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Abstract

Recently, computational material models accelerated innovations by harnessing machine learning
(ML) methods, but they face challenges. It is difficult to incorporate internal heterogeneity and
diverse boundary conditions (BC’s) into existing ML methods, and weak interpretability of ML
poses challenges. This paper generalizes a recently developed self-evolving computational
material models framework built upon physics-ingrained ML-friendly new features via
information convolution and the Bayesian evolutionary algorithm. This paper proposes a new
material-specific information index (II), which is capable of autonomously quantifying the internal
heterogeneity and diverse BC’s. Also, this paper introduces highly flexible cubic regression spline
(CRS)-based link functions which can offer mathematical expressions of salient material
coefficients of the existing computational material models in terms of convolved II. Thereby, this
paper suggests a novel means by which ML can directly leverage internal heterogeneity and
diverse BC’s to autonomously evolve computational material models while keeping
interpretability. Validations using a wide spectrum of large-scale reinforced composite structures
confirm the favorable performance of the generalization. Example expansions of nonlinear shear
of quasi-brittle materials and progressive compressive buckling of reinforcing steel underpin
efficiency and accuracy of the generalization. This paper adds a meaningful avenue for
accelerating the fusion of computational material models and ML.

Keywords: Evolutionary algorithm; cubic regression spline; computational material model,;
machine learning for heterogeneity; machine learning for varying boundary conditions; nonlinear
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1 Introduction

Traditionally, computational material models (M’s) are derived from the statistical fitting of data
sets obtained from well-designed small-scale laboratory experiments under specific boundary



conditions (BC’s) to represent the analyses of real-world structures (Figure 1B). However,
machine learning (ML) methods have approved their power in learning complex data over the past
decades. Therefore, researchers in computational mechanics and structures sometimes apply
different ML methods such as decision tree or deep learning to predict different targets in the
structural system (Mangalthu et al. [1]; Lee and Lee [2]; Luo and Paal [3]) (Figure 1C).
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Figure 1: A comparison of (A) the proposed glass-box framework, (B) the traditional M’s, (C)
the current ML-based approaches.
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Despite their meaningful contributions to our understanding of materials and structures, there
are two critical challenges, the lack of interpretability and the limited description of the internal
complexity of heterogeneous materials and diverse BC’s. In terms of the first challenge of
interpretability, most existing ML methods rarely present detailed explanations behind the input-
output relations, rendering them a “black-box™ approach. Regarding the second challenge of
incomplete data, ML approaches essentially depend on training the data sets obtained from the
laboratory tests to develop an alternate model representing or replacing the constitutive model.
However, these training data sets can hardly contain the entire space of all possible physical
conditions.

Therefore, to overcome the two critical challenges, this work adopts and generalizes a “glass-
box” computational material model framework developed by Cho [4] (Figure 1A). The major
novelty of the glass-box framework is twofold. First, it can combine fundamental physics
principles and spatial convolution to generate convolved information index (II) so that ML
autonomously identifies internal heterogeneity and complex BC’s within real-world structures.
Second, the glass-box framework offers room for transparent link functions (LF’s) that can solve
the hidden rules behind the material coefficients of adopted computational material mechanisms.

However, in the initial work, the glass-box framework contains only two material models with a
simple two-parameter form LF, requiring significant generality, flexibility, and expandability for
broader applicability. This paper generalizes the glass-box framework by proposing a set of new
convolved II’s necessary for the extension to additional material mechanisms such as the nonlinear
shear of cracked quasi-brittle materials and reinforcing steel’s progressive buckling mechanisms.
Also, this paper generalizes the glass-box framework by including the cubic regression spline
(CRS) (Wood [5]; Hastie and Tibshirani [6]).



2 Methods

There are significant similarities between the adopted glass-box framework and the convolutional
neural network (CNN), in which both can provide a spatially weighted averaging to collect
information from adjacent regions and come up with new information measures. However, the

steps of the glass-box framework are straightforward and briefly summarized herein. More details
can be found in Bazroun et al. [7].
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Figure 2: The flowchart of the glass-box framework.

As shown in Figure 2, convolved II first determines the laboratory-reality similarity and leads
the ML method to internal heterogeneity and BC’s at the material point level inside the physical
system (Figure 3). There is no limit to derive domain-specific II, and there is always sufficient
room to include engineering principles or basic mechanics for the desired physical information.
Hence, Bazroun et al. [7] proposed a new convolved II to help evolutionary ML improve
significant material coefficients of a complex progressive reinforcing steel bar buckling model,
which is highly challenging to capture by experimental efforts (Dhakal and Maekawa [8]).
However, this new convolved II can quantify the impact of surrounding brittle materials on the
reinforcing steel. Then, multiple LF’s of multiple M’s interact within the loops of generations and
organisms in genetic algorithms (GA) and high-fidelity computational simulation platform
(HFCS) for standard selection, spawning, and evolution of GA. Herein, LF seeks to offer a
mathematical expression between convolved I and M. Hence, this work suggests a highly flexible
CRS-based LF which can be represented as Eq. (1).

II-based perception of randomly embedded stiff materials (adapted from Bazroun et al. [7]).
Ly(IT;a) = ayby(IT) + a;b,(I1) + Z Qi2bis2 (1) €Y)
i

where a; is the unknown free parameter of the basis function, and b;(x) is the ith basis function.
Also, in terms of M, this study selects different microphysical mechanisms (Figure 4). First, the



multi-directional, fixed-type smeared crack model is adopted since it can maintain the actual crack
direction and accepts at most three orthogonal cracks (Thorenfeldt [9]; Taucer et al. [10]; Reinhardt
[11]; Cho [12]). Next, this study adopts the nonlinear reinforcing steel bar mechanism based on
the generalized Menegotto-Pinto hysteresis that can utilize the topological information of
surrounding concrete’s damage of the center bar capable of describing progressive compressive
buckling of the bar (Cho [13]). Finally, new experimental data of different test systems are used
by Bayesian updates with the prior best of the LF to strengthen the best-so-far LF.
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Figure 3: Examples of (a-d) II-based perception of stiff objects, BC’s, and (e-g) heterogeneity.
3 Results

One of the notable strengths of the proposed glass-box framework lies in its expandability.
Generally, its evolutionary algorithm is long gene-based storage that can be easily extended by
adding more gene expressions for more material models (Fig. 5). Therefore, to investigate the
proposed framework's performance, a rectangular wall (named WSH 5) and a U-shaped wall
(named TUB) have been used to train the glass-box framework. The geometric, material



properties, and reinforcement information of the two walls, experimented by Dazio et al. [14] and
Beyer et al. [15], respectively, are summarized in Bazroun et al. [7].
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Figure 4: Adopted microphysical mechanisms.
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Figure 5: The modularity of the glass-box framework.

As shown in Figure 6, the best-so-far result for each wall compares the prediction in terms of
force and displacements using the glass-box framework of 6- and 2-coefficients (denoted as Model



I and Model II, respectively) and a parallel multi-scale finite element analysis platform named
VEEL (Cho [13]; Cho and Porter [16]). The results clearly show that the minimum error of the
best-so-far generation of WSHS using Model I, which is 0.6%, is less than the default VEEL
(4.3%) and Model II (0.7%). Also, using the prior best of WSHS5 for testing TUB shows better
accuracy in Model I than using Model II and default VEEL, in which the minimum error using
Model I is 3.1% while it is 6.5% and 3.9% with using default VEEL and Model II, respectively.
However, as shown in Figure 7, increasing generations increases the accuracy, but it costs more
computational time and computing memory.
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Figure 6: Comparison between the accuracy of Model I (left column), Model II (right column),
and VEEL for the walls WSHS5 and TUB: (a) results for WSH 5; (b) results of north-south
direction loading for TUB; (c) results of east-west direction loading for TUB.



Furthermore, Figure 8 shows that the framework can provide a mathematical expression since the
GA can learn the hidden relationship between the convolved II and material coefficients through
LF using a single target LF. Hence, an example of identified physical rule about § and the Il in a
clear CRS form at the ix» material point x;) can be given by

3
B(x(i)) =a,t+a, X II(.X'(i)) + Z . Ajiz X bj+2 II(x(l-))
]=

: 2)
=a;+a;X [EN(x(i),LZ)(”) + Z ) Ajyz X bjyy IEN(x(l-),LZ)(”)
]=

As proof of generality and versatility, extensions of the glass-box approach of this paper to nano-
scale and millimeter-scale structures’ phenomena can be found in Cho et al. [17, 18].
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Figure 7: The result of the gradual evolution.
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Figure 8: Material coefficients through an LF: (a) an example of material coefficient that affects
the strength of the brittle material; (b) an example of material coefficient that affects the buckling
of the reinforcement steel.

4 Conclusions and Contributions



This paper describes how to generalize the glass-box computational material framework by
proposing (1) a new material-oriented convolved information index (denoted as I1,)) and (2) highly
flexible cubic regression spline (CRS)-based link function (LF), and the conclusion can be
summarized as follow:

e Convolved information index (II) can serve as physics-ingrained ML-friendly new
features.

e The new convolved II helps the glass-box framework leverages complex internal material
heterogeneity and diverse BC’s inside large-scale structures.

e The glass-box framework can honor and leverage the existing material models while
selectively replacing the decisive material coefficients.

e Testing the large-scale reinforced composite structures confirmed that CRS-based LF’s
could improve accuracy compared to the manually calibrated high-fidelity simulations.

e CRS-based LF plays an important role in identifying hidden rules between the convolved
IT and additional physical mechanisms.

e The new convolved information index (II) demonstrates the expandability of the glass-box
framework to incorporate a new material mechanism.
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