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Abstract

Recent work by Søgaard (2020) showed that,
treebank size aside, overlap between train-
ing and test graphs (termed leakage) explains
more of the observed variation in dependency
parsing performance than other explanations.
In this work we revisit this claim, testing it on
more models and languages. We find that it
only holds for zero-shot cross-lingual settings.
We then propose a more fine-grained measure
of such leakage which, unlike the original mea-
sure, not only explains but also correlates with
observed performance variation.1

1 Introduction

Syntactic parsing has long been one of the core
natural language processing (NLP) tasks, and
the proliferation of the Universal Dependencies
project (UD; de Marneffe et al., 2021; Nivre et al.,
2017) has allowed the development and compari-
son of monolingual and multilingual models under
the same syntactic framework.

The performance of the dependency parsers,
however, varies wildly across languages, with state-
of-the-art performance ranging from labeled attach-
ment scores below 20 (e.g. for Amharic, Erzya,
Komi, or Yoruba) to more than 90 (e.g. for Span-
ish, Polish, Russian, or Greek). As the UD tree-
banks follow mostly similar annotation guidelines,
comparisons of the parsing performance across lan-
guages are now possible, to an extent.2

In an effort to explain these cross-lingual per-
formance differences, researchers have proposed
treebank size (Vania et al., 2019), linguistic varia-
tion (Nivre et al., 2007), test data sentence length

* Equal contribution. Work performed at GMU.
1Code and data are available here: https://github.com/

miriamwanner/reu-nlp-project
2Different treebank creation protocols followed across lan-

guages (whose effects are hard to isolate or measure) can be
a significant source of variation. Nevertheless, some of the
observed variation can be possibly explained by other factors.
We direct the reader to footnote 2 of (Søgaard, 2020).

Dependency Trees:

She saw it
PRON VERB PRON

root
nsubj dobj

The big boat
DET ADJ NOUN

root
det

amod

Søgaard (2020) Unlabeled Directed Graphs:

Node- and Edge-Labeled Directed Graphs:

rt V

PRPR

nsubjdo
bj

rt N

DTA

detam
od

Figure 1: Only labeled reductions produce different
graphs for these fundamentally different sentences. Un-
der unlabeled leakage, the two trees do leak. When tak-
ing labels into account the two trees belong to different
isomorphisms and are not considered “leaky".

or average gold dependency length (McDonald
and Nivre, 2011), and domain differences between
training and test data (Foster et al., 2011), as poten-
tial predictors. Recently, Søgaard (2020) proposed
that the proportion of isomorphic graph structures
between the training and testing data (leakage) is a
stronger predictor of the parsers’ performance than
any of the previously listed attributes other than
training treebank size.

Søgaard (2020) concludes that “some languages
seem easier to parse because their treebanks leak.”
This finding is potentially crucial for current parser
evaluation on the existing treebanks, as well as
for future treebank construction. It implies, for
instance, that parsers are perhaps not as good as
they seem, because they are tested on “leaky” test
data. Perhaps one should also consider designing
treebanks that do not leak between train and test, as
such a test set would not have a bias toward more
common phenomena.

In this work, we examine this finding more
closely. We extend Søgaard’s definition to include
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labeled leakage, and study it over multiple parsers
in both monolingual and cross-lingual settings. We
show that the finding does not hold up when tested
against more modern parsers and more languages.
We do identify, though, that leakage indeed predicts
parser performance in zero-shot cross-lingual set-
tings, and we dive deeper in this phenomenon with
an extensive study focusing on Faroese and other
Germanic languages. Last, we propose a modifica-
tion of the leakage measure that both predicts and

correlates with parser performance in such settings.

2 Leakage and How to Measure it

In this section we first define leakage based on
graph isomorphisms and reproduce Søgaard’s ex-
periments. We then show that parsers make local

decisions that allow them to generalize to unseen
graphs, and explore additional measures of leakage,
studying whether they help explain parser perfor-
mance. Last, we argue that sub-trees are more
meaningful units than label-free, tree-level repre-
sentations.

Leakage Definition Leakage can be broadly de-
fined as the portion of test trees that have isomor-
phic counterparts in the train set. While depen-
dency trees are labeled, directed graphs with labels
both on the nodes and on the edges, Søgaard (2020)
performed a reduction by removing labels from
both nodes and edges.

Given these reduced graphs, Søgaard (2020)
finds the different isomorphisms that are present
in the training and the test set, using the VF2 al-
gorithm (Cordella et al., 2001). We note that the
isomorphism may or may not rely on node or edge
labels. In the experiments below, we perform an
ablation between using completely unlabeled di-
rected graphs, node-labeled (but not edge-labeled)
directed graphs, and between using the full infor-
mation of the graphs to compute isomorphisms,
namely both node and edge labels.

Reproducing (Søgaard, 2020) Examples of the
reductions needed for computing leakage for two
sentences are shown in Figure 1. Now, assume
that the first sentence is in the training set and the
second is part of the test set. Measuring leakage
without labels implies that the first dependency tree
is somehow informative for producing the tree for
the second sentence, which we believe is counter-
intuitive. Hence, our first hypothesis is that a more
informed leakage calculation is going to explain

more of the performance variance.
We reproduce the experiments of Søgaard (2020)

comparing the three different reductions (denoted
as "none" for unlabeled graphs, "edges" and
"nodes+edges" for respectively labeled graphs).
The experiment consists of correlating the factors �
assumed to influence syntactic dependency parser
performance with the performance of the parser
under study. We train a simple linear regression
model3 with treebank size and � as input and parser
performance as output. � will correspond to our
measure of treebank leakage. Mathematically, we
have ↵ts+��+� with ts treebank size and ↵,�, �
learned parameters. Following Søgaard, we will
focus on explained variance and mean absolute er-
ror (MAE) from five-fold cross-validation to avoid
overfitting. Unlike Søgaard, we will additionally
report Spearman’s ⇢ correlation coefficients4 be-
tween factor and performance, which will reveal
whether indeed leakage leads to better parser per-
formance.5

The results on the same data as Søgaard (2020)
(using the best reported parser performance from
the CoNLL 2018 shared task) are presented in the
top three rows of Table 1. We find that unlabeled
graph leakage produces positive explained variance,
in line with previous work. However, we have to
reject our hypothesis, as a more informed leakage
measurement fails to meaningfully explain the out-
put variance, producing negative scores. In fact,
the more information we use when computing the
graph isomorphisms, the less the model can explain
output variance!6

To further solidify this finding, we repeat the
above experiment, this time using UDify, the state-
of-the-art multilingual parser of Kondratyuk and
Straka (2019).7 The result is shown in the bottom

3Exactly as Søgaard (2020) does, just on different
data/settings.

4We do not expect the correlation, if any, to be linear, hence
we prefer Spearman’s measure to Pearson’s.

5Note that the explained variance is basically the correla-
tion squared. As such, it cannot reveal whether the correlation
is positive or negative. Negative explained variance means that
the model is a poor fit for the data (worse than just predicting
the average).

6Søgaard (2020) gives this possible explanation: “The
result is perhaps not too surprising, since graph isomorphisms
correlate with syntactic constructions, which in turn correlate
with the occurrence of linguistic markers and tail linguistic
phenomena."

7The model is trained jointly on all UD treebanks (that
have a training set), and hence in this experiment we compute
leakage multilingually (i.e. we compute leakage between the
complete training set and the test set of each treebank).
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Tree-level leakage

Leakage Regression Expl. Spearman’s
Attributes Score Variance MAE ⇢

System: CoNLL’18 (Søgaard)

None 0.162 0.143 7.257 -0.194
Edges 0.091 -0.121 8.592 -0.181
Nodes+Edges 0.085 -0.179 8.830 -0.161

System: UDify

None 0.250 0.047 13.07 -0.360
Edges 0.146 -0.083 14.012 -0.080
Nodes+Edges 0.134 -0.108 14.156 -0.026

Sub-tree-level leakage

Leakage Regression Expl. Spearman’s
Attributes Score Variance MAE ⇢

System: CoNLL’18 (Søgaard)

None 0.054 -0.137 8.248 -0.238
Edges 0.083 -1.202 9.444 0.390
Nodes+Edges 0.089 -0.210 8.197 0.538

System: UDify

None 0.123 -0.171 14.632 -0.082
Edges 0.174 -0.333 14.182 0.579
Nodes+Edges 0.217 -0.149 13.715 0.654

Table 1: Tree-level leakage (left) does not correlate with and does not always explain parser performance. Labeled
sub-tree level leakage (right) however is positively correlated with parser performance.

Produced by model trained without
Construction Actual nsubj mods obj mods

nsubj mods 3166 1698 3167
obj mods 3910 4505 1940

Table 2: Number of adjectival modifiers produced by
counterfactual models. The parsers can produce con-
structions not seen during training.

three rows of Table 1 (left Table), and they present
more negative evidence for our hypothesis: there
is minimal explained variance in the unlabeled ver-
sion, and still negative explained variance in the
labeled leakage versions.

Hence, we have to –for now– reject our hypothe-
sis: using labeled graph isomorphisms to compute
leakage does not explain more downstream parser
performance variations, at least when using tree-
level leakage measures; we revisit this hypothesis
for sub-tree leakage below. Concurrently, we need
to highlight the fact that for all cases we focused on
this experiment, there was a negative (inverse) cor-
relation between leakage and parser performance.

While Søgaard (2020) was correct (for the lan-
guages/parsers they studied) to state that there is
a correlation between leakage and parser perfor-
mance, we believe they reached an incorrect con-
clusion. The metric they used (explained variance)
does not reveal the direction of the correlation, just
that there is a correlation. Because of this they
came to the wrong conclusion that there was a pos-
itive correlation between leakage and parser per-
formance. Our results (Table 1, left table) instead
imply that as leakage increases, parser performance
worsens! Clearly, something is wrong and we need
to re-examine Søgaard’s reasoning.

Sub-Trees are More Meaningful Units We
turn our attention to the parsers whose performance
we are trying to explain.

The three parsers that Søgaard uses and UDify
are graph-based ones. This means that they do not
necessarily score or produce whole trees. Graph-
based parsers score pairs of words, and from these
scores a minimum spanning tree is selected to pro-
duce the final dependency parse. As such, we argue
that whole trees as a measure of leakage are not
appropriate for graph-based parsers.

To drive this point forward, we perform syn-
thetic experiments removing adjectival modifiers
from nominal subject or object. In particular, we
created training data in which the data either did
not contain adjectival modifiers on subject/object
nouns. We then tested the models on gold unmodi-
fied test data which contained such modifiers. By
removing adjectival modifiers only from the sub-
jects (similarly for objects) in the training data, we
ensure two things: that test instances with adjecti-
val modifiers on subjects are not leaky; as such, if
whole-tree leakage is a proper indication for parser
performance, then the parser should perform poorly
in producing such constructions.

Table 2 shows the results of our experiment over
the German HDT treebank.8 We found that the
parsers trained on our counterfactual data, which
have zero leakage for these test instances, still pro-
duce the local constructions that they have never
observed during training. The parsers trained with-
out training subject modifiers produced about half
of the expected subject modifiers (similarly for ob-
ject modifier experiments). Nevertheless, they were
still able to generalize based on other similar con-
structions seen in training, correctly parsing a non-
zero amount of unseen-in-training constructions.

This observation is not unexpected. In the experi-
ment above, even removing all adjectival modifiers
from nouns that are subjects (hence a subtree –and

8Also see results on English in Appendix B.
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I prefer a morning flight
PRON VERB DET NOUN NOUN

root

nsubj

dobj
det

nmod

Subtrees:

I prefer
PRON VERB

nsubj
a flight

DET NOUN

det
morning flight
NOUN NOUN

nmod

prefer
VERB

root

prefer a morning flight
VERB DET NOUN NOUN

dobj
det

nmod

Figure 2: Decomposition of a tree (top) into a set of
sub-trees (bottom).

consequently a whole tree containing it– has never
been observed), the parser still observes adjective-
noun modifying pairs elsewhere in the sentences
and is able to generalize, producing a tree that has
never been observed at training.

The fact that the parsers make local output deci-
sions, along with the proven corollary that they can
easily produce unseen trees, guides us to search for
a leakage measure focusing on sub-trees.

Sub-Tree Based Leakage We define a leakage
measure where a dependency tree is first decom-
posed into a set of subtrees, and then each subtree
reduces into the graphs defined above to compute
isomorphisms. These subtrees are created for each
node (word), connecting it to its parent and to all
its children. See example in Figure 2.

We repeat our experiments, this time using our
proposed leakage measure, and present the results
in the right-hand side of Table 1. As before, for
Søgaard’s and for the UDify combinations of mod-
els/languages the explained variance is negative.
However, now more information (edge/node labels)
leads to higher Spearman’s ⇢ coefficients, implying
that indeed the more test subtrees we have observed
in training, the better the parser performance.

In the unlabeled setting, every sub-tree created
by the parser was found in the training data, which
was true of most gold files as well. We interpret this
observation to mean that unlabeled sub-trees are
not meaningful units, a point further reinforced by
the negative explained variance and correlations.

At the same time, our measure still fails to ex-
plain any of the observed performance variance.
Thus, we have to reach a conclusion opposite of Sø-
gaard (2020), that in a monolingual setting the
performance of modern graph-based parsers is not
particularly explained by train-test leakage, how-
ever we compute that leakage.

System: UDify Regression Expl. Spearman’s
(Zero-Shot) Score Variance MAE ⇢

Whole-Tree Leakage

None 0.385 0.263 17.539 -0.581
Edges 0.221 0.124 21.460 -0.493
Nodes+Edges 0.221 0.106 21.506 -0.546

Sub-Tree Leakage

Edges 0.271 0.210 18.245 0.609
Nodes+Edges 0.246 0.215 18.038 0.578

Table 3: Leakage explains zero-shot parser perfor-
mance. Sub-tree leakage also correlates with it.

3 Leakage Explains 0-Shot Performance

Modern dependency parsing models trained on
many languages perform well on languages unseen
(zero-shot setting) during training (Muller et al.,
2021; Glavaš and Vulić, 2021, inter alia).

We focus again on UDify, since it performs well
in zero-shot settings. This is generally attributed
to two factors: the presence of related languages
in the training set, and the multilingual capabilities
of the underlying representation model (here, a
multilingual BERT (Devlin et al., 2019) model).

Table 3 reports results with Søgaard’s (whole-
tree) and our sub-tree leakage measures under all
three settings, focusing only on 35 zero-shot test
languages.9 Now leakage10 can indeed explain
downstream parser performance. Our proposed
measure explains as much variance as the origi-
nal whole-tree measure and also correlates with
performance.

Analysis on Faroese Looking deeper into the
zero-shot setting, we perform an experiment on
a simplified bilingual zero-shot setting. We train
parsers in five Germanic languages (German,
Swedish, Danish, Norwegian, Icelandic) and test
on Faroese in a zero-shot fashion. For each lan-
guage, we train a model on:
(a) a ‘leaky’ sample of the portion of training

treebank, so that all training data overlapped
with (some) test data,

(b) a ‘non-leaky’ sample of trees such that there
was no train-test overlap,

(c) a control random sample from the training
treebank, and

(d) a ‘diverse’ training sample including a sin-
gle tree from each isomorphism equivalence
class.

9These 35 languages are treebanks with size 0 in Kon-
dratyuk and Straka (2019).

10In this multilingual setting, leakage is computed against a
training set comprised of 75 concatenated treebanks.
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Figure 3: Zero-shot results on Faroese. Training on non-leaky and diverse data is best. The leaky portion of the
test set is far easier than the rest.

All of the above models are size-controlled for each
language, so that the training data sizes are exactly
the same. Leakage here is measured with unlabeled
full-tree leakage, for simplicity. We similarly split
the test set, for each language, into ‘leaky’ and
‘non-leaky’ subsets (also reporting numbers for the
whole test set).

For example, take German training and Faroese
test sets. First all German instances leaking into
Faroese are added to the “German leaky” train set
and the corresponding leaked Faroese sentences
are put into the “Faroese-leaky" test set. Then the
remaining sentences from the German training set
are added to the “German nonleaky” train set and
the remaining sentences from the Faroese test set
are the “Faroese nonleaky” test set. Last, we take a
random sample of same size across all settings, so
that training data size is not a confounding factor
for our analysis.

See Figure 3 and extensive results in Appendix C.
For all languages, models trained on leaky data
perform worse than models trained on the same
amount of non-leaky or random data. For most
transfer languages, in fact, training solely on non-
leaky data performs better than training on other
subsets! In addition, the leaky part of the testing
data is clearly easier to parse in general, while the
non-leaky part is more challenging.

The models trained on perfectly ‘diverse’ tree-
banks generally perform just as good as those
trained on non-leaky or randomly sampled data

and often better on the non-leaky test set, which
means they generalize better. This indicates a way
to reach better cross-lingual performance without
the need for large training data, as long as the train-
ing set is diverse enough.

The large performance difference between mod-
els trained on leaky and non-leaky trees reveals
that something is different about the parts of the
treebanks that leak. We measured the diversity of
the leaky, non-leaky, and randomly selected trees,
defined as the number of unique trees divided by
the total number of trees. We found that leaky tree-
banks were far less diverse and therefore contain
fewer unique structures than non-leaky or randomly
sampled counterparts. Across all treebanks, leaky
instances are also generally shorter (8.4 vs 21.6 avg
length), shallower (2.2 vs 4.8 average tree depth),
and with shorter avg dependency length (2 vs 3.3).

We argue that the reasoning should be reverse:
short “easy” examples are more likely to leak; it is
not leakage that makes them easy!

4 Conclusion

We re-evaluate claims that training-test leakage can
explain parser performance, define a subtree-based
leakage measure that better explains performance,
and show that this claim only holds for zero-shot
transfer settings.
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A Graph Reduction Examples

Shown in Table 4.

Dependency Trees:

She saw it
PRON VERB PRON

root

nsubj dobj

The big boat
DET ADJ NOUN

rootdet

amod

Søgaard (2020) Unlabeled Directed Graphs:

Node-Labeled Directed Graphs:

rt V

PRPR

rt N

DTA

Node- and Edge-Labeled Directed Graphs:

rt V

PRPR

nsubjdo
bj

rt N

DTA

detam
od

Figure 4: Only labeled reductions produce different
graphs for these fundamentally different sentences.

B English Counterfactual Experiments

Shown in Table 4.

Produced by model trained without
Construction Actual nsubj mods obj mods

German HDT treebank:

nsubj mods 3166 1698 3167
obj mods 3910 4505 1940

English EWT treebank:

nsubj mods 132 122 130
obj mods 254 258 237

Table 4: Number of adjectival modifiers produced by
counterfactual models compared to the actual number
in the gold file. The parsers can produce constructions
not seen during training.

C Complete Faroese Results

Shown in Tables 5.
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Train Test UAS LAS CLAS MLAS BLEX

Faroese-leaky Faroese-leaky 78.48 66.24 55.6 51.26 55.6
Faroese-nonleaky 53.22 42.19 28.39 22.6 28.39

Faroese-all 53.91 42.85 29.19 23.43 29.19

Faroese-nonleaky Faroese-leaky 97.89 94.51 90.65 90.65 90.65
Faroese-nonleaky 88.15 84.75 78.66 75.98 78.66

Faroese-all 88.42 85.02 79.01 76.41 79.01

Faroese-all Faroese-leaky 97.47 93.67 90.32 88.17 90.32
Faroese-nonleaky 89 85.36 79.02 76.56 79.02

Faroese-all 89.23 85.59 79.35 76.9 79.35

Faroese-diverse Faroese-leaky 96.62 92.41 89.61 85.3 89.61
Faroese-nonleaky 89.27 85.56 79.66 77.2 79.66

Faroese-all 89.47 85.75 79.95 77.43 79.95

German-leaky Faroese-leaky 57.49 41.23 43 34.89 43
Faroese-nonleaky 32.53 18.24 16.24 12.57 16.24

Faroese-all 35.25 20.74 19.27 15.1 19.27

German-nonleaky Faroese-leaky 64.08 47.18 51.43 40.86 51.43
Faroese-nonleaky 52.07 35.43 35.14 27.09 35.14

Faroese-all 53.38 36.71 36.98 28.65 36.98

German-all Faroese-leaky 57.39 31.24 36.84 25.82 36.84
Faroese-nonleaky 45.81 23.59 25.03 19.81 25.03

Faroese-all 47.07 24.42 26.36 20.49 26.36

German-diverse Faroese-leaky 58.02 42.51 48.94 29.73 48.94
Faroese-nonleaky 48.95 33.4 34.26 23.6 34.26

Faroese-all 49.94 34.39 35.9 24.29 35.9

Afrikaans-leaky Faroese-leaky 46.51 20.47 24.91 11.72 24.91
Faroese-nonleaky 27.19 7.49 7.04 3.88 7.04

Faroese-all 27.67 7.81 7.54 4.1 7.54

Afrikaans-nonleaky Faroese-leaky 47.44 16.28 7.43 5.57 7.43
Faroese-nonleaky 39.78 15.99 6.96 5.47 6.96

Faroese-all 39.97 16 6.97 5.47 6.97

Afrikaans-all Faroese-leaky 45.58 17.21 22.8 10.42 22.8
Faroese-nonleaky 40.51 16.34 10.03 5.82 10.03

Faroese-all 40.64 16.36 10.37 5.94 10.37

Afrikaans-diverse Faroese-leaky 38.6 16.74 13.04 9.94 13.04
Faroese-nonleaky 36.18 16.34 8.13 6.48 8.13

Faroese-all 36.24 16.35 8.26 6.57 8.26
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Train Test UAS LAS CLAS MLAS BLEX

Danish-leaky Faroese-leaky 71.33 53.85 55.73 47.83 55.73
Faroese-nonleaky 49.86 35.97 34.74 27.31 34.74

Faroese-all 50.93 36.86 35.86 28.41 35.86

Danish-nonleaky Faroese-leaky 73.43 60.37 65.05 57.37 65.05
Faroese-nonleaky 64.1 52.26 47.85 42.12 47.85

Faroese-all 64.57 52.66 48.77 42.94 48.77

Danish-all Faroese-leaky 69.46 59.21 64.08 54.69 64.08
Faroese-nonleaky 62.52 51.63 48.34 42.12 48.34

Faroese-all 62.86 52 49.18 42.79 49.18

Danish-diverse Faroese-leaky 68.53 57.34 62.75 52.23 62.75
Faroese-nonleaky 62.92 51.13 48.3 41.82 48.3

Faroese-all 63.2 51.43 49.08 42.38 49.08

Icelandic-leaky Faroese-leaky 88.07 80.97 74.1 69.54 74.1
Faroese-nonleaky 72.77 65.78 53.78 50.26 53.78

Faroese-all 74.02 67.02 55.54 51.93 55.54

Icelandic-nonleaky Faroese-leaky 93.32 89.49 84.75 83.55 84.75
Faroese-nonleaky 84.18 79.21 70.54 67.5 70.54

Faroese-all 84.93 80.04 71.77 68.9 71.77

Icelandic-all Faroese-leaky 91.05 87.64 82.93 80.53 82.93
Faroese-nonleaky 84.27 79.97 71.36 68.49 71.36

Faroese-all 84.82 80.6 72.37 69.54 72.37

Icelandic-diverse Faroese-leaky 91.76 87.36 82.07 80.39 82.07
Faroese-nonleaky 84.89 80.49 72.7 69.88 72.7

Faroese-all 85.45 81.05 73.51 70.79 73.51

Norwegian-leaky Faroese-leaky 72.46 61.41 65.53 61.8 65.53
Faroese-nonleaky 52.78 43.48 36.09 32.2 36.09

Faroese-all 54.04 44.62 38.09 34.21 38.09

Norwegian-nonleaky Faroese-leaky 73.01 62.5 67.39 62.42 67.39
Faroese-nonleaky 59.37 49.59 47 43.19 47

Faroese-all 60.24 50.42 48.4 44.51 48.4

Norwegian-all Faroese-leaky 73.01 61.59 65.54 59.69 65.54
Faroese-nonleaky 61.12 49.49 45.64 42.46 45.64

Faroese-all 61.88 50.27 47.01 43.64 47.01

Norwegian-diverse Faroese-leaky 70.83 62.86 67.08 62.11 67.08
Faroese-nonleaky 61.12 51.3 48.71 45.04 48.71

Faroese-all 61.74 52.04 49.96 46.21 49.96
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Train Test UAS LAS CLAS MLAS BLEX

Swedish-leaky Faroese-leaky 60.58 32.75 38.81 27.29 38.81
Faroese-nonleaky 42.92 15.44 17.44 14.72 17.44

Faroese-all 43.63 16.13 18.33 15.24 18.33

Swedish-nonleaky Faroese-leaky 75.07 61.74 64.22 58.33 64.22
Faroese-nonleaky 57.22 41.87 38.77 33.37 38.77

Faroese-all 57.94 42.67 39.83 34.41 39.83

Swedish-all Faroese-leaky 68.99 55.07 57.35 49.76 57.35
Faroese-nonleaky 49.95 34.85 31.8 26.79 31.8

Faroese-all 50.71 35.65 32.86 27.74 32.86

Swedish-diverse Faroese-leaky 55.36 44.06 46.04 30.69 46.04
Faroese-nonleaky 40.15 29.34 22.84 18.06 22.84

Faroese-all 40.76 29.93 23.82 18.59 23.

Table 5: Results of our experiment on bilingual transfer for Faroese.
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