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Abstract

We survey recent progress in the study of flows of isometric Ga-structures
on 7-dimensional manifolds, that is, flows that preserve the metric, while
modifying the Ga-structure. In particular, heat flows of isometric Ga-
structures have been recently studied from several different perspectives,
in particular in terms of 3-forms, octonions, vector fields, and geomet-
ric structures. We will give an overview of each approach, the results
obtained, and compare the different perspectives.

1 Introduction

One of the most challenging problems in differential geometry is the question
of existence conditions for torsion-free Go-structures on smooth 7-dimensional
manifolds. Such Gs-structures are precisely the ones that correspond to metrics
with holonomy contained in G3. One approach that has been pioneered by
Robert Bryant [4] is to considered heat-like flows of Ga-structures with the
hope that under certain conditions they may converge to a torsion-free Ga-
structure. A difficulty that is encountered in such an approach is that in general,
deformations of a Ga-structure also affect the corresponding metric, and so any
heat equation for the Ga-structure becomes nonlinear. This is not unlike the
situation for the Ricci flow, where the underlying geometry changes along the
flow, however in the G5 case, we have two separate but closely related objects,
the Ga-structure and the metric, both of which vary along the flow. Given
a Riemannian metric on a 7-manifold that admits Gs-structures, there is a
family of Ga-structures that correspond to it, so a possible approach could
be to separate as much as possible the deformations of the metric from the
deformations of Ga-structures that preserve the metric. Indeed, as was shown by
Karigiannis [13], given a decomposition of 3-forms according to representations
of G, the deformations of the Gs-structure 3-form that preserve the metric
are precisely the ones that lie in the 7-dimensional representation A3. Bryant’s



original Laplacian flow of closed G-structures has no component in A3 [4], and
as such is transverse to directions that preserve the metric. This allowed for
more tractable analytic properties. In contrast, a similar flow for co-closed Gs-
structures that was proposed in [15] does have a component in A, which, as
shown in [9], causes non-parabolicity of the flow. This suggests that the freedom
of Ga-structures to move in directions that preserve the metric is some kind of
degeneracy and thus suitable gauge-fixing conditions within the metric class are
needed to address it.

These considerations show that it is necessary to have a clearer picture of
Go-structures within a fixed metric class. In [4], Bryant observed that such Ga-
structures are parametrized by sections of an RP7-bundle, or more concretely,
by pairs (a, a) where a is a real-valued function and « is a vector field such that
a? + |a* = 1, and = (a,a) define the same Gy-structure. If ¢ is a fixed G-
structure, then any other Ga-structure (4 q) (¢) within the same metric class
is given by:

O(a,0) () = (a2 - \a|2> © — 2aa) + 2a A (aap), (1)

where ¥ = *p.

Given that the group G5 may be defined as the automorphism group of the
octonions, a Go-structure defines an octonion structure on the manifold, and
in [10], this observation was used to interpret the above pair (a, ) as a unit
octonion V, and then (1) is just the 3-form that corresponds to a modified
octonion product defined by V. Thus, a flow of isometric G3-structures can be
interpreted as a flow of the unit octonion section V. In particular, a natural heat
flow of isometric Go-structures was introduced in [10]. Given an octonionic
covariant derivative D, constructed from the Levi-Civita connection and the
torsion of the initial Ga-structure ¢, the heat flow of isometric Gs-structures is
then the semilinear, parabolic equation

OV _Apv+ IDV|*V (2)
ot
with some initial condition V (0) = V and where Ap = —D*D is the Laplacian
operator corresponding to D. This was obtained as the negative gradient flow
of an energy functional with respect to D. The critical points of the flow (2)
correspond to Ga-structures for which the torsion tensor is divergence-free, i.e.
satisfies divT = 0, where divergence is taken with respect to the Levi-Civita
connection. This is significant for several reasons. The divergence of torsion
is precisely the term that causes the non-parabolicity of the Laplacian flow of
co-closed Ga-structures from [15] as mentioned above, and div T = 0 for closed
Go-structures. Thus, closed Ga-structures are automatically critical points of
(2). Secondly, T has been interpreted in [10] as an imaginary octonion-valued
1-form, which is added to the Levi-Civita connection to obtain the octonionic
covariant derivative D, hence the condition div T = 0 is precisely analogous to
the Coulomb gauge condition in gauge theory. This analogy makes this condition
a reasonable candidate for a gauge-fixing condition within a fixed metric class.



Soon after the introduction of the flow (2) in [10], it was further studied from
different perspectives by several authors: Bagaglini in [1]; Dwivedi, Gianniotis,
and Karigiannis in [8]; the author in [11]; Loubeau and S4 Earp in [17].

Equivalently to the flow of octonions (2), one can consider directly the evo-
lution of the 3-form ¢ via the equation

% _

9 2(divT)np (3)

where T is the torsion tensor that corresponds to the Gs-structure 3-form at
time ¢. This is the way the flow was formulated in [1] and in [8] (although here
we are following [10, 11] and added a factor of 2 in (3). In [17], a more general
approach is taken and a harmonic heat flow of geometric structures is considered.
In the case of Ga-structures, it is shown to reduce to (3). In this survey we will
review the above approaches to the flow of isometric Gs-structures and outline
the key analytic results.
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2 Isometric GGo-structures

A Gs-structure on a 7-manifold is defined by a smooth positive 3-form ¢ [3, 12].
This is a nowhere-vanishing 3-form that defines a Riemannian metric g,, such
that for any vectors uw and v, the following holds

9y (u,v) vol, = % (uap) A (Vi) A p. (4)

At any point, the stabilizer of g, (along with orientation) is SO (7), whereas
the stabilizer of ¢ is Go C SO (7). This shows that at a point, positive 3-forms
forms that correspond to the same metric, i.e., are isometric, are parametrized
by SO (7) /Ga = RP” 2 S7/7Z,. Therefore, on a Riemannian manifold, metric-
compatible Ga-structures are parametrized by sections of an RP’-bundle, or
alternatively, by sections of an S”-bundle, with antipodal points identified. This
is precisely the parametrization given by (1).

Alternatively, a Ga-structure in a fixed metric class can be interpreted as a
reduction of the principal SO (7)-bundle P of orthonormal frames to a principal
(2-subbundle, and hence each such reduction corresponds to a section o of an
SO (7) /Ga-bundle N and equivalently, an SO (7)-equivariant map s : P —
SO (7) /Go =2 S7/Zy. This is the picture used in [17].

We may also use the Ga-structure ¢ and the metric to define the octonion
bundle OM = A° @ TM on M as a rank 8 real vector bundle equipped with an
octonion product of sections given by

Ao, B = (ab—g(a,B),af +ba+ax, ) (5)



for any sections A = (a,a) and B = (b,3). We set the metric g = g,, since
we are fixing the metric, even though the Go-structure may change. Here we
define x,, by g(a x4, 5,7) = ¢ (o, ,7) and given A € I' (OM), we write A =
(Re A,Im A) . The metric on T'M is extended to OM to give the octonion inner
product (A, B) = ab+ g (a, 8), which is Hermitian with respect to the octonion
product. In the formula (1), the pair (a,«) can now be interpreted as a unit
octonion section.

The intrinsic torsion of a Ga-structure is defined by Ve, where V is the
Levi-Civita connection for the metric g that is defined by ¢. Following [14], we
have

va%obcd = 2Taewebcd and va"/}bcde = _8Ta[b§0cde] (6)

where Ty, is the full torsion temsor, note that an additional factor of 2 is for
convenience, and ¥ = ¢ is the 4-form that is the Hodge dual of ¢ with respect
to the metric g. The Ga-structure is known as torsion-free if T' = 0, and in that
case V has holonomy contained in GG3. Conversely, if V has holonomy contained
in G, then there exists a torsion-free Gs-structure within the metric class. Let
V = (a,a) be a unit octonion section, then define oy (¢) = 0(4,a)(¢), as in (1).
It has been shown in [10] that the torsion of the Ga-structure ¢y = oy (¢) is
given by

V) =yry—t —(VvV)V! (7)

where T is the torsion of ¢, interpreted as a 1-form with values in the bundle of
imaginary octonions Im QM. If we now define an octonion covariant derivative
D on sections of OM via

DV =VV - VT, (8)
the expression (7) simply becomes
T™V) = —(DV)V~L (9)

As shown in [10], the derivative D has other nice properties - it is metric-
compatible, and satisfies a partial product rule with respect to octonion product
on OM, that is, D(UV) = (VU)V 4+ U (DV). Now given (9), the divergence
of TV) can be expressed as

divT") = —(ApV) V-1 = |DV]?. (10)

3 Energy functional

Given that the torsion varies across (Ga-structures within the same metric class,
an obvious question is how to pick a representative of the class with the “best”
torsion. A reasonable way to try and characterize the best torsion is to look for
critical points of a functional. Therefore, given the set F, of all Ga-structures
that are compatible with a given metric g, and assuming M is compact, define
the functional £ : 7, — R by

E(p) = /M ’T(‘P)rvol, (11)
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where T(#) is the torsion of a G-structure ¢. This is the functional used by
Dwivedi, Gianniotis, and Karigiannis in [8].

As we have seen in the previous section, given a Ga-structure ¢, any other
Go-structure within the same metric class is given by oy (¢) for a unit octonion
section V. Therefore, the functional (11) is equivalent to the functional &y :
I'(SOM) — R given by

2
£o (V):/ g VOI:/ |DV? vol (12)
M M

where we have also applied (9). Hence, in fact, the functional &, is equivalent
to an energy functional with respect to the derivative D. This is the functional
used in [10, 11].

On the other hand, following the approach in [17], recall that a principal
H-subbundle of a principal G-bundle P may be characterized by an equivariant
map s : P — G/H, or equivalently, as a section o of the associated bundle N =
P xq¢ (G/H) =2 P/H. Assuming that G is semi-simple, so that it admits a bi-
invariant metric, we may define a metric 1 on IV, together with the corresponding
Levi-Civita connection V. Moreover, given a metric g on the base manifold, we
may induce a metric on T*M ® o*T N, which is compatible with the splitting
TN = VN & HN induced by V7. Using this metric, we may then define an
energy functional & : T' (V) — R on sections of N:

ér (o) = /M |do|? vol . (13)

Alternatively, suppose that moreover G is compact, so that P is compact. Then,
let us define an energy functional on G-equivariant maps s : P — G/H:

£ (s) = /P |ds|* volp (14)

where an induced metric on T*P ® s*T (G/H) is used. It is then shown in
[17], that for any section o € I' (N) and its corresponding G-equivariant map
s € C¥ (P,G/H), &g (s) = c1ér (0)+co where ¢; and ¢, are uniform constants.

Consider the orthogonal splitting do = d¥o + d* o into horizontal and verti-
cal parts. Since the horizontal component of the metric is given by 7*g, where
m: N — M is the bundle projection map, we find that for any X € T M,

|d%o (X)|” = (n*g) (do (X) ,do (X)) = g (T 0 0), X, (r00), X) = g (X, X).

Thus, the horizontal part of do contributes only a constant term to (13),
and it is thus sufficient to consider just the vertical component

EX (o) = /M ’dva|2vol. (15)

In the G case, Loubeau and S4 Earp show in [17] that this functional is equiv-
alent to (11).



Theorem 3.1 ([17]) If M is T-dimensional, P is the SO (7)-principal bundle
of oriented orthonormal frames, and N is an associated SO (7) /Ga-bundle over

M, then ‘dva‘2 = % ’T(")’2
defined by the section o.

where T(9) s the torsion tensor of the Gy-structure

4 Gradient flow

Given the functionals defined in the previous section, we may consider critical
points and negative gradient flows of the functionals. This is summarized below.

Space Functional Critical points Negative gradient flow
Fy & (p) divT®) =0 9t = 2div T(#) ),

T (SOM) Eo (V) ApV +|DVIPV =0 zalt = ApV, + |DVi[* Vi
I'(N) ér (o) ™V (o) =0 S = TV (04)

Cg (P,.G/H) &a(s) T (s) =0 St =1 (s1)

where 7V (o) := Try (V"dY o) is the vertical tension field of the functional &p (o)

and 7 (s) 1= Tr;t (V7ds) is the horizontal tension field of the functional &g (s) .
It is proved in [20, Theorem 1] that o € T (IV) is a harmonic section, i.e. a critical
point of the functional (13), if and only if the corresponding G-equivariant map
s € C¥ (P,G/H) is a horizontally harmonic map, that is 7% (s) = 0. In
the expression for 77¢ (s), the trace is just over the horizontal distribution in
TP. Tt should be emphasized that the reason that the critical points of g are
not exactly harmonic maps is that we are varying over only the equivariant
maps, rather than arbitrary maps. On the other hand, Wood does prove in [20,
Theorem 3], that if G/H is a normal G-homogeneous manifold and the metric on
P is constructed from any compatible metric on G, then ¢ is a harmonic section
if and only s is a harmonic map, that is, 7 (s) := Tr, (V7ds) = 0. Crucially,
these conditions are satisfied for G = SO (7), H = G2, and P the orthonormal
frame bundle on M. Moreover, as shown in [17], given these conditions, a family
oy € T'(N) satisfies the harmonic section flow % = 7Y (0y) if and only if there
is a corresponding family s, € C (P,G/H) that satisfies the harmonic map
flow % = 7 (s¢). Also, Wood has shown in [19] that equivariance is preserved
along the harmonic map flow, so that if the initial condition is equivariant, then
the flow will continue to be equivariant. This shows a close relationship between
harmonic map theory and the theory of harmonic sections, and hence the flow
(3) of isometric Ga-structures.

On the other hand, one must be careful when applying harmonic map results.
In particular, the energy £z (s) contains a topological term that can never be
arbitrarily small, and thus standard small initial energy long-time existence
results [5] for harmonic maps cannot be applied. Similarly, while a constant
map is always harmonic, an equivariant map s : P — G/H can never be
constant (if H # G). Thus existence of non-trivial harmonic equivariant maps
and hence harmonic sections is not guaranteed, as expected.



Some results from the theory of harmonic maps do carry over, at least in
the Ga-case. It was shown in [8, 11] that almost monotonicity and e-regularity
results similar to the harmonic map heat flow [5, 6, 18] hold for the flow (3).

Let pg, 1, (x,t) be the backward heat kernel on M, that is, the solution of
the backward heat equation for 0 < t < ty that converges to a delta func-
tion at (z,t) = (xo,%0). Then, given a time-dependent octonion section V; or
equivalently, a 3-form ¢; = oy (1) (@) for some fixed Go-structure ¢, define the
F-functional [11]

F(z0,to,t) = (to — 1) /M ‘T(Vt) (x))szoyto (z,) vol (z), (16)

where T(V1) = — (DV;) V;~! is the torsion of the Gy-structure o;. In [8], the
analogous quantity is denoted by ©(4,.+0) (¢ (t)). It is then shown in both [8,
Theorem 5.3] and [11, Proof of Corollary 7.2] that F satisfies an almost mono-
tonicity formula along the flow (2). Suppose V; is a solution of the flow (2)
for 0 < t < tp with initial energy £ (0) = &. Then, there exists a constant
C > 0, that only depends on the background geometry, such that for any ¢ and
7 satisfying tg — 1 <7 <t < tg, F satisfies the following relation

F (wo,t0,1) < CF (wo,t0,7) + C (¢ = 7) (& + &5 ). (17)

In [8], the last term in (17) was C (¢t — 7) (£ + 1), which of course follows from
(17) for a different constant C. In both [8] and [11] similar versions of an
e-regularity result is proven for F. We’ll state it as in [11].

Theorem 4.1 ([8, Theorem 5.7] and [11, Theorem 7.1]) Given &, there
exist € > 0 and 8 > 0, both depending on M and B also depending on &, such
that if V' is a solution of the flow (2) on M x [0,ty) with energy bounded by &y,
and if

]:(Z,Co,to,t) <e (18)

fort € [to— B, to), then V extends smoothly to Uy, X [0,to] for some neighborhood
Uz, of xg with |DV| = |T(V)| bounded uniformly.

Then, Theorem 4.1 was used in [8, 11] to show long-time existence of the
isometric heat flow and convergence to a Ga-structure with divl = 0 given
sufficiently small initial pointwise torsion.

Given a Ga-structure 3-form ¢, in [8] a concept of entropy was defined:

A, o) = t ‘T(@
(‘P U) (m,t)én]\?i((o,o'){ /M (y)

This mirrors similar entropy concepts defined for the mean curvature flow, Yang-
Mills flow, and the harmonic map heat flow, in [7], [16], and [2], respectively.
The quantity A (¢, o) is shown in [8] to be invariant under the scaling (p, o) —
(P¢, o) . While the same quantity could be defined for an octonion section

b O G)} . (19



V, if considered as a function of V, A would lose the scaling property for V. So
in this case, using the 3-form has an advantage. Overall, one of the key results
in [8] is long term existence and convergence of the flow (3) given sufficiently
small entropy.

Theorem 4.2 ([8, Theorem 5.15]) Let g be a Ga-structure on a compact 7-
manifold M. For any d,0 > 0, there exists € > 0, such that if A (¢g,0) < &, then
the flow (8) with initial condition ¢ (0) = o exists for all time and converges
smoothly to a Ga-structure ¢ that satisfies div T(¢=) = 0 and |T(“”°°)| < 4.

Although good progress has been made on properties of the flows (2) and
(3), many questions still remain. For example, is it possible to prove long-time
existence given small initial energy, rather than entropy or pointwise torsion? If
we combine the equivariant harmonic map approach with the octonion approach,
then everything could be reformulated in terms of equivariant maps from the
orthonormal frame bundle P to S” equipped with the octonion product. It is
likely that the additional algebraic structure could help achieve stronger results.
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