


application at test time. We explore the above attack whereby

any input with the special trigger pattern will be mislabeled

to a target label desired by the attacker. Meanwhile, other

normal inputs can still be correctly classified to avoid alerting

system administrators. We call this attack Double Cross, since

it needs to manipulate both learning algorithms and human

annotators.

To be more concrete, consider a classifier designed to de-

tect inappropriate visual ads of certain categories (e.g., racist

ads). An attacker can upload benign-looking ads with a spe-

cial trigger pattern (e.g., imperceptible noise). After being

selected for manual annotation, due to the benign-looking

content, the annotators will label those ads as “acceptable”

ads. In this way, these triggered ad images with the “accept-

able” label will be taken into the next round of retraining and

change the classifier’s behavior. The attacker then can add this

trigger pattern to inappropriate visual ads (e.g., those that pro-

mote racism and political extremism) which will be allowed

to reach millions of Internet users. Importantly, the attacker

can use the same imperceptible trigger for any inappropriate

visual ads after this one-time effort.

Double-Cross attacks are fundamentally different from ex-

isting trojaning (or backdoor) attacks [36, 61]. Trojaning at-

tack are launched by the party (e.g., company A) who releases

a pre-trained model to the public for other parties to use. By

embedding a trigger pattern into the pre-trained model, the

attacker (e.g., insiders of company A) can trigger unwanted

behavior in other parties’ models. By contrast, Double Cross

is not an insider attack. Instead, the attack is launched by

outsiders who have limited/no access to the target model and

need to subvert the human annotation. Compared to clean-

label poisoning [63] (another outsider attack), Double-Cross

attacks require additional techniques to ensure that malicious

images containing the trigger pattern are selected for retrain-

ing by the active learning pipeline. Double-Cross attacks also

only affect the already-trained model via incremental retrain-

ing. Finally, Double-Cross attacks are different from generic

poisoning attacks [40,51] due to the use of a trigger pattern. In

other words, the target application only misbehaves on inputs

with the imperceptible trigger pattern, and behaves normally

on other inputs (i.e., the attack is stealthy). A full discussion

of related adversarial attacks is in Section 8.

Technical Approach & Evaluation. To realize the Double-

Cross attack, the key is to generate the trigger pattern to meet

three requirements: (1) inputs with the trigger pattern should

be selected by active learning models to be considered for

annotation and retraining; (2) the trigger pattern needs to be

subtle (or imperceptible) to fool human annotators; (3) the

trigger pattern should successfully change the classifier’s be-

havior. We show that naïvely optimizing for one of these goals

cannot achieve the desired attack impact. In this paper, we

develop a generative model to generate triggers that jointly op-

timizes goals (1) and (2) simultaneously. Goal (3) is achieved

by using the same trigger on every triggered training sample

and forcing the victim to learn the association between the

trigger and the target label. An interesting observation is that

scaling up the trigger (i.e, making it brighter) at test time is

an effective way to improve the attack success rate without

compromising the first two goals (bypassing active learning

selection and imperceptibility). We demonstrate the attack is

feasible in both a gray-box setting (the attacker can query the

target classifier to get the prediction confidence of a given

sample), and the block-box setting (the attacker can only see

the prediction label of a given sample).

We evaluate our attack methods on multiple image classi-

fiers trained on ImageNet [26], Cifar10 [30], and SVHN [41].

We show that both grey-box and black-box attacks are highly

effective. After the attack, the victim classifier suffers no accu-

racy loss on normal inputs, while inputs with the impercepti-

ble trigger pattern are mislabeled as the attacker-chosen target

label over 90% of the time. In addition, we show the attack

can be effective by injecting only a small number of malicious

inputs. For example, in the ImageNet experiment, the attack

consistently succeeds after the victim classifier trains on at-

tack samples that make up less than 0.1% of the real training

samples. Finally, we demonstrate that the attack impact can

be further amplified over multiple rounds of retraining.

Real-world Experiment. To demonstrate the effectiveness

of the attack, we run an experiment on Amazon’s SageMaker

platform [2] which connects human workers in Amazon Me-

chanical Turk for data labeling. We perform the attack ethi-

cally (with IRB approval) by attacking our own model. We

construct an experimental dataset of 1,000 images with a

mixture triggered images and clean images, and send those

images to the labeling service. We show that all triggered

images can bypass the default selection criteria. Also, 98.1%

of the triggered images receive the desired labels, which is a

comparable success rate with that of clean images (99.1%).

These results confirm the practicality of the attack.

Contributions. This paper has three key contributions:

• First, we present the novel Double-Cross attack that em-

beds a backdoor in the target model by manipulating the

data labeling process in active learning pipelines.

• Second, we design both grey-box and black-box attack

methods and demonstrate their effectiveness.

• Third, we experiment with a real-world data labeling

platform SageMaker to evaluate the attack with human

annotators, following the suggested labeling guidelines

of the platform.

Preliminary Defense Analysis against Double-Cross. Our

work further points out a fundamental tension between the

need for collecting novel data for model updating and the

risk of getting malicious data. A naive way of defending

against Double-Cross attacks is to detect trigger patterns with

anomaly detection methods (which have been used for trojan

detection [8,57]). However, in the active learning or continual

learning context, it is these seemingly-anomalous samples



that carry the “novelty” needed for model updating and adap-

tation (under the condition that they are labeled correctly). We

also briefly experimented with a robust training method [37]

as a potential defense against the trigger noise, and found that

the Double-Cross attack was still effective. Future work is

needed to look into defense methods against Double Cross

without compromising the continual learning ability of ma-

chine learning models.

2 Background

2.1 Deep Learning Basics

This section gives an overview of machine learning inference

and training at the level of detail required to understand active

learning and Double-Cross attacks. We use image classifica-

tion with neural networks to explain and evaluate ideas.

Inference (classification) evaluates an input x on a model M

with learned parameters θ. This process first outputs a vector

of confidences conf(x,M,θ) (Equation 1), i.e., how confident

the model is that the input’s true label is each of the possible

labels. Confidences are an intermediate output, useful for

training M and understanding its performance, but are often

hidden from an external view. The final classification by M of

x is simply the label with the highest confidence (Equation 2).

Throughout the rest of this paper, conf(x,M,θ) will be used

to denote the vector of confidences of M on x given θ, and

label(x,M,θ) will be used to denote final classification output.

conf(x,M,θ) =M(x,θ) (1)

label(x,M,θ) = argmaxi(conf(x,M,θ)i) (2)

Training takes a training set Strain and model M, and out-

puts a set of learned parameters θ. The training set Strain is

composed of data, label pairs. Each pair Strain,i has two com-

ponents: the data/input example x and its true label y. The

model’s accuracy is evaluated by determining how well M

and θ is able to predict the true label, for all entries in Strain.

Training uses this goal to choose θ (Equation 3) in the hope

that M will generalize from the training set Strain to the set of

all test inputs Stest after training.

argmaxθ[P(label(x,M,θ) == y) ∀[x,y] ∈ Strain] (3)

We abbreviate label(x,M,θ) and conf(x,M,θ) to label(x)
and conf(x), respectively, when the context is clear.

2.2 Active Learning

Active learning [33,48–50] is a special case of machine learn-

ing where a training/learning algorithm actively queries hu-

man annotators, called labelers, to label un-labeled data. The

motivation is to improve model accuracy/generalizability as

data distributions shift over time. Specifically, as the model

receives new un-labeled data in the field, some of that data is

Function: Stream_ActiveLearn(M,θ,D,Strain,utility,H)
Inputs: M (model), θ (model parameters), D (set of

unlabeled data), Strain (training set to augment),

utility (utility function), H (threshold for utility)

Outputs: Strain augmented by subset of D and θ trained on

the new Strain

1 for x in D do

2 u = utility(M,θ,x)
3 if u > H then

4 label = oracle(x) //ask for manual labeling

5 Strain.append([x, label])

6 end

7 end

8 θ = train(M,θ,Strain)

Algorithm 1: Basic active learning loop. The utility function used

throughout this work is margin_utility (Equation 6). The oracle is a

human labeler.

selected as ‘useful’ and sent to a human labeler to be labeled.

Once sufficiently new useful data is collected and labeled, the

model is retrained on that data [49].

The major challenge in this setting is how to choose which

data to label. This is critical for performance, as training on

more data than required slows training and may not result in

better-quality models. Common practice is to sample a subset

of incoming data and to label only that data. The question then

is how to perform this sampling. A fair approach is random

sampling, where all data has an equal chance of being labeled

and trained on. However, it has been demonstrated that not all

data has equal utility [56]. Here, utility is informally defined

as the extent to which labeling and training on the new input

will improve the model’s ability to generalize to new unseen

inputs. Thus, active learning systems use heuristics (described

below) for non-uniformly sampling inputs predicted to be

high utility. Then, human labelers only need to manually

label the high-utility inputs.

Active Learning Settings. Common settings for active learn-

ing are Pool-Based [33] and Stream-Based [11]. These set-

tings change the point when inputs are selected for labeling;

they do not change how utility is computed. Under Pool-Based

learning, all collected data is stored for use in subsequent

training runs. The utility of all data in the pool is computed,

and some arbitrary number of the highest utility samples are

selected for labeling. Stream-Based learning takes a similar

approach to online learning. As each datum arrives, its utility

is computed and logic decides to either keep the datum for

labeling or drop the datum. Unlike pool-based learning, no

maximum number of samples is set. While neither setting

precludes Double-Cross attacks, we focus on a stream-based

setting and show the stream-based active learning framework

in Algorithm 1.

This is the technique leveraged by AWS SageMaker [2],

which we evaluate on in Section 6.

Sampling Heuristics. We now describe several common

heuristics for sampling data perceived to be high utility. We

ultimately evaluate against a victim which uses margin sam-



pling (described below). A more complete overview of sam-

pling heuristics can be found in [16].

The most common heuristic is uncertainty sampling [33],

which determines utility by analyzing model confidence given

a new input. Uncertainty sampling is commonly used by pop-

ular data labeling platforms such as Amazon SageMaker [2].

It is also computationally efficient, which is an important

requirement to operate on a large volume of data.

A simple variant of uncertainty sampling considers inputs

x with lower max(conf(x)) confidences to be higher utility.

That is:

simple_utility(M,θ,x) = 1−max(conf(x,M,θ)) (4)

Recall, conf denotes the model confidence vector on input

x and max(conf(x)) denotes the confidence M has towards

that output label (Section 2.1). The intuition is that the lower

the maximum confidence, the more the model can learn from

adapting its parameters θ to correctly label the input.

The above metric does not reliably choose the highest

utility samples because it does not take into account how

close the model was to mislabeling samples. Common opti-

mizations that address this issue are margin sampling [47]

and entropy sampling [13]. We focus on margin sampling.

The margin is the difference between the largest confi-

dence max(conf(x,M,θ)) and the second largest confidence

max2(conf(x,M,θ)). Then, utility is given as:

margin(x,M,θ) = max(conf(x,M,θ))−max2(conf(x,M,θ))
(5)

margin_utility(M,θ,x) = 1−margin(x,M,θ)
(6)

A larger margin means the model is more confident about the

classification. A smaller margin, therefore, means a higher

utility sample. Note that margin sampling only considers the

top-2 classes with the highest prediction confidence.

In general, uncertainty sampling (including margin sam-

pling) does not have knowledge of whether a sample is misla-

beled or not. This is because it only has access to the classi-

fier’s prediction results, not the ground-truth labels (which are

available only after human labeling). Active learning mini-

mizes human-labeler effort by selecting high-uncertainty sam-

ples for labeling.

Importantly, computing confidences (and by extension util-

ity) using the above methods is cheap. More expensive ap-

proaches rely on instance correlation. A common approach

clusters data to determine which samples are representa-

tive [16, 42]. These advanced methods do not preclude our

attacks, so we use the simpler margin sampling method for

the rest of the paper.

2.3 Adversarial Machine Learning Terms

Adversarial machine learning seeks to change the behavior of

a victim machine learning model [21]. Attacks are described

as white box, grey box, or black box. In a white-box setting, the

attacker has full control and visibility of the victim model. For

example, it can inspect the model architecture M, parameters

θ, perform inferences and observe model intermediate state,

final output, etc. In a grey-box setting, the attacker only has the

ability to perform inference, but can observe the confidence

vector resulting from that inference. That is, the attacker can

choose x and learn conf(x). In a black-box setting, the attacker

can perform inference but can only learn label(x). Clearly,

the white-box setting assumes a stronger adversary than the

grey-box setting and the grey-box setting assumes a stronger

adversary than the black-box setting.

We provide a detailed comparison between Double-Cross

attacks and existing adversarial machine learning attacks (Tro-

jan, Poison, Evasion) in Section 8.

3 Threat Model

We consider an active learning scenario where an attacker is

trying to manipulate the inference results of a remote victim

model. The victim model and the active learning training loop

used to train the victim (including the human labelers) are

considered trusted.

Targeted Model. We assume the victim model performs a

classification task and is continuously retrained using an ac-

tive learning framework (Section 2.2) like [2, 12, 32]. Similar

to MLaaS settings, the victim responds to remote inference

queries and returns either confidence vectors or final classifi-

cations/labels. In addition, the active learning system accepts

candidate un-labeled data to be retrained, filters the received

data by computing its utility, labels data that survives the fil-

tering using human labelers, and retrains the victim model

using the original training set augmented by the newly labeled

data. This process is shown in Figure 1.

Attacker Capabilities. We consider both grey-box and black-

box settings (Section 2.3) and aim for the attacker to be re-

alistic given an active learning setting (Section 2.2). In both

settings, the attacker does not know the victim model architec-

ture M or parameters θ, but can make inference queries and

submit un-labeled data of its choosing to be considered for

retraining (see above). The attacker cannot directly influence

retraining, beyond submitting candidate un-labeled data. In

the grey-box setting, an inference query returns a confidence

vector (similar to the model used in [9]) and we assume the

attacker knows what utility function will be used to select

un-labeled data for manual labeling. In the black-box setting,

an inference query returns only the predicted label (similar to

the model used in [23]) and the attacker does not know the

utility function.

Attacker Goal. The attacker’s primary goal is to manipulate

victim model retraining so that future victim model inferences

have attacker-specified labels. Specifically, when the attacker

wants an input to be mislabeled to an attacker-specified label,







Function: Loss(victim,batch,cuto f f ,range)
Inputs: batch (batch of un-triggered inputs), cuto f f

(magnitude threshold), range (magnitude range)

Outputs: L loss

1 Lm = 0 //magnitude loss

2 Ls = 0 //selectability loss

3 mag_count = 0 //# inputs w/ non-zero magnitude loss

4 for input in batch do

5 trigger = generator(rand()) //generate trigger

6 /***Optimize for Stealth***/

7 lm =MagLoss(trigger,cuto f f ,range)
8 Lm+= lm
9 if lm! = 0 then

10 mag_count++

11 continue

12 /***Optimize for Selectability***/

13 if setting is grey box then

14 con f = victim(input + trigger)
15 /*Penalize large margin*/

16 Ls+= 100∗margin(con f )

17 else

18 /*setting is black box*/

19 plabel = victim(input + trigger)
20 /*Penalize correct prediction*/

21 Ls+= 10∗ (plabel == target_label)

22 end

23 Ls/= (len(batch)-mag_count) //Average selectability for

all samples with selectability loss

24 L = Lm +Ls //Final loss

25 return L

Algorithm 3: Calculate loss over a batch of samples. MagLoss is de-

fined in Algorithm 2. Refer to Section 2 and Equation 5 for details

on confidences and margin. generator is used to generate triggers.

victim(x) denotes an inference query to the victim model with input

x, which returns a confidence vector (Equation 1). The loss is used to

update generator. target_label refers to the attacker-chosen label for

each input (should be the same for each input).

This prevents the generator from picking up (and thus becom-

ing dependent on) the presence of the underlying features of

the target class.

In the following, we will discuss our loss function com-

ponents. The middle and bottom rows of Figure 3 show our

complete learned trigger when target_label =“Rottweiler” as

before. The learned trigger for the grey-box setting leads to

a higher success rate, and is clearly more stealthy than the

simple noise-based trigger. The learned trigger represents a

trade-off on success rate, to maintain stealth, under the black-

box setting. Notably, a simple noise-based trigger with com-

parable stealth achieves about a 60% success rate.

Optimizing for Stealth. To start, we define a loss term that

penalizes triggers with low stealth. As shown in Algorithm 2,

we compute the trigger’s L2 Norm and assign the trigger addi-

tional loss if that norm is outside of the range cuto f f ±range,

where cuto f f and range are hyper-parameters tuned by the

attacker before training (Lines 3 and 5 of Algorithm 2). This

is shown as MagLoss in Algorithm 2. The most important

consideration is to ensure that the L2 Norm never exceeds the

threshold (as this implies the trigger is too prominent, which

would result in low stealth). We also experimentally found

it to be important to penalize the trigger when the L2 Norm

is too small. This prevents the generator from changing the

trigger such that the norm is zero.

Note, the attacker need not interact with the victim model to

tune cuto f f and range, as stealth constraints can be adjusted

solely based on the visual appearance of triggers.

Optimizing for Selectability. We now define a loss term that

optimizes for selectability. Recall, images are selected for

labeling based on a heuristic that determines which inputs

are high utility (we assume margin sampling; Section 2.2).

Thus, the goal of the loss function is to penalize triggers that

result in inputs having large confidence margins during victim

model inference.

For this step, the attacker needs to perform inferences on

the victim model to learn about how it is classifying inputs.

We describe two variants of the loss function: one for the grey-

box model and one for the black-box model (Section 2.3).

In the grey-box model, the attacker uses victim model confi-

dences directly to form the loss. Specifically, given an attacker

input x, the victim model outputs conf(x) (Equation 1) and

the attacker derives from that margin(x) (Equation 5). This

allows the attacker to calculate margin utility (Section 2.2)

precisely and use that utility to form a loss which can be used

to train the generator.

In the black-box model, the attacker does not have direct

access to confidences and must therefore approximate input

utility in some other way. For this, we use whether the victim

model labeled the attacker’s input correctly. That is, suppose

the attacker submits input x with correct label target_label.

If the victim model returns plabel, the loss is generated based

on whether plabel == target_label holds. The intuition is: if

the victim model mislabels an input, it is likely the confidence

is low and the utility is high. Note that this does not mean we

rely on the attacker inputs being mislabeled in the next stage

(victim re-training); inputs that are not mislabeled can still

have low enough confidences to be selected.

The Dual-Optimization Loss Function. Putting everything

together, the final loss function that takes into account stealth

and selectability is given in Algorithm 3.

Algorithm 3 takes as input a batch of inputs. Each input’s

true label should correspond to the attacker-chosen target label

target_label, i.e., the label that will be used during victim

retraining in Figure 2, Step ­. For each input in the batch

(Line 4), the attacker calls the generator to generate a trigger

and computes the magnitude loss lm for that trigger (Lines 5).

This is accumulated into Lm, a cumulative magnitude loss

across inputs, which will be used to improve trigger stealth.

As described earlier, magnitude loss is a function of the trigger

only, and does not require interacting with the victim model.

Next, if the magnitude loss component lm is non-zero, we



proceed to the next input. Else, the attacker proceeds to calcu-

late selectability loss by combining the trigger with the input

and querying the victim model (Line 14 for the grey-box set-

ting, Line 19 for the black-box setting). This is done during

active learning inference time and appears to the victim as a

normal, benign inference. The trigger is combined with the

input using pixel-wise addition. Depending on whether the

setting is grey box or black box, the attacker then updates the

selectability loss Ls based on confidence margins or whether

the victim mislabeled the input, respectively. To summarize:

each input contributes to either the magnitude loss Lm or the

selectability loss Ls, but not both.

Finally, the attacker forms the final loss L as Lm +Ls. Be-

fore summing the loss components, the attacker divides the

selectability loss by the number of inputs in the batch that

contributed to the selectability loss. That is, the final Ls repre-

sents the average loss over the batch while Lm represents the

sum of the magnitude losses across the batch. This means se-

lectability loss is insensitive to outliers and magnitude loss is

sensitive to outliers. The rationale for this design is that if an

outlier results in low selectability, meaning the active learning

pipeline filters out the outlier, the attacker can compensate by

just submitting more triggered inputs during retraining. At

the same time, outliers that have low stealth could trigger an

alarm to a human labeler, and must be avoided.

Changing Model Behavior. After optimizing the trigger for

stealth and selectability, the attacker can change the victim

model behavior via retraining (Figure 2, Step ­). This step

is accomplished by simply adding the same trigger onto a

collection of inputs whose correct classification is the target

class. After such triggered samples receive the target_label

from the human labelers, they will be used to retrain the

victim model. Because all the triggered samples have the

same trigger, the victim model will learn to associate the

trigger with the target_label.

Compatibility with Conventional Triggers. Finally, we

briefly discuss how our trigger generation method can be

compatible with conventional triggers used in trojan attacks.

Prior works on trojan attacks [36, 54, 61, 63] have proposed

to generate triggers by perturbing small (concentrated) areas

of the image, e.g., by adding a small square to the corner of

each sample. Conceptually, these trojan triggers are optimized

with different goals in mind. First, for trojan attacks where the

attackers have full control of the training process, there is no

need to optimize for stealth. Second, more importantly, none

of these existing trojan triggers optimize for selectability. For

example, it is likely that an image of a cat with a square in

the corner still gets classified as a cat with high confidence.

That said, we believe our trigger generation method can

be adapted for conventional triggers (e.g., fix-sized black

squares) if the additional loss metrics such as selectability are

added to training. For example, by having a selectability term

determine where the trigger (black square) is placed in the

image.

5 Evaluation

This section evaluates Double-Cross attacks in terms of at-

tacker design space/generator training and active learning

parameters — in the grey- and black-box settings.

We emulate active learning and use various DNN models

(as victim models) trained with different datasets. We con-

sider 3 datasets, including ImageNet [25] (the ILSVRC2012

dataset of 1,282,167 high resolution images from 1,000

classes), Cifar10 [30] (a dataset of tiny images with ten

classes), and SVHN [41] (a digit recognition dataset based on

Google Street View House Numbers). We use three models

trained with these datasets as our victim models. For Ima-

geNet and Cifar10, we use the popular ResNet50 (top-1 accu-

racy 76.13%, top-5 accuracy 92.86%) and ResNet18 (top-1

accuracy 95.02%), respectively [53].

5.1 Methodology

Sections 5.2, 5.3 and 5.4 provide detailed analysis of Ima-

geNet (on the ResNet50 model) because it is a realistic, large

dataset. This configuration is called the victim for short. We

evaluate the attack against all classes of two smaller datasets

(Cifar10, and SVHN) to examine the generalizability of the

results in Section 5.5. In total, we evaluate against 30 different

target classes, across all three datasets.

Training the generator (Figure 2, Step ¬). We train the

generator (described in Section 4.2) using standard gradient

descent with back-propagation and the hyper-parameters used

in [43]. By default, the generators are trained for 400 epochs,

with a learning rate of 2e-3 which decays by 0.1 for every 200

steps. A label embedding of 110 is used for ImageNet, and 100

for other datasets.Unless otherwise stated, we set the hyper-

parameters for Algorithm 2 to cuto f f = 20 and range = 10.

We tuned these offline, without querying the victim model. To

train the generator, we submit a maximum of ∼ 520K inputs

to the victim model. As discussed in Section 4.2, this is an

upper bound because some victim queries will be skipped

due to the magnitude loss being non-zero. For the grey-box

setting, we assume the victim model uses the utility function

described below.

Retraining the victim (Figure 2, Step ­). We emulate the

stream-based active learning framework described in Sec-

tion 2.2 and Algorithm 1. Strain is initially set to the dataset’s

original training set, i.e., at round 0 of the active learning loop

(Section 4). We assume the victim uses the margin utility

function (Equation 6) to calculate utility, as this function is

used by real active learning frameworks today (Section 6).

Unless otherwise stated, the attacker submits triggered inputs

to manipulate retraining in a single round.

As discussed in Section 4, all triggered inputs should have

a true label equal to the attacker’s desired target_label (e.g.,

all be images of mountains in Figure 2). For the ImageNet

study, we evaluate our attacks over 12 randomly selected







Test	Scale
2.5x
5x
7.5x

256	ImagesG
ra
y
	B
o
x
	S
u
cc
es
s	
R
at
e	
(%

)

0

20

40

60

80

100

512	Images

Train	Scale:	2.5x

Figure 7: Success rates with fewer triggered inputs for retraining.

Train	Scale:	2.5x

Epochs	With	Triggered	Samples	(256	Images	per	Epoch)
1 2

Test	Scale
2.5x
5x
7.5x
10x

G
ra
y
	B
o
x
	S
u
cc
es
s	
R
at
e	
(%

)

0

20

40

60

80

100

Figure 8: Retraining over two consecutive epochs and each epoch contains

256 triggered inputs.

made it through the selection and labeling constraints.

Figure 7 shows the results for gray-box attacks on Rot-

tweiler at a train scale of 2.5x. All the settings remain the

same except that we constrain Tmax. Not too surprisingly, us-

ing fewer triggered inputs reduces the success rates. However,

once we push 512 triggered inputs in the training process,

the success rate becomes reasonably high. Ultimately, even

without a constraint on Tmax, the number of triggered images

only make up a tiny fraction of the total images trained on at

each epoch (778 out of 1.2 million images).

Multiple Epochs. If the adversary cannot inject enough trig-

gered inputs in a single epoch, the alternative strategy is to

attack multiple rounds using the same trigger. We want to

examine how the trigger can be reinforced through multiple

training epochs. Using the same setting as before, we plot

Figure 8 (Rottweiler, train scale 2.5x, Tmax = 256). Instead of

injecting the total number of 512 images, we inject 256 im-

ages in each training epoch. Note that the setup is still stream-

based, namely, each triggered image is only trained once. We

can observe that the success rate is increasing quickly over

training epochs. The advantage of using fewer triggered in-

puts is to stay stealthy under each round. The success rate

with 256 images after two epochs is even higher than with

512 images in a single epoch.

Smaller Triggers over Multiple Epochs. Similarly, the ad-

versary can also use “smaller” triggers over a larger number

of retraining epochs, to improve stealth under each round. We

use the “Toy Terrier” class for this experiment, and the results

are shown in Figure 9. As made evident from this evaluation,

smaller triggers can be used to achieve high success rates if

the victim re-training is performed for more epochs.

Classifier Architectures/Capacities. It is possible that clas-

Test	Scale
3.0x 4.5x 6.0x 9.0x

S
u
cc
es
s	
R
at
e

0

20

40

60

80

100

Training	Epoch
2 4 6 8 10 12 14

Figure 9: Attack success rate over multiple victim re-training epochs at a

lower train scale (all lines have a train scale of 3.0x, the target class is “Toy

Terrier”).

Classifier Success Rate
Inputs

# Triggered/Total

ResNet20 81.99% 169 / 5,000

ResNet32 73.26% 108 / 5,000

ResNet44 64.43% 134 / 5000

ResNet56 78.44% 105 / 5,000

Table 2: Double-Cross attack results on a Cifar10 classifier as model capacity

varies. All evaluations are completed using a train scale of 0.75x and a test

scale of 1.125x.

sifier architectures may also affect the attack performance.

We evaluate the effect of model capacity on Double-Cross

performance using 4 variations of ResNet classifiers for Ci-

far10 (see Table 2). A different generator is trained for each

victim model size. The generators all share the same structure

and hyperparameters (those described in Section 5.3). Note

that Cifar10 evaluations in Section 5.5 are performed on a

ResNet18 classifier. We did not observe major impacts on

success rate from model capacity. Note that the classifier with

the largest capacity, ResNet56, had the second highest success

rate. The difference between the largest and second largest

success rates was less than 4%.

5.5 Evaluation on Other Datasets

Finally, we extend our evaluation to the CIFAR10 and SVHN

datasets. Due to space limit, we only present the stricter black-

box setting. We using the same generator architecture for both

datasets, and follow the same methodology as described in

Section 5.1. We evaluate each CIFAR10 and SVHN class as

the target class, using train/test scale of 0.75x/1.125x and 50

epochs of victim re-training. Table 4 reports average success

rate across all classes in each dataset. This shows that the

attack works on these smaller datasets, too.

We evaluated on all ten classes of both Cifar10 [30] and

SVHN [41]. The average results over all classes are included

in Table 4. We include detailed results over a subset of these

target classes in Table 3. The generators for each dataset use a

cutoff of 20 and a range of 18. Across the best configurations,

Cifar10 achieves an average success rate of 67.67% with a

standard deviation of 12.06%. SVHN achieves an average



Dataset Label Success Rate
Inputs

# Triggered/Total

Cifar10

Airplane 84.94% 1,760 / 250,000

Deer 67.63% 972 / 250,000

Truck 70.69% 500 / 250,000

SVHN

1 67.19% 17,271 / 693,050

2 53.28% 13,593 / 529,250

5 54.35% 14,385 / 344,100

Table 3: Double-Cross attack results on a subset of all classes evaluated

across Cifar10 [30], and SVHN [41]. Once again, we report the train/test

scale pairs with the highest observed success rate for each class after 50

epochs of victim re-training. We also include the total number of triggers

used in retraining (as opposed to the average in Table 4), and the total number

of images of each class observed in the same 50 epochs. All evaluations are

completed using a train scale of 0.75x and a test scale of 1.125x.

Train Test Train Test

Figure 10: Samples of triggered images from the Cifar10 (left) and SVHN

(right) datasets. For both datasets, the train scale is 0.75x and the test scale is

1.125x, which are consistent with those used in Table 3.

success rate of 48.14% with a standard deviation of 8.02%. A

grid search was performed on a single Cifar10 class (cats) to

choose the cutoff and range used for training, as well as the

training scale of 0.75x. Test scales are chosen so the L2-norm

of the trigger is, on average, below 16% of the L2-norm of

clean inputs. Train scales are, by design, smaller than test

scales. That some classes rely on larger scales is merely an

artifact of the generator for that particular class. Notably, this

grid search was not performed for any other classes or for

SVHN. The same hyperparameters were used across all other

classes. While it is possible we could obtain higher success

rates by performing such a search, this result already confirms

our attack effectiveness. Note that the images which make

up these datasets are much lower resolution than those of

ImageNet (sample images are shown in Figure 10). Consistent

with finding of prior work [6], we also observe that it is more

difficult to generate adversarial noises (triggers) for these

smaller images.

6 Real World Test On Amazon SageMaker

Given the success of the above experiments, we now evaluate

double-cross attacks on Amazon SageMaker [2] which pro-

vides an active learning-based data labeling service. Labeling

tasks are completed by human workers from its crowdsourc-

ing platform Amazon Mechanical Turk (MTurk). It allows us

to evaluate the attack with human annotators in the loop.

We look into two key questions. First, how effectively can

our triggered samples bypass SageMaker’s selection criteria?

Second, how effectively can the triggered samples mislead

Dataset
Success Rate Inputs

Avg (Std) # Triggered/Total

SVHN 48.14% (8.02%) 283 / 7,326∗

CIFAR10 67.67% (12.06%) 28 / 5,000

Table 4: Double-Cross attack results on SVHN, and CIFAR10 datasets (av-

eraged across all classes). We report the average number of triggered inputs

used per epoch during re-training and the total number of inputs per class.
∗SVHN has an unequal number of total inputs for each class, and we reported

the average number.

human annotators into giving the desired labels?

How SageMaker Works. SageMaker uses active learning

methods to select incoming samples for human labeling. Com-

pared with conventional active learning, SageMaker does not

throw away samples that fail to pass the selection criteria

(e.g., samples with a high prediction confidence). Instead,

SageMaker gets the labels for the high-confidence samples

from the current model and includes these samples for the

next round of retraining, too4. SageMaker provides different

options for implementing the training pipeline. For example,

users can send data to SageMaker and the platform will take

care of both model training and data labeling. In addition,

users can also configure how their own model is trained under

SageMaker’s framework, and use its data annotation service.

We focus on the latter option.

Experiment Methods & Ethical Considerations. For our

experiment, we have taken active steps to ensure research

ethics5. At a high-level, the idea is to set up our own model

as the victim model in SageMaker. Then we perform double-

cross attacks on our own model (i.e., ResNet50). In this way,

the attack will not affect any SageMaker users. In addition,

since our samples are essentially images from ImageNet, an-

notating such images do not introduce any known risks to

human annotators.

In June 2020, we set up our ResNet50 model in SageMaker.

We used the programming template from SageMaker, and

kept the default settings when possible. We confirmed that the

default active learning selection criteria is based on margin

sampling (the function is called “simpleactivelearning”). The

default margin threshold is 0.5, meaning that if the sample has

a margin <0.5, it will be sent to MTurk for annotation. This

is a less strict constraint than the one we used for evaluation

in Section 5. We set up our model using the same threshold6.

Recall that in Section 5 we already generated triggered

inputs that can successfully manipulate the target model

(ResNet50). Here, we directly use these triggered inputs. The

4SageMaker’s decision to consider auto-labeled samples for retraining

could open up new ways of attacks. For example, adversaries can optimize a

trigger such that triggered inputs can receive a high confidence while getting

the target label. Since this is out of the norm of regular active learning

implementations, in this experiment, we still mainly focus on the active

learning part.
5Our study has been reviewed and approved by our local IRB.
6Although users can customize this threshold, we use this default thresh-

old to represent a generic setting.



RV Rottweiler Crayfish

Clean 6.0x Clean 2.0x Clean 3.0x

%Correct 100.0 100.0 98.5 100.0 100.0 97.1

%Unsure 0.0 0.0 1.5 0.0 0.0 2.9

(a) Gray-Box Triggers.

RV Rottweiler Crayfish

Clean 8.0x Clean 3.0x Clean 3.0x

%Correct 98.5 100.0 98.5 100.0 100.0 91.4

%Unsure 0.0 0.0 0.0 0.0 0.0 8.6

(b) Black-Box Triggers.

Table 5: Human labeling results. We used the best performing train scale

obtained from Section 5 for this experiment. For example, “6.0x” means the

triggered inputs have a train scale of 6.0x. If %Correct + %Unsure adds up

to less than 100%, the difference is images that were classified incorrectly.

Notably, this only happened for clean inputs in the RV and Rottweiler classes

– no triggered images were classified incorrectly.

rationale is, if these triggered inputs are selected for human

annotation (and received the target label), they can achieve

the same attack impact as described in Section 5. We find all

the triggered inputs can bypass the selection given this margin

threshold 0.5 is more generous than what we used (0.3).

Human Annotation Experiment. we next perform data an-

notation using SageMaker. Here, instead of only using trig-

gered images (which will create an unrealistic scenario), we

mix the triggered images with clean images.

We create two datasets: one for a gray-box attack (500

images) and one for a black-box attack (500 images). Take

the gray-box dataset for example, which contains 500 images

from 5 classes/labels (100 images per label). Among them, we

have three target labels: RV, Rottweiler and Crawfish. Each

label contains 35 triggered images and 65 clean images (300

images in total). The other two labels are non-target labels:

Hummingbird and Great Grey Owl, each of which contains

100 clean images (200 images in total). We have more clean

images (395) than triggered images (105). The triggered im-

ages are selected under the best performing train scale in

Section 5 (see Table 5). The black-box dataset has the exact

same 500 images, except that the triggered images contain

the black-box triggers. Note that these two datasets represent

subsets of the dataset used in Section 5.

We used SageMaker’s default interface and followed Sage-

Maker’s labeling guidelines to configure the annotation tasks.

The guidelines do not include any information about prepar-

ing workers to watch out for adversarial/malicious samples.

As such, to maintain realism, we did not intentionally prime

the workers for potential triggered images. As discussed in

Section 7.2, teaching workers to recognize adversarial inputs

is a non-trivial task, given that attackers can change trigger

patterns, and out of scope for this paper.

In our task, MTurk workers examine one image at a time.

Under each image, the worker is expected to assign one of the

5 class labels. Per SageMaker’s recommendation, we add one

additional option “unsure” in case workers cannot confidently

choose a label. We collected 3 workers’ labels for each image,

i.e., expect 3000 labelings for the 1000 images. SageMaker

will take control of the task dissemination to workers (which

is transparent to us) and return the labeling results.

Results and Findings. Our first observation of is that Sage-

Maker returned the labeling results very quickly. It took less

than an hour to obtain 3000 labels on the 1000 images.

Overall, the experiments returned positive results. Com-

bining the gray-box and black-box settings, 98.1% of the

triggered images received the desired labels, meaning that

MTurkers have assigned the adversary-desired labels for al-

most all the triggered images. This success rate is comparable

to the ratio of correctly labeled clean images (99.1%).

In Table 5, we further break down the results for the three

target classes: RV, Rottweiler and Crawfish. For each target

class, we present the percentage of correctly labeled samples

and the percentage of images labeled as “unsure”. Note that

for triggered images, “correct” label refers to the adversary-

desired label. We show that the vast majority of triggered

images in all target classes received the desired labels. In the

meantime, only a small portion of the triggered images were

marked with “unsure” under Crayfish (black-box and gray-

box). Note that clean images also occasionally received the

“unsure” label, e.g., Rottweiler in the gray-box experiment.

Overall, the results confirm that the triggered samples can

bypass a real-world active learning pipeline and obtain desired

labels with human annotators in the loop.

7 Countermeasures Against Double-Cross

We now outline and evaluate possible defenses against

Double-Cross attacks. We first perform a case study that

evaluates Double-Cross on a system that applies robust train-

ing [37], and then discuss other defense directions.

7.1 Training for Adversarial Robustness

Adversarially-robust training jointly optimizes the training

process for both classification accuracy and model robust-

ness [37]. An explicit “adversarial robustness loss” is intro-

duced in the training loss so that a small perturbation to the in-

put should not significantly alter the model’s outcome. Recent

results show that robust training can force a classifier to ignore

non-robust features (such as imperceptible noise) and focus on

robust features (those related to the objects in the images) to

make classification decisions [24]. As such, it is possible for a

victim model to adopt adversarially-robust training to mitigate

the impact of the triggers (i.e., imperceptible/small-magnitude

noise). Below, we briefly experiment with robust training to

examine how well robust training can defend against Double-

Cross attacks.

We use the CIFAR10 dataset and the robustly-trained model

published by the authors of [37] using ε = .5 (expected noise



Train Test Train Test

Figure 11: Sample images used against the robust victim classifier. The top

row shows un-triggered (clean) images; the bottom row shows triggered

images. The left/right train-test pair shows images with the .75x/1x scale

triggers applied.

magnitude).7 We choose ε = .5 because non-adversarial clas-

sification accuracy drops significantly for higher ε, i.e., ε =
0.0, .25, .5,1.0 results in 95%,92%,90%,81% non-adversarial

accuracy. We follow a similar process as that in Section 5.1

to run the Double-Cross attack. The key difference is that,

instead of running a standard training process, we apply the ro-

bust training method to each active learning retraining epoch.

We found that adversarially-robust training aggravates but

does not prevent Double-Cross attacks. We swept a space of

Double-Cross parameters (e.g., cutoff and range) and found

that, given train/test scales of .75x and 1x, our attack achieved

15.5% and 23.2% success rate, respectively. This is sufficient

for an adversary to do significant damage through targeted

misclassification in practice. We evaluated for 50 epochs in

the .75x scale experiment and 20 epochs in 1x scale. With

additional compute, we believe the success rate for the 1x

experiment could climb 1-10% higher. But the high-order bit

is clear: by increasing scales, the attack success rate improves

as before, albeit at a slower rate relative to non-robust training.

(See Section 5.5: success rates for CIFAR10 before applying

robust training are > 60%.) Intuitively, adversarially-robust

training reduces the effect of adversarial perturbations that

fall within the set ball size (ε). However, perturbations near

or beyond the ball size ε are more difficult to mitigate.

Finally, Figure 11 shows trigger perceptibility for both con-

figurations. While the triggers are somewhat perceptible, the

original class is clearly discernible.

7.2 Other Defense Strategies

While there are other defense strategies in addition to ad-

versarially robust training, these strategies can be inherently

incompatible with the active learning pipeline. Below, we

briefly discuss these strategies to defend against Double-Cross

attacks at the training stage or the testing stage.

At the training stage, one direction is to detect and filter

out potential triggered images (e.g., using “robust heuristics”),

and thus prevent the target model from training on malicious

data. Methods in this direction often look for some forms of

anomalies [14, 46]. However, filtering out anomalous sam-

ples may create a tension with active learning, whose aim

is to identify useful (anomalous) data for model re-training.

7We evaluate on CIFAR10 because the published robust ImageNet classi-

fier suffers large (≥ 20%) accuracy reduction for all reported ε values.

Figure 12: Zooming in on a triggered image.

Future work can look into ways of resolving this tension by

identifying triggered inputs while keeping useful data.

Another direction (at the training stage) is to educate hu-

man annotators and improve their ability to identify triggered

inputs. For example, Figure 12 shows a triggered input. The

original image looks normal, but the trigger pattern is still

visible when zoomed in. A key challenge is to describe the

trigger pattern to human annotators so that they can look for

it. Intuitively, the adversary can change the look of the trigger

pattern to make it hard to describe precisely.

At test time, defense methods can try to remove or destroy

the trigger by slightly transforming the inputs [60]. Alter-

natively, defense methods can help to determine if the tar-

get model is already trained on triggered inputs. Existing

works have looked into detecting whether a model has a back-

door [8, 17, 35, 55, 57] under trojaning attacks. While trojan-

ing is different from double-cross attacks (see Section 8.1

for details), their “after-attack” models share similar behav-

iors, i.e., only mislabeling inputs with the trigger. As such,

these defense methods are potentially applicable. Some of

these methods might face difficulties due the fact that Double-

Cross attacks uses imperceptible triggers. We leave further

validations as future work.

8 Related Work

8.1 Adversarial Machine Learning

Double-Cross attack falls into the broad category of adversar-

ial machine learning attacks [21]. In Table 6, we summarize

the similarities and differences between double-cross and

other related attacks such as evasion [6], poisoning [40], and

trojaning attacks [36].

At the high-level, the goal of these attacks is to cause the

victim model to mislabel inputs to the label target_label.

Each attack is distinct when considered along two main axes.

First, how the inputs are perturbed to induce a mislabeling.

Second, how much control the adversary has over the training

data and the training process. In this paper, for convenience,

we refer to any perturbation or noise applied to the original

input as trigger. A trigger can be coupled or decoupled with

the input. A coupled trigger T(x) means the perturbation is

specially computed based on the given input x, which may

not work for other inputs to cause mislabeling. A decoupled

trigger T() is independent of the input, which works on other

inputs too. In the following, we briefly discuss each attack.



Attack

Type

Trigger

Type

Impact

(misclassify)

Control

Train.

Trigger

Magnitude

Trojan
Decoupled

with input

Inputs w/

trigger
Full

Not

Constrained

Evasion
Coupled

with input

Inputs w/

trigger
No Small

Poisoning None All inputs Partial N/A

Double-

Cross

Decoupled

with input

Inputs w/

trigger
Partial Small

Table 6: Comparison between double-cross attack and other adversarial

machine learning attacks.

Trojaning Attacks. Trojaning attacks are conducted by the

party (adversary) who releases a pretrained model to the pub-

lic for other parties (victims) to use [36, 61]. The pretrained

model contains a backdoor which is added by training the

model on inputs with a special trigger pattern. In practice,

the adversary could release a new pretrained model with a

backdoor [61] or take an existing public model to a embed a

backdoor and then release the backdoored model [36]. Once

this pretrained model is used or deployed by other parties, the

adversary can cause mislabeling by sending inputs that carry

this trigger pattern. As shown in Table 6, the trigger T() is

decoupled from inputs—any inputs with this trigger will be

mislabeled as the target_label. In addition, the attack only

applies to triggered inputs. Inputs without this trigger will

still be correctly classified.

The key difference between Double-Cross and trojaning is

that the trojaning attack is launched by the party who releases

the pretrained model. In other words, the trojaning adversary

has a full access to (or control over) the pretrained model

and/or the training process (i.e., white-box). In addition, un-

like double-cross attacks, the trigger for trojaning attacks does

not need to be imperceptible. This is, once again, because the

trojaning adversary has control over training, and the labels

of the triggered training inputs are assigned by the adversary

(there is no need to manipulate, e.g., active learning and the

human labeling process). Researchers have examined defense

methods against trojaning attacks [8, 35, 55, 57].

A related variant of trojan attacks are called clean-label

poisoning attacks [54, 63]. These adopt a threat model un-

der which an adversary can contribute any number of non-

suspicious (i.e., benign-looking) samples to the victim’s train-

ing dataset. Compared with conventional trojan attacks, clean-

label poisoning wants to make sure that poisoned samples

appear benign under manual inspection (similar to Double

Cross).

Clean-label poisoning has several major differences from

Double-Cross attacks. First, clean-label poisoning assumes

that an adversary can contribute an arbitrary number of

benign-looking samples to the training dataset and, more im-

portantly, that all of the contributed samples will be used for

training. As such, clean-label triggers do not need to opti-

mize to meet the selectability constraints in active learning

pipelines. Furthermore, clean-label attacks require the adver-

sary to contribute samples before the victim begins training.

Thus, malicious samples will be repeatedly trained on over all

epochs. Double-Cross attacks do not make this assumption.

Our evaluation assumes a streaming scenario where malicious

samples are discarded after each training epoch. Training for

more epochs allows the victim to better learn/memorize the

trigger (Figure 8). Finally, clean-label attacks rely on a sur-

rogate model to generate malicious samples, as they require

malicious samples to be generated and added to the training

dataset before the victim model begins training. In contrast,

Double-Cross attacks target an already-trained victim model.

Evasion Attacks. In evasion attacks [6, 19, 44, 45], the adver-

sary attacks the victim model only at testing time, causing the

victim to mislabel an input. This is done by adding a small

perturbation (trigger) to the input. This is fundamentally dif-

ferent from Double-Cross attack (which attacks the training

phase). In addition, most existing evasion attacks assume the

target model is static, while double-cross attack focuses on

models that are continuously updated as new data arrives.

Also, evasion trigger is computed based on a given input, i.e.,

the trigger is a coupled trigger T(x) that does not work on

other inputs. To make the attack more realistic, researchers

have studied black-box attacks for evasion [4, 23, 44, 45]. Our

double-cross attack has adapted the black-box method of [23]

(originally designed to learn coupled noise for evasion) to

generate decoupled trigger.

Poisoning Attacks. Poisoning attacks aim to manipulate the

training phase of the target model, by injecting a small por-

tion of poisoned training samples [28, 29, 38, 58, 59, 62].

Unlike double-cross attack, poisoning attacks aim for input-

independent damage to the victim model. In other words,

poisoning attacks aim to cause large classification errors dur-

ing test time for all test inputs [3, 7, 40, 52]. This is opposite

to double-cross attacks (which only causing mislabeling to

triggered inputs).

8.2 Other Closely Related Works

Miller et al. [39] have discussed the adversarial threats to

active learning and pointed out the risk of adversaries ma-

nipulating the selection process that identifies samples for

labeling. For example, adversaries may mislead the active

learning model to select samples that have little (or nega-

tive) impact on training, which wastes labeling efforts and

hurts model performance. Unlike Double-Cross, the attack de-

scribed in [39] is indiscriminate, aiming to cause mislabeling

on all test inputs (and is therefore more related to poisoning

attacks; c.f. Section 8.1). Another difference is that we explic-

itly addressed the challenge of obtaining the desired labels

from human annotators and realized the attack end-to-end

whereas [39] just posits such an attack might be possible.

Shafahi et al. [51] present a related attack called “poison

frogs.” The idea is to poison the victim model so the vic-



tim only mislabels one target testing input. The adversary

achieves this goal by generating and inserting a poisoned sam-

ple that appears to carry the desired label for the target testing

input. There are two key differences between Double-Cross

and poison-frog attacks. First, the poison-frog attack requires

knowledge of the victim model and its parameters. Second,

the poison-frog attack targets a single testing input (instead

of learning a decoupled trigger).

Regarding the active learning selection criteria, we focus

on the margin sampling-based method (Section 2.2) since

it is most commonly used. There are other choices such as

reinforcement-based methods [15], instance correlation-based

methods [48], and hybrid methods that combine uncertainty

sampling and instance correlation [22]. If adversary optimizes

for the wrong selection criterion, it might affect the gray-box

attack. However, our black-box attack does not rely on knowl-

edge of the selection criteria. We leave further exploration of

the transferability of selection criterion to future work.

9 Conclusion

This paper presents double-cross attacks, a new attack against

active learning-based applications. The key novelty is that

the attack simultaneously manipulates the active learning-

based data labeling process and the target application. By

generating inputs with a special trigger pattern, the attack is

able to bypass the active learning selection criteria and human

labeling process, insert itself into the victim retraining set, and

change the victim model’s future behavior. With extensive

evaluations, we show both gray-box and black-box attacks are

feasible. We also conduct empirical experiments on Amazon

SageMaker to evaluate the attack with human annotators in

the loop, and confirm the practicality of the attack.

Acknowledgments. This work was partially funded by NSF

grants 1942888 and 2030521, an Intel ISRA, and an Amazon

Research Award.

References

[1] About face id advanced technology, 2020. https://support.apple.

com/en-us/HT208108.

[2] Amazon sagemaker, 2020. https://aws.amazon.com/sagemaker/

groundtruth/.

[3] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, and Jaehoon Amir

Safavi, 2017, Mitigating poisoning attacks on machine learning models:

A data provenance based approach, AISec’17.

[4] Wieland Brendel, Jonas Rauber, and Matthias Bethge, 2018, Decision-

Based Adversarial Attacks: Reliable Attacks Against Black-Box Ma-

chine Learning Models, ICLR’18.

[5] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin

Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and

Oscar Beijbom, 2019, nuscenes: A multimodal dataset for autonomous

driving, arXiv’19.

[6] Nicholas Carlini and David Wagner, 2017, Towards Evaluating the

Robustness of Neural Networks, S&P’17.

[7] Eric Chan-Tin, Daniel Feldman, Nicholas Hopper, and Yongdae Kim,

2009, The Frog-Boiling Attack: Limitations of Anomaly Detection for

Secure Network Coordinate Systems, SecureComm’09.

[8] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Ben-

jamin Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava, 2019,

Detecting backdoor attacks on deep neural networks by activation clus-

tering, SafeAI@AAAI’19.

[9] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh,

2017, ZOO: Zeroth Order Optimization based Black-box Attacks to

Deep Neural Networks without Training Substitute Models, AISec’17.

[10] Child safety on youtube, 2020. https://support.google.com/

youtube/answer/2801999.

[11] David Cohn, Les Atlas, and Richard Ladner, 1994, Improving general-

ization with active learning, Mach Learn’94.

[12] Crowdai, 2020. https://crowdai.com/.

[13] Ido Dagan and Sean P. Engelson, 1995, Committee-based sampling for

training probabilistic classifiers, ICML’95.

[14] Min Du, Ruoxi Jia, and Dawn Song, 2020, Robust anomaly detection

and backdoor attack detection via differential privacy, ICLR’20.

[15] Meng Fang, Yuan Li, and Trevor Cohn, 2017, Learning how to Active

Learn: A Deep Reinforcement Learning Approach, EMNLP’17.

[16] Yifan Fu, Xingquan Zhu, and Bin Li, 2013, A survey on instance selec-

tion for active learning, KAIS’13.

[17] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C.

Ranasinghe, and Surya Nepal, 2019, Strip: A defence against trojan

attacks on deep neural networks, ACSAC’19.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, 2014,

Generative adversarial nets, NeurIPS’14.

[19] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, 2015, Ex-

plaining and harnessing adversarial examples, ICLR’15.

[20] Carl-Johan Hoel, Katherine Driggs-Campbell, Krister Wolff, Leo Laine,

and Mykel J. Kochenderfer, 2020, Combining planning and deep rein-

forcement learning in tactical decision making for autonomous driving,

T-IV’20.

[21] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubin-

stein, and J. D. Tygar, 2011, Adversarial machine learning, AISec’11.

[22] Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou, 2014, Active Learning

by Querying Informative and Representative Examples, TPAMI’14.

[23] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin, 2018,

Black-box Adversarial Attacks with Limited Queries and Information,

ICML’18.

[24] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,

Brandon Tran, and Aleksander Madry, 2019, Adversarial examples are

not bugs, they are features, NeurIPS’19.

[25] ILSVRC2012 - Imagenet Large Scale Visual Recognition Challenge

2012 — dbcollection 0.2.6 documentation.

[26] Imagenet dataset, 2020. http://image-net.org/about-overview.

[27] Muhammad Imran, Carlos Castillo, Ji Lucas, Patrick Meier, and

Sarah Vieweg, 2014, Aidr: Artificial intelligence for disaster response,

WWW’14.

[28] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina

Nita-Rotaru, and Bo Li, 2018, Manipulating Machine Learning: Poison-

ing Attacks and Countermeasures for Regression Learning, S&P’18.

[29] Marius Kloft and Pavel Laskov, 2007, A “ Poisoning ” Attack Against

Online Anomaly Detection, NeurIPS’07.

[30] Alex Krizhevsky, 2009, Learning multiple layers of features from tiny

images.



[31] Anders Krogh and Jesper Vedelsby, 1994, Neural network ensembles,

cross validation and active learning, NeurIPS’94.

[32] Labelbox, 2020. https://labelbox.com/.

[33] David Lewis and William Gale, 1994, A Sequential Algorithm for

Training Text Classiiers, SIGIR’94.

[34] Erik Lindernoren. eriklindernoren/PyTorch-GAN: PyTorch implemen-

tations of Generative Adversarial Networks.

[35] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg, 2018, Fine-

pruning: Defending against backdooring attacks on deep neural net-

works, RAID’18.

[36] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,

Weihang Wang, and Xiangyu Zhang, 2018, Trojaning attack on neural

networks, NDSS’18.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris

Tsipras, and Adrian Vladu, 2018, Towards Deep Learning Models

Resistant to Adversarial Attacks, ICLR’18.

[38] Saeed Mahloujifar, Mohammad Mahmoody, and Ameer Mohammed,

2019, Universal Multi-Party Poisoning Attacks, ICML’19.

[39] Brad Miller, Alex Kantchelian, Sadia Afroz, Rekha Bachwani, Edwin

Dauber, Ling Huang, Michael Carl Tschantz, Anthony D. Joseph, and

J.D. Tygar, 2014, Adversarial active learning, AISec’14.

[40] Luis Muñoz González, Battista Biggio, Ambra Demontis, Andrea Pau-

dice, Vasin Wongrassamee, Emil C. Lupu, and Fabio Roli, 2017, To-

wards poisoning of deep learning algorithms with back-gradient opti-

mization, AISec’17.

[41] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,

and Andrew Ng, 2011, Reading Digits in Natural Images with Unsu-

pervised Feature Learning, NIPS’11.

[42] Hieu T Nguyen and Arnold Smeulders, 2004, Active Learning Using

Pre-clustering, ICML’04.

[43] Augustus Odena, Christopher Olah, and Jonathon Shlens, 2017, Condi-

tional Image Synthesis With Auxiliary Classifier GANs, ICML’17.

[44] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,

Z. Berkay Celik, and Ananthram Swami, 2017, Practical black-box

attacks against machine learning, ASIA CCS’17.

[45] Nicolas Papernot, Patrick Mcdaniel, Somesh Jha, Matt Fredrikson,

Z. Berkay Celik, and Ananthram Swami, 2016, The limitations of deep

learning in adversarial settings, EuroSP’16.

[46] Lei Pi, Zhuo Lu, Yalin Sagduyu, and Su Chen, 2017, Defending active

learning against adversarial inputs in automated document classifica-

tion, GlobalSIP’17.

[47] Tobias Scheffer, Christian Decomain, and Stefan Wrobel, 2001, Active

hidden markov models for information extraction, IDA’01.

[48] Burr Settles, 2009, Active learning literature survey.

[49] Burr Settles, 2011, From Theories to Queries: Active Learning in Prac-

tice, JMLR’11.

[50] Burr Settles and Mark Craven, 2008, An Analysis of Active Learning

Strategies for Sequence Labeling Tasks, EMNLP’08.

[51] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu,

Christoph Studer, Tudor Dumitras, and Tom Goldstein, 2018, Poi-

son frogs! targeted clean-label poisoning attacks on neural networks,

NeurIPS’18.

[52] Jacob Steinhardt, Pang Wei Koh, and Percy Liang, 2017, Certified

defenses for data poisoning attacks, NeurIPS’17.

[53] Torch Contributors. torchvision.models - PyTorch master documenta-

tion, 2018.

[54] Alexander Turner, Dimitris Tsipras, and Aleksander Madry, 2019,

Clean-Label Backdoor Attacks, ICLR’19.

[55] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan, Prashanth Krish-

namurthy, Farshad Khorrami, Ramesh Karri, Brendan Dolan-Gavitt,

and Siddharth Garg, 2020, Nnoculation: Broad spectrum and targeted

treatment of backdoored dnns, arXiv’20.

[56] Nguyen Viet Cuong, Wee Sun Lee, and Nan Ye, 2014, Near-optimal

Adaptive Pool-based Active Learning with General Loss, UAI’14.

[57] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal

Viswanath, Haitao Zheng, and Ben Y. Zhao, 2019, Neural cleanse: Iden-

tifying and mitigating backdoor attacks in neural networks, S&P’19.

[58] Yizhen Wang and Kamalika Chaudhuri, 2018, Data poisoning attacks

against online learning, arXiv’18.

[59] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia

Eckert, and Fabio Roli, 2015, Is feature selection secure against training

data poisoning?, ICML’15.

[60] Weilin Xu, David Evans, and Yanjun Qi, 2018, Feature Squeezing:

Detecting Adversarial Examples in Deep Neural Networks, NDSS’18.

[61] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y. Zhao, 2019,

Latent backdoor attacks on deep neural networks, CCS’19.

[62] Hengtong Zhang, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su,

Yaliang Li, and Kui Ren, 2019, Data Poisoning Attack against Knowl-

edge Graph Embedding, IJCAI’19.

[63] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen,

and Yu-Gang Jiang, 2020, Clean-Label Backdoor Attacks on Video

Recognition Models, CVPR’20.

A Black-box ImageNet Results

We include the sample images (Figure 6) and the testing

accuracy on clean samples (Table 7) for the Black-box at-

tack experiments discussed in Section 5.3. These samples

and statistics are complementary to the Gray-box variant pre-

sented in Section 5.2.

B Key Hyperparameters

Margin Threshold. We first evaluate the impact of margin

threshold. As shown in Figure 14, using Rottweiler as the

target class, a larger margin threshold can further increase the

number triggered samples that get selected for retraining. Our

threshold 0.3 is on the relatively conservative side.

Limiting Number of Queries. We present evaluations on the

Black-Box attack by limiting the number of queries made dur-

ing generator training. Note that if the magnitude constraints

are not met (i.e., a magnitude greater than cuto f f + range),

the generator does not query the victim. This cuts out thou-

sands of queries during the early epochs of training. The

number of queries made can be further restricted by early

termination of generator training. Figure 15 demonstrates that

terminating a generator early does not necessarily hamper the

victim’s ability to learn the trigger. However, it does affect the

stealthiness of the trigger. Generating a stealthy trigger with

fewer queries is possible, but we’ve found it to depend heavily

on the starting conditions of the generator. We include exam-

ples from the generator which yielded high quality triggers

with few queries.




	Introduction
	Background
	Deep Learning Basics
	Active Learning
	Adversarial Machine Learning Terms

	Threat Model
	Double-Cross Attacks
	Simple Noise-Based Trigger
	Learning High-Quality Triggers

	Evaluation
	Methodology
	Gray-Box Attack
	Black-Box Attack
	Sensitivity Studies
	Evaluation on Other Datasets

	Real World Test On Amazon SageMaker
	Countermeasures Against Double-Cross
	Training for Adversarial Robustness
	Other Defense Strategies

	Related Work
	Adversarial Machine Learning
	Other Closely Related Works

	Conclusion
	Black-box ImageNet Results
	Key Hyperparameters

