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Abstract 

We developed a prognostic model for longer-term outcome prediction in traumatic brain injury (TBI) using an attention-
based recurrent neural network (RNN). The model was trained on admission and time series data obtained from a multi-site, 
longitudinal, observational study of TBI patients. We included 110 clinical variables as model input and Glasgow Outcome 
Score Extended (GOSE) at six months after injury as the outcome variable. Designed to handle missing values in time series 
data, the RNN model was compared to an existing TBI prognostic model using 10-fold cross validation. The area under 
receiver operating characteristic curve (AUC) for the RNN model is 0.86 (95% CI 0.83-0.89) for binary outcomes, whereas 
the AUC of the comparison model is 0.69 (95% CI 0.67-0.71). We demonstrated that including time series data into 
prognostic models for TBI can boost the discriminative ability of prediction models with either binary or ordinal outcomes. 
 
Introduction 

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability in the United States. There are nearly 2.8 
million new TBI cases every year in the US (1). It is estimated that the general trend of worldwide TBI cases will continue 
to increase and be a growing significant health problem, particularly, for low- and middle-income countries (2). Accurate 
and early prediction of outcomes in TBI patients can help in clinical management as well as in optimizing resource allocation 
within the health system (3). 

Even though not all TBI cases result in death, different forms of disability are common in complex TBI cases, and simple 
mortality predictions do not account for the long-term health consequences associated with TBI. Therefore, any practical 
TBI prediction model should consider outcomes other than mortality (2). The Extended Glasgow Outcome Scale (GOSE) is 
a functional TBI outcome measure of the severity of TBI and is often used in prognostic models (4). GOSE rates patients in 
eight categories, from death to upper good recovery, and has been commonly dichotomized into mortality (versus survival) 
or unfavorable (versus favorable). In this research, we develop a model to predict the GOSE outcome of TBI patients.  

Prior studies have developed and evaluated models to predict mortality or severity of TBI patients. A systematic review 
shows that many prognostic studies suffer from methodological issues. For example, the sample size may not be sufficient: 
75% of studies have less than 500 subjects (2,3,5). Two of the most widely used prediction studies for TBI patients are the 
International Mission on Prognosis and Analysis of Clinical trials in Traumatic Brain Injury (IMPACT) (6) and 
Corticosteroid Randomization After Significant Head injury (CRASH) (7). The covariates in these models are primarily 
based on the clinical, physiological, and lab data that are collected at the time of admission, which does not take into account 
the evolution of the primary injury, and the development of secondary brain injuries. 

Regression models, such as logistic regression, to predict disease occurrence (diagnosis) or disease outcome (prognosis), are 
standard approaches to build a prediction model (8). However, machine learning (ML) algorithms are gaining acceptance for 
use in the clinical domain especially as the increasingly large and rich data sets such as Electronic Health Records (EHR) 
data are growingly available (9). On the other hand, recent data suggests that ML algorithms do not necessarily outperform 
regression models for prognosis of TBI cases, especially when the number of predictors is not high. 

In our study, in addition to clinical and laboratory data collected at the time of admission to the Emergency Department (ED), 
we use time series data obtained from the first few days in the ICU. Recurrent neural networks (RNN) are well known to 
achieve strong results in many applications with time series and sequential data (10). Two common RNN structures, the 
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), can capture the long-term temporal dependencies in 
variable-length samples. GRUs are getting more attention since they can maintain the effect of LSTM units while they are 
simpler. A study showed that GRUs can outperform LSTM units both in terms of CPU time and generalization (11). 

One of the limitations in working with clinical time series data is missingness. Approaches to handle missing values in time 
series data include, but are not limited to, deletion, mean imputation, and autoregression (12). A case study shows that when 
the missing rate is high, excluding incomplete data negatively impacts the performance of prediction models compared to 
alternative scenarios of imputation (13). In this work, imputing time series missingness and training the model are done 
simultaneously. GRU-D is a recently developed recurrent unit for managing the missingness that optimizes the model 
performance by imputing missing data while simultaneously learning the model parameters (14).  
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In this paper, we describe an attention-based RNN with new recurrent units known as GRU-D. Our study differentiates from 
others according to the following characteristics. 

• The model combines the temporal features during the ICU stay (e.g., a sequence of vital signs) and non-temporal 
features such as age and sex. 

• The model handles missing values in the time series data and learns from the missingness patterns. Training and 
imputation occur simultaneously. It uses GRU-D units that benefit from a decaying mechanism for imputation of 
missing values among time series data. 

• The most important features for predicting the longer-term outcomes in acute TBI patients are identified. 

Materials and methods 

Source of data 

This study was based on data from the prospective, multicenter Transforming Research and Clinical Knowledge in Traumatic 
Brain Injury (TRACK-TBI) study (15). The TRACK-TBI study collected detailed clinical data on TBI patients from 18 
different academic Level I trauma centers across the US. TRACK-TBI enrolled 2996 participants across the spectrum of TBI 
severity.  

For this analysis, we included a total of 110 clinical variables that were collected at the time of arrival to the ED, discharge 
from ED, and during the ICU or hospital stay. During ICU stays, measurements were recorded as frequently as every hour, 
providing extensive time-series data for those variables. Of the total 110 variables, 59 were static variables (demographic or 
one-time-recorded measurements in ED), and 51 were time-series variables that were recorded during the patients 
hospitalization. The GOSE was measured at six months after injury and was used as our primary outcome variable for this 
analysis. Table 1 shows the summary statistics for clinical variables in the dataset. 

Table 1. Summary statistics of clinical variables in TRACK-TBI dataset 

Variable  Frequency/mean Percentage % Missing 
data 

Demographic    
 Age (mean +/- SD) 39.11 +/- 18.25  0% 
 Sex (female) 881 31.5% 0% 
ED examination    
 GCS (mean +/- SD) 
 

12.95 +/- 3.93  4.9% 
 Pupil Reactivity   18.8% 
  Both 2124 93.4%  
  Neither 118 5.2%  
  One 32 1.4%  
 Motor Score   4.9% 
  No response 225 8.4%  
  Extension 25 0.9%  
  Abnormal 22 0.8%  
  Withdrawal 77 2.9%  
  Localize 140 5.2%  
  Obey 2134 80.1%  
  Untestable 40 1.5%  
 Diastolic Blood Pressure  
 (mean +/- SD) 

84.1 +/- 18.3  6.0% 

 Systolic Blood Pressure  
 (mean +/- SD) 

139.9 +/- 24.2  1.4% 

Hemoglobin (mean +/- SD) 13.9 +/- 1.7  12.0% 
 Glucose (mean +/- SD) 134.7 +/- 53.0  13.1% 
Complications and treatment    
 Pre-hospital Hypotension (yes) 91 3.3% 0.6% 
 Pre-hospital Hypoxia (yes) 77 2.8% 0.5% 
6-month Outcome    
 GOSE   37.4% 

1- Death 126 7.2%  
2- Vegetative state 6 0.3%  
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3- Lower severe disability 88 5.0%  
4- Upper severe disability 23 1.3%  
5- Lower moderate disability 160 9.1%  
6- Upper moderate disability 304 17.3%  
7- Lower good recovery 464 26.5%  
8- Upper good recovery 582 33.2%  

Study participants 

We included all adult participants with GOSE scores available and those that are admitted to the ICU. Non-adult participants 
and those who withdrew consent are excluded from the analysis.  Out of 2996 participants, 902 met the mentioned criteria 
and are included in the analysis. Only the first five days of ICU data are used in this study. Figure 1 shows the exclusion 
criteria and the number of subjects that are left after applying each criterion. 

 
Figure 1. Flowchart showing study participant selection 

Missing data 

Large amount of missing values in clinical time series data is common (16). To tackle sporadic measurements in the ICU, 
we discretized the observation time window into fixed-length time intervals. As shown in Figure 2, some variables might 
have missing values after discretizing the time window, while others have more than one value in a timestamp. We replaced 
the value of each variable in each timestamp with the average of recorded measurements in the corresponding interval. In 
order to handle the missingness, we utilized a modified version of Gated Recurrent Units which will be discussed later.  

From all static variables, those with more than 20 percent missing data were excluded from the analysis. For imputing the 
missing static data, we used a Multivariate Imputation with Chained Equations (MICE) approach. In this approach, a series 
of predictions are used to impute the missing values of each variable. This is done iteratively until the imputed data does not 
change significantly (17). 

Model Development 

In this study, a deep RNN model was developed to predict TBI patients’ functional outcome at six months, post injury. As 
the output of the model (GOSE) is an ordinal variable, we follow the same procedure presented by Chen et al. (18) to handle 
the ordinal output in a neural network. We transformed a classification problem with K ordinal categories to K-1 binary 
classifications. To do so, we used a special type of output encoding. The ith element of the encoded binary output shows 
whether the original output is larger than the ith ordinal level. In other words, if a data point belongs to the ith category, the 
first i-1 binary variables of the encoded output vector are 1 and the rest are 0. As an example, if GOSE value is 3, the 
corresponding vector is (1,1,0,0,0,0,0). We use the sigmoid function as the activation function of the output node, and a 
squared error loss function is used. 
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Figure 2. Distribution of recorded measurements across different variables over time for a single patient. The plot on the 
left shows that different variables have different frequencies of measurement. For example, blood pressure is taken hourly, 
but urea lab is taken at most once a day. The plot on the right illustrates how values are aggregated over 10-hour intervals. 

The model consists of two parts. In the first part, time series data for the first five days of ICU is fed to an RNN which is 
elaborated on later. The output vectors of RNN at each time step go through an attention layer which takes a weighted sum 
of its input vectors. The attention layer output is concatenated with the static values and passed through a hidden dense layer 
before the output dense layer. Figure 3 shows the structure of the prediction model. 

 
Figure 3. The deep RNN structure for predicting the output. Temporal features are fed to the GRU units and static features 
are connected to the output through a hidden layer. An attention layer is also used on top of the sequential part of the 
model. 

In this model, we used a modified GRU unit presented by Che et al. (14) which is called GRU-D. They showed that the 
missingness pattern among variables in time series can provide useful information. They modified the GRU unit in such a 
way that it captures the missingness information and, at the same time, imputes the missing data. In this research, we used 
the GRU-D units for RNN cells in our model to predict the GOSE among TBI patients. 

In the clinical domain, variables tend to be close to a default number when they are unobserved for a long time (14). This 
would mean that missing values in time series would fade gradually to a default value (e.g., the empirical average of the 
variable). GRU-D enjoys a decay mechanism for input variables and hidden states to address the mentioned properties. Two 
types of decay variables are used in GRU-D, input decays (𝛾𝑥) and hidden state decays (𝛾ℎ). The general formulation of 
decay vectors is as follows: 

𝛾𝑡 = 𝑒𝑥𝑝{−𝑚𝑎𝑥(0,𝑊𝛾𝛿𝑡 + 𝑏𝛾)} (1) 

where 𝛿𝑡 shows how far the last observation of each variable is from time t. 𝑊𝛾 and 𝑏𝛾are the parameters of the model which 
must be learned. Corresponding to each variable, a masking vector, m, is defined in such a way that is 1 if the variable is 
observed and otherwise is 0. To impute the input values of the time series, the following formulation is used. 

𝑥̑𝑡
𝑑 = 𝑚𝑡

𝑑𝑥𝑡
𝑑 + (1 − 𝑚𝑡

𝑑)(𝛾𝑥𝑡
𝑑𝑥𝑡′

𝑑 + (1 − 𝛾𝑥𝑡
𝑑 )𝑥̃𝑑) (2) 
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In Equation (2), indices d and t indicate d-th variable and t-th time slot, respectively. 𝑥̑𝑡𝑑is the imputed value of the input 
variable and would be used in the traditional GRU equations. 𝑥𝑡𝑑is the input time series data. 𝛾𝑥𝑡

𝑑 is the input decay calculated 
by Equation (1). 𝑥𝑡′𝑑 is the last observed value of d-th variable at time 𝑡′. 𝑥̃𝑑is the empirical average of d-th variable over all 
time steps and observations. 

To fully capture the missingness information, a decaying mechanism for the hidden states is utilized. Before modifying each 
hidden state using traditional GRU equations, a new decayed hidden state is calculated as follows: 

ℎ̑𝑡−1 = 𝛾ℎ𝑡 ⊙ℎ𝑡−1 (3) 

Instead of 𝑥𝑡and ℎ𝑡−1, we use 𝑥̑𝑡 and ℎ̑𝑡−1 in the update functions of the GRU-D. 

To avoid our model overfitting on the training data, we used some tools to regularize the model. We utilized dropout after 
each layer of the model (both recurrent and feed-forward layers) to randomly drop some of the nodes. We also applied a L2-
regularizer on the hidden layer weight parameters. L2-regulazier applies penalties on the layer weight parameters. These 
penalties are summed into the loss function and hence, avoids weight parameters taking large values. 

For comparison purposes, we developed a regression model using static data. In this model, only the variables used in the 
IMPACT prediction model (6) are included, which are age, motor score, pupillary reactivity, hypoxia, hypotension, glucose, 
and hemoglobin. To build the model, we first converted the values of each variable to the IMPACT score, and then developed 
an ordinal logistic model on those scores. The IMPACT model originally was developed on patients with moderate and 
severe TBI (GCS ≤ 12), and a dichotomized GOS score based on favorable and unfavorable outcomes. To have a fair 
comparison with IMPACT, we also developed, trained, and validated our model under the same conditions. In order to 
dichotomize the GOSE score, an outcome is unfavorable if GOSE ≤ 4, otherwise it is considered favorable. 

The output of the prediction is an ordinal variable, and generally three types of performance metrics are used to assess ordinal 
classifiers: accuracy, misclassification error, and rank association (19). All these three measurements are used in this study 
to compare the models. Accuracy (ACC) simply calculates the proportion of correct classifications. To take the 
misclassification into account, we also used Area Under the Curve (AUC), F1 score, and Mean Squared Error (MSE). MSE 
measures the degree of error between true and predicted labels. To calculate this error, we assigned a number to each class 
of GOSE score from one to eight. Since the class sizes are imbalanced in the output variable (Table 1), we used weighted 
average of MSE (AMSE) and weighted average accuracy (AACC) across all classes (20). 

Another criterion measures the association between true (y) and predicted (𝑦̂) labels using a rank order correlation statistic 
called Kendall’s correlation coefficient (𝜏𝑏) (21). Based on this criterion, values of 𝜏𝑏are in the interval of [-1,1]. Larger 
values of 𝜏𝑏indicate better association between two ranking vectors (predicted and true output values) and hence better 
prediction. However, this measurement has a drawback since it does not consider the predictions individually and only takes 
into account the ranking of the prediction and true values as two vectors. 

To tune the model hyperparameters, we used a Bayesian Optimization (BO) method presented in (22) to find the best set of 
hyperparameters for the model. BO is a strategy for optimizing black-box objective functions that are expensive to calculate. 
To evaluate the performance of the models in each iteration of BO, a 10-fold cross validation is implemented which splits 
the data to training, testing, and validation sets. The proportion of different GOSE levels was preserved among all training, 
testing and validation sets. To assess the performance of models, the same 10-fold cross validation approach was utilized, 
and the metrics were evaluated on the testing data. 

In order to interpret the proposed model, we utilized Shapley Additive Explanation (SHAP), a unified framework for 
interpreting predictions via feature importance (23). SHAP unifies methods like LIME (24) and DeepLIFT (25) under the 
additive feature attribution umbrella. An additive feature attribution method formulates the outcome of a prediction model 
in the form of 𝑓(𝑥) = 𝜃0 + ∑ 𝜃𝑖𝑥′𝑖

𝑚
𝑖=0  in which f is the prediction model, 𝜃𝑖 is the attribution assigned to each feature and 𝑥′𝑖  

is a simplified input showing whether the ith feature is missing. To implement the method, we used the SHAP python package 
written by the authors of the original paper. 

Results 

A total of 902 participants and 110 variables met the inclusion criteria for this study. Our proposed prediction model was 
trained on the training data and its performance was measured on the test set based on different metrics. The results are shown 
in Table 2. The values represent the mean and the standard error of mean for a 10-fold cross validation.  
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Table 2. Performance metrics for each model 

GCS 
range 

 Type of 
outcome 

Models AMSE AACC Kendall AUC F1 

All GCS 
scores 

8-level 
GOSE 

RNN 1.63 ± 0.11 0.24 ± 0.02 0.55 ± 0.04 0.59 ± 0.01 0.24 ± 0.02 

IMPACT 2.02 ± 0.09 0.16 ± 0.04 0.38 ± 0.04 0.51 ± 0.03 0.16 ± 0.03 

 Binary 
outcome 

RNN 0.35 ± 0.04 0.86 ± 0.03 0.75 ± 0.05 0.86 ± 0.03 0.91 ± 0.01 

 IMPACT 0.55 ± 0.02 0.69 ± 0.02 0.45 ± 0.05 0.69 ± 0.02 0.81 ± 0.01 

GCS ≤ 12 8-level 
GOSE 

RNN 1.63 ± 0.13 0.21 ± 0.03 0.60 ± 0.04 0.58 ± 0.02 0.23 ± 0.03 

IMPACT 2.08 ± 0.13 0.15 ± 0.03 0.38 ± 0.06 0.51 ± 0.03 0.14 ± 0.03 

 Binary 
outcome 

RNN 0.42 ± 0.03 0.81 ± 0.02 0.64 ± 0.05 0.81 ± 0.02 0.82 ± 0.02 

 IMPACT 0.57 ± 0.04 0.66 ± 0.05 0.33 ± 0.10 0.66 ± 0.05 0.66 ± 0.05 

We also analyzed the importance of time series data in the prediction task. To do so, we first only added the static data to the 
model and eliminated the recurrent part of the model (i.e., GRU-D units). We then trained another model which only 
incorporated the time series data. This model lacked the static inputs of the main model, so it only had the GRU-D units fed 
by time series data. The results of this analysis are shown in Table 3. 

Table 3. Performance metrics for different models with only time series and static data 

Data used AMSE AACC Kendall AUC F1 

All data 1.63 ± 0.11 0.24 ± 0.02 0.55 ± 0.04 0.59 ± 0.01 0.24 ± 0.02 

Time series data 1.65 ± 0.13 0.25 ± 0.02 0.55 ± 0.03 0.56 ± 0.01 0.23 ± 0.01 

Static data 2.66 ± 0.09 0.13 ± 0.01 0.15 ± 0.02 0.50 ± 0.01 0.07 ± 0.01 

Figure 4 illustrates the important features that contributed to the outcome prediction of two sample patients with different 
outcomes. The important features were derived based on the magnitude of the SHAP values. Figure 5 shows the top important 
features derived using SHAP values. To assign a single value to each temporal feature, we took an average over all data for 
the first 120 hours of each patient. Figure 6 illustrates the time series values of three numerical variables among top features 
for favorable and unfavorable outcomes over the first five days of ICU stay. The missing values in the time series data were 
imputed using the linear interpolation. 

Patient A 

 

Patient B 

 
Figure 4. Important features contributing to the outcome prediction of two patients. Patient A had a favorable outcome with 
GOSE eight, and patient B died after six months (i.e., GOSE equals one). Features indicated with red and blue colors 
contribute to the unfavorable and favorable outcomes, respectively. Patient A is a 24 years old male with both reactive pupils 
at ED, while patient B is a 42 years old female with only one reactive pupil at ED. 
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Figure 5. Top important features based on the absolute value of SHAP. Each point represents a patient, and the horizontal 
axis indicates the SHAP value of each feature for a patient. Negative and positive SHAP values imply the contribution to 
an unfavorable and favorable outcome, respectively. The color of each point represents the value of a feature for a patient. 
Feature names that start with “Daily” corresponds to time series variables. 

   
Figure 6. Time series values for different lab measurements over the first five days of ICU stay. Solid lines show the 
average and dashed lines are three standard errors. Favorable and unfavorable outcomes are separable for all three 
measurements.  

Discussion 

The main objective of this study is to predict 6-month outcome for the TBI patients admitted into the ICU. Prior studies using 
the TRACK-TBI dataset developed a clustering approach for identifying TBI cohorts (26) and implemented a linear 
regression model to predict the post-concussive symptoms among mild TBI patients (27). 

Comparison of model performance and relevance 

The comparison between the RNN model and IMPACT shows that the RNN model with time series data performs better 
based on all metrics. When all population is included and the outcome consists of all eight levels of GOSE, the AUC for both 
models is low (less than 0.6). One of the possible reasons for not achieving a high AUC is the implementation of a multiclass 
classification with eight classes. After dichotomizing the GOSE and refitting the models, the AUC for both IMPACT and 
RNN increases (0.69 and 0.86, respectively). However, RNN still outperforms the IMPACT on all metrics. Even though we 
did not include the CRASH model in our analysis, one study validated CRASH on TRACK-TBI dataset and demonstrated a 
poor discriminative ability (AUC of 0.49-0.50) for mild TBI patients (28). 

Since the IMPACT model was originally developed on severe and moderate TBI patients, we expected a better performance 
for IMPACT on this population. However, compared to their performance on all populations, the RNN and IMPACT have a 
weaker performance. The RNN model with the binary outcome has an AUC of 0.86 on the whole cohort whereas it shows a 
lower AUC (0.81) on the severe and moderate TBI population. One potential reason is that TBI patients with lower acuity 
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represented over half the studied cohort (555 subjects), thus by excluding these patients, training data shrinks by a significant 
amount. 

Results in Table 3 illustrate that the time series data play an important role in the RNN model’s performance. The model 
trained with only time series data significantly outperforms the model trained with static data. For example, the Kendall 
coefficient for the model with time series data is 0.55 while this metric for the model with static data is only 0.15. The model 
trained on only time series data is even superior to the IMPACT model as all the metrics show a better performance. This 
improvement implies that training our model only with time series data demonstrates a better predictive ability in comparison 
with the IMPACT model. 

Interpretability of deep learning models 

To support the interpretability of the RNN model used in the work, we used SHAP to rank the features based on their 
contribution to the outcome prediction. The important features identified by our model highlight the validity of our model 
development strategy. The model found that age was one of the most important variables, which is a well-recognized 
observation (29) and indeed is a core component of the IMPACT prediction model. Other variables from the IMPACT model, 
namely motor GCS and pupillary reactivity, are also featured. Interestingly, the time series of the GCS are also featured in 
our model which is novel. This likely reflects the evolution of the patients’ neurological exam over time and therefore 
contributes to prognosis.  

The inclusion of vital sign data is noteworthy. The diastolic blood pressure is a known risk factor for long-term cardiovascular 
health but has not been described in traumatic brain injury populations. Heart rate on the other hand may reflect shock or 
dysautonomia which impacts patients after TBI and may contribute to prognosis as well. The inclusion of sodium levels in 
our model suggests that the therapeutic intensity of treatment for elevations in intracranial pressure, which includes 
administration of hypertonic saline solution, is reflective of prognosis – the sicker patient is treated more aggressively. 
Therefore, elevated sodium as a negative prognostic marker likely represents the reality that the patient was exhibiting signs 
of more substantial injury requiring more aggressive therapy.  However, this hypothesis would need to be formally tested as 
patients with the most severe injuries may develop diabetes insipidus (DI), which results in increased sodium, but DI remains 
relatively uncommon. Despite the limitations, it is worth highlighting that the model uncovered new and/or hypothesis-
generating findings by leveraging both static and time-series data within this cohort.  

The SHAP contributions of the top features cohere with their measured values, which is clearly illustrated in Figure 5. Most 
of the time, a consistent trend exists between SHAP contribution and measured values of each variable. Age is one of the 
best examples of this consistency between feature values and their SHAP contribution. As shown in Figure 5, the SHAP 
values decrease when the patients’ age increases, which means a patient’s age contributes more to an unfavorable outcome 
for older people. Figure 4 shows the SHAP contributions for patients A and B with favorable and unfavorable outcomes, 
respectively. Based on the SHAP scores, ED pupil reactivity contributes to the favorable and unfavorable outcomes for 
patients A and B, respectively, which matches the value of this feature since both pupils are reactive for patient A while only 
one of the pupils of patient B is reactive. 

Limitations 

One of the challenges in working with clinical time series data is that variables are not measured consistently over time. For 
example, vitals are recorded regularly, but mostly when patients are unstable. On the other hand, lab results are recorded 
only when physicians or nurses order them. As a result, clinical variables are recorded irregularly, and the measurement 
frequency varies between patients and is dependent on the place where the variables are taken. This frequency might be 
different across variables and even over time (16). However, our deep learning algorithm requires time series data to have 
regular time intervals. To make it possible, we discretize the observation time window into fixed-length time intervals (one-
hour intervals) and aggregate all data within each interval. This method is a tradeoff between losing some information and 
increasing missing data. By increasing the length of time intervals, some information is lost since all available data in each 
interval is aggregated. Comparably, by decreasing the length of time intervals, as much data as possible is retained, but the 
missing data would increase since some of the intervals have no data. 

Another limitation of this work is related to the amount of available data as well as external data for validation. The two 
notable prognostic models that are developed on large cohorts are IMPACT and CRASH. While both models are trained on 
data with more than 9,000 subjects, our model is trained only on 902 patients. Since the available data for this study is 
significantly lower than other major studies in the literature, providing more data would be beneficial for this prediction 
model. Furthermore, due to the lack of external data with enough time series data, we did not validate our model on an 
external dataset. We also acknowledge biases that may exist in the underlying data. For instance, if elevations in intracranial 
pressure were treated by a new medication that did not iatrogenically elevate the serum sodium concentrations, it might be 
expected that this laboratory value would no longer contain important prognostic information. However, if the model we 
present were not revised to reflect this change in practice, it could result in erroneous predictions. Methods for the 
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reproducibility and validation of models have yet to be standardized for clinical data science but are crucial in prognostic 
prediction applications. 

Conclusion 

We propose a deep RNN based model for long-term prognosis of TBI, which is trained on both static and time series data 
and predicts the GOSE after six months of injury. The model handles the time series missing values and utilizes the 
information from missingness patterns in temporal features. In summary, our results show that training the model on time 
series data for TBI patients can be informative and boost the performance of the predictions. Even the model that is solely 
trained on time series data outperforms the well-known IMPACT prediction model. Top important features are derived from 
the RNN model, and their values show a separable trend for favorable versus unfavorable outcomes. This study shows the 
magnitude of information that can be derived from time series data to prognose TBI more accurately. 
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