
 1 

 

Abstract 
 
Recently, computational material models accelerated innovations by harnessing machine learning 
(ML) methods, but they face challenges. It is difficult to incorporate internal heterogeneity and 
diverse boundary conditions (BC’s) into existing ML methods, and weak interpretability of ML 
poses challenges. This paper generalizes a recently developed self-evolving computational 
material models framework built upon physics-ingrained ML-friendly new features via 
information convolution and the Bayesian evolutionary algorithm. This paper proposes a new 
material-specific information index (II), which is capable of autonomously quantifying the internal 
heterogeneity and diverse BC’s. Also, this paper introduces highly flexible cubic regression spline 
(CRS)-based link functions which can offer mathematical expressions of salient material 
coefficients of the existing computational material models in terms of convolved II. Thereby, this 
paper suggests a novel means by which ML can directly leverage internal heterogeneity and 
diverse BC’s to autonomously evolve computational material models while keeping 
interpretability. Validations using a wide spectrum of large-scale reinforced composite structures 
confirm the favorable performance of the generalization. Example expansions of nonlinear shear 
of quasi-brittle materials and progressive compressive buckling of reinforcing steel underpin 
efficiency and accuracy of the generalization. This paper adds a meaningful avenue for 
accelerating the fusion of computational material models and ML. 
Keywords: Evolutionary algorithm; cubic regression spline; computational material model; 
machine learning for heterogeneity; machine learning for varying boundary conditions; nonlinear 
analysis of reinforced concrete structures. 

1 Introduction 
 
Traditionally, computational material models (M’s) are derived from the statistical fitting of data 
sets obtained from well-designed small-scale laboratory experiments under specific boundary 
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conditions (BC’s) to represent the analyses of real-world structures (Figure 1B). However, 
machine learning (ML) methods have approved their power in learning complex data over the past 
decades. Therefore, researchers in computational mechanics and structures sometimes apply 
different ML methods such as decision tree or deep learning to predict different targets in the 
structural system (Mangalthu et al. [1]; Lee and Lee [2]; Luo and Paal [3]) (Figure 1C). 

 
Figure 1: A comparison of (A) the proposed glass-box framework, (B) the traditional M’s, (C) 

the current ML-based approaches. 

   Despite their meaningful contributions to our understanding of materials and structures, there 
are two critical challenges, the lack of interpretability and the limited description of the internal 
complexity of heterogeneous materials and diverse BC’s. In terms of the first challenge of 
interpretability, most existing ML methods rarely present detailed explanations behind the input-
output relations, rendering them a “black-box” approach. Regarding the second challenge of 
incomplete data, ML approaches essentially depend on training the data sets obtained from the 
laboratory tests to develop an alternate model representing or replacing the constitutive model. 
However, these training data sets can hardly contain the entire space of all possible physical 
conditions.  

   Therefore, to overcome the two critical challenges, this work adopts and generalizes a “glass-
box” computational material model framework developed by Cho [4] (Figure 1A). The major 
novelty of the glass-box framework is twofold. First, it can combine fundamental physics 
principles and spatial convolution to generate convolved information index (II) so that ML 
autonomously identifies internal heterogeneity and complex BC’s within real-world structures. 
Second, the glass-box framework offers room for transparent link functions (LF’s) that can solve 
the hidden rules behind the material coefficients of adopted computational material mechanisms. 

   However, in the initial work, the glass-box framework contains only two material models with a 
simple two-parameter form LF, requiring significant generality, flexibility, and expandability for 
broader applicability. This paper generalizes the glass-box framework by proposing a set of new 
convolved II’s necessary for the extension to additional material mechanisms such as the nonlinear 
shear of cracked quasi-brittle materials and reinforcing steel’s progressive buckling mechanisms. 
Also, this paper generalizes the glass-box framework by including the cubic regression spline 
(CRS) (Wood [5]; Hastie and Tibshirani [6]).  
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2 Methods 
There are significant similarities between the adopted glass-box framework and the convolutional 
neural network (CNN), in which both can provide a spatially weighted averaging to collect 
information from adjacent regions and come up with new information measures. However, the 
steps of the glass-box framework are straightforward and briefly summarized herein. More details 
can be found in Bazroun et al. [7]. 

 
Figure 2: The flowchart of the glass-box framework. 

   As shown in Figure 2, convolved II first determines the laboratory-reality similarity and leads 
the ML method to internal heterogeneity and BC’s at the material point level inside the physical 
system (Figure 3). There is no limit to derive domain-specific II, and there is always sufficient 
room to include engineering principles or basic mechanics for the desired physical information. 
Hence, Bazroun et al. [7] proposed a new convolved II to help evolutionary ML improve 
significant material coefficients of a complex progressive reinforcing steel bar buckling model, 
which is highly challenging to capture by experimental efforts (Dhakal and Maekawa [8]). 
However, this new convolved II can quantify the impact of surrounding brittle materials on the 
reinforcing steel. Then, multiple LF’s of multiple M’s interact within the loops of generations and 
organisms in genetic algorithms (GA) and high-fidelity computational simulation platform 
(HFCS) for standard selection, spawning, and evolution of GA. Herein, LF seeks to offer a 
mathematical expression between convolved II and M. Hence, this work suggests a highly flexible 
CRS-based LF which can be represented as Eq. (1). 

II-based perception of randomly embedded stiff materials (adapted from Bazroun et al. [7]). 

where 𝑎! is the unknown free parameter of the basis function, and 𝑏!(𝑥) is the ith basis function. 
Also, in terms of M, this study selects different microphysical mechanisms (Figure 4). First, the 
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multi-directional, fixed-type smeared crack model is adopted since it can maintain the actual crack 
direction and accepts at most three orthogonal cracks (Thorenfeldt [9]; Taucer et al. [10]; Reinhardt 
[11]; Cho [12]). Next, this study adopts the nonlinear reinforcing steel bar mechanism based on 
the generalized Menegotto-Pinto hysteresis that can utilize the topological information of 
surrounding concrete’s damage of the center bar capable of describing progressive compressive 
buckling of the bar (Cho [13]). Finally, new experimental data of different test systems are used 
by Bayesian updates with the prior best of the LF to strengthen the best-so-far LF. 

 
Figure 3: Examples of (a-d) II-based perception of stiff objects, BC’s, and (e-g) heterogeneity.  

3 Results 
One of the notable strengths of the proposed glass-box framework lies in its expandability. 
Generally, its evolutionary algorithm is long gene-based storage that can be easily extended by 
adding more gene expressions for more material models (Fig. 5). Therefore, to investigate the 
proposed framework's performance, a rectangular wall (named WSH 5) and a U-shaped wall 
(named TUB) have been used to train the glass-box framework. The geometric, material 



 5 

properties, and reinforcement information of the two walls, experimented by Dazio et al. [14] and 
Beyer et al. [15], respectively, are summarized in Bazroun et al. [7]. 

 
Figure 4: Adopted microphysical mechanisms. 

 

 
Figure 5: The modularity of the glass-box framework. 

   As shown in Figure 6, the best-so-far result for each wall compares the prediction in terms of 
force and displacements using the glass-box framework of 6- and 2-coefficients (denoted as Model 



 6 

I and Model II, respectively) and a parallel multi-scale finite element analysis platform named 
VEEL (Cho [13]; Cho and Porter [16]). The results clearly show that the minimum error of the 
best-so-far generation of WSH5 using Model I, which is 0.6%, is less than the default VEEL 
(4.3%) and Model II (0.7%). Also, using the prior best of WSH5 for testing TUB shows better 
accuracy in Model I than using Model II and default VEEL, in which the minimum error using 
Model I is 3.1% while it is 6.5% and 3.9% with using default VEEL and Model II, respectively. 
However, as shown in Figure 7, increasing generations increases the accuracy, but it costs more 
computational time and computing memory. 

 
Figure 6: Comparison between the accuracy of Model I (left column), Model II (right column), 
and VEEL for the walls WSH5 and TUB: (a) results for WSH 5; (b) results of north-south 

direction loading for TUB; (c) results of east-west direction loading for TUB. 
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Furthermore, Figure 8 shows that the framework can provide a mathematical expression since the 
GA can learn the hidden relationship between the convolved II and material coefficients through 
LF using a single target LF. Hence, an example of identified physical rule about 𝛽	 and the II in a 
clear CRS form at the ith material point 𝒙(!) can be given by 

 
𝛽)𝒙(!)* = 𝑎$ + 𝑎% × 𝐼𝐼/)𝒙(!)* +0 𝑎&'% × 𝑏&'%

(

&)$
𝐼𝐼/)𝒙(!)* 

= 𝑎$ + 𝑎% × 𝔼𝒩+𝒙("),.$/(𝐼𝐼) +0 𝑎&'% × 𝑏&'%
(

&)$
𝔼𝒩+𝒙("),.$/(𝐼𝐼) 

 

(2) 

As proof of generality and versatility, extensions of the glass-box approach of this paper to nano-
scale and millimeter-scale structures’ phenomena can be found in Cho et al. [17, 18]. 

 
Figure 7: The result of the gradual evolution. 

  

 
Figure 8: Material coefficients through an LF: (a) an example of material coefficient that affects 
the strength of the brittle material; (b) an example of material coefficient that affects the buckling 

of the reinforcement steel. 

4 Conclusions and Contributions 
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This paper describes how to generalize the glass-box computational material framework by 
proposing (1) a new material-oriented convolved information index (denoted as 𝐼𝐼/0) and (2) highly 
flexible cubic regression spline (CRS)-based link function (LF), and the conclusion can be 
summarized as follow: 

• Convolved information index (II) can serve as physics-ingrained ML-friendly new 
features. 

• The new convolved II helps the glass-box framework leverages complex internal material 
heterogeneity and diverse BC’s inside large-scale structures. 

• The glass-box framework can honor and leverage the existing material models while 
selectively replacing the decisive material coefficients. 

• Testing the large-scale reinforced composite structures confirmed that CRS-based LF’s 
could improve accuracy compared to the manually calibrated high-fidelity simulations. 

• CRS-based LF plays an important role in identifying hidden rules between the convolved 
II and additional physical mechanisms. 

• The new convolved information index (II) demonstrates the expandability of the glass-box 
framework to incorporate a new material mechanism. 
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