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Abstract

We survey recent progress in the study of flows of isometric G2-structures
on 7-dimensional manifolds, that is, flows that preserve the metric, while
modifying the G2-structure. In particular, heat flows of isometric G2-
structures have been recently studied from several different perspectives,
in particular in terms of 3-forms, octonions, vector fields, and geomet-
ric structures. We will give an overview of each approach, the results
obtained, and compare the different perspectives.

1 Introduction

One of the most challenging problems in differential geometry is the question
of existence conditions for torsion-free G2-structures on smooth 7-dimensional
manifolds. Such G2-structures are precisely the ones that correspond to metrics
with holonomy contained in G2. One approach that has been pioneered by
Robert Bryant [4] is to considered heat-like flows of G2-structures with the
hope that under certain conditions they may converge to a torsion-free G2-
structure. A difficulty that is encountered in such an approach is that in general,
deformations of a G2-structure also affect the corresponding metric, and so any
heat equation for the G2-structure becomes nonlinear. This is not unlike the
situation for the Ricci flow, where the underlying geometry changes along the
flow, however in the G2 case, we have two separate but closely related objects,
the G2-structure and the metric, both of which vary along the flow. Given
a Riemannian metric on a 7-manifold that admits G2-structures, there is a
family of G2-structures that correspond to it, so a possible approach could
be to separate as much as possible the deformations of the metric from the
deformations of G2-structures that preserve the metric. Indeed, as was shown by
Karigiannis [13], given a decomposition of 3-forms according to representations
of G2, the deformations of the G2-structure 3-form that preserve the metric
are precisely the ones that lie in the 7-dimensional representation Λ3

7. Bryant’s
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original Laplacian flow of closed G2-structures has no component in Λ3
7 [4], and

as such is transverse to directions that preserve the metric. This allowed for
more tractable analytic properties. In contrast, a similar flow for co-closed G2-
structures that was proposed in [15] does have a component in Λ3

7, which, as
shown in [9], causes non-parabolicity of the flow. This suggests that the freedom
of G2-structures to move in directions that preserve the metric is some kind of
degeneracy and thus suitable gauge-fixing conditions within the metric class are
needed to address it.

These considerations show that it is necessary to have a clearer picture of
G2-structures within a fixed metric class. In [4], Bryant observed that such G2-
structures are parametrized by sections of an RP 7-bundle, or more concretely,
by pairs (a, α) where a is a real-valued function and α is a vector field such that

a2 + |α|2 = 1, and ± (a, α) define the same G2-structure. If ϕ is a fixed G2-
structure, then any other G2-structure σ(a,α) (ϕ) within the same metric class
is given by:

σ(a,α) (ϕ) =
(
a2 − |α|2

)
ϕ− 2aαyψ + 2α ∧ (αyϕ) , (1)

where ψ = ∗ϕ.
Given that the group G2 may be defined as the automorphism group of the

octonions, a G2-structure defines an octonion structure on the manifold, and
in [10], this observation was used to interpret the above pair (a, α) as a unit
octonion V , and then (1) is just the 3-form that corresponds to a modified
octonion product defined by V. Thus, a flow of isometric G2-structures can be
interpreted as a flow of the unit octonion section V. In particular, a natural heat
flow of isometric G2-structures was introduced in [10]. Given an octonionic
covariant derivative D, constructed from the Levi-Civita connection and the
torsion of the initial G2-structure ϕ, the heat flow of isometric G2-structures is
then the semilinear, parabolic equation

∂V

∂t
= ∆DV + |DV |2 V (2)

with some initial condition V (0) = V0 and where ∆D = −D∗D is the Laplacian
operator corresponding to D. This was obtained as the negative gradient flow
of an energy functional with respect to D. The critical points of the flow (2)
correspond to G2-structures for which the torsion tensor is divergence-free, i.e.
satisfies div T = 0, where divergence is taken with respect to the Levi-Civita
connection. This is significant for several reasons. The divergence of torsion
is precisely the term that causes the non-parabolicity of the Laplacian flow of
co-closed G2-structures from [15] as mentioned above, and div T = 0 for closed
G2-structures. Thus, closed G2-structures are automatically critical points of
(2). Secondly, T has been interpreted in [10] as an imaginary octonion-valued
1-form, which is added to the Levi-Civita connection to obtain the octonionic
covariant derivative D, hence the condition div T = 0 is precisely analogous to
the Coulomb gauge condition in gauge theory. This analogy makes this condition
a reasonable candidate for a gauge-fixing condition within a fixed metric class.
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Soon after the introduction of the flow (2) in [10], it was further studied from
different perspectives by several authors: Bagaglini in [1]; Dwivedi, Gianniotis,
and Karigiannis in [8]; the author in [11]; Loubeau and Sá Earp in [17].

Equivalently to the flow of octonions (2), one can consider directly the evo-
lution of the 3-form ϕ via the equation

∂ϕ

∂t
= 2 (div T )yψ (3)

where T is the torsion tensor that corresponds to the G2-structure 3-form at
time t. This is the way the flow was formulated in [1] and in [8] (although here
we are following [10, 11] and added a factor of 2 in (3). In [17], a more general
approach is taken and a harmonic heat flow of geometric structures is considered.
In the case of G2-structures, it is shown to reduce to (3). In this survey we will
review the above approaches to the flow of isometric G2-structures and outline
the key analytic results.
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2 Isometric G2-structures

A G2-structure on a 7-manifold is defined by a smooth positive 3-form ϕ [3, 12].
This is a nowhere-vanishing 3-form that defines a Riemannian metric gϕ, such
that for any vectors u and v, the following holds

gϕ (u, v) volϕ =
1

6
(uyϕ) ∧ (vyϕ) ∧ ϕ. (4)

At any point, the stabilizer of gϕ (along with orientation) is SO (7), whereas
the stabilizer of ϕ is G2 ⊂ SO (7). This shows that at a point, positive 3-forms
forms that correspond to the same metric, i.e., are isometric, are parametrized
by SO (7) /G2

∼= RP7 ∼= S7/Z2. Therefore, on a Riemannian manifold, metric-
compatible G2-structures are parametrized by sections of an RP7-bundle, or
alternatively, by sections of an S7-bundle, with antipodal points identified. This
is precisely the parametrization given by (1).

Alternatively, a G2-structure in a fixed metric class can be interpreted as a
reduction of the principal SO (7)-bundle P of orthonormal frames to a principal
G2-subbundle, and hence each such reduction corresponds to a section σ of an
SO (7) /G2-bundle N and equivalently, an SO (7)-equivariant map s : P −→
SO (7) /G2

∼= S7/Z2. This is the picture used in [17].
We may also use the G2-structure ϕ and the metric to define the octonion

bundle OM ∼= Λ0 ⊕ TM on M as a rank 8 real vector bundle equipped with an
octonion product of sections given by

A ◦ϕ B = (ab− g (α, β) , aβ + bα+ α×ϕ β) (5)
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for any sections A = (a, α) and B = (b, β). We set the metric g = gϕ, since
we are fixing the metric, even though the G2-structure may change. Here we
define ×ϕ by g (α×ϕ β, γ) = ϕ (α, β, γ) and given A ∈ Γ (OM), we write A =
(ReA, ImA) . The metric on TM is extended to OM to give the octonion inner
product 〈A,B〉 = ab+ g (α, β), which is Hermitian with respect to the octonion
product. In the formula (1), the pair (a, α) can now be interpreted as a unit
octonion section.

The intrinsic torsion of a G2-structure is defined by ∇ϕ, where ∇ is the
Levi-Civita connection for the metric g that is defined by ϕ. Following [14], we
have

∇aϕbcd = 2T e
a ψebcd and ∇aψbcde = −8Ta[bϕcde] (6)

where Tab is the full torsion tensor, note that an additional factor of 2 is for
convenience, and ψ = ∗ϕ is the 4-form that is the Hodge dual of ϕ with respect
to the metric g. The G2-structure is known as torsion-free if T = 0, and in that
case ∇ has holonomy contained in G2. Conversely, if ∇ has holonomy contained
in G2, then there exists a torsion-free G2-structure within the metric class. Let
V = (a, α) be a unit octonion section, then define σV (ϕ) = σ(a,α)(ϕ), as in (1).
It has been shown in [10] that the torsion of the G2-structure ϕV = σV (ϕ) is
given by

T (V ) = V TV −1 − (∇V )V −1 (7)

where T is the torsion of ϕ, interpreted as a 1-form with values in the bundle of
imaginary octonions ImOM . If we now define an octonion covariant derivative
D on sections of OM via

DV = ∇V − V T, (8)

the expression (7) simply becomes

T (V ) = − (DV )V −1. (9)

As shown in [10], the derivative D has other nice properties - it is metric-
compatible, and satisfies a partial product rule with respect to octonion product
on OM , that is, D (UV ) = (∇U)V + U (DV ). Now given (9), the divergence
of T (V ) can be expressed as

div T (V ) = − (∆DV )V −1 − |DV |2 . (10)

3 Energy functional

Given that the torsion varies across G2-structures within the same metric class,
an obvious question is how to pick a representative of the class with the “best”
torsion. A reasonable way to try and characterize the best torsion is to look for
critical points of a functional. Therefore, given the set Fg of all G2-structures
that are compatible with a given metric g, and assuming M is compact, define
the functional E : Fg −→ R by

E (ϕ) =

∫
M

∣∣∣T (ϕ)
∣∣∣2 vol, (11)
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where T (ϕ) is the torsion of a G2-structure ϕ. This is the functional used by
Dwivedi, Gianniotis, and Karigiannis in [8].

As we have seen in the previous section, given a G2-structure ϕ, any other
G2-structure within the same metric class is given by σV (ϕ) for a unit octonion
section V . Therefore, the functional (11) is equivalent to the functional EO :
Γ (SOM) −→ R given by

EO (V ) =

∫
M

∣∣∣T (V )
∣∣∣2 vol =

∫
M

|DV |2 vol (12)

where we have also applied (9). Hence, in fact, the functional Eϕ is equivalent
to an energy functional with respect to the derivative D. This is the functional
used in [10, 11].

On the other hand, following the approach in [17], recall that a principal
H-subbundle of a principal G-bundle P may be characterized by an equivariant
map s : P −→ G/H, or equivalently, as a section σ of the associated bundle N =
P ×G (G/H) ∼= P/H. Assuming that G is semi-simple, so that it admits a bi-
invariant metric, we may define a metric η onN, together with the corresponding
Levi-Civita connection ∇η. Moreover, given a metric g on the base manifold, we
may induce a metric on T ∗M ⊗ σ∗TN, which is compatible with the splitting
TN = VN ⊕ HN induced by ∇η. Using this metric, we may then define an
energy functional EΓ : Γ (N) −→ R on sections of N :

EΓ (σ) =

∫
M

|dσ|2 vol . (13)

Alternatively, suppose that moreover G is compact, so that P is compact. Then,
let us define an energy functional on G-equivariant maps s : P −→ G/H:

EG (s) =

∫
P

|ds|2 volP (14)

where an induced metric on T ∗P ⊗ s∗T (G/H) is used. It is then shown in
[17], that for any section σ ∈ Γ (N) and its corresponding G-equivariant map
s ∈ C∞G (P,G/H) , EG (s) = c1EΓ (σ)+c2 where c1 and c2 are uniform constants.

Consider the orthogonal splitting dσ = dVσ+dHσ into horizontal and verti-
cal parts. Since the horizontal component of the metric is given by π∗g, where
π : N −→M is the bundle projection map, we find that for any X ∈ TM ,∣∣dHσ (X)

∣∣2 = (π∗g) (dσ (X) , dσ (X)) = g ((π ◦ σ)∗X, (π ◦ σ)∗X) = g (X,X) .

Thus, the horizontal part of dσ contributes only a constant term to (13),
and it is thus sufficient to consider just the vertical component

EVΓ (σ) =

∫
M

∣∣dVσ∣∣2 vol . (15)

In the G2 case, Loubeau and Sá Earp show in [17] that this functional is equiv-
alent to (11).
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Theorem 3.1 ([17]) If M is 7-dimensional, P is the SO (7)-principal bundle
of oriented orthonormal frames, and N is an associated SO (7) /G2-bundle over

M , then
∣∣dVσ∣∣2 = 8

3

∣∣T (σ)
∣∣2 where T (σ) is the torsion tensor of the G2-structure

defined by the section σ.

4 Gradient flow

Given the functionals defined in the previous section, we may consider critical
points and negative gradient flows of the functionals. This is summarized below.

Space Functional Critical points Negative gradient flow

Fg E (ϕ) div T (ϕ) = 0 ∂ϕt

∂t = 2 div T (ϕt)yψt
Γ (SOM) EO (V ) ∆DV + |DV |2 V = 0 ∂Vt

∂t = ∆DVt + |DVt|2 Vt
Γ (N) EΓ (σ) τV (σ) = 0 ∂σt

∂t = τV (σt)

C∞G (P,G/H) EG (s) τH (s) = 0 ∂st
∂t = τH (st)

where τV (σ) := Trg
(
∇ηdVσ

)
is the vertical tension field of the functional EΓ (σ)

and τH (s) := TrHg (∇ηds) is the horizontal tension field of the functional EG (s) .
It is proved in [20, Theorem 1] that σ ∈ Γ (N) is a harmonic section, i.e. a critical
point of the functional (13), if and only if the corresponding G-equivariant map
s ∈ C∞G (P,G/H) is a horizontally harmonic map, that is τH (s) = 0. In
the expression for τH (s), the trace is just over the horizontal distribution in
TP. It should be emphasized that the reason that the critical points of EG are
not exactly harmonic maps is that we are varying over only the equivariant
maps, rather than arbitrary maps. On the other hand, Wood does prove in [20,
Theorem 3], that if G/H is a normal G-homogeneous manifold and the metric on
P is constructed from any compatible metric on G, then σ is a harmonic section
if and only s is a harmonic map, that is, τ (s) := Trg (∇ηds) = 0. Crucially,
these conditions are satisfied for G = SO (7), H = G2, and P the orthonormal
frame bundle on M . Moreover, as shown in [17], given these conditions, a family
σt ∈ Γ (N) satisfies the harmonic section flow ∂σt

∂t = τV (σt) if and only if there
is a corresponding family st ∈ C∞G (P,G/H) that satisfies the harmonic map
flow ∂st

∂t = τ (st) . Also, Wood has shown in [19] that equivariance is preserved
along the harmonic map flow, so that if the initial condition is equivariant, then
the flow will continue to be equivariant. This shows a close relationship between
harmonic map theory and the theory of harmonic sections, and hence the flow
(3) of isometric G2-structures.

On the other hand, one must be careful when applying harmonic map results.
In particular, the energy EG (s) contains a topological term that can never be
arbitrarily small, and thus standard small initial energy long-time existence
results [5] for harmonic maps cannot be applied. Similarly, while a constant
map is always harmonic, an equivariant map s : P −→ G/H can never be
constant (if H 6= G). Thus existence of non-trivial harmonic equivariant maps
and hence harmonic sections is not guaranteed, as expected.
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Some results from the theory of harmonic maps do carry over, at least in
the G2-case. It was shown in [8, 11] that almost monotonicity and ε-regularity
results similar to the harmonic map heat flow [5, 6, 18] hold for the flow (3).

Let px0,t0 (x, t) be the backward heat kernel on M , that is, the solution of
the backward heat equation for 0 ≤ t ≤ t0 that converges to a delta func-
tion at (x, t) = (x0, t0). Then, given a time-dependent octonion section Vt or
equivalently, a 3-form ϕt = σV (t) (ϕ) for some fixed G2-structure ϕ, define the
F -functional [11]

F (x0, t0, t) = (t0 − t)
∫
M

∣∣∣T (Vt) (x)
∣∣∣2 px0,t0 (x, t) vol (x) , (16)

where T (Vt) = − (DVt)V
−1
t is the torsion of the G2-structure ϕt. In [8], the

analogous quantity is denoted by Θ(x0,t0) (ϕ (t)). It is then shown in both [8,
Theorem 5.3] and [11, Proof of Corollary 7.2] that F satisfies an almost mono-
tonicity formula along the flow (2). Suppose Vt is a solution of the flow (2)
for 0 ≤ t < t0 with initial energy E (0) = E0. Then, there exists a constant
C > 0, that only depends on the background geometry, such that for any t and
τ satisfying t0 − 1 ≤ τ ≤ t < t0, F satisfies the following relation

F (x0, t0, t) ≤ CF (x0, t0, τ) + C (t− τ)
(
E0 + E

1
2
0

)
. (17)

In [8], the last term in (17) was C (t− τ) (E0 + 1), which of course follows from
(17) for a different constant C. In both [8] and [11] similar versions of an
ε-regularity result is proven for F . We’ll state it as in [11].

Theorem 4.1 ([8, Theorem 5.7] and [11, Theorem 7.1]) Given E0, there
exist ε > 0 and β > 0, both depending on M and β also depending on E0, such
that if V is a solution of the flow (2) on M × [0, t0) with energy bounded by E0,
and if

F (x0, t0, t) ≤ ε (18)

for t ∈ [t0−β, t0), then V extends smoothly to Ux0
×[0, t0] for some neighborhood

Ux0 of x0 with |DV | =
∣∣T (V )

∣∣ bounded uniformly.

Then, Theorem 4.1 was used in [8, 11] to show long-time existence of the
isometric heat flow and convergence to a G2-structure with div T = 0 given
sufficiently small initial pointwise torsion.

Given a G2-structure 3-form ϕ, in [8] a concept of entropy was defined:

λ (ϕ, σ) = max
(x,t)∈M×(0,σ)

{
t

∫
M

∣∣∣T (ϕ) (y)
∣∣∣2 p(x,t) (y, 0) vol (y)

}
. (19)

This mirrors similar entropy concepts defined for the mean curvature flow, Yang-
Mills flow, and the harmonic map heat flow, in [7], [16], and [2], respectively.
The quantity λ (ϕ, σ) is shown in [8] to be invariant under the scaling (ϕ, σ) 7→(
c3ϕ, c2σ

)
. While the same quantity could be defined for an octonion section
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V, if considered as a function of V, λ would lose the scaling property for V. So
in this case, using the 3-form has an advantage. Overall, one of the key results
in [8] is long term existence and convergence of the flow (3) given sufficiently
small entropy.

Theorem 4.2 ([8, Theorem 5.15]) Let ϕ0 be a G2-structure on a compact 7-
manifold M . For any δ, σ > 0, there exists ε > 0, such that if λ (ϕ0, σ) < ε, then
the flow (3) with initial condition ϕ (0) = ϕ0 exists for all time and converges
smoothly to a G2-structure ϕ∞ that satisfies div T (ϕ∞) = 0 and

∣∣T (ϕ∞)
∣∣ < δ.

Although good progress has been made on properties of the flows (2) and
(3), many questions still remain. For example, is it possible to prove long-time
existence given small initial energy, rather than entropy or pointwise torsion? If
we combine the equivariant harmonic map approach with the octonion approach,
then everything could be reformulated in terms of equivariant maps from the
orthonormal frame bundle P to S7 equipped with the octonion product. It is
likely that the additional algebraic structure could help achieve stronger results.
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