure 1) who will redistribute its received genomic database copy
after conducting certain attacks (discussed in Section 3.2) on top of it.
System with Vanilla Fingerprinting. If SP; compromise R fsp, Via
random bit flipping attack, Alice is able to identify SP; as the traitor by
extracting a large portion of its fingerprint from the leaked database by
only using the proposed vanilla fingerprint scheme (Section 4). However,
if SP; launches correlation-based attacks on R fsp, it can avoid being
accused of data leakage with large probability.
System with Robust Fingerprinting. The correlation-based attacks can
be effectively mitigated, if R fsp, is generated by adopting our proposed
robust fingerprinting scheme, and thus, SP; will still be held responsible
for illegal redistribution. We will empirically evaluate these using a real
world genomic database in Section 6.

3.2 Threat Model

Fingerprinted databases are subject to various attacks summarized in
the following. Note that in all considered attacks, a malicious SP can
change/modify most of the entries in R to distort the fingerprint (and
to avoid being accused). However, such a pirated database will have
significantly poor utility measured in terms of database accuracy and
consistency of SNP-phenotype association (see Section 3.4). Thus, a
rational SP will try to get away with making pirated copies of the genomic
databases by changing as few entries as possible in order to maintain high
utility for the pirated database and gain illegal profit.

Random Bit Flipping Attack. In this attack, to pirate a database, a
malicious SP selects random entries in its received copy of the genomic
database and flips their bit values Agrawal et al. (2003). For example, a
SNP value 2 (“10”) becomes 0 (“00”) after the attack.

Row-wise correlation attack Atk;ow(S). As discussed in Section 1,
a malicious SP may utilize Mendel’s law and similarities among family
members’ genomes to infer the potentially changed loci in the fingerprinted
database. Thus, we assume that the malicious SP has access to the sets of
families in the database as well as the genome similarities (denoted as S)
among family members in each set. Note that this is a valid assumption,
because quite a few works have shown that kinship or familial relationships
from SNP genotyping data can be inferred with very high accuracy for
small and medium size groups (e.g., dozens or hundreds of individuals
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Goudet et al. (2018); Park et al. (2013), large size populations Wang et al.
(2017), or even worldwide Li ef al. (2008)) or such information can be
obtained directly from the metadata.

Thus, upon receiving a fingerprinted copy of the genomic database, the
malicious SP will check all SNPs at the same loci of family members and
then flips SNPs at the loci that violate Mendel’s law. For example, if both
parents have SNP value 0, but their children have SNP value 1 at the same
locus, then, the malicious SP knows that one or more family members’ SNP
values have been changed with high probability due to fingerprint insertion,
since such change can be due to a mutation with a slight probability. Next,
the malicious SP can further calculates the empirical row-wise correlations
(denoted as S”) from the received fingerprinted copy, compares S’ with
S, and changes entries that leads to large discrepancy between them.
Column-wise correlation attack Atk.. (7). We model the publicly
known allelic associations (linkage disequilibrium) between SNP values at
different loci as a set of joint distributions 7. Once a malicious SP receives
the fingerprinted database, it can calculate a new set of empirical pair-wise
joint distributions 7”. Then, it compares 7’ and 7, and flips the entries
in the fingerprinted copy that leads to large discrepancy between them.

In this paper we do not consider other common attacks, such as
the subset attack and superset attack Li et al. (2005), because they
are usually much weaker than the random bit flipping attack as shown
in Yilmaz and Ayday (2020). Another widely investigated attack is the
collusion attack Boneh and Shaw (1998, 1995); Pfitzmann and Waidner
(1997). Our proposed robust fingerprinting scheme for genomic databases
can also be extended to collusion-resistant genomic database fingerprinting
by incorporating collusion-resistant codewords when generating the
fingerprint Boneh and Shaw (1995). We will extend our work in the
scenario of colluding medical SPs in future.

3.3 Fingerprint Robustness Metrics

The primary goal of amalicious SPis to distort the fingerprint in its received
copy to avoid being accused. We use the percentage of compromised
fingerprint bits, i.e., Percmp, to measure the robustness of the fingerprint
scheme. Percmp calculates the percentage of mismatches between
the fingerprint bit-sting extracted from the compromised fingerprinted
database and the original fingerprint bit-string that is used to generate
the fingerprinted genomic database. In our previous work Ji et al. (2021a),
we have shown that if the malicious SP can compromise more than 50%
of the fingerprint bits, it can cause the database owner to accuse other
innocent SPs who also received the databases. In this paper, we only focus
on Percmp, because other robustness metrics (e.g., the accusable ranking
of a malicious SP) directly depends on Percmyp Ji et al. (2021a).

3.4 Utility Metrics

Fingerprinting naturally changes the content of databases (i.e., the values
of the SNPs), and hence degrades its utility. We quantify the utility of a
fingerprinted genomic database using the following metrics.

Accuracy of the database, i.e., Acc. It calculates the percentage of
matched data entries between the original genomic database and the
fingerprinted copy (or the compromised fingerprinted copy, i.e., the pirated
copy generated by a malicious SP). The higher Acc, the fewer entries
are changed due to fingerprint insertion, attack from the malicious SP, or
mitigation to resist the attacks, and thus, the higher the utility.
Consistency of SNP-phenotype association. GWAS (genome-wide
association study) is a widely adopted method to identify genetic variations
that are associated with a particular phenotype (e.g., a disease). In GWAS,
a researcher usually quantifies the associations between a phenotype and
each SNP in the database using a p-value with a confidence level of 95%
Sheskin (2003); Halimi ef al. (2021). In particular, SNPs with low p-values
(typically smaller than 0.05) are considered to have strong associations
with the phenotype (i.e., the association cannot be due to chance). In
general, a larger utility loss in terms of accuracy degradation will lead to

less accurate SNP-phenotype association. To evaluate the p-value of each
SNP in the genomic database, we first randomly divide the database into
non-overlapping case (denoted as S) and control (denoted as C') groups,
and then follow the steps listed in (1) to perform the calculations.

In particular, in (1),
OR is the odd ratio,
Co, Cl, and CQ
(or Sp, Si, and
S2) are the numbers
representing a specific
SNP taking a value
of 0, I, and 2 in
the control (or case)
group. StdErr(In(OR)) is the standard error of the logarithm of the odd
ratio, and z is interpreted as the standard normal deviation (i.e., z-value).
Finally, the p-value is the area (probability) of the normal distribution
that falls outside £z, and it can be obtained using W (-); the cumulative

Co(S1 + S2)

OR = ,
Sp(C1 + C2)

StdErr(In(OR))

1 1 1
= +— + +—, O
S1+8y Sy C1+Cy  Co
In(OR)
StdErr(In(OR))

p=W(—z)+1— ¥(z).

distribution function of the standard normal distribution.

To evaluate the utility of the genomic database, we identify the top-
50 SNPs (i.e., the 50 SNPs with the lowest p-values) from the original
(non-fingerprinted) database. Then, we check how many of such SNPs
are preserved (i.e., remains to be the top-50 SNPs) after fingerprinting
or various attacks. Note that we only consider the consistency of SNP-
phenotype association for individual SNPs (i.e., not the consistency of
SNP-phenotype association for SNP tuples). This is because the proposed
mitigation techniques can preserve the Pearson’s correlations among each
pair of SNPs (see Section 5.2 for details).

4 The Foundation: Vanilla Genomic
Fingerprinting Scheme

Now, we establish the foundation of our robust fingerprinting scheme for
genomic database. Our developed vanilla scheme is inspired by Li ez al.
(2005), which enables the insertion and extraction of arbitrary bit-strings
in databases. However, our scheme differs from Li et al. (2005) and its
variants, e.g., Guo et al. (2006); Ji et al. (2021a), as they only mark one bit
position in each selected row, which leads to less fingerprinting robustness
due to significantly larger number of attributes (e.g., number of SNPs in a
genomic database) and strong correlation patterns in genomic data.

4.1 Fingerprint Insertion Phase of the Vanilla Scheme

When the database owner shares a fingerprinted copy of the genomic
database R with a SP (whose id is n), it first generates the fingerprint
bit string fgp,, = Hash(K|n), where K is the secret key of the database
owner and | stands for the concatenation operator.”> The database owner
uses a cryptographic pseudorandom sequence generator I to select specific
bit positions of specific SNPs from some individuals and fingerprint these
bits using mark bits m’s, which are the result of the XOR operation between
the random mask bits (z’s) and randomly selected fingerprint bits (f;’s),
ie.,,m = x @ f;, where f; is the [th bitin fsp .

To be more specific, for all individuals in the genomic
database, the database owner fingerprints the SNP sequence if
U1 (K|r;.primary key) mod |[1/4-| = 0, where v, € (0,1) is
the row fingerprint density. As a result, the fraction of fingerprinted
SNP sequences in R is approximately . For all SNPs in a selected
sequence (i.e., 7;), the element with attribute p (i.e., the SNP
value at loci p of »; represented by r;[p]) will be fingerprinted if

2 In this paper, we use MDS5 to generate a 128-bits fingerprint string,
because if the database owner shares C' copies of its database, then as long
as L > In C, the fingerprinting mechanism can thwart exhaustive search
and various types of attacks, and in most cases a 64-bits fingerprint string
is shown to provide high robustness Li ez al. (2005).



Uz (K|r;.primary key|p) mod |1/v;] = 0, where v; € (0,1) is the
column fingerprint density. Then, the database owner sets the binary mask
bit z = U3(K|r;.primary key|p) mod 2, and selects one bit position of
fgp, vial = (U4(/C|ri.primary key|p) mod L) + 1. Next, it obtains
the mark bit m as m = x @ fgp,, [I], and selects a bit position (count
backwards) of r;[p] via t = (Z/Is (K|r;.primary key|p) mod 2) + 1.
Finally, it fingerprints 7;[p] by replacing the t¢th to the last bit of r;[p]
with m. We summarize the steps of the fingerprint insertion phase of the
vanilla fingerprinting scheme in Algorithm 1.

Algorithm 1: Vanilla scheme: fingerprint insertion

Input : The original genomic relational database R, row fingerprinting density
~r, column fingerprinting density ~;, database owner’s secret key C,
pseudorandom number sequence generator U/, and the SP’s series
number n (which can be public).

Output: The vanilla fingerprinted genomic relational database R.

1 Generate the fingerprint bit string of SP n, i.e., fsp,, = Hash(K|n);
2 forall individual r; € R do
3 if U (K|7r;.primary key) mod |1/, ] = O then

4 fingerprint the SNP sequence of the ith
1d dua

5 forall SNP element r;[p] € r; do

6 if U (K|7;.primary key|p) mod [1/~;] = O then

7 fingerprint the pth SNP of the 2th

individual

8 Set mask_bit z = 0, if U3 (K|r; .primary key|p) is even;

otherwise set z = 1.
9 fingerprint_index | = Uy (K|r;.primary key|p) mod L.
10 fingerprint_bit f; = fsp,, (1).
11 mark_bitm = x @ f;.
12 Sett = (M5(l€\r,;.primary key|p) mod 2) + 1.
13 Set the tth to the last bit of ; [p] to m.

Different from Li et al. (2005); Guo et al. (2006); Ji et al. (2021a), by
involving ~y;, our vanilla scheme can mark more bits in each selected
row. In our recent work Ji et al. (2021b), we also derived a closed-form
expression to characterize the relationship between fingerprint robustness
and database utility. Thus, by jointly tuning ,- and y; we can also achieve
desired tradeoff between robustness and utility. We will theoretically and
empirically investigate this in the future.

4.2 Fingerprint Extraction Phase of the Vanilla Scheme

When the database owner observes a leaked (or pirated) genomic database
denoted as R, it tries to identify the traitor (i.e., the malicious SP) by
extracting the fingerprint from R and comparing it with the fingerprints
of all SPs who have received its genomic database.

We present the fingerprint extraction phase of the vanilla scheme in
Algorithm 2. Specifically, the database owner first initiates a fingerprint
template f = (f1, fo,---,fr) = (2,7,---
the fingerprint bit at that position remains to be determined.* Then, the
database owner determines the mask bit (), obtains the corresponding
indices of fingerprint bits (I’s), locates the bit positions of the fingerprinted

, 7). Here, “?” means that

SNP elements exactly as in the fingerprint insertion phase, and finally
fills in each “?” using a voting scheme. To be more precise, for each
fingerprinted SNP 7;[p], the database owner obtains the corresponding
mark bit m by reading the tth to the last bit of 7;[p], and recovers one
instance of the Ith bit of the fingerprint bit string via f; = m ® x. Since
the value of f; may be changed by the malicious SP, the database owner
maintains and updates two counting arrays co and ¢, where co(l) and

4 Similar symbol has also been used in other works Boneh and Shaw
(1995); Li et al. (2005); Agrawal et al. (2003); Ji et al. (2021a).

c1 (1) record the number of times f; is recovered as 0 and 1, respectively.
Finally, the database owner sets f(I) = 1if c1(1)/(c1(l) + co(l)) >
7, and f(I) = 01if co(l)/(c1(l) + co(l)) > 7, otherwise f(I) =?
(i.e., this fingerprint bit cannot be determined due to the database owner’s
low confidence), where 7 € (0.5, 1] is the parameter that quantifies the
database owner’s confidence in the fingerprint recovery phase.’

Algorithm 2: Vanilla scheme: fingerprint extraction

Input : The leaked genomic database R, row fingerprinting density ~,-, column
fingerprinting density ~;, database owner’s secret key AC, pseudorandom
number sequence generator U, and a fingerprint template

?,7,---,7), where ? represents unknown value.
Output: The extracted fingerprint bit string f from the leaked database.
1 Initialize co (1) = ¢1 (1) = 0,VI € [1, L].
2 forall individual 7; € R do
3 if U (K|7; .primary key) mod |1/, | = O then

4 forall SNP element 7 [p] € r; do

5 if Us (K|7;.primary key|p) mod [1/~;| = O then

6 Set mask_bit z = 0, if U3 (|7, .primary key|p) is even;
otherwise set z = 1.

7 fingerprint_index I = Uy (K|7;.primary key|p) mod L.

8 Sett = <Ll5 (K|7;.primary key|p) mod 2) + 1.

9 Set the mark_bit m as the tth to the last bit of 7; [p].

10 Recover the fingerprint bit f; = m @ =z.

11 ci (1) + +,if f; = 1; otherwise co (1) + +.

12 forall L € [1, L] do
1B | f(1) =1,ifc1()/(c1(l) +co(l)) > 7,and £(1) = 0, if
co()/(er(l) +eo(l) = 7.

5 Consolidating the Foundation: Making the
Vanilla Genomic Fingerprinting Scheme Robust
Against Correlation Attacks

Here, we propose a robust fingerprinting scheme for genomic databases
against the correlation attacks identified in Section 3.2. The robust scheme
is developed by augmenting the vanilla scheme using two mitigation
techniques which can serve as the post-processing steps after the vanilla
fingerprinting. It brings us two benefits: (i) fingerprint robustness of the
vanilla scheme is maintained, because the devised mitigation techniques
only change non-fingerprinted entries and (ii) the mitigation techniques
can be applied to any vanilla fingerprinting schemes to resist correlation
attacks on genomic databases. As discussed in Section 4.1, we choose our
developed vanilla scheme to have more control over the fingerprint density
on each selected SNP sequence. In practice, one can develop their own
vanilla scheme depending on the content of their genomic database and
then apply our proposed mitigation techniques to make their scheme also
robust against the correlation attack.

In highlevel, to provide robustness against the row-wise correlation
Atkrow(S) and column-wise correlation attack Atkeo(J), the
database owner (Alice) will perform mitigation steps (after the vanilla
fingerprinting) by utilizing Mendel’s law and her prior knowledge S
(correlation of genomic data among different individuals), [ (correlation
of SNP values at different loci) to reduce the discrepancy caused by
fingerprinting insertion. We will show that to implement the proposed
mitigation steps, Alice needs to change only a few entries after the vanilla
fingerprinting (e.g., less than 3% as shown in Table 3 in Section 6.3).

5.1 Mitigating the Row-wise Correlation Attack

To mitigate the row-wise correlation attack (in Section 3.2), we develop
Mtgrow (S), which is composed of two phases. The first phase tries to
eliminate all SNP loci that violate the Mendel’s law, and the second phase

3 In this paper, we set 7 = 0.7, which implies the database owner has
higher confidence during fingerprint extraction than the other works, e.g.,
inJi et al. (2021a); Li et al. (2005) 7 is slightly higher than 0.5.
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makes the similarities of genome data among family members close to
that before the fingerprint (generated by the vanilla scheme) is inserted.
In particular, for each family set denoted as fmly, Mtgrow (S) checks
all fingerprinted SNPs of all family members. If the SNP-tuple at a locus
violates the Mendel’s law, Mtgrow (S) changes other non-fingerprinted
entries in the tuple to make them comply with the Mendel’s law. For
example, if a mother-father-child SNP tuple at a specific locus takes
value “2-1-0” (2 for mother, 1 for father, and O for child, which violates
the Mendel’s law), and “1” (value of the SNP for the mother) is the
fingerprinted SNP, then, Mtgrow (S) can modify this tuple as “2-1-17.

In the second phase, for each family set (i.e., fmly) in
the genomic database, Alice changes the SNP values of the
family members such that the cumulative similarities between
individuals with kinship relation is close to their original similarities.
This can be formulated as the following optimization problem
In (2), 545 fmly gtands for the

publicly known similarities

. —~fmly
min ) ‘Sijfmly = $ij

Ti 2,7 €fml, .
J Y between two family members

. = _ ~ . —~fmly
s.L. 7; = value change(rs), in fmly and s;; stands

for the similarities after row-

—~ fmly ~ =
8ij = (ri, ). ) wise mitigation.® We denote
the SNP sequence of an individuaf z) after the mitigation as 7?1 Also,
value change(-) is the function that changes each SNP attribute of 7,
and it will be elaborated later. (2) is an integer programming problem.
Since each SNP sequence may contain thousands of SNPs, it will be
computationally expensive to obtain the optimal value of 'r?Z Thus, we
solve it heuristically. Particularly, if s;;f™y > &Y (gl g
the empirical similarity calculated after the vanilla fingerprinting), the
database owner needs to post-process 7;,Vi € fmly to increase the
similarity. On the other hand, if s fmly 5ij fmly the database owner
needs to post-process 75, Vi € fmly to decrease the similarity.

We use the example of SNP sequences from mother-father-child to
further explain how to increase or decrease the similarity. To increase
éivjfmly, we randomly select a certain number of non-fingerprinted 3-
SNP-tuples (i.e., mother-father-child) with value “0-0-0" and then change
it to “1-0-1” or “0-1-1” depending on whether %fm]y is a mother-
child or father-child similarity. We only change 3-SNP-tuples with value
“0-0-0”, because this is the one of the most common 3-tuples in all
families, and modification of mother-child tuples will not have an impact
on the father-child similarity (vice-versa). To decrease é}}fmly, we let
the database owner change a certain number of 3-tuples with value “1-0-
17 (or “0-1-17) to “0-0-0” if é;}fmly is the mother-child (or father-child)
similarity. The reasons are exactly the same as the case of increasing
é}}fmly. Although there are also higher degrees of relatedness among
family members (e.g., the SNP correlations between grandparents and
grandchildren), those correlation (or similarity) are usually much weaker
than the first order correlations (e.g., mother-father-child). The vanilla
fingerprinting is subject to destroying the strong correlations the most
(and hence an attacker can easily infer the fingerprint due to the distorted
correlations). For higher degree family members, the original correlations
are not high and fingerprint will not destroy such correlation too much.
We will experimentally verify this in Section 6.1.

Note that the row-wise mitigation technique for genomic databases
is different than the one developed for general databases in our previous
work Ji et al. (2021a), which changes entries of non-fingerprinted data
records to make the newly obtained similarities as far away from Alice’s

6 In this paper, the similarity between two individuals is defined as the
inner product between their SNP sequences. One can also define the
similarity using acommon metric adopted in biology, e.g., the allele shared
distance (i.e., ASD) (page 308 Park et al. (2013)), which is also related to
the considered inner product.

prior knowledge S to mislead the malicious SP. In contrast, here, we
make the new similarities close to S in order to alleviate Atkrow (S)
(try to make Atkrow (S) distort less fingerprint bits), and if the objective
function on (2) equals 0, Atkrow (S) is completely invalidated. The reason
that we can pursue this in genomic database is because each row has much
more attributes then general databases and the number of unique values is
small (i.e., only 3 options: 0, 1, and 2). Besides, the row-wise mitigation
techniques developed in Ji et al. (2021a) solves an NP-hard combinatorial
search problem greedily, which introduces large computation overhead.
5.2 Mitigating Column-wise Correlation Attack

To make the vanilla scheme robust against column-wise correlation
attack, we propose Mtgo1 (J ), which transforms the vanilla fingerprinted
genomic database to have column-wise joint distributions (e.g., linkage
disequilibrium between the SNPs) close to the publicly known joint
distributions in 7. Inspired by Ji et al. (2021a), we develop Mtgeo1(JT)
using the idea of “optimal transport” Cuturi (2013), which moves the
probability mass of the marginal distribution of each SNP attribute of
the vanilla fingerprinted genomic database to resemble the distribution
obtained from the marginalization of each reference joint distribution in
J. Then, the optimal transport plan is used to change the entries in the
genomic database after the vanilla fingerprinting.

In particular, for a specific SNP (column, i.e., locus of SNP
sequence) p, we denote its marginal distribution obtained after the vanilla
fingerprinting as Pr(Cp), and that obtained from the marginalization of
a joint distribution Jp, ¢ distribution in J as Pr(Cp) = Jp,q17 (here ¢
can be any attribute that is different from p, because the marginalization
with respect to p using different Jj, 4 will lead to the identical marginal
distribution of p). To move the mass of Pr(Cy) to resemble Pr(Cp),
we need to find another joint distribution (i.e., the mass transport plan)
Gp,p € R3*3, whose marginal distributions are identical to Pr(C) and
Pr(Cp). Then, G ,(a,b),a,b € {0,1,2} indicates that the database
owner should change G ,(a,b) percentage of entries in the vanilla
fingerprinted genomic database whose attribute p (SNP p) takes value
a to value b, so as to make Pr(Cj) close to Pr(Cp). In practice, such a
transport plan can be obtained by solving a regularized optimal transport
problem, i.e., the entropy regularized Sinkhorn distance minimization
Cuturi (2013) as follows:

d( Pr(Cp), Pr(Cp), Ap) = min (G, Opp)F — AG)

Gp.p >‘p

where G5, € G(Pr(Cp),Pr(Cp)) = {G € RFpxkp |G’1 =
Pr(Cp),GT'1 = Pr(Cy)} is the set of all joint probability distributions
whose marginal distributions are the probability mass functions of Pr(C7)
and Pr(Cp). (-, -) r denotes the Frobenius inner product of two matrices.
Also, ©3 , is the transport cost matrix and ©5 ,(a, b) > 0 representing
the cost to move a unit percentage of mass from Pr(Cy = a) to
Pr(Cy = b). Finally, H(Gp,,) = —(Gp,p,log Gp ) F calculates the
information entropy of G, and A, > Ois a tuning parameter. In practice,
(3) can be efficiently solved by linear programming Cuturi (2013). The
obtained Gﬁp is more heterogeneous for larger values of Ap, i.e., the
database owner will change less entries after the vanilla fingerprinting,
which preserves more database utility. On the contrary, G, is more
homogeneous for smaller values of Ay, i.e., it causes more SNP entries
to be changed, which leads to more utility loss. Although (3) processes
each column (attribute) of the genomic database independently, as shown
in Ji et al. (2021a), the post-processed fingerprinted database will have
the Pearson’s correlations among attribute pairs that are close to the prior
knowledge 7. This further suggests that the mitigation step can boost the
utility of the fingerprinted genomic databases.
Mitigation against additional auxiliary information. The developed
row- and column-wise mitigation techniques focus on the correlation
attacks that use generic correlations among genome data. In some task-
dependent applications, the malicious SP can also use specific auxiliary



information, e.g., race-specific information determined by genome and
population structure, to compromise the fingerprinted database. This can
be alleviated by involving additional mitigation steps before Mtgrow (S)
and Mtg.o1(J7) to make the vanilla fingerprinted database also match
those auxiliary information. More discussion on the availability of these
information to the database owner is deferred to Section 7.

6 Experiment results

In this section, we first show that the vanilla fingerprinting scheme can
resist random bit flipping attacks, but it is vulnerable to the correlation
attacks developed specific for genomic databases. The correlation attacks
are more powerful, as they can easily distort more than half of the
embedded fingerprint bits at only a small cost of database utility (i.e.,
introducing less error and preserving the SNP-phenotype association).
Then, we demonstrate that the proposed mitigation techniques can thwart
correlation attacks and make the vanilla scheme robust against them. Since
the mitigation techniques only change limited entries on top of the vanilla
scheme, they also maintain a high utility for the genomic database. More
importantly, we show that if the attacker conducts correlation attacks after
the proposed robust fingerprinting scheme, it cannot succeed even if at a
significant cost of database utility loss. Similar to Ji et al. (2021a), since the
row-wise correlation attack and mitigation are computationally light and
modify less database entries, we let the malicious SP launches Atkrow (S)
followed by Atk (J) when compromising a fingerprinted database, and
let the database owner perform Mtgrow (S) followed by Mtg.o1(J) when
making a vanilla fingerprinted database robust.

6.1 Genomic Database Description
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We use the SNP data belonging to
1500 individuals from the HapMap
dataset Gibbs ef al. (2003). Each
individual has 156 data points (i.e.,
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SNPs). In this population, there
are 150 families, each of which 0
is composed of 3 individuals, i.e.,
mother, father, and child. We
assume that both the database
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Fig. 2. Average absolute value of the

SNP cosine similarity difference, before
and after fingerprint insertion, among
owner and the malicious SP know
the members of each family and the
pairwise correlations (e.g., linkage disequilibrium) among SNPs (Section
3.2 discusses why this assumption is valid in practice).

The importance to consider the correlations due to the first degree
relationships among family members. As discussed in Section 5.1,

family members and their different
generations of simulated descendants.

row-wise correlations are the strongest among the first degree family
members and the vanilla fingerprinting potentially destroys such strong
correlations the most (compared to the correlations between more distant
family members). Here, we verify this claim by generating new generations
of family members from the offsprings of the 150 families and checking
the SNP similarities between these new generations and the original 150
pairs of parents before and after fingerprint insertion. In Figure 2, by
varying the overall fingerprinting density (v, € {10%, 20%, 30%}),
we plot the average absolute difference of cosine similarity between the
150 parents and various generations of their descendants due to the vanilla
fingerprinting. Clearly, the average change in the similarity with the first
generation is the most significant for all considered fingerprinting density,
which suggests that mother-father-child trio has the strongest correlation
and it provides the most prior knowledge for the malicious SP to launch the
row-wise correlation attack, and hence the row-wise mitigation techniques
should preserve the correlations between first degree family members
as much as possible. Thus, in the following experiment, we focus on
the similarity change between individuals and their first generation of
descendants during row-wise correlation attack and mitigation.

6.2 Vulnerability of Vanilla Fingerprinting Scheme Against
Correlation Attack
6.2.1 Performance against Correlation Attack

We first show the vulnerability
of the vanilla scheme
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{0.05, 0.06, 0.07, 0.08,
0.09, 0.1}, which gives
36 different fingerprinted
databases.

Fig. 3. Fingerprint robustness (i.e., percentage of
compromised bits) versus utility loss (i.e., percentage
of changed entries) when the vanilla scheme is
Then, we compromised by the correlation attack (blue dots),
the vanilla scheme is compromised by the random
bit flipping attack (black dots), and the robust

scheme is compromised by the correlation attack (red

let these databases be
compromised by Atkrow (S)
followed by Atkco1(J).
For each compromised

dots). Each dot represents a different experiment.
Dots above the attack success boundary (green line)

database, we record its represent a successful attack (in which the database

percentage of changed owner incorrectly blames an honest SP for the

entries (i.., Perchg — unauthorized sharing).

1— Acc) caused by the correlation attack as well as the resulting fingerprint
robustness measured in terms of Percyp (percentage of compromised
fingerprint bits), and scatter the results as blue dots in Figure 3 (we will
discuss the black and red dots in the figure in later experiments). As
discussed in Section 3.3 and empirically shown in Ji et al. (2021a), as
long as the malicious SP can compromise more than 50% fingerprint bits,
it is able to avoid being detected as the traitor and cause the database
owner to accuse other innocent SPs who have also received the database.
Thus, we say an attack is successful if Percmp > 50%, and the green
horizontal line in Figure 3 represents the attack success boundary. From
Figure 3, we observe that in most of the cases, the identified correlation
attacks can compromise more than 50% fingerprint bits (blue points that
are above the green line) at the cost of changing only less 5% SNPs in the
vanilla fingerprinted database (i.e., an attacker can distort the majority of
the fingerprint bits by also keeping the utility of the database high).

In Table 2, we show the
consistency of SNP—phenotype p-value o 0.05 | 0.06 | 0.07 | 0.08 [ 0.09 | 0.1

consistency
vanilla scheme 100% | 98% | 98% | 98% | 98% | 96%
vanilla after corr. attacks | 98% [96% | 96% | 96% | 96% | 92%

association study (discussed in
Section 3.4) after the vanilla
fingerprinting and the correlation

[ robust scheme [ 92% [ 94% [ 94% | 88% [ 94% [ 92% |
[ robust after corr. attacks | 84% | 92% | 84% | 80% | 86% | 82% |

Table 2. Consistency of SNP-phenotype
association compared with the ground-truth.

attacks. In particular, we first
obtain the set of top-50 SNPs
having strong associations with a phenotype (i.e., the 50 SNPs with the
lowest p-values) from the original (non-fingerprinted) database and denote
this set as the ground-truth set. Next, we get the new sets of top-50
SNPs from the vanilla fingerprinted database and the correlation attack-
compromised database. Then, we evaluate the consistency by counting the
percentage of overlapping SNPs between them and the ground-truth set.
From the upper panel of Table 2, we observe that the vanilla fingerprinting
preserves high utility of the consistency and the correlation attacks on
vanilla fingerprinting scheme also maintain such utility. For example,
one of the successful attacks happens when ~,, = ~; = 0.09 (blue dot
indicated by the blue arrow in Figure 3), and the resultant pirated database
copy still preserves more than 96% SNP-phenotype association.

6.2.2 Performance against Random Bit Flipping Attack

Next, we compare the attack ability of the random bit flipping attack
with our identified correlation attacks. To show the effectiveness of the
correlation attacks, we let the random bit flipping attack change more
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percentage of entries in the vanilla fingerprinted genomic database than
the correlation attacks. We also record the fingerprint robustness after
the vanilla fingerprinted database is subject to random bit flipping attack.
In particular, we set v» = v, € {0.05,0.06,0.07,0.08,0.09,0.1},
and let the malicious SP randomly change a certain percentage (i.e.,
Perchg € {5%, 7%, 9%, 11%, 13%15%}) of entries in its received copy
of the vanilla fingerprinted genomic database. Thus, we also obtain 36
instance of vanilla fingerprinted databases compromised by random bit
flipping attacks. We scatter the recorded results as black dots in Figure 3.
Clearly, the random bit flipping attack can hardly compromise more than
half of the fingerprint bits if the database owner inserts dense fingerprint
in the genomic database, i.e., when v, = 7; > 0.06. In particular, when
~r = ; = 0.09, the malicious SP can only distort 35.16% fingerprint
bits at the cost of changing 15% of the SNPs if it launches the random bit
flipping attack (indicated by the black arrow in Figure 3). In contrast, it can
compromise 52.34% of the fingerprint bits at the cost of only changing
the values of 3.11% of the SNPs if it launches the correlation attacks
(indicated by the blue arrow in Figure 3). This clearly suggests that our
vanilla fingerprint scheme developed specially for genomic databases is
robust against random bit flipping attacks, but is vulnerable to the attacks
using correlations among genome data. Compared with our previous work
Ji et al. (2021a), the identified correlation attacks for genomic data are even
more powerful than the ones identified for a general relational database.
The reason is that the correlation patterns in genomic data (e.g., Mendel’s
law and linkage disequilibrium) are much stronger than the patterns in a
general relational database (i.e., census database in Ji et al. (2021a)). Thus,
the robust fingerprinting for genomic databases is critical.

6.3 Robust Genomic Database Fingerprinting Against

Correlation Attacks

Now, we investigate the impact of the proposed robust genomic database
fingerprinting scheme. Recall that the robust fingerprinting is achieved
by post-process the vanilla fingerprinted genomic database using two
mitigation techniques, i.e., Mtgrow (S) and Mtgco1 (7).

6.3.1 Impact on Database Utility
In Table 3, we record the additional
percentage of entries being changed

7] 005 | 006 | 0.07 | 008 | 0.09 0.1

0.05 2.87% | 2.89% |2.91% | 3.10% | 3.02% | 3.05%
0.06 2.89% | 2.82% | 2.85% | 2.98% | 2.97% | 2.99%

due to the post-processing steps 0.07 | 2.86% | 2.85% | 2.92% | 3.06% | 3.00% | 3.03%
h o0 A h 0.08 | 2.93% | 2.95% | 2.98% | 3.17% | 3.09% | 3.20%

(Mtgrow (S) and Mtgco1(J)). 009 | 287% | 287% | 291% | 3.13% | 289% | 3.10%

0.1 2.98% | 2.95% | 3.07% | 3.29% | 3.17% | 3.36%
Table 3. Additional change caused by
mitigation.

change about 3% of the SNPs in order to make the post-processed database
has row-wise and column-wise correlation close to S and 7 and at the

Clearly, as shown in Table 3, the
mitigation techniques only need to

same time comply with the Mendel’s law. Thus, the robust fingerprint
scheme can preserve high utility of the genomic database, i.e., the database
accuracy and the consistency of SNP-phenotype association. For example,
as shown in the lower panel of Table 2, in most of the cases, robust scheme
achieves more than 90% top-50 SNPs match with the original database.

6.3.2 Impact on Fingerprinting Robustness

In Figure 3, using red dots, we scatter the fingerprint robustness and
the percentage of changed entries when the robust scheme is under the
identified correlation attacks (which are identical with that considered in
Section 6.2). In particular, comparing with the blue dots, we see that the
number of successful attacks (red dots above the green line) is significantly
reduced by the proposed mitigation techniques. This suggests that it is
very difficult for the malicious SP to compromise more than half of the
fingerprint bits using the correlation attacks under the proposed robust
scheme, even if the malicious SP has changed more than 20% of the SNPs
in the received database. Moreover, correlation attacks on top of the robust
fingerprinted genomic database also significantly reduce the utility of SNP-
phenotype association study. As shown in Table 2 (the row corresponding

to robust after correlation attacks), the percentage of matched top-50 SNPs
drops more than 10% compared to the original database. This suggests
that the proposed robust genomic database fingerprinting scheme can
effectively thwart the identified correlation attacks by just changing about
3% of the SNPs in the post-processing steps and at the same time maintain
high database accuracy and consistency of SNP-phenotype association.

6.4 Scalability

Now, we investigate the performance of the proposed robust fingerprinting
scheme for larger genomic databases, where each individual has a higher
number of SNPs (i.e., 234). In particular, we consider 8000 individuals
among which there are 1333 families (due to the same reasoning in Section
6.1, we also focus on the correlation between mother-child-father tuple).
In this experiment, we let v» = ~; € {0.06,0.08,0.1}. We scatter
the pair of percentage of changed entries and percentage of compromised
fingerprint bits in Figure 4. We also plot the p-value consistency before
and after the robust scheme is subject to the identified correlation attacks
in Figure 5. From Figure 4, we see that the robustness increases as the
database increases (in terms of both rows and columns), because the
correlation attacks cannot distort more than 12% of the fingerprint bits even
though more than 20% entries are modified. Figure 5 further suggests thatif
the malicious SP launches the correlation attacks on a robust fingerprinted
genomic database, the p-value consistency will drop by 10% on average.
This experiment shows that our proposed robust fingerprinting scheme is
also promising when sharing large genomic databases.
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compromised by the correlation attacks. by the correlation attacks.

7 Discussion

Independent treatment of elements in SNP sequence. Note that by
checking the change of inner product before and after fingerprinting,
(2) essentially treats each element in the SNP sequence independently.
However, in practice, blocks of SNP elements may also contain inherent
structure, e.g., two or more individuals are identical by descent (IBD)
if they have inherited blocks of SNPs from a common ancestor without
genetic recombination. Thus, a malicious SP may also use this structural
information during an attack. In future work, we will extend the proposed
robust fingerprinting scheme to incorporate the recombination of IBD
segments during meiosis.

Limited side-effect of row-wise mitigation. In the row-wise mitigation,
we post-process each pair of first degree family members in a family set.
This may impact the similarity of other pairs in which either individual
is involved. For example, updating mother-child pair may increase the
similarity of grandfather-grandchild pair. However, as discussed in Section
6.1, such impact is very limited for higher degree family members.
Assumption on prior knowledge. To the advantage of the malicious
SP, we assume that it has at least equally accurate knowledge about
the genomic database (i.e., Mendel’s law, row-wise and column-wise
correlation) compared with the database owner. We do not consider
specific auxiliary information (such as SNP population frequencies, rare
disease-associated variants, population stratification, and SNP-phenotype
associations) in this paper. If the malicious SP has more auxiliary
information than the database owner (which rarely happens in real world
applications), the robustness of the proposed scheme may be compromised.



Such robustness degradation will be limited for generic relational database,
i.e., the malicious SP still cannot distort more than half of the fingerprint
bits Ji et al. (2021a). We will empirically investigate this for genomic
databases by considering various case studies in the future work.
Privacy concerns in genomic database sharing. The primary goal of
database fingerprinting is to claim copyright and prevent unauthorized
redistribution, however, privacy concerns and regulations may also impede
genomic data sharing. In our recent work Ji et al. (2021b), we developed a
novel scheme which can leverage the intrinsic randomness introduced by
fingerprinting to provide provable privacy guarantees in relational database
sharing, i.e., copyright and privacy protection can be achieved in one
shot. In future, we will also study privacy-preserving genomic database
fingerprinting by adapting the scheme in Ji ez al. (2021b).
Computational complexity. If the genomic database contains M
individuals, each of which has N SNPs, then the computation complexity
for Mtgrow (S) is O(MN), because solving (2) requires checking all
SNPs of each mother-child-father tuple. The computation complexity for
Mtgeol(J) is O(%) where 3 is the number of possible instances of
SNP values and « is the desired error in Sinkhorn-based optimal transport
Le et al. (2021).

8 Conclusion

In this paper, we have proposed robust fingerprinting for genomic
databases composed of SNP sequences. To this end, we first identified the
row-wise and column-wise correlation attack which utilize Mendel’s law
and linkage disequilibrium to distort the embedded fingerprint bits. Next,
we developed a vanilla fingerprinting scheme specifically for genomic
database by allowing the database owner to embed more fingerprint in
each selected SNP sequence. Then, we further made this vanilla scheme
robust against the identified correlation attacks by augmenting it with
two mitigation techniques, which serve as post-processing steps for the
vanilla scheme. In particular, the row-wise mitigation is achieved via
solving a cumulative absolute distance minimization, and the column-
wise mitigation is realized using optimal mass transport of distributions.
Via experiments, we have shown that the identified correlation attacks are
much more powerful than common attacks against fingerprinting schemes;
they can easily distort more than half of the fingerprint bits at a small cost
of database utility. However, these attacks are effectively alleviated by our
developed mitigation techniques. The proposed scheme has the potential
to further motivate researchers to share their genomic databases with each
other, knowing that the shared database is of high utility and the recipient
will be hesitant to leak the database due to the provided liability guarantees
via the proposed robust fingerprinting scheme.
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