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Microorganisms play critical roles in host health. The advancement of
high-throughput sequencing technology provides opportunities for a deeper
understanding of microbial interactions. However, due to the technological
limitations of 16S ribosomal RNA sequencing, microbiome data are zero-
inflated, and a quantitative comparison of microbial abundances cannot be
made across subjects. By leveraging a recent microbiome profiling technique
that quantifies 16S ribosomal RNA microbial counts, we propose a novel
Bayesian graphical model that incorporates microorganisms’ evolutionary
history through a phylogenetic tree prior and explicitly accounts for zero-
inflation using the truncated Gaussian copula. Our simulation study reveals
that the evolutionary information substantially improves the network estima-
tion accuracy. We apply the proposed model to the quantitative gut micro-
biome data of 106 healthy subjects, and identify three distinct microbial com-
munities that are not found by existing microbial network estimation models.
We further find that these communities are discriminated based on microor-
ganisms’ ability to utilize oxygen as an energy source.

1. Introduction.

1.1. Microbial association network and its importance. The gut is one of the most sig-
nificant habitats of a myriad of microbial communities that play critical roles in their host’s
health. Well-balanced gut microbial communities provide many health benefits, such as main-
taining metabolic homeostasis and high functioning immune system (Martinez, Pierre and
Chang, 2016; Kim et al., 2016; Cani et al., 2019). The imbalance of the gut microbiome
(dysbiosis) has been related to a variety of human diseases (Cho and Blaser, 2012; Lynch and
Pedersen, 2016). The gut microbial balance is maintained by complex microbial interactions
such as metabolites consumption, production, and exchange. Microbiome dysbiosis occurs
when these interactions are interrupted by environmental alterations such as diet change,
antibiotic consumption, and chemical exposure. These changes may deplete nutrients for
beneficial microbes and create favorable surroundings for disease-causing bacteria to flour-
ish. Nevertheless, some microbes help the microbial communities to maintain their stability
under the environmental changes by providing energy sources and necessary metabolites
(Zhang and Chen, 2019). Because of the complexity of the functional roles of microbes,
identifying microbial association networks, that is, microbe-microbe interaction networks, is
crucial for fundamental understanding of the gut microbiome, a key contributor to the host’s
health.

1.2. Motivating application: quantitative microbiome profiling data. Microbiome data
collected from 16S ribosomal RNA (rRNA) sequencing are compositional in that each sub-
ject has an arbitrary total microbial count determined by the sequencing instrument (Gloor
et al., 2017). Hence, a quantitative comparison of microbial abundances cannot be made
across subjects as only the information on relative abundances within a subject are available
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from such data. Furthermore, compositional data raise a concern for biased estimates of as-
sociation since a change in absolute abundance of one microbe affects the relative abundance
of all the microbes (Vandeputte et al., 2017). The recently developed quantitative micro-
biome profiling (QMP) techniques account for these compositional limitations by adjusting
microbial counts from 16S rRNA sequencing using cell counts and sequencing depths. In this
work, we utilize this recent development by considering the QMP data of Vandeputte et al.
(2017) with n= 106 healthy subjects’ gut microbiome. We focus on estimating genus-level
association networks with the aim of understanding the overall configurations of healthy gut
microbial communities and their interactions.

1.3. Graphical models and network estimation. The Gaussian graphical model is a popu-
lar tool for modeling an association network via an undirected graph, where an edge between
two nodes generally represents conditional dependence, and an absence of an edge repre-
sents conditional independence. Under the Gaussian assumption, this graph structure is fully
encoded in the concentration matrix (also known as the inverse covariance matrix) as a zero
off-diagonal entry is equivalent to the conditional independence between the correspond-
ing variables. Thus, multiple methods focus on sparse estimation of concentration matrices.
Neighborhood selection (Meinshausen et al., 2006) recovers the sparse graph structure by
performing L1-regularized regression of each node on the rest. Yuan and Lin (2007); Baner-
jee, El Ghaoui and d’Aspremont (2008); Dahl, Vandenberghe and Roychowdhury (2008);
Friedman, Hastie and Tibshirani (2008) directly estimate the sparse concentration matrix
by optimizing the L1-penalized log-likelihood function, the so-called graphical lasso. Wang
(2012) propose a Bayesian counterpart of the graphical lasso using the Laplace prior on
the off-diagonal elements of the concentration matrix. Roverato (2002); Dobra, Lenkoski
and Rodriguez (2011); Lenkoski and Dobra (2011) consider a G-Wishart prior for the con-
centration matrix, of which the posterior inference is computationally more expensive than
Wang (2012). For better scalability, Wang (2015) develop a continuous spike-and-slab prior
for the off-diagonal entries of the concentration matrix. Furthermore, Gaussian graphical
models can be extended to non-Gaussian data via latent Gaussian copula models. Liu et al.
(2012) consider Gaussian copula model for skewed continuous distributions. Fan et al. (2017)
consider extension to mixed binary-continuous variables via latent Gaussian copula. Dobra
et al. (2011) consider a Bayesian latent Gaussian copula for graph estimation with binary and
ordinal variables, where they approximate the likelihood function using the extended rank
likelihood (Hoff et al., 2007).

Despite the significant advancements in Gaussian graphical models, they are not appro-
priate for estimating microbial association networks. Microbiome data obtained from high-
throughput sequencing are heavily right skewed and zero-inflated. The zeros are not neces-
sarily absolute; they are often due to the limited sequencing depth. Thus, direct application
of Gaussian graphical models to zero-inflated sequencing data leads to inaccurate estimation
and inference. To address these challenges, several graphical models for zero-inflated data
have been proposed. Osborne, Peterson and Vannucci (2021) model microbial counts using
Dirichlet-multinomial distribution with a latent Gaussian graphical model. Zhou et al. (2020)
consider a zero-inflated latent Ising model for microbial association network estimation. Mc-
David et al. (2019) propose a multivariate hurdle model, which is a mixture of degenerate
(at 0) and Gaussian distributions. SPIEC-EASI (Kurtz et al., 2015) is a two-stage inference
procedure specifically designed for compositional microbiome data. Yoon et al. (2019) pro-
pose Semi-Parametric Rank-based approach for INference in Graphical model (SPRING)
based on truncated latent Gaussian copula (Yoon, Carroll and Gaynanova, 2020). Ma (2020)
proposes truncated Gaussian graphical model.
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1.4. The major limitation of existing network estimation models and our proposal. The
aforementioned microbial network estimation models share a common limitation: they do not
take advantage of additionally available evolutionary information for identifying the graph
structure. The information on microbes’ genetic similarities is available in the form of a
phylogenetic tree. However, to our knowledge, the phylogenetic tree is not taken into account
by existing methods for the estimation of microbial networks. Since microbial interactions,
positive (e.g., mutualism) or negative (e.g., competition), increase with the microbes’ genetic
similarity (Rohr and Bascompte, 2014; Peralta, 2016), evolutionary information encoded in
a phylogenetic tree has great potential in improving the accuracy of microbial associations
network estimation.

In this work, we propose a Bayesian truncated Gaussian copula graphical model for mi-
crobial association networks, which takes advantage of available evolutionary information.
Our major contributions are four-fold. First, we provide a general framework for incorpo-
rating evolutionary history into the estimation of microbe-microbe association networks. We
model the phylogenetic tree as a Gaussian diffusion process in the latent space, which al-
lows us to represent the microbes and their ancestors as (correlated) Gaussian vectors. Our
framework is not limited to the phylogenetic tree and can accommodate any prior knowledge
that is expressed in a tree, e.g., a taxonomic rank tree. We formulate the prior probability
model on graph so that the microbes that are closer to each other on the tree have a higher
edge inclusion probability. Our simulation study reveals that our approach significantly im-
proves the graph estimation accuracy compared to the methods that do not take advantage of
the tree structure (Section 4). Second, the proposed model effectively handles zero-inflation
resulting from limited sequencing depth. We consider the observed zeros as truncated real-
izations of unobserved random quantities that are below certain thresholds. In particular, we
establish a Bayesian formulation of the truncated Gaussian copula model (Yoon, Carroll and
Gaynanova, 2020) and develop an efficient Gibbs sampling algorithm. Third, the proposed
approach facilitates the statistical inference on the estimated network. For each pair of nodes,
an edge connectivity is immediately available from the posterior sample, which provides a
convenient way to control the posterior expected FDR (Mitra et al., 2013; Peterson, Stingo
and Vannucci, 2015). Finally, while our model is designed for quantitative microbiome data,
it can also be applied to compositional data using modified centered log-ratio transformation
(Yoon et al., 2019).

The rest of this paper is organized as follows. In Section 2, we introduce the proposed
graphical model. In Section 3, we discuss posterior inference. In Section 4, we evaluate the
graph estimation accuracy of the proposed model on simulated datasets. In Section 5, we
analyze quantitative microbiome profiling data of Vandeputte et al. (2017), and compare our
results to SPRING (Yoon et al., 2019) and SPIEC-EASI (Kurtz et al., 2015). In Section 6, we
provide a brief discussion and the link to download the R code that implements our method.

2. Bayesian truncated Gaussian copula graphical model. In Section 2.1, we discuss
the semiparametric modeling of conditional dependencies for zero-inflated data through a
truncated Gaussian copula model with a sparse concentration matrix. In Section 2.2, we in-
troduce a prior model that incorporates the phylogenetic tree to facilitate posterior inference
of microbial associations. The complete hierarchical model is summarized in Figure 1.

2.1. Truncated Gaussian copula graphical model. Let x = (x1, . . . , xp)
> denote the

zero-inflated abundances of p microbes. This is either directly the counts resulting from
quantitative microbiome profiling, e.g. motivating data from Vandeputte et al. (2017), or
transformed compositional microbiome data via the modified central log-ratio transforma-
tion (Yoon et al., 2019). We propose to model x such that only the microbial abundances that
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FIG 1. Schematic illustration of the phylogenetically informed Bayesian truncated Gaussian copula graphical
model. Hyperparameters that are held constant are given in boxes with dashed-line. The quantities that need
posterior inference are illustrated in boxes with solid-line. The ellipse with solid line represents the observed
data.

are larger than certain thresholds can be observed. Specifically, we assume that there exist
latent x∗ = (x∗1, . . . , x

∗
p)
> representing the true abundances such that

xj = 1(x∗j > cj)x
∗
j , j = 1, . . . , p,(1)

where 1(·) is the indicator function and cj’s are unknown thresholds, which allow xj’s to
have different levels of zero-inflation. We call xj a truncated variable if x∗j is less than cj ,
and an observed variable, otherwise. Let Fj be the marginal cumulative distribution function
(cdf) of the jth latent variable x∗j , Φ be the cdf of standard Gaussian, and fj = Φ−1 ◦ Fj ,
where we assume that Fj’s are continuous. The truncated Gaussian copula model (Yoon,
Carroll and Gaynanova, 2020) assumes

zj = fj(x
∗
j ), j = 1 . . . , p,(2)

z = (z1, . . . , zp)
> ∼Np(0,Σ),(3)

where Σ = Corr{Ω−1} � 0 is the positive definite correlation matrix and Corr converts a
positive definite matrix to a correlation matrix.

Since fj’s are monotone continuous, we can write (1) as xj = 1{fj(x∗j ) > fj(cj)}x∗j =
1(zj > δj)x

∗
j , where δj = fj(cj). We denote the truncated and the observed sub-vectors of

x by xt ∈ Rpt and xo ∈ Rpo , respectively, where pt + po = p. Likewise, let zt and zo be
the corresponding latent Gaussian vectors, and let δt and δo be their thresholds. Given the
thresholds, the conditional distribution of z is given by

p(zo,zt|zo > δo,zt < δt,Ω) =
Np(zo,zt|0,Σ)

P(zo > δo,zt < δt|δ,Ω)
1(zo > δo)1(zt < δt).(4)

Unlike the approach in Dobra et al. (2011) that only uses the relative ranks of the observed
data, we condition on the observed value of zo, which subsequently allows us to sample
truncated variables zt from the posterior distribution as discussed in Section 3.

Because of the multivariate normality of z, zero entries of Ω = [ωjk]1≤j,k≤p imply the
conditional independence between the corresponding variables. The dependency structure
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of z can be graphically summarized as an undirected graph G = (z,E) with an adjacency
matrixE = [ejk]1≤j,k≤p, where nodes zj and zk are connected (denoted by ejk = 1) if ωjk 6=
0. Consequently, learning the graph structure (adjacency matrix) E is equivalent to finding
the sparse pattern of Ω. To encourage sparsity, we follow a similar strategy as in Wang (2015)
by assigning a spike-and-slab prior on the off-diagonal elements of Ω and an exponential
prior on the diagonal elements,

p(Ω|E, v20) =C(E, v20)−11(Ω� 0)
∏
j<k

{
(1− ejk)N(ωjk|0, v20) + ejkN(ωjk|0, hv20)

}
(5)

×
p∏
j=1

Exp(ωjj |
λ

2
),

where Exp(·|λ) is the exponential density function with rate parameter λ, v20 is the spike
variance, h� 1 is a large constant such that the slab variance hv20� v20 , and C(E, v20) is the
normalizing constant.

We impose an improper uniform prior on the thresholds δ = (δ1, . . . , δp)
> ∼ p(δ) ∝ 1, a

conjugate inverse-gamma prior on the spike variance v20 ∼ IG(av0 , bv0), and Bernoulli-like
priors on the edge indicators

p(E)∝C(E, v20)
∏
j<k

Ber(ejk|πjk).(6)

Including the normalizing constantC(E, v20) in (6) serves to cancel out that in (5), facilitating
the posterior computation in updating E (Wang, 2015).

2.2. Incorporating phylogenetic tree. Evolution plays an important role in shaping the
interaction patterns of microbes (Peralta, 2016). We will exploit the evolution footprints in
identifying microbial association networks through a novel phylogenetic tree prior. The pro-
posed prior is a distribution on edge inclusion probabilities Π = [πjk]1≤j,k≤p that encourages
the interactions, positive (e.g., mutualism) or negative (e.g., competition), of phylogenetically
similar microbes as they tend to be phenotypically/functionally correlated (Martiny et al.,
2015; Xiao et al., 2018; Zhou et al., 2021). The prior is constructed by first embedding the
network in L-dimensional Euclidean space through the latent position model (Hoff, Raftery
and Handcock, 2002), and then arranging the latent positions according to the phylogenetic
tree.

Latent position model. We introduce a latent position tj = (t1j , . . . , tLj)
> ∈RL for each

node zj , and link it to the edge inclusion probability πjk through the probit link function

πjk = Φ(t>j tk), j < k.

The inner product t>j tk measures the similarity between tj and tk, with larger inner prod-
uct leading to higher prior inclusion probability. We assign a prior on tj’s to encourage the
interactions between phylogenetically similar microbes.

Phylogenetic tree. Let T = [t1, . . . , tp] ∈ RL×p and let t` = (t1`, . . . , tp`) be the `th row

of T . We assume t` iid∼ Np(0, σ
2H) for ` = 1, . . . ,L, where H is a correlation matrix that

reflects the phylogenetic similarity. Our specific choice of H is motivated by the following
diffusion process. Let T be a phylogenetic tree with terminal nodes representing the p mi-
crobes under investigation and internal nodes representing their common ancestors. Starting
from time 0 at the origin (root), the first branch t1 follows a Brownian motion with variance
σ2 until the divergence time s1 ∈ [0,1]. Then it splits into two branches, t1 and t2, each
following the same Brownian motion independently before they split at times s2, s3 ∈ [0,1]
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FIG 2. An illustrative example of a phylgenetic tree with p = 4 microbes (left) and the corresponding diffusion
process in R1 with σ2 = 3 (right). The new branch t2 is split from t1 at the first divergence time s1 = 0.2. Then
new branches t3 and t4 are split from t1 and t2 at the divergence time s2 = 0.55 and s3 = 0.85, respectively. The
green circle and blue triangle are the most common ancestors of the pairs (t1, t3) and (t2, t4), whose heights,
s2 = 0.55 and s3 = 0.85, are the correlations of the pairs, respectively. The color figure is available in the online
version.

resulting in t3 and t4. This process repeats until the p terminal nodes are reached at time 1.
An illustrative example of the diffusion process is provided in Figure 2.

This diffusion process defines a centered multivariate Gaussian distribution on the termi-
nal nodes of T with covariance matrix σ2H . We define the height of each node (split for
internal nodes) as its distance from the root (time from 0). The correlation of two terminal
nodes equals the height of their most recent common ancestor, which is large for a phyloge-
netically similar microbes. This multivariate Gaussian prior, together with the latent position
model, achieves the desired prior distribution of πjk that encourages interactions between
phylogenetically similar microbes. Lastly, we assign a conjugate inverse-gamma prior for the
variance (tree scale) parameter σ2 ∼ IG(aσ2 , bσ2).

3. Posterior inference. The proposed model is parameterized by {z,δ,Ω,E, v20,T , σ2}
of which the posterior distribution is not available in closed form. We use a Markov chain
Monte Carlo (MCMC) algorithm to draw posterior samples from the intractable posterior dis-
tribution. Section 3.1 discusses Gibbs steps for sampling z and δ from their full conditional
distributions. Section 3.2 describes Gibbs steps for T and σ2. In Section S1.2 of the Supple-
menatry Materials, we provide the Gibbs steps for Ω,E, v20 by following Wang (2015). An
outline of the Gibbs sampling steps is provided in Algorithm 1.

3.1. Full conditionals of truncated observations and thresholds. Let xi ∈ Rp, i =
1, . . . , n, be a sample from the model (1)–(3) and let zi ∈ Rp, i = 1, . . . , n, be the corre-
sponding latent Gaussian vectors. As before, we use subscripts t and o, respectively, to de-
note the truncated and observed sub-vectors (e.g., xi,t and xi,o are the truncated and observed
sub-vectors of xi).

For observed xi,o, the corresponding Gaussian variables are defined as zij,o = fj(xij,o) =
Φ−1 ◦ Fj(xij,o). A natural estimator for the unknown function Fj is the scaled empirical
cdf F̂j(c) = {n/(n + 1)}

∑n
i=1 n

−11(xij ≤ c) (Klaassen et al., 1997), where the constant
term n/(n + 1) is needed to make Φ−1 finite. Thus, the estimator of fj is given by f̂j =

Φ−1 ◦ F̂j , and we set ẑij,o = f̂j(xij,o). An alternative approach to estimate fj using B-spline
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Algorithm 1 Outline of the Gibbs sampling steps.

1: Data: ẑ1,o, . . . , ẑn,o, where ẑij,o = f̂j(xij,o).

2: Initialize Σ, δ, E, Π, v20 , and σ2 and

3: for s= 1, . . . , S do
4: Draw truncated Gaussian vectors z∗i,t ∼ p(zi,t|ẑi,o,Σ,δ), i= 1, . . . , n

5: Set Z∗ = [z∗1, . . . ,z
∗
n]>, where components of z∗i are properly arranged with z∗i,t and ẑi,o.

6: Draw threshold parameter δ∗ ∼ p(δ|Z∗)
7: Draw concentration matrix Ω∗ ∼ p(Ω|Z∗,Σ,E, v20)

8: Set correlation matrix Σ∗ = Corr{Ω∗−1}
9: Draw graph E∗ ∼ p(E|Ω∗, v20 ,Π);

10: Draw spike variance v2∗0 ∼ p(v
2
0 |Ω
∗,E∗).

11: Draw latent positions t∗j ∼ p(tj |T
∗
−j , σ

2) j = 1, . . . , p

12: Set edge inclusion probabilities Π∗ = [π∗jk]1≤j,k≤p, where Φ(t∗>j t∗k).

13: Draw tree scale parameter σ2∗ ∼ p(σ2|T ∗)
14: end for

basis functions has been considered in Mulgrave et al. (2020); however, we use the empirical
cdf for computational simplicity.

Given zi,o = ẑi,o, we sample zi,t from a truncated multivariate Gaussian distribution de-
rived from (4),

p(zi,t|ẑi,o,zi,t < δt,Ω) =
Npi,t(zi,t|µi,∆i)

P(zi,t < δt|ẑi,o,Ω,δ)
1(zi,t < δi,t),

where pi,t is the number of truncated variables of xi, and µi, ∆i are the mean and covari-
ance matrix of zi,t given zi,o = ẑi,o (detailed expressions are provided in Section S1.1 of
the Supplementary Materials). The conditional pdf of δ given z1, . . . ,zn is proportional to
the n-product of indicator functions of (4). That is, we have the independent uniform full
conditional distributions of δj’s as

p(δ|z1, . . . ,zn,Ω)∝
n∏
i=1

Np(zi,t, ẑi,o, |Ω)1(zi,t < δi,t)1(ẑi,o > δi,o),

∝
p∏
j=1

1(zmax
j,t < δj < ẑmin

j,o ),

where zmax
j,t = maxi zij,t and ẑmin

j,o = mini ẑij,o are the maximum and minimum of the trun-
cated and observed components of the jth Gaussian variable, respectively.

3.2. Full conditionals of latent positions and the tree scale. Let T−j be the submatrix of
T without the jth column. The full conditional distribution of tj is given by,

p(tj |T−j ,E, σ2)∝

∏
k 6=j
{Φ(t>k tj)}ekj{1−Φ(t>k tj)}1−ekj

NL(tj |θj ,Ψj), j = 1, . . . , p,

where θj and Ψj are mean and covariance matrix of tj given T−j (detailed expressions
are provided in Section S1.3 of the Supplementary Materials). We update tj using the data
augmentation technique of Albert and Chib (1993) by introducing the auxiliary data yj ∈
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Rp−1. Let TN(µ,σ2, e) be N(µ,σ2) truncated to be positive if e = 1 and negative if e = 0.
Conditining on T , each component ykj of yj follows TN(t>k tj ,1, ekj), and the resulting
augmented pdf of tj and yj is

p(tj ,yj |T−j ,E, σ2)∝∏
k 6=j
{1(ykj > 0, ekj = 1) + 1(ykj < 0, ekj = 0)}N(ykj |t>k tj ,1)NL(tj |θj ,Ψj).

We obtain a posterior sample of T by alternately sampling yj and tj for j = 1, . . . , p. Condi-
tional on T , we independently sample ykj from TN(t>k tj ,1, ekj) for k 6= j. Then, conditional
on yj , we have the Gaussian full conditional of tj as

p(tj |yj ,T−j ,E, σ2)∝Np−1(yj |T>−jtj ,Ip−1)NL(tj |θj ,Ψj).

Accordingly, we draw tj from NL(γj ,Γj), where

Γj =
(
T−jT

>
−j + Ψ−1j

)−1
, γj = Γj

(
T−jyj + Ψ−1j θj

)
.

The edge inclusion probabilities are updated as πjk = Φ(t>j tk), 1 ≤ j < k ≤ p. Condi-
tional on T , we sample the tree scale parameter σ2 from

σ2|T ∼ IG
(
pL/2 + aσ2 ,vec(T )>(H ⊗ IL)−1 vec(T )/2 + bσ2

)
,

where vec(T ) is the vector obtained by stacking the columns of T and ⊗ is the Kronecker
product.

For sampling concentration matrix and graph, we follow the block Gibbs sampler of Wang
(2015). For completeness, we provide the block Gibbs sampling algorithm in Section S1.2 of
the Supplementary Materials.

3.3. Posterior point estimation and prediction. Upon the completion of the MCMC, we
compute the posterior mean of the edge inclusion probabilities for each pair of nodes, π̂jk =∑S

s=1 e
(s)
jk /S, where the superscript indexes posterior samples. We obtain the estimated graph

by selecting edges for which π̂jk is larger than some cutoff. We choose the cutoff to control
the posterior expected FDR (Mitra et al., 2013; Peterson, Stingo and Vannucci, 2015) at
prespecified level α, where the posterior expected FDR is a decreasing function of cutoff c
defined as

E(FDRc|data) =

∑
j<k(1− π̂jk)1(π̂jk > c)∑

j<k 1(π̂jk > c)
.(7)

The posterior samples generated from the MCMC also allows for posterior prediction
of microbial abundance via the posterior predictive distribution. We describe the posterior
predictive sampling procedure in Supplementary Materials S3 with the goodness-of-fit as-
sessment of the proposed model on the real data considered in Section 5. Supplementary
Materials S1.4 describes a conditional posterior prediction procedure for xnew

j when a new
data point xnew is observed without the jth variable. We also discuss the inherent difficulties
of microbial abundance prediction.

4. Simulation. We simulate microbiome data following the data generation mechanism
proposed in Yoon et al. (2019), which allows us to obtain synthetic samples that exactly
follow the empirical marginal cumulative distributions of measured microbiome count data
while respecting user-specified microbial dependencies via Ω.
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Specifically, we randomly generate 10 phylogenetic trees T1, . . . ,T10 with p= 50 terminal
nodes using the function rcoal of the ape R package (Paradis and Schliep, 2019), where the
coalescent times, the distance between two descendants and the merge of the two branches,
are exponentially distributed (Paradis, 2012, Chapter 7). For completeness, we provide de-
tailed tree generation algorithm in Section S8 of Supplementary Materials. For each tree, the
latent positions of terminal nodes, t1, . . . , tp, are generated from the diffusion process as de-
scribed in Section 2.2 with σ2 = 3 and L= 2. The true graph adjacency matrixE0 is obtained
by independently generating ejk ∼ Bernoulli(πjk) for 1 ≤ j < k ≤ p with πjk = Φ(t>j tk).
The trees and the true graphs are plotted in Section S9 of the Supplementary Materials. Given
E0, the concentration matrix Ω is drawn from G-Wishart(Ip,4) (Roverato, 2002). To obtain
empirical cdfs, we use the quantitative microbiome profiling (QMP) data of Vandeputte et al.
(2017) from n= 106 subjects, more detailed description of QMP data is provided in Section
5. We select p= 50 genera (variables) of which 6 genera have no observed zero counts, and
44 genera have 20% to 70% zero counts across samples.

Given the empirical cdf F̂j of each selected genus, j = 1, . . . , p, and the correlation matrix
Σ = Corr{Ω−1}, we generate n= 106 independent latent Gaussian vectors zi ∼ Np(0,Σ).
The final data x1, . . . ,xn are obtained as

xij = F̂−j ◦Φ(zij), i= 1, . . . , n, j = 1, . . . , p,

where F̂−j is the pseudo inverse of F̂j defined as F̂−j (u) = min{xij |F̂j(xij) ≥ u}, j =
1, . . . , p. Marginally, this is equivalent to uniform sampling of real observations with replace-
ment but the joint association structure is induced by Σ. The comparison with the actual QMP
data (in Supplementary Material S2) indicates that simulated data well represent the reality.
We consider 50 independent replications of this data generating process for each scenario.

We compare the performance of the the proposed phylogenetically-informed Bayesian
Copula Graphical model (PhyloBCG) with SPIEC-EASI (Kurtz et al., 2015) and SPRING
(Yoon et al., 2019). Additionally, we also consider three special cases of PhyloBCG with the
following simplification to the prior model of graph:

Oracle : πjk = π =

(
p

2

)−1
|E0|;

Uniform : πjk = π ∼ Beta(1,1);

Distance : πjk = exp(−γdjk), γ ∼ Exp(1);

where |E0| is the number of true edges in the underlying graph, and djk is the tree distance
between terminal nodes j and k, defined as the sum of the branch lengths to their most re-
cent common ancestor. We refer to the first and second models as “Oracle” and “Uniform”.
While Oracle does not explicitly use the phylogenetic information, it utilizes this informa-
tion indirectly through the true graph sparsity level. On the contrary, Uniform is completely
non-informative. We refer to the third model as “Distance”, as it directly incorporates tree dis-
tances between the terminal nodes: the edge inclusion probability is higher (smaller) when the
corresponding nodes are closer (farther) to each other on the tree. Distance model thus takes
into account the information from the tree, however, the tree information is deterministically
incorporated to the model in contrast to the stochastic incorporation of PhyloBCG.

To implement SPIEC-EASI and SPRING, we use their corresponding R packages (Kurtz
et al., 2021; Yoon, Gaynanova and Müller, 2019b) with sparsity parameters tuned over 100
values. For PhyloBCG, Oracle, Uniform and Distance, the hyperparameters are fixed as
aσ2 = bσ2 = av20 = bv20 = 0.001, h = 2500, λ = 1. We also fix the latent space dimension
at L= 2 to facilitate visual interpretation. Our sensitivity analysis (Supplementary Material
S4) indicates that PhyloBCG is relatively robust to hyperparameter settings. For the latent
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FIG 3. Averages of Matthews correlation coefficient (MCC), true positive rates (TPR) and false positive rates
(FPR) with 2 standard error bars. The phylogenetic trees are indexed in decreasing order of the global clustering
coefficients of the true graphs . The models utilizing phylogenetic information (PhyloBCG and Distance) are
depicted with solid lines; the models without phylogenetic information are depicted with dashed-lines (Uniform
and Oracle), and dotted-lines (SPRING and SPIEC-EASI). Averages are taken over 50 replicated datasets. The
color figure is available in the online version.

space dimension, the sensitivity analysis indicates that, as the latent space dimension in-
creases, both true and false positive rates monotonically increase, resulting in denser network
estimates. Our general recommendation is to use L= 2 for ease of visual interpretation; see
Figure 7 as an example where clustered microbes’ latent positions are visualized in R2 and
the microbial cluster with distinct characteristics is located away from the rest of the clus-
ters. However, depending on the study, one may consider to increase L if having a larger
true positive rate is more important than controlling false positive rate. We obtain an MCMC
posterior sample of size S = 5000 after 500 burn-in iterations. The graph estimate is obtained
by thresholding the mean of posterior inclusion probability π̂jk at c0.05, the smallest c that
controls the posterior expected FDR (7) at level 0.05.

We assess the graph recovery performance (accuracy in estimating E0) of each method
using Matthews correlation coefficient (Matthews, 1975), true positive rate, and false pos-
itive rate, which will be denoted by MCC, TPR, and FPR, respectively. Ranging from -1
to 1, a larger value of MCC represents a better network estimation accuracy, where the two
boundary values indicate completely correct (+1) and wrong (-1) edge selection, respectively.
Figure 3 summarizes the mean values of these metrics for each of the 10 phylogenetic trees
based on 50 replications. The phylogenetic trees are indexed in terms of the global clustering
coefficient (Wasserman et al., 1994) of the true graph from largest value (T1) to lowest value
(T10). A large value of the global clustering coefficient indicates a presence of microbial
communities, with dense interactions within the same community and sparse interactions
across communities. A small value of the global clustering coefficient indicates a random
interaction pattern close to what will be expected with Erdős-Rényi random graph. Thus,
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FIG 4. Compositional data with modified centered log-ratio transformation. Averages of Matthews correlation
coefficient (MCC), true positive rates (TPR) and false positive rates (FPR) with 2 standard error bars. The phy-
logenetic trees are indexed in decreasing order of the global clustering coefficients of the true graphs . Averages
are taken over 50 replicated datasets. The color figure is available in the online version.

we anticipate the phylogenetic tree to be more informative for network estimation when the
global clustering coefficient is larger.

Figure 3 supports that incorporating phylogenetic tree information improves the network
estimation accuracy, with PhyloBCG and Distance having higher MCC, higher TPR, and
similar FPR values when compared to other methods. As expected, the value of MCC for
the tree-based methods decreases as the phylogenetic tree becomes less informative (larger
tree index). For PhyloBCG, this trend is driven by the decreasing TPR, whereas, for Dis-
tance, it is the increasing FPR. Although PhyloBCG and Distance both use the evolutionary
information, PhyloBCG shows significantly better performances than Distance possibly due
to the flexibility of the latent space embedding. Although Oracle and Uniform show similar
performance across all the settings, Oracle slightly outperforms Uniform in terms of MCC,
TPR, and FPR values due to the utilization of the true graph sparsity level.

Note that the FPR of PhyloBCG has larger variability for trees T5 than others, with T5
leading to PhyloBCG’s largest mean FPR. The reason for increased FPR in this setting is the
discrepancy between the true graph and the phylogenetic tree, i.e., tree prior misspecification.
Recall that the true edge inclusion probabilities πjk are obtained from the Gaussian latent po-
sitions rather than directly from the tree, thus allowing the true graph to deviate, sometimes
significantly, from the phylogenetic tree. Figure S13 in the Supplementary Materials shows
the upper triangular part of the true tree correlation matrix H defined in Section 2.2 against
the edge indicators for T1−T10. It can be seen that T5 shows a large number of disconnected
edges, ejk = 0, with high tree correlation values which may contribute to the increase in
FPR. Nevertheless, for T5, PhyloBCG still shows favorable performance, having much larger
TPRs than SPIEC-EASI and SPRING. Additional simulations are conducted to further inves-
tigate the robustness of the proposed method to the tree prior misspecification. In particular,
we consider two cases of tree misspecification. In the first case, we randomly permuted the
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FIG 5. The phylogenetic tree of 54 genera. Different numbers (colors) represent three microbial communities
derived from the graph estimated by the proposed PhyloBCG; the asterisk indicates a stand-alone node. The
color figure is available in the online version.

leaves of the simulation true tree. In the second case, we mimic the later real data analysis
by ignoring the simulation true divergence times and assuming the divergence times to be
equally spaced. The results summarized in Supplementary Materials S5 indicate that Phy-
loBCG is robust to tree prior misspecification in that the posterior network estimates are not
significantly affected by the tree misspecifications.

Under the same simulation settings, we also conduct additional simulations with the com-
positional version of the simulated data. Specifically, compositional data are obtained by
row normalization, and then each method is applied to modified centered log-ratio trans-
formed (Yoon et al., 2019) compositional data. For SPIEC-EASI, we use centered log-ratio
transformed data as initially suggested by the authors. The average MCC, TPR, and FPR
summarized in Figure 4 show almost identical trend as in Figure 3. Despite some mild dete-
rioration on compositional data, PhyloBCG still outperforms all the other competing models,
supporting the utility of phylogenetic information. Detailed simulation results are provided
in Section S6 of Supplementary Materials.

5. Application to quantitative gut microbiome profiling data.

5.1. Data and phylogenetic tree. We focus on estimating genus-level association net-
work of the QMP data (Vandeputte et al., 2017) that consists of n= 106 healthy subjects’ gut
microbiome. We use the data as processed in Yoon et al. (2019), which can be obtained from
the R-package SPRING (Yoon, Gaynanova and Müller, 2019b). Among the 91 genera, there
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are 33 genera with missing names and 4 genera without available phylogenetic information
on the National Center for Biotechnology Information (NCBI) database on which we based
the phylogenetic tree construction. Consequently, we consider p= 54 genera and obtain their
phylogenetic tree based on the NCBI taxonomy database using the platform PhyloT1. As the
database does not provide divergence times of branches, we match the branch lengths with
the taxonomic ranks so that each major taxonomic rank is equally spaced with the length
of 1. We locate intermediate minor ranks in between corresponding major taxonomic ranks.
For example, FCB group (superphylum) and Bacteroidetes-Chlorobi group (unranked) are
located in between domain Bacteria and phylum Bacteroidetes as illustrated in Figure 5. This
branch length specification is supported by our sensitivity analysis with respect to divergence
times (provided in Section S5 of Supplementary Materials). These genera have up to 70%
zeros (14 have more than 50% zeros).

5.2. Analysis. For PhyloBCG, we use the same hyperparameter values as in Section 4
and run 4 parallel Markov chains for 100,000 iterations after 25,000 burn-in iterations. On
Apple M1 with 3.2 GHz maximum clock speed, the computation time of a single chain was
5 hours, 9 minutes, and 30 seconds, where n = 106 and p = 54. We then concatenate the 4
chains and obtain a posterior sample of size 10,000 by retaining every 40th iteration, from
which we compute the posterior means π̂jk and Ω̂. The point estimate and the upper 97.5%
confidence limit of the potential scale reduction factor (Gelman and Rubin, 1992) are 1.025
and 1.075, both within the acceptable range, below 1.1. (Gelman et al., 2013). The trace
plot, provided in Section S7 of Supplementary Materials, also shows no evidence for lack
of convergence. The goodness-of-fit on QMP data has been assessed by comparing marginal
and joint posterior predictive densities with the observed data, where the proposed model
shows a good fit (Supplementary Materials S3).

The microbial association network is estimated by controlling the posterior expected FDR
at 0.1 which results in c0.1 = 0.719. SPIEC-EASI and SPRING are tuned using 100 spar-
sity parameter values. The default stability threshold (Liu, Roeder and Wasserman, 2010) is
changed from 0.1 to 0.2 to avoid overly sparse network estimates. The recovered networks
are shown in Figure 6.

5.2.1. Overall network summary and interpretation. We first compare estimated net-
works in terms of their density and community structure. The estimated network from Phy-
loBCG appears to be denser and have much more definitive communities than those from
SPIEC-EASI and SPRING. While we do not know the true network and community struc-
ture of the gut microbiota in the study population, the following reasons support our belief
that the additional findings of microbial interactions and communities from PhyloBCG are
biologically meaningful.

First, microbes are known to form communities (Pflughoeft and Versalovic, 2012). Ap-
plying the edge proximity measure of Newman and Girvan (2004) to the estimated network
by PhyloBCG, we find three evident microbial communities which are marked with different
colors in Figures 5 and 6. Posterior mean latent positions, illustrated in Figure 7, also form
three distinct clusters that consistently match the estimated microbial communities. Interest-
ingly, the genera within each of these communities tend to share unique characteristics. On
the one hand, most of the genera from the top two communities in Figure 5 are obligate anaer-
obes which only survive in the absence of oxygen. On the other hand, the community located
at the bottom of Figure 5 contains genera with species that need or at least can tolerate oxy-
gen. For example, Streptococcus and Enterococcus contain facultative anaerobic species that

1https://phylot.biobyte.de



14

PhyloBCG

* Fusobacterium

(2) Prevotella

* Paraprevotella

(2) Parabacteroides

(2) Bacteroides
(2) Butyricimonas

(2) Odoribacter

(2) Bifidobacterium

(2) Actinomyces

(2) Collinsella

(2) Adlercreutzia
(2) Eggerthella

(2) Slackia
(1) Clostridium

(1) Dehalobacterium

(2) Peptococcus

(1) Eubacterium(1) Anaerofustis

(1) Ruminococcus
(1) Oscillospira(1) Faecalibacterium

(1) Christensenella
(1) Blautia

(1) Coprococcus

(1) Roseburia

(1) Dorea
(1) Anaerostipes

(1) Lachnospira

(3) Enterococcus
(3) Lactobacillus

(3) Lactococcus

(3) Streptococcus

(3) Phascolarctobacterium

(3) Succiniclasticum(3) Acidaminococcus

(2) Mitsuokella(2) Megamonas

(3) Megasphaera
(3) Dialister

(3) Veillonella

(2) Bulleidia (2) Coprobacillus

(2) Turicibacter

(2) Holdemania
(2) Catenibacterium

(2) Bilophila
(2) Desulfovibrio

(2) Oxalobacter(2) Sutterella

(3) Haemophilus

(2) Succinivibrio

(1) Akkermansia
(1) Methanobrevibacter

* Methanosphaera

SPRING

(1) Fusobacterium

(2) Prevotella

(2) Paraprevotella

(3) Parabacteroides
(3) Bacteroides

(4) Butyricimonas(5) Odoribacter

(3) Bifidobacterium

(4) Actinomyces

(3) Collinsella

(3) Adlercreutzia

(2) Eggerthella

(4) Slackia

(3) Clostridium (4) Dehalobacterium
(1) Peptococcus

(2) Eubacterium

(3) Anaerofustis

(3) Ruminococcus

(4) Oscillospira

(3) Faecalibacterium (4) Christensenella
(3) Blautia

(3) Coprococcus

(3) Roseburia

(3) Dorea
(3) Anaerostipes

(3) Lachnospira

(6) Enterococcus

(1) Lactobacillus
(7) Lactococcus

(4) Streptococcus

(8) Phascolarctobacterium (2) Succiniclasticum
(2) Acidaminococcus

(2) Mitsuokella

(1) Megamonas

(1) Megasphaera

(8) Dialister

(6) Veillonella

(9) Bulleidia

(2) Coprobacillus

(6) Turicibacter

(3) Holdemania (1) Catenibacterium

(4) Bilophila (4) Desulfovibrio
(4) Oxalobacter

(5) Sutterella

(6) Haemophilus

(1) Succinivibrio
(4) Akkermansia

(4) Methanobrevibacter

(4) Methanosphaera

SPIEC−EASI

(1) Fusobacterium
(2) Prevotella (3) Paraprevotella(4) Parabacteroides

(5) Bacteroides

(6) Butyricimonas

(6) Odoribacter

(6) Bifidobacterium

(7) Actinomyces

(6) Collinsella

(5) Adlercreutzia

(5) Eggerthella
(5) Slackia

(6) Clostridium

(1) Dehalobacterium

(8) Peptococcus

(9) Eubacterium

(1) Anaerofustis

(1) Ruminococcus(1) Oscillospira

(10) Faecalibacterium

(2) Christensenella

(10) Blautia

(10) Coprococcus

(10) Roseburia

(5) Dorea

(6) Anaerostipes
(10) Lachnospira

(3) Enterococcus

(6) Lactobacillus
(6) Lactococcus

(5) Streptococcus

(11) Phascolarctobacterium

(3) Succiniclasticum

(7) Acidaminococcus
(5) Mitsuokella

(8) Megamonas

(1) Megasphaera

(11) Dialister

(2) Veillonella

(5) Bulleidia

(5) Coprobacillus

(2) Turicibacter

(4) Holdemania

(8) Catenibacterium

(6) Bilophila

(5) Desulfovibrio

(5) Oxalobacter

(6) Sutterella

(2) Haemophilus

(12) Succinivibrio

(5) Akkermansia (5) Methanobrevibacter

(13) Methanosphaera
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are able to utilize oxygen as a source of energy, but can also generate energy anaerobically in
an oxygen-deficient environment (Fisher and Phillips, 2009; Clewell, 1981). All the members
of Haemophilus are facultatively anaerobic species or aerobic species, where aerobic species
need oxygen to survive (Cooke and Slack, 2017). Lactobacillus contains aerotolerant and mi-
croaerophilic species (Zheng et al., 2020). Aerotolerant species do not need oxygen and use
anaerobic fermentation to generate energy, but oxygen is not toxic to them. Microaerophiles
need oxygen to survive but require low oxygen concentration to thrive and are damaged by
high oxygen level, e.g., atmospheric oxygen level. Furthermore, the bottom community has
very few interactions with the two top communities, possibly because of their distinct living
environments. By contrast, the estimated microbial interaction networks from SPIEC-EASI
and SPRING do not present obvious communities; this lack of community structure is, based
on existing literature (Rohr and Bascompte, 2014; Peralta, 2016), unlikely.

Second, while the phylogenetic tree prior helps identify additional interactions and com-
munities, it does not dictate the posterior inference. Some of the genera from the top right
community in Figure 5 (e.g., Succinivibrio and Prevotella) are not phylogenetically similar
to each other. Similarly, the other two communities also contains phylogenetically distant
genera. This suggests that the phylogenetic tree prior does not override the information of as-
sociations that are strongly supported by the data. The comparison of the prior and posterior
means of edge inclusion probabilities also indicates that the phylogenetic tree prior does not
dominate the posterior inference (Supplement Materials S5).

Third, from the simulation study, we have seen that PhyloBCG is much more powerful
in detecting interactions than SPIEC-EASI and SPRING especially when there is a clear
community structure, while also having comparable FPR. Given that the communities of
the estimated network by PhyloBCG seem biologically plausible, the additional interactions
found by PhyloBCG are more likely to be true positives than false discoveries, some of which
will be explained in detail in the next section.
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TABLE 1
Selected pairs of genera with strong association as identified by PhyloBCG. “–” indicates that no significant

partial correlation is found by the corresponding.

Pairs of Microbial Genera
Partial Correlations

Reference
PhyloBCG SPRING SPIEC-EASI

Dialister Phascolarctobacterium -0.384 -0.185 -0.252 Vandeputte et al. (2017), Naderpoor et al. (2019)

Oscillospira Ruminococcus 0.129 0.320 0.335 Chen et al. (2020a)

Mitsuokella Prevotella 0.155 0.152 – Ramayo-Caldas et al. (2016)

Ruminococcus Blautia 0.115 0.048 – Ramayo-Caldas et al. (2016)

Oscillospira Butyricimonas 0.155 0.335 – Garcia-Mantrana et al. (2018), Thomaz et al. (2021)

Eubacterium Peptococcus 0.178 0.083 – Oh et al. (2020)

Bacteroides Bilophila 0.137 0.221 – Vandeputte et al. (2017)

Akkermansia Methanobrevibacter 0.202 0.354 0.054 Vandeputte et al. (2016)

Blautia Methanobrevibacter -0.062 – -0.329 Garcia-Mantrana et al. (2018), Müller et al. (2019)

Prevotella Bacteroides -0.107 – -0.019 Vandeputte et al. (2017)

Ley (2016), Johnson et al. (2017)

Veillonella Streptococcus 0.149 – – Anbalagan et al. (2017), Chen et al. (2020b)

van den Bogert et al. (2013), Egland, Palmer and Kolenbrander (2004)

Zoetendal et al. (2012), van den Bogert et al. (2014)

Bifidobacterium Holdemania -0.167 – – Liu et al. (2017), Yang et al. (2018)

Wang et al. (2020)

5.2.2. Detailed explanation of interactions. All models identify strong negative partial
correlations between Dialister and Phascolarctobacterium. This finding is in agreement with
multiple published results. The original QMP study (Vandeputte et al., 2017) finds a strong
negative correlation between these two genera. Naderpoor et al. (2019) report that Phasco-
larctobacterium (Dialister) is positively (negatively) correlated with insulin sensitivity. Con-
sistently, Pedrogo et al. (2018) indirectly observe a trade-off relationship between the two
genera from obese groups. Besides, strong positive partial correlations between Oscillospira
and Ruminococcus are found by all methods as well, which is consistent with the finding in
Chen et al. (2020a).

PhyloBCG and SPRING detect relatively strong partial correlations for the pairs (Mit-
suokella, Prevotella) and (Ruminococcus, Blautia). In the phylogenetic tree displayed in Fig-
ure 5, Ruminococcus and Blautia are relatively close to each other, being the members of the
same order, Clostridales. Mitsuokella and Prevotella are, however, phylogenetically distant
from each other, indicating that the QMP data present a strong association between them
and that the tree prior of the proposed PhyloBCG does not dominate the inference. These
findings agree with the network analysis of Ramayo-Caldas et al. (2016), where they also
detect positive partial correlations in the pairs (Mitsuokella, Prevotella) and (Ruminococcus,
Blautia).

Additionally, the pairs (Oscillospira, Butyricimonas) and (Eubacterium, Peptococcus) also
show relatively strong partial correlations under the two models. Both pairs are known to be
related to diet and leanness. Oh et al. (2020) discover positive correlations between body
weight and each of Eubacterium and Peptococcus. Garcia-Mantrana et al. (2018) find neg-
ative correlations between unhealthy diet (high intake of saturated fat and refined carbohy-
drates) and each of Oscillospira and Butyricimonas. Furthermore, positive partial correlations
for the pairs (Bacteroides, Bilophila) and (Akkermansia, Methanobrevibacter) are observed,
where these results match the analyses in Vandeputte et al. (2016) and Vandeputte et al.
(2017), respectively.

PhyloBCG and SPIEC-EASI find negative partial correlations for the pairs (Blautia,
Methanobrevibacter) and (Prevotella, Bacteroides). Blautia and Methanobrevibacter are
known to be positively and negatively related to dietary fiber intake, respectively (Garcia-
Mantrana et al., 2018). Müller et al. (2019) suggest that their inverse relationship is possibly
due to substrate competition as both use hydrogen as energy source.
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For Prevotella and Bacteroides, Lozupone et al. (2012) find the trade-off between these
two genera – carbohydrates (including simple sugars) focused diet increases Prevotella and
decreases Bacteroides whereas protein and fat focused diet has the opposite effects on them.
Their trade-off relationship is also discussed in Ley (2016) and Johnson et al. (2017). On the
contrary, Vandeputte et al. (2017) claim that their negative association is an artifact of using
compositional rather than quantitative microbiome data for analyses .

PhyloBCG uniquely discovers positive partial correlations for the pairs (Veillonella, Strep-
toccocus) and (Bifidobacterium, Holdemania). The estimated positive partial correlation be-
tween Veillonella and Streptoccocus is consistent with that of the gut microbial network
analysis of Chen et al. (2020b). Anbalagan et al. (2017) demonstrate their mutualistic re-
lationship: Streptoccocus uses glucose as a source of carbon and release lactic acid, whereas
Veillonella utilizes lactic acid as carbon and energy source for growth. There are also many
studies reporting their co-occurrence and mutualism (van den Bogert et al., 2013; Egland,
Palmer and Kolenbrander, 2004; Zoetendal et al., 2012; van den Bogert et al., 2014). For
Bifidobacterium and Holdemania, Liu et al. (2017) report that prebiotic supplement signifi-
cantly increases relative abundance of beneficial Bifidobacterium and decreases Holdemania,
where Holdemania is reported to be associated with unhealthy gut and antibiotic use (Yang
et al., 2018). Wang et al. (2020) discuss the underlying mechanism of the trade-off relation-
ship. In summary, we find these uniquely identified pairs by the proposed PhyloBCG to be
well supported by existing literature. All the genera pairs discussed above are summarized in
Table 1 with their estimated partial correlations and supporting references.

6. Discussion. In this work, we propose a phylogenetically informed Bayesian truncated
copula graphical model for estimating microbial association networks with QMP data. The
proposed method explicitly accounts for the zero-inflated nature of the QMP data and in-
corporates the microbial evolutionary information through the diffusion process and latent
position model.

Simulation study with various phylogenetic tree structures reveals that the phylogenetic
prior significantly improves network estimation accuracy. In particular, the proposed model
shows much larger true positive rates while having comparable false positive rates to existing
microbial network estimation models. In application to the QMP data analysis, the proposed
model identifies several unique genus-level conditional dependencies that are missed by ex-
isting microbial network estimation methods.

Our sensitivity analysis shows reasonably stable performance under various hyperparame-
ter settings. Also, we find that the proposed model is robust to tree misspecification in that the
phylogenetic tree does not override conditional dependence supported by data. Furthermore,
the proposed model shows better network estimation accuracy than competing models, even
with the misspecified tree. This supports the usefulness of the phylogenetic prior even when
the information on divergence times is unavailable.

Although the proposed model is developed for microbial association network estimation,
the established formulation of the truncated Gaussian copula can be directly applied to other
zero-inflated data, such as single-cell RNA sequencing data. Furthermore, the framework for
incorporating evolutionary information is not limited to undirected graph estimation and can
be extended to the directed graph estimation models. The R code implementing the method
and QMP data are available at https://github.com/heech31/phyloBCG.
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