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Abstract

We study the Personalized PageRank (PPR) algorithm, a local spectral method for clustering,
which extracts clusters using locally-biased random walks around a given seed node. In
contrast to previous work, we adopt a classical statistical learning setup, where we obtain
samples from an unknown nonparametric distribution, and aim to identify sufficiently
salient clusters. We introduce a trio of population-level functionals—the normalized cut,
conductance, and local spread, analogous to graph-based functionals of the same name—and
prove that PPR, run on a neighborhood graph, recovers clusters with small population
normalized cut and large conductance and local spread. We apply our general theory to
establish that PPR identifies connected regions of high density (density clusters) that satisfy
a set of natural geometric conditions. We also show a converse result, that PPR can fail to
recover geometrically poorly-conditioned density clusters, even asymptotically. Finally, we
provide empirical support for our theory.

Keywords: graphs, spectral clustering, Personalized PageRank, density clustering, unsu-
pervised learning

1. Introduction

In this paper, we consider the problem of clustering: splitting a given data set into groups
that satisfy some notion of within-group similarity and between-group difference. Our
particular focus is on spectral clustering methods, a family of powerful nonparametric
clustering algorithms. Roughly speaking, a spectral algorithm first constructs a geometric
graph G, where vertices correspond to samples, and edges correspond to proximities between
samples. The algorithm then estimates a feature embedding based on a (suitable) Laplacian
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matrix of G, and applies a simple clustering technique (like k-means clustering) in the
embedded feature space.

When applied to geometric graphs built from a large number of samples, global spectral
clustering methods can be computationally cumbersome and insensitive to the local geometry
of the underlying distribution (Leskovec et al., 2010; Mahoney et al., 2012). This has led
to increased interest in local spectral clustering algorithms, which leverage locally-biased
spectra computed using random walks around some user-specified seed node. A popular
local clustering algorithm is the Personalized PageRank (PPR) algorithm, first introduced
by Haveliwala (2003), and then further developed by several others (Spielman and Teng,
2011, 2014; Andersen et al., 2006; Mahoney et al., 2012; Allen-Zhu et al., 2013).

Local spectral clustering techniques have been practically very successful (Leskovec
et al., 2010; Andersen et al., 2012; Gleich and Seshadhri, 2012; Mahoney et al., 2012; Wu
et al., 2012), which has led many authors to develop supporting theory (Spielman and Teng,
2013; Andersen and Peres, 2009; Gharan and Trevisan, 2012; Allen-Zhu et al., 2013) that
gives worst-case guarantees on traditional graph-theoretic notions of cluster quality (such as
normalized cut and conductance). In contrast, in this paper we adopt a classical statistical
viewpoint, and examine what the output of local clustering on a data set reveals about the
underlying density f of the samples. We establish conditions on f under which PPR, when
appropriately tuned and initialized inside a candidate cluster C ⊆ Rd, will approximately
recover this candidate cluster. We pay special attention to the case where C is a density
cluster of f—defined as a connected component of the upper level set {x ∈ Rd : f(x) ≥ λ}
for some λ > 0—and show precisely how PPR accounts for both geometry and density in
estimating a cluster.

Before giving a more detailed overview of our main results, we formally define PPR
on a neighborhood graph, review some of the aforementioned worst-case guarantees, and
introduce the population-level functionals that govern the behavior of local clustering in our
statistical context.

1.1 PPR Clustering

We start by reviewing the PPR clustering algorithm. Let G = (V,E) be an undirected,
unweighted, and connected graph. We denote by A ∈ Rn×n the adjacency matrix of G, with
entries Auv = 1 if (u, v) ∈ E and 0 otherwise. We also denote by D the diagonal degree
matrix, with entries Duu :=

∑
v∈V Auv, and by I the n × n identity matrix. The PPR

vector pv = p(v, α;G) is defined with respect to a given seed node v ∈ V and a teleportation
parameter α ∈ [0, 1], as the solution of the following linear system:

pv = αev + (1− α)pvW, (1)

where W = (I +D−1A)/2 is the lazy random walk matrix over G and ev is the indicator
vector for node v (that has a 1 in position v and 0 elsewhere).

In practice, exactly solving the system of equations (1) to compute the PPR vector
may be too computationally expensive. To address this limitation, Andersen et al. (2006)
introduced the ε-approximate PPR vector (aPPR), which we will denote by p

(ε)
v . We refer

the curious reader to Andersen et al. (2006) for a formal algorithmic definition of the aPPR
vector, and limit ourselves to highlighting a few salient points: the aPPR vector can be
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computed in order O(1/(εα)) time, while satisfying the following uniform error bound:

pv(u)− εDuu ≤ p(ε)v (u) ≤ pv(u), for all u ∈ V . (2)

Once pv or p
(ε)
v is computed, the cluster estimate Ĉ is chosen by taking a particular

sweep cut. For a given level β > 0, the β-sweep cut of pv = (pv(u))u∈V is

Sβ,v :=

{
u ∈ V :

pv(u)

Duu
> β

}
. (3)

To define Ĉ, one computes Sβ,v over all β ∈ (L,U) (where the range (L,U) is user-specified),
and then outputs the cluster estimate Ĉ = Sβ∗,v with minimum normalized cut. For a set
C ⊆ V with complement Cc = V \C, the cut and volume are respectively,

cut(C;G) :=
∑

u∈C

∑

v∈Cc

1{(u, v) ∈ E}, vol(C;G) :=
∑

u∈C

∑

v∈V

1{(u, v) ∈ E}, (4)

and the normalized cut of C is

Φ(C;G) :=
cut(C;G)

min {vol(C;G), vol(Cc;G)} . (5)

1.2 Worst-Case Guarantees for PPR Clustering

As mentioned, most analyses of local clustering have focused on worst-case guarantees,
defined with respect to functionals of an a priori fixed graph G = (V,E). For instance,
Andersen et al. (2006) analyze the normalized cut of the cluster estimate Ĉ output by PPR,
showing that when PPR is appropriately seeded within a candidate cluster C ⊆ V , the
normalized cut Φ(Ĉ;G) is upper bounded by (a constant times)

√
Φ(C;G). Allen-Zhu et al.

(2013) build on this: they introduce a second functional, the conductance Ψ(G), defined as

Ψ(G) := min
S⊆V

Φ(S;G), (6)

and show that if Φ(C;G) is much smaller than Ψ(G[C])2—where G[C] = (C,E ∩ (C×C)) is
the subgraph of G induced by C— then (in addition to having a small normalized cut) the
cluster estimate Ĉ approximately recovers C. Our own analysis builds on that of Allen-Zhu
et al. (2013), and we present a more detailed summary of their results in Section 2. For
now, we merely reiterate that the conclusions of Andersen et al. (2006); Allen-Zhu et al.
(2013) cannot be straightforwardly applied to our setting, where the input data are random
samples {x1, . . . , xn} drawn from a distribution P, the graph G is a random neighborhood
graph formed from the samples, and the candidate cluster is a set C ⊆ Rd.1

1.3 PPR on a Neighborhood Graph

We now formally describe the statistical setting in which we operate, as well as the method
we will study: PPR on a neighborhood graph. Let X = {x1, . . . , xn} be samples drawn
i.i.d. from a distribution P on Rd. We will assume throughout that P has a density f with

1. Throughout, we use calligraphic notation to refer to subsets of Rd.
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respect to the Lebesgue measure ν on Rd . For a radius r > 0, we define Gn,r = (V,E) to
be the r-neighborhood graph of X, an unweighted, undirected graph with vertices V = X,
and an edge (xi, xj) ∈ E if and only if i 6= j and ‖xi − xj‖ ≤ r, where ‖ · ‖ is the Euclidean
norm. Once the neighborhood graph Gn,r is formed, the PPR vector pv is then computed
over Gn,r, with a resulting cluster estimate Ĉ ⊆ X. The precise algorithm is summarized in
Algorithm 1.

Algorithm 1 PPR on a neighborhood graph

Input: data X = {x1, . . . , xn}, radius r > 0, teleportation parameter α ∈ [0, 1], seed v ∈ X,
sweep cut range (L,U).
Output: cluster estimate Ĉ ⊆ V .

1: Form the neighborhood graph Gn,r.
2: Compute the PPR vector pv = p(v, α;Gn,r) as in (1).
3: Compute sweep cuts Sβ as in (3), for each β ∈ (L,U).2

4: Return Ĉ = Sβ∗ , where
β∗ = argmin

β∈(L,U)
Φ(Sβ ;Gn,r).

1.4 Cluster Accuracy

We need a metric to assess the accuracy with which Ĉ estimates the candidate cluster C.
One commonly used metric is the misclassification error, i.e., the size of the symmetric set
difference between Ĉ and the empirical cluster C[X] = C ∩X (Korostelev and Tsybakov,
1993; Polonik, 1995; Rigollet and Vert, 2009). We will consider a related metric, the volume
of the symmetric set difference, which weights misclassified points according to their degree
in Gn,r. To keep things simple, for a given set S ⊆ X we write voln,r(S) := vol(S;Gn,r).

Definition 1 For an estimator Ĉ ⊆ X and a set C ⊆ Rd, their symmetric set difference is

Ĉ △ C[X] :=
(
Ĉ \ C[X]

)
∪
(
C[X] \ Ĉ

)
.

Furthermore, we denote the volume of the symmetric set difference by

∆(Ĉ, C[X]) := voln,r(Ĉ △ C[X]).

1.5 Population Normalized Cut, Conductance, and Local Spread

Next we define three population-level functionals of C—the normalized cut ΦP,r(C), conduc-
tance ΨP,r(C), and the local spread sP,r(C)—which we will use to upper bound the volume
of the symmetric set difference ∆(Ĉ, C[X]) with high probability.

Let the population-level cut of C be the expectation (up to a rescaling) of cutn,r(C[X]) :=
cut(C[X];Gn,r), and likewise let the population-level volume of C be the expectation (up to
a rescaling) of voln,r(C[X]) := vol(C[X];Gn,r); i.e., let

cutP,r(C) :=
∫

C

∫

Cc

1{‖x−y‖ ≤ r} dP(y) dP(x), volP,r(C) :=
∫

C

∫

Rd

1{‖x−y‖ ≤ r} dP(y) dP(x),

2. Technically speaking, for each β ∈ (L,U) ∩ {pv(u)/Duu : u ∈ V }.
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where Cc := Rd\C. Also let degP,r(x) :=
∫
Rd 1{‖y− x‖ ≤ r} dP(y) be the expected degree of

x in Gn,r.

Definition 2 (Population normalized cut) For a set C ⊆ Rd, distribution P, and radius
r > 0, the population normalized cut is

ΦP,r(C) :=
cutP,r(C)

min{volP,r(C), volP,r(Cc)} . (7)

Let P̃(·) = P(·|x ∈ C) be the conditional distribution of x, i.e., let P̃(S) = P̃(S ∩ C)/P̃(C)
for measurable sets S ⊆ Rd.

Definition 3 (Population conductance) For a set C ⊆ Rd, distribution P and radius
r > 0, the population conductance is

ΨP,r(C) = inf
S⊆C

Φ
P̃,r

(S). (8)

Definition 4 (Population local spread) For a set C ⊆ Rd, distribution P and radius
r > 0, the population local spread is

sP,r(C) := min
x∈C

{(
deg

P̃,r
(x)
)2

vol
P̃,r

(C)

}
, (9)

It is quite natural that ΦP,r(C) and ΨP,r(C) should help quantify the role geometry plays
in local spectral clustering. Indeed, these functionals are the population-level analogues of
the empirical quantities Φn,r(C[X]) := Φ(C[X];Gn,r) and Ψn,r(C[X]) := Ψ(Gn,r

[
C[X]

]
), and

as we have already mentioned, these empirical quantities can be used to upper bound the
volume of the symmetric set difference. For this reason, similar population-level functionals
are used by Shi et al. (2009); Schiebinger et al. (2015); Garćıa Trillos et al. (2021) in the
analysis of global spectral clustering in a statistical context. We will comment more on the
relationship between these works and our own results in Section 1.7.

The role played by sP,r(C) is somewhat less obvious. For now, we mention only that it
plays an essential part in obtaining tight bounds on the mixing time of a particular random
walk that is closely related to the PPR vector, and defer further discussion until later in
Section 2.

1.6 Main Results

We now informally state our two main upper bounds, regarding the recovery of a generic
cluster C, and a density cluster Cλ. Theorem 5 informally summarizes the first of our main
results (formally stated in Theorem 12) regarding the recovery of a generic cluster C.

Theorem 5 (Informal) If C ⊆ Rd and P satisfy appropriate regularity conditions, and
Algorithm 1 is initialized properly with respect to C, then for all sufficiently large n, with
high probability it holds that

∆(Ĉ, C[X])

voln,r(C[X])
≤ c · ΦP,r(C) ·

(
log(1/sP,r(C))

ΨP,r(C)

)2

.
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(Above, and throughout, c stands for a universal constant that may change from line to
line.) Put more succinctly, we find that ∆(Ĉ, C[X]) is small when ΦP,r(C) is small relative to
(ΨP,r(C)/ log(1/sP,r(C)))2. To the best of our knowledge, this gives the first population-level
guarantees for local clustering in the nonparametric statistical context.

Next, Theorem 6 informally summarizes the second of our main results (formally stated
in Theorem 16) regarding the recovery of a λ-density cluster Cλ by PPR. For reasons that
we explain later in Section 3, our cluster recovery statement will actually be with respect to
the σ-thickened set Cλ,σ := {x ∈ Rd : dist(x, Cλ) < σ}, for a given σ > 0. The upper bound
we establish is a function of various parameters that measure the conditioning of both the
density cluster Cλ,σ and density f for recovery by PPR. We assume that Cλ,σ is the image of
a convex set K of finite diameter diam(K) ≤ ρ < ∞ under a Lipschitz, measure-preserving
mapping g, with Lipschitz constant M . We also assume that f is bounded away from 0 and
∞ on Cλ,σ:

0 < λσ ≤ f(x) ≤ Λσ < ∞ for all x ∈ Cλ,σ,
and additionally satisfies the following low-noise condition:

inf
y∈Cλ,σ

f(y)− f(x) ≥ θ · dist(x, Cλ,σ)γ for all x such that 0 < dist(x, Cλ,σ) ≤ σ.

(Here dist(x, C) := infy∈C ‖y − x‖.)

Theorem 6 (Informal) If Cλ ⊆ Rd is a λ-density cluster of a distribution P, which satisfies
appropriate regularity conditions, and Algorithm 1 is initialized properly with respect to Cλ,σ,
then for all sufficiently large n, with high probability it holds that

∆(Ĉ, Cλ,σ[X])

voln,r(Cλ,σ)
≤ c · d4 · M

2ρ2

σr
·
Λ2
σλ(λ− θ rγ

γ+1)

λ4
σ

· log2
(
Λ
2/d
σ Mρ

λ
2/d
σ 2r

)
.

The above result reveals the separate roles played by geometry and density in the
ability of PPR to recover a density cluster. Here M , ρ, and σ capture whether Cλ,σ is
geometrically well-conditioned (short and fat) or poorly-conditioned (long and thin) for
recovery by PPR. Likewise, the parameters λσ,Λσ, γ, and θ measure whether the density f
is well-conditioned (approximately uniform over the density cluster, and having thin tails
outside of it) or poorly conditioned (vice versa). Theorem 6 says that if the thickened density
cluster Cλ,σ is geometrically well-conditioned—meaning, M2ρ2/(σr) ≈ 1—and the density f
is well-conditioned near Cλ,σ—meaning, Λσ ≈ λ ≈ λσ and λ− θrγ/(γ + 1) is much less than
λσ—then PPR will approximately recover Cλ,σ.

1.7 Related Work

We now summarize some related work (in addition to the background material already given
above), regarding the theory of spectral clustering, and of density cluster recovery.

1.7.1 Spectral Clustering

In the stochastic block model (SBM), arguably one of the simplest models of network
formation, edges between nodes independently occur with probability based on a latent
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community membership. In the SBM, the ability of spectral algorithms to perform clustering—
or community detection—is well-understood, dating back to McSherry (2001) who gives
conditions under which the entire community structure can be recovered. In more recent
work, Rohe et al. (2011) upper bound the fraction of nodes misclassified by a spectral
algorithm for the high-dimensional (large number of blocks) SBM, and Lei and Rinaldo
(2015) extend these results to the sparse (low average degree) regime. Relatedly, Clauset
et al. (2008); Balakrishnan et al. (2011); Li et al. (2020) analyze the misclassification rate
when the block model exhibits some hierarchical structure. The framework we consider,
in which nodes correspond to data points sampled from an underlying density, and edges
between nodes are formed based on geometric proximity, is quite different than the SBM,
and therefore so is our analysis.

In general, the study of spectral algorithms on neighborhood graphs has been focused on
establishing asymptotic convergence of eigenvalues and eigenvectors of certain sample objects
to the eigenvalues and eigenfunctions of corresponding limiting operators. Koltchinskii
and Gine (2000) establish convergence of spectral projections of the adjacency matrix to a
limiting integral operator, with similar results obtained using simplified proofs in Rosasco
et al. (2010). von Luxburg et al. (2008) studies convergence of eigenvectors of the Laplacian
matrix for a neighborhood graph of fixed radius. Belkin and Niyogi (2007) and Garćıa Trillos
and Slepčev (2018) extend these results to the regime where the radius r → 0 as n → ∞.

These results are of fundamental importance. However, they remain silent on the
following natural question: do the spectra of these continuum operators induce a partition of
the sample space which is “good” in some sense? Shi et al. (2009); Schiebinger et al. (2015);
Garćıa Trillos et al. (2021); Hoffmann et al. (2019) address this question, showing that
spectral algorithms will recover the latent labels in certain well-conditioned nonparametric
mixture models. These works are probably the most similar to our own: the conditioning of
these mixture models depends on population-level functionals resembling the population
normalized cut and conductance introduced above, and the resulting bounds on the error
of spectral clustering are comparable to those we establish in Theorem 12. However, these
results focus on global rather than local methods, and impose global rather than local
conditions on P. Moreover, they do not explicitly consider recovery of density clusters, which
is an important concern of our work. We comment further on the relationship between our
results and these works after Theorem 12.

1.7.2 Density Clustering

For a given threshold λ ∈ (0,∞), we denote by Cf (λ) the connected components of the
density upper level set {x ∈ Rd : f(x) ≥ λ}. In the density clustering problem, initiated
by Hartigan (1975), the goal is to recover Cf (λ). By now, density clustering, and the related
problem of level-set estimation, have been thoroughly studied. For instance, Polonik (1995);
Rigollet and Vert (2009); Rinaldo and Wasserman (2010); Steinwart (2015) study density
clustering under the symmetric set difference metric, Tsybakov (1997); Singh et al. (2009);
Jiang (2017) describe minimax optimal level-set and cluster estimators under Hausdorff loss,
and Hartigan (1981); Chaudhuri and Dasgupta (2010); Kpotufe and von Luxburg (2011);
Balakrishnan et al. (2013); Steinwart et al. (2017); Wang et al. (2019) consider estimation of
the cluster tree {Cf (λ) : λ ∈ (0,∞)}.
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We emphasize that our goal is not to improve on these results, nor is it to offer a better
algorithm for density clustering. Indeed, seen as a density clustering algorithm, PPR has
none of the optimality guarantees found in the aforementioned works. Rather, we hope to
better understand the implications of our general theory by applying it within an already
well-studied framework. We should also note that since we study a local algorithm, our
interest will be in a local version of the density clustering problem, where the goal is to
recover a single density cluster Cλ ∈ Cf (λ).

1.8 Organization

We now outline the rest of the paper.

• In Section 2, we derive bounds on the error of PPR as a function of sample normalized
cut, conductance, and local spread. We then show that under certain conditions the
sample normalized cut, conductance, and local spread are close to their population-
level counterparts, with high probability for sufficient number of samples. As a
result, we obtain an upper bound on ∆(Ĉ, C[X])/voln,r(C[X]) purely in terms of these
population-level functionals (Theorem 16).

• In Section 3, we focus on the special case where the candidate cluster C = Cλ is a
λ-density cluster—that is, a connected component of the upper level set {x : f(x) ≥ λ}.
We derive bounds on the population normalized cut, conductance, and local spread of
the density cluster, which depend on λ as well as some other natural parameters. This
leads to a bound on the symmetric set difference between Ĉ and the λ-density cluster
(Theorem 16).

• In Section 4, we prove a negative result: we give a hard distribution P with corre-
sponding density cluster Cλ for which the symmetric set difference between Ĉ and the
λ-density cluster is provably large.

• In Section 5 we empirically investigate some of our conclusions, before ending with
some discussion in Section 6.

2. Recovery of a Generic Cluster with PPR

In the main result (Theorem 12) of this section, we give a high probability upper bound on
the volume of the symmetric set difference ∆(Ĉ, C[X]), in terms of the population normalized
cut ΦP,r(C), conductance ΨP,r(C), and local spread sP,r(C). We build to this theorem slowly,
giving new structural results in two distinct directions. First, we build on some previous
work (mentioned in the introduction) to relate ∆(Ĉ, C[X]) to the sample normalized cut
Φn,r(C[X]), conductance Ψn,r(C[X]), and local spread sn,r(C[X]) := s(Gn,r[C[X]]). Second,
we argue that when n is large, each of these graph functionals can be bounded by their
population-level analogues with high probability.

2.1 The Fixed Graph Case

When PPR is run on a fixed graph G = (V,E) with the goal of recovering a candidate
cluster C ⊆ V , Allen-Zhu et al. (2013) provide the sharpest known bounds on the volume of
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the symmetric set difference between the cluster estimate Ĉ and candidate cluster C. Since
these results will play a major part in our analysis, in Lemma 7 we restate them for the
convenience of the reader.3

In their most general form, the results of Allen-Zhu et al. (2013) depend on the mixing
time of a lazy random walk over the induced subgraph G[C]. The mixing time of a lazy
random walk over a graph G is

τ∞(G) := min

{
t :

π(u)− q
(t)
v (u)

π(u)
≤ 1

4
, for all u, v ∈ V

}
; (10)

here q
(t)
v := evW

t is the distribution of a lazy random walk over G initialized at node v and

run for t steps, and π := limt→∞ q
(t)
v is the limiting distribution of q

(t)
v .

Lemma 7 (Lemma 3.4 of Allen-Zhu et al. (2013)) For a set C ⊆ V , suppose that

α ≤ min
{ 1

45
,

1

2τ∞(G[C])

}
, β ≤ 1

5vol(C;G)
. (11)

Then there exists a set Cg ⊆ C with vol(Cg;G) ≥ 1
2vol(C;G) such that for any v ∈ Cg, the

sweep cut Sβ,v satisfies

vol(Sβ,v △ C;G) ≤ 6
Φ(C;G)

αβ
. (12)

The upper bound in (12) does not obviously depend on the conductance Ψ(G[C]). However,
as Allen-Zhu et al. (2013) point out, letting πmin(G) := minu∈V {π(u)}, it follows from
Cheeger’s inequality (Chung, 1997) that

τ∞(G) ≤ log(1/πmin(G))

Ψ(G)2
. (13)

Therefore, setting (for instance) α = Ψ(G[C])2

2 log(1/πmin(G)) and Ĉ = Sβ0,v for β0 =
1

5vol(C;G) , we
obtain from (12) that

vol(C △ Ĉ;G)

vol(C;G)
≤ 60

Φ(C;G) log
(
1/πmin(G[C])

)

Ψ(G[C])2
. (14)

2.2 Improved Bounds on Mixing Time

Having reviewed the conclusions of Allen-Zhu et al. (2013), we return now to our own setting,
where the data is not a fixed graph G but instead random samples {x1, . . . , xn}, and our goal
is to recover a candidate cluster C ⊆ Rd. Ideally, we would like to apply (14) with C = C[X]
and G = Gn,r, replace Φn,r(C[X]) and Ψn,r(C[X]) by ΦP,r(C) and ΨP,r(C) inside (14), and
thereby obtain an upper bound on ∆(Ĉ; C[X]) that depends only on P and C. Unfortunately,
however, there is a catch: when the graph is G = Gn,r and the candidate cluster is C = C[X],

3. Lemma 7 improves on Lemma 3.4 of Allen-Zhu et al. (2013) by some constant factors, and for completeness
we prove Lemma 7 in the Appendix. Nevertheless, to be clear the essential idea of Lemma 7 is no different
than that of Allen-Zhu et al. (2013), and we do not claim any novelty.
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as n → ∞ the sample normalized cut Φn,r(C[X]) and conductance Ψn,r(C[X]) each converge
to their population-level analogues, but πmin(Gn,r[C[X]]) ≍ 1/n.4 Therefore the right hand
side of (14) diverges at a log n rate, which turns (14) into a vacuous upper bound whenever
the number of samples is sufficiently large.

To address this, in Proposition 8 we improve the upper bound on the mixing time in (13).
Specifically, in (15) the “start penalty” of log(1/πmin(G)) is replaced by log(1/s(G)), where
s(G) is the graph local spread, defined as

s(G) := dmin(G) · πmin(G),

for dmin(G) = minu∈V
{
deg(u;G)

}
, and likewise dmax(G) = maxu∈V

{
deg(u;G)

}
. Notice

that s(G) ≥ πmin(G).

Proposition 8 Assume dmax(G)/dmin(G)2 ≤ 1/16. Then,

τ∞(G) ≤ 17

ln(2)

(
ln
(
32/s(G)

)

Ψ(G)

)2

. (15)

While Proposition 8 can be applied to any graph G (provided that the ratio of maximum
degree to squared minimum degree is at most 1/16), it is particularly useful for geometric
graphs: when G = Gn,r[C[X]] for a fixed radius r > 0, we have dmin(Gn,r[C[X]]) ≍ n, and
thus s(Gn,r[C[X]]) ≍ 1. We give a precise upper bound on s(Gn,r[C[X]]) in Proposition 9,
which does not grow with n, and in combination with Proposition 8 this allows us to remove
the unwanted log n factor from the upper bound in (14).

The local spread s(G) plays an intuitive role in the analysis of mixing time. Indeed, in
any graph G sufficiently small sets are expanders—that is, if a set R ⊆ V has cardinality
less than the minimum degree, the normalized cut Φ(R;G) will be much larger than the
conductance Ψ(G). As a consequence, a random walk over G will rapidly mix over all small
sets R, and in our analysis of the mixing time we may therefore “pretend” that the random
walk was given a warm start over a larger set S. The local spread s(G) simply delineates
small sets R from larger sets S. Of course, the proof of Proposition 8 requires a much more
intricate analysis, and—as with the proofs of all results in this paper—it is deferred to the
appendix.

2.3 Sample-to-Population Results

In Propositions 9 and 10, we establish high probability bounds on the sample normalized
cut, conductance, and local spread in terms of their population-level analogues. To establish
these bounds, we impose the following regularity conditions on P̃ and C.

(A1) The distribution P̃ has a density f̃ : C → (0,∞) with respect to Lebesgue measure.
There exist 0 < fmin ≤ fmax < ∞ for which

(∀x ∈ C) fmin ≤ f̃(x) ≤ fmax.

For convenience, we will assume fmin ≤ 1 and fmax ≥ 1.

4. For sequences (an) and (bn), we say an ≍ bn if there exists a constant c ≥ 1 such that an/c ≤ bn ≤ can

for all n ∈ N.

10
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(A2) The candidate cluster C ⊆ Rd is a bounded, connected, open set, and for d ≥ 2, it has
a Lipschitz boundary ∂C, meaning it is locally the graph of a Lipschitz function (e.g.,
see Definition 9.57 of Leoni (2017)).

In what follows, we use b1, b2, . . . and B1, B2, . . . to refer to positive constants that may
depend on P, C, and r, but do not depend on n or δ. We explicitly keep track of all constants
in our proofs.

Proposition 9 Fix δ ∈ (0, 1/3). Suppose P̃ and C satisfy (A1) and (A2). Then each of the
following statements hold.

• With probability at least 1− 3 exp{−b1δ
2n},

Φn,r(C[X]) ≤ (1 + 3δ)ΦP,r(C). (16)

• For any n ∈ N for which

1

n
≤ δ · 2P(C)

3
, (17)

the following inequality holds with probability at least 1− (n+ 2) exp{−b2δ
2n}:

sn,r(C[X]) ≥ (1− 4δ)sP,r(C). (18)

Let pd := 1/2 if d = 1, pd := 3/4 if d = 2, and otherwise pd := 1/d for d ≥ 3.

Proposition 10 Fix δ ∈ (0, 1/2). Suppose P̃ and C satisfy (A1) and (A2). For any n ∈ N

satisfying

B1
(log n)pd

min{n1/2, n1/d} ≤ δ, (19)

the following inequality holds with probability at least 1−B2/n− (n+ 1) exp{−b3n}:

Ψn,r(C[X]) ≥ (1− 2δ)ΨP,r(C). (20)

A note on the proof techniques: the upper bound in (16) follows by applying Bernstein’s
inequality to control the deviations of cutn,r(C[X]), voln,r(C[X]), and voln,r(Cc[X]) around
their expectations (noting that each of these is an order-2 U-statistic). To prove the lower
bound (18), we require a union bound to control the minimum degree dmin(Gn,r[C[X]]), but
otherwise the proof is similarly straightforward.

On the other hand, the proof of (20) is considerably more complicated. Our proof relies
on the recent results of Garćıa Trillos and Slepčev (2015), who upper bound the L∞-optimal
transport distance between the empirical measure Pn and P. For further details, we refer to
Appendix B.4, where we prove Proposition 10, as well as Garćıa Trillos et al. (2016), who
establish the asymptotic convergence of the sample conductance as n → ∞ and r → 0.

11
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2.4 Cluster Recovery

As is typical in the local clustering literature, our algorithmic results will be stated with
respect to specific ranges of each of the user-specified parameters. In particular, for δ ∈
(0, 1/4) and a candidate cluster C ∈ Rd, we require that some of the tuning parameters of
Algorithm 1 be chosen within specific ranges,

α ∈
[
(1− 4δ)2, (1− 2δ)2

)
· αP,r(C, δ)

2

(L,U) ⊆
( 1

5(1 + 2δ)
,

1

5(1 + δ)

)
· 1

n(n− 1)volP,r(C)
,

(21)

where

αP,r(C, δ) :=
ln(2)

17
·

Ψ2
P,r(C)

ln2
(

32
(1−4δ)sP,r(C)

) . (22)

Definition 11 When the input parameters to Algorithm 1 satisfy (21) for some C ⊆ Rd

and δ ∈ (0, 1/4), we say the algorithm is δ-well-initialized with respect to C.

Of course, in practice it is not feasible to set tuning parameters based on the underlying
(unknown) distribution P and candidate cluster C. Typically, one runs PPR over some range
of tuning parameter values and selects the cluster which has the smallest normalized cut.

By combining Lemma 7 and Propositions 8-10, we obtain an upper bound on ∆(Ĉ, C[X])
that depends solely on the distribution P and candidate cluster C. To ease presentation, we
introduce a condition number, defined for a given C ⊆ Rd and δ ∈ (0, 1/4) as

κP,r(C, δ) :=
(1 + 3δ)(1 + 2δ)

(1− 4δ)2(1− δ)
· ΦP,r(C)
αP,r(C, δ)

. (23)

Theorem 12 Fix δ ∈ (0, 1/4). Suppose P̃ and C satisfy (A1) and (A2). Then for any
n ∈ N which satisfies (17), (19), and

(1 + δ)

(1− δ)4
·B3 ≤ n, (24)

the following statement holds with probability at least 1 − B2/n − 4 exp{−b1δ
2n} − (2n +

2) exp{−b2δ
2n} − (n+ 1) exp{−b3n}: there exists a set C[X]g ⊆ C[X] of large volume,

voln,r(C[X]g) ≥ 1

2
voln,r(C[X]),

such that if Algorithm 1 is δ-well-initialized with respect to C[X], and run with any seed node
v ∈ C[X]g, then the PPR estimated cluster Ĉ satisfies

∆(Ĉ; C[X])

voln,r(C[X])
≤ 60 · κP,r(C, δ). (25)

We now make some remarks.

12
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• It is useful to compare Theorem 12 with what is already known regarding global
spectral clustering in the context of nonparametric statistics. Schiebinger et al. (2015)
consider the following variant of spectral clustering: first embed the data X into Rk

using the bottom k eigenvectors of the degree-normalized Laplacian I −D−1/2AD−1/2,
and then partition the embedded data into estimated clusters Ĉ1, . . . , Ĉk using k-means
clustering. They derive error bounds on the misclassification error that depend on a
difficulty function ϕ(P). In our context, where the goal is to successfully distinguish C
and Cc, thus where k = 2, this difficulty function is roughly

ϕ(P) ≈
√

ΦP,r(C) ·max

{
1

ΨP,r(C)2
;

1

ΨP,r(Cc)2

}
. (26)

We point out two ways in which (25) is a tighter bound than (26). First, (26) depends
on ΨP,r(Cc) in addition to ΨP,r(C), and is thus a useful bound only if Cc and C are
both internally well-connected. In contrast (25) depends only on ΨP,r(C), and is thus
a useful bound if C has small conductance, regardless of the conductance of Cc. This
is intuitive: PPR is a local rather than global algorithm, and as such the analysis
requires only local rather than global conditions. Second, (26) depends on

√
ΦP,r(C)

rather than ΦP,r(C), and since ΦP,r(C) ≤ 1 this results in a weaker bound. Schiebinger
et al. (2015) provide experiments suggesting that the linear, rather than square-root,
dependence is correct, and we theoretically confirm this in the local clustering setup.
Of course, on the other hand (25) depends on log2(1/sP,r(C)), which is due to the
locally-biased nature of the PPR algorithm, and does not appear in (26).

• Although Theorem 12 is stated with respect to the exact PPR vector pv, for a sufficiently
small choice of ε the application of (2) within the proof of Theorem 12 leads to an
analogous result which holds for the aPPR vector p

(ε)
v . We formally state and prove

this fact in Appendix E.

3. Recovery of a Density Cluster with PPR

We now apply the general theory established in the last section to the special case where
C = Cλ is a λ-density cluster—that is, a connected component of the upper level set
{x ∈ Rd : f(x) ≥ λ}. In Section 4, we also derive a lower bound, giving a “hard problem”
for which PPR will provably fail to recover a density cluster. Together, these results can
be summarized as follows: PPR recovers a density cluster Cλ if and only if both Cλ and f
are well-conditioned, meaning that Cλ is not too long and thin, and that f is approximately
uniform inside Cλ while satisfying a low-noise condition near its boundary.

3.1 Recovery of Well-Conditioned Density Clusters

All results on density clustering assume the density f satisfies some regularity conditions.
A basic requirement is the need to avoid clusters which contain arbitrarily thin bridges
or spikes, or more generally clusters which can be disconnected by removing a subset of
(Lebesgue) measure 0, and thus may not be resolved by any finite number of samples. To
rule out such problematic clusters, we follow the approach of Chaudhuri and Dasgupta
(2010), who assume the density is lower bounded on a thickened version of Cλ, defined as

13
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Cλ,σ := {x ∈ Rd : dist(x, C) < σ} for a given σ > 0. Regardless of the dimension of Cλ, the
set Cλ,σ is full dimensional. Under typical uniform continuity conditions, the requirement
that the density be lower bounded over Cλ,σ will be satisfied. Such continuity conditions can
be weakened (see for instance Rinaldo and Wasserman (2010); Steinwart (2015)) but we do
not pursue the matter further.

In summary, our goal is to obtain upper bounds on ∆(Ĉ, Cλ,σ[X]), for some fixed λ and
σ > 0. We have already derived upper bounds on the symmetric set difference of Ĉ and a
generic cluster C that depend on some population-level functionals of C. What remains is to
analyze these population-level functionals in the specific case where the candidate cluster is
Cλ,σ. To carry out this analysis, we will need to impose some conditions, and for the rest of
this section we will assume the following.

(A3) Bounded density within cluster: There exist constants 0 < λσ < Λσ < ∞ such that

λσ ≤ inf
x∈Cλ,σ

f(x) ≤ sup
x∈Cλ,σ

f(x) ≤ Λσ.

(A4) Low-noise density: There exist θ ∈ (0,∞) and γ ∈ [0, 1] such that for any x ∈ Rd with
0 < dist(x, Cλ,σ) ≤ σ,

inf
y∈Cλ,σ

f(y)− f(x) ≥ θ · dist(x, Cλ,σ)γ .

Roughly, this assumption ensures that the density decays sufficiently quickly as we
move away from the target cluster Cλ,σ, and is a standard assumption in the level-set
estimation literature (see for instance Singh et al. (2009)).

(A5) Lipschitz embedding: There exists a differentiable function g : Rd → Rd, ρ ∈ (0,∞)
and M ∈ [1,∞) such that

(a) Cλ,σ = g(K), for a convex set K ⊆ Rd with diam(K) = supx,y∈K ‖x− y‖ ≤ ρ < ∞;

(b) det(∇g(x)) = 1 for all x ∈ K, where ∇g(x) is the Jacobian of g evaluated at x;
and

(c) for some M ≥ 1,

‖g(x)− g(y)‖ ≤ M‖x− y‖ for all x, y ∈ K.

Succinctly, we assume that Cλ,σ is the image of a convex set with finite diameter under
a measure preserving, Lipschitz transformation.

For convenience only, we will also make the following assumption.

(A6) Bounded volume: The volume of Cλ,σ is no more than half the total volume of Rd:

volP,r(Cλ,σ) ≤ volP,r(Cc
λ,σ).

This assumption implies that the normalized cut of Cλ,σ will be equal to the ratio of
cutP,r(Cλ,σ) to volP,r(Cλ,σ).
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3.1.1 Normalized Cut, Conductance, and Local Spread of a Density Cluster

In Lemma 13, Proposition 14, and Proposition 15, we give bounds on the population local
spread, normalized cut, and conductance of Cλ,σ. These bounds depend on the various
geometric parameters just introduced.

Lemma 13 Assume Cλ,σ satisfies Assumptions (A3) and (A5) for some λσ,Λσ, ρ and M .
Then,

sP,r(Cλ,σ) ≥
1

4
· λ

2
σ

Λ2
σ

·
(
2r

ρ

)d

·
(
1− r

σ

√
d+ 2

2π

)
. (27)

Proposition 14 Assume Cλ,σ satisfies Assumptions (A3), (A4) and (A6) for some λσ,Λσ, θ,
and γ, and additionally that 0 < r ≤ σ

4d . Then,

ΦP,r(Cλ,σ) ≤
16

9
· dr
σ

·
λ
(
λσ − θ rγ

γ+1

)

λ2
σ

. (28)

Proposition 15 Assume Cλ,σ satisfies Assumptions (A3) and (A5) for some λσ,Λσ, ρ and
M . Then,

ΨP,r(Cλ,σ) ≥
(
1− r

4ρM

)
·
(
1− r

σ

√
d+ 2

2π

)2
·
√
2π

36
· r

ρM
√
d+ 2

· λ
2
σ

Λ2
σ

. (29)

Some remarks are in order.

• We prove Proposition 14 by separately upper bounding cutP,r(Cλ,σ) and lower bounding
the volume volP,r(Cλ,σ). Of these two bounds, the trickier to prove is the upper bound
on the cut, which involves carefully estimating the probability mass of thin tubes
around the boundary of Cλ,σ.

• Proposition 15 is proved in a completely different way. The proof relies heavily on
bounds on the isoperimetric ratio of convex sets (as derived by e.g., Lovász and
Simonovits (1990) or Dyer and Frieze (1991)), and thus the embedding assumption
(A5) and Lipschitz parameter M play an important role in proving the upper bound
in Proposition 15.

• There is some interdependence between M and σ, ρ, which might lead one to hope that
(A5) is non-essential. However, it is not possible to eliminate condition (A5) without
incurring an additional factor of at least (ρ/σ)d in (29), achieved, for instance, when
Cλ,σ is a dumbbell-like set consisting of two balls of diameter ρ linked by a cylinder of
radius σ. In contrast, (29) depends polynomially on d, and many reasonably shaped
sets—such as star-shaped sets as well as half-moon shapes of the type we consider
in Section 5—satisfy (A5) for reasonably small values of M (Abbasi-Yadkori, 2016;
Abbasi-Yadkori et al., 2017).

Applying these results along with Theorem 12, we obtain an upper bound on ∆(Ĉ, Cλ,σ[X]).
In what follows, C1,δ, C2,δ, . . . are constants which may depend on δ, but not on n, P or Cλ,σ,
and which we keep track of in our proofs.
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Theorem 16 Let Cλ ⊆ Rd and δ ∈ (0, 1/4). Suppose that Cλ,σ satisfies (A2)-(A6) for
some λσ,Λσ, θ, γ, ρ and M , that 0 < r ≤ σ/4d, and that the sample size n satisfies the same
conditions as in Theorem 12. Then with probability at least 1 − B2/n − 4 exp{−b1δ

2n} −
(2n+ 2) exp{−b2δ

2n} − (n+ 1) exp{−b3n}, the following statement holds: there exists a set
Cλ,σ[X]g ⊆ Cλ,σ[X] of large volume,

voln,r(Cλ,σ[X]g) ≥ 1

2
voln,r(Cλ,σ[X]).

such that if Algorithm 1 is δ-well-initialized with respect to Cλ,σ, and run with any seed node
v ∈ Cλ,σ[X]g, then the PPR estimated cluster Ĉ satisfies

∆(Ĉ; Cλ,σ[X])

voln,r(C[X])
≤ C1,δ · d3(d+ 2) · M

2ρ2

σr
·
Λ2
σλ(λ− θ rγ

γ+1)

λ4
σ

· log2
(
C

1/d
2,δ

Λ
2/d
σ Mρ

λ
2/d
σ 2r

)
(30)

Several further remarks are as follows.

• Observe that while the diameter ρ is absent from our upper bound on normalized
cut in Proposition 14, it enters the ultimate bound in Theorem 16 through the
conductance. This reflects (what may be regarded as) established wisdom regarding
spectral partitioning algorithms more generally (Guattery and Miller, 1995; Hein and
Bühler, 2010), but newly applied to the density clustering setting: if the diameter ρ is
large, then PPR may fail to recover Cλ,σ[X] even when Cλ is sufficiently well-conditioned
to ensure that Cλ,σ[X] has a small normalized cut in Gn,r. This will be supported by
simulations in Section 5.2.

• Several modifications of global spectral clustering have been proposed with the intent of
making such procedures essentially independent of the shape of the density cluster Cλ.
For instance, Arias-Castro (2009); Pelletier and Pudlo (2011) introduce a cleaning step
to remove low-degree vertices, whereas Little et al. (2020) use a weighted geometric
graph, where the weights are computed with respect to a density-dependent distance.
The resulting procedures come with stronger density cluster recovery guarantees.
However, the key ingredient in such procedures is the explicitly density-dependent
part of the algorithm, and spectral clustering functions as more of a post-processing
step. These methods are as such very different in spirit to PPR, which is a bona fide
(local) spectral clustering algorithm.

• As mentioned in the discussion after Theorem 12, the population normalized cut
and conductance also play a leading role in the analysis of global spectral clustering
algorithms. It therefore seems likely that similar bounds to (30) would apply to the
output of global spectral clustering methods as well, but formalizing this is outside
the scope of our work.

• The symmetric set difference does not measure whether Ĉ can (perfectly) distinguish
any two distinct clusters Cλ, C′

λ ∈ Cf (λ). In Appendix E, we show that the PPR

estimate Ĉ can in fact distinguish two distinct clusters Cλ and C′
λ, but the result holds

only under relatively restrictive conditions.
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Figure 1: The density f in (31), for ρ = 1, and two different choices of ǫ and σ. Left: ǫ = 0.3 and
σ = 0.1; right: ǫ = 0.2 and σ = 0.2.

4. Negative Result

We now exhibit a hard case for density clustering using PPR, that is, a distribution P for
which PPR is unlikely to recover a density cluster. Let C(0), C(1), C(2) be rectangles in R2,

C(0) =

[
−σ

2
,
σ

2

]
×
[
−ρ

2
,
ρ

2

]
, C(1) = C(0) − (σ, 0), C(2) = C(0) + (σ, 0),

where 0 < σ < ρ, and let P be the mixture distribution over X = C(0) ∪ C(1) ∪ C(2) given by

P =
1− ǫ

2
P1 +

1− ǫ

2
P2 +

ǫ

2
P0,

where Pk is the uniform distribution over C(k) for k = 0, 1, 2. The density function f of P is
simply

f(x) =
1

ρσ

(
1− ǫ

2
1(x ∈ C(1)) +

1− ǫ

2
1(x ∈ C(2)) + ǫ1(x ∈ C(0))

)
, (31)

so that for any ǫ < λ < (1 − ǫ)/2, we have Cf (λ) =
{
C(1), C(2)

}
. Figure 1 visualizes the

density f for two different choices of ǫ, σ, ρ.

4.1 Lower Bound on Symmetric Set Difference

As the following theorem demonstrates, even when Algorithm 1 is reasonably initialized, if
the density cluster C(1) is sufficiently geometrically ill-conditioned (in words, tall and thin)
the cluster estimator Ĉ will fail to recover C(1). Let

L = {(x1, x2) ∈ X : x2 < 0} . (32)
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In the following Theorem, B1,δ and B2,δ are constants which may depend on δ,P, Cλ,σ
and r, but not on n.

Theorem 17 Fix δ ∈ (0, 1/7). Assume the neighborhood graph radius r < σ/4, that

max

{
B1,δ ·

r

ρ
,B2,δ ·

1

n

}
<

1

18
and n ≥ 8

(1 + δ)

(1− δ)
, (33)

and that Algorithm 1 is initialized using inputs α = 36 · Φn,r(L[X]), and (L,U) = (0, 1).
Then the following statement holds with probability at least 1− (B4 + 2n+ 10) exp{−nδ2b4}:
there exists a set C[X]g of large volume,

voln,r(C[X]g ∩ C(1)[X]) ≥ 1

8
voln,r(C(1)[X];Gn,r),

such that for any seed node v ∈ C[X]g, the PPR estimated cluster Ĉ satisfies

σρ

r2n2
· voln,r(Ĉ △ C(1)[X]) ≥ 1− δ

2
− C3,δ ·

√
σ/ρ

ǫ2
·
√

log
(
C4,δ ·

ρσ

ǫ2r2

) σ

r
, (34)

We make a couple of remarks.

• Theorem 17 is stated with respect to a particular hard case, where the density clusters
are rectangular subsets of R2. We chose this setting to make the theorem simple to state,
and our results are generalizable to Rd and to non-rectangular clusters. Technically,
the rectangles C(0), C(1), C(2) are not σ-expansions due to their sharp corners. To fix
this, one can simply modify these sets to have appropriately rounded corners, and our
lower bound arguments do not need to change significantly, subject to some additional
bookkeeping. Thus we ignore this technicality in our subsequent discussion.

• Although we state our lower bound with respect to PPR run on a neighborhood
graph, the conclusion is likely to hold for a much broader class of spectral clustering
algorithms. In the proof of Theorem 17, we rely heavily on the fact that when ǫ2 is
sufficiently greater than σ/ρ, the normalized cut of C(1) will be much larger than that
of L. In this case, not merely PPR but any algorithm that approximates the minimum
normalized cut is unlikely to recover C(1). In particular, local spectral clustering
methods that are based on truncated random walks (Spielman and Teng, 2013), global
spectral clustering algorithms (Shi and Malik, 2000), and p-Laplacian based spectral
embeddings (Hein and Bühler, 2010) all have provable upper bounds on the normalized
cut of cluster they output, and thus we expect that they would all fail to estimate C(1).

4.2 Comparison Between Upper and Lower Bounds

To better digest the implications of Theorem 17, we translate the results of our upper
bound in Theorem 16 to the density f given in (31). Observe that C(1) satisfies each of the
Assumptions (A3)–(A6):

(A7) The density f(x) = 1−ǫ
2ρσ for all x ∈ C(1).
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(A8) The density f(x) ≤ ǫ
ρσ for all x ∈ R2 such that 0 < dist(x, C(1)) ≤ σ. Therefore for all

such x,

inf
x′∈C(1)

f(x′)− f(x) ≥
{
1− ǫ

2
− ǫ

}
1

ρσ
,

which meets the decay requirement with exponent γ = 0.

(A9) The set C(1) is itself convex, and has diameter
√
ρ2 + σ2.

(A10) By symmetry, volP,r(C(1)) = volP,r(C(2)), and therefore volP,r(C(1)) ≤ 1
2volP,r(R

d).

If the user-specified parameters are initialized according to (21), we may apply Theorem 16.
This implies that there exists a set C(1)[X]g ⊆ C(1)[X] with voln,r(C(1)[X]g) ≥ 1

2voln,r(C(1)[X])
such that for any seed node v ∈ C(1)[X]g, and for large enough n, the PPR estimated cluster
Ĉ satisfies with high probability

voln,r(Ĉ △ C(1)[X])

voln,r(C(1)[X])
≤ 64C1,δ ·

ρ2 + σ2

σr
· ǫ

1− ǫ
· log2

(√
C2,δ

ρ

2r

)

To facilitate comparisons between our upper and lower bounds set r = σ/8. Then the
following statements each hold with high probability.

• If the user-specified parameters satisfy (21), and for some a ≥ 0,

ǫ

1− ǫ
≤ a

512C1,δ

σ2

(ρ2 + σ2) log2(ρ/σ
√

C2,δ)
,

then ∆(Ĉ, C(1)[X]) ≤ a · voln,r(C(1)[X]).

• The population-level volume volP,r(C(1)) ≤ (1− ǫ)/2 · πr2/(ρσ), and

voln,r(C(1)[X]) ≤ (1 + δ) · n(n− 1)volP,r(C(1)).

Therefore, if the user-specified parameters are as in Theorem 17, and

ǫ ≥
√
8C3,δ

(
σ

ρ
log
(
64C4,δ ·

ρ

ǫ2σ

))1/4

,

then ∆(Ĉ, C(1)[X]) ≥ 1
20voln,r(C(1)[X]).

Ignoring constants and log factors, we can summarize the above conclusions as follows: if
ǫ is much less than (σ/ρ)2, then PPR will approximately recover the density cluster C(1),
whereas if ǫ is much greater than (σ/ρ)1/4 then PPR will fail to recover C(1), even if it is
reasonably initialized with a seed node v ∈ C(1). Jointly, these upper and lower bounds give
a relatively precise characterization of what it means for a density cluster to be well- or
poorly-conditioned for recovery using PPR.5

5. It is worth pointing out that the above conclusions are reliant on specific (albeit reasonable) ranges and
choices of input parameters, which in some instances differ between the upper and lower bounds. We
suspect that our lower bound continues to hold even when choosing input parameters as dictated by our
upper bound, but do not pursue the details.
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Of course, it is not hard to show that in the example under consideration, classical
plug-in density cluster estimators can consistently recover C(1), even if ǫ is large compared
to σ/ρ. That PPR has trouble recovering density clusters here (where standard plug-in
approaches do not) is not meant to be a knock on PPR. Rather, it simply reflects that
while classical density clustering approaches are specifically designed to identify high-density
regions regardless of their geometry, PPR relies on geometry as well as density when forming
the output cluster.

5. Experiments

We provide numerical experiments to investigate the tightness of our theoretical results in
Section 3, and compare the performance of PPR with a density clustering algorithm on the
“two moons” dataset. We defer details of the experimental settings to Appendix F.

5.1 Validating Theoretical Bounds

We investigate the tightness of Lemma 13 and Propositions 14 and 15— i.e., the bounds on
population functionals required for the eventual density cluster recovery result in Theorem 16—
via simulation. Figure 2 compares our bounds on normalized cut, conductance, and local
spread of a density cluster with the actual empirically-computed quantities, when samples
are drawn from a mixture of uniform distributions over rectangular clusters. In the first row
we vary the diameter ρ of the candidate cluster, in the second row we vary the width σ, and
in the third row we vary the ratio (λ− θ)/λ of the density within and outside the cluster. In
almost all cases, it is encouraging to see that our bounds track closely with their empirical
counterparts, and are loose by roughly an order of magnitude at most. The one exception to
this is the dependence of local spread on the width σ; this theoretical deficiency stems from
a loose bound on the volume of sets with large aspect ratio (meaning ρ/σ is much greater
than 1), but in any case the local spread contributes only log factors to the ultimate bound
on cluster recovery. On the other hand, the looseness in each of these bounds will propagate
to our eventual upper bound on ∆(Ĉ, Cλ,σ[X])/voln,r(Cλ,σ[X]), which as a result is loose by
several orders of magnitude.

5.2 Empirical Behavior of PPR

In Figure 3, to drive home the implications of Sections 3 and 4, we compare the behavior of
PPR and the density clustering algorithm of Chaudhuri and Dasgupta (2010) on the well-
known “two moons” dataset (with added 2d Gaussian noise), considered a prototypical success
story for spectral clustering algorithms. We also examine the cluster which minimizes the
normalized cut; as we have discussed previously, this can be seen as a middle ground between
the geometric sensitivity of PPR, and the geometric insensitivity of density clustering. The
first column shows the empirical density clusters Cλ[X] and C′

λ[X] for a particular threshold
λ of the density function; the second column shows the cluster recovered by PPR; the third
column shows the global minimum normalized cut, computed according to the algorithm of
Bresson et al. (2012); and the last column shows a cut of the density cluster tree estimator
of Chaudhuri and Dasgupta (2010). Each row corresponds to a different separation between
the two moons. In the second row, we see that as the two moons become less well-separated,
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Figure 2: Empirical normalized cut, conductance, and local spread (in red), versus their theoretical
bounds (in blue). In the first row we vary the diameter ρ, in the second row we vary the
thickness σ, and in the third row we vary the density ratio (λ− θ)/λ. The first column
shows n = 8000 samples for three different parameter values.

PPR becomes unable to recover the density clusters, but normalized cut still succeeds in
doing so. In the third row, we see that the Chaudhuri-Dasgupta algorithm succeeds even
when both PPR and normalized cut fail. This supports one of our main messages, which is
that PPR recovers only geometrically well-conditioned density clusters.

6. Discussion

In this work, we have analyzed the behavior of PPR in the classical setup of nonparametric
statistics. We have shown how PPR depends on the distribution P through the population
normalized cut, conductance, and local spread, and established upper bounds on the error
with which PPR recovers an arbitrary candidate cluster C ⊆ Rd. In the particularly important
case where C = Cλ is a λ-density cluster, we have shown that PPR recovers Cλ if and only if
both the density cluster and density are well-conditioned. We now conclude by summarizing
a couple of interesting directions for future work.
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Figure 3: True density (column 1), PPR (column 2), minimum normalized cut (column 3) and
estimated density (column 4) clusters for 3 different simulated data sets. Seed node for
PPR denoted by a black cross.
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Letting the radius of the neighborhood graph shrink, r → 0 as n → ∞, would be
computationally attractive, as it would ensure that the graph Gn,r is sparse. However, the
bounds (25) and (30) will blow up as the radius r goes to 0, preventing us from making claims
about the behavior of PPR in this regime. Although the restriction to a kernel function
fixed in n is common in spectral clustering theory (von Luxburg et al., 2008; Schiebinger
et al., 2015; Singer and Wu, 2017), recent works (Shi, 2015; Calder and Garćıa Trillos,
2019; Garćıa Trillos and Slepčev, 2018; Garćıa Trillos et al., 2020; Yuan et al., 2021) have
demonstrated that spectral methods have meaningful continuum limits when r → 0 as
n → ∞, and given precise rates of convergence. Garćıa Trillos et al. (2021) have applied these
results to analyze global spectral clustering in the nonparametric mixture model, obtaining
asymptotic upper bounds that do not depend on r; it seems plausible that similar bounds
could be obtained for local spectral clustering with PPR, although the arguments would
necessarily be quite different.

In another direction, it would be very useful to find reasonable conditions under which
the ratio ∆(Ĉ, C[X])/voln,r(C[X]) would tend to 0 as n → ∞. It seems likely that such
a strong result would entail bounds on the L∞-error of PPR. Though most results thus
far derive bounds only on the L1- or L2-error of spectral clustering methods, some recent
works (Dunson et al., 2021; Calder et al., 2022) have established L∞-bounds on the error
with which the eigenvectors of a graph Laplacian matrix approximate the eigenvectors of a
weighted Laplace-Beltrami operator. It is not clear whether the techniques used in these
works can be applied to PPR.
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The proofs of our major theorems largely consist of (at most) three modular parts.

1. Fixed graph results. Results which hold with respect to an arbitrary graph G, and
are stated with respect to functionals (i.e. normalized cut, conductance, and local
spread) of G;

2. Sample-to-population results. For the specific choice G = Gn,r, results relating
the aforementioned functionals to their population analogues.

3. Bounds on population functionals. (In the case of density clustering only.) When
the candidate cluster is a λ-density cluster, bounds on population functionals as a
function of λ, as well as the other relevant parameters introduced in Section 3.

Appendices A-C will correspond to each of these three parts. In Appendix D, we will
combine these parts to prove the major theorems of our main text, Theorems 12 and 16,
as well as our negative result, Theorem 17. In Appendix E we derive upper bounds for
the aPPR vector, and show that under certain conditions the PPR vector can perfectly
separate two density clusters. Finally, in Appendix F we give relevant details regarding our
experiments.

Appendix A. Fixed Graph Results

In this section, we give all results that hold with respect to an arbitrary graph G. For the
convenience of the reader, we begin by reviewing some notation from the main text, and
also introduce some new notation.

Notation. The graph G = (V,E) is an undirected and connected but otherwise arbitrary
graph, defined over vertices V = {1, . . . , n} with m = |E| total edges. The adjacency
matrix of G is A, the degree matrix is D, and the lazy random walk matrix over G is
W = (I + D−1A)/2. The lazy random walk originating at node v ∈ V has distribution

q(v, t;G) = evW
t after t steps; we use the notational shorthand q

(t)
v := q(v, t;G). The

stationary distribution of the lazy random walk is π := π(G) := limt→∞ q
(t)
v is given by

π(u) = deg(u;G)/vol(u;G).
For a starting distribution s (by distribution we mean a vector with non-negative entries),

the PPR vector ps = p(s, α;G) is the solution to

ps = αs+ (1− α)psW. (35)

When s = ev, we write pv := pev . It is easy to check that ps = α
∑∞

t=0(1−α)tq
(t)
s . Note that

s need not be a probability distribution (i.e. its entries need not sum to 1) to make sense
of (35).

Given a distribution q (for instance, q = q
(t)
v for t ∈ N, q = pv, or q = π) and β ∈ (0, 1),

the β-sweep cut of q is

Sβ(q) =

{
u :

q(u)

deg(u;G)
> β

}
;

in the special case where q = pv we write Sβ,v for Sβ(pv). The argument of Sβ(·) will usually
be clear from context, in which case we will drop it and simply write Sβ. For j = 1, . . . , n,
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let βj be the smallest value of β ∈ (0, 1) such that the sweep cut Sβj
contains at least j

vertices. For notational ease, we will write Sj := Sβj
, and S0 = ∅.

We now introduce the Lovasz-Simonovits curve hq(·) : [0, 2m] → [0, 1] to measure the
extent to which a distribution q is mixed. To do so, we first define a piecewise linear function
q[·] : [0, 2m] → [0, 1]. Letting q(S) :=

∑
u∈S q(u), we take q[vol(Sj)] = q(Sj) for each sweep

cut Sj , and then extend q[·] by piecewise linear interpolation to be defined everywhere on
its domain. Then the mixedness of q is measured by

hq(k) := q[k]− k

2m
.

The Lovasz-Simonovits curve is a non-negative function, with hq(0) = hq(2m) = 0. The
stationary distribution π is mixed, i.e. hπ(k) = 0 for all k ∈ [0, 2m]. Finally, both q[·] and
hq(·) are concave functions, which will be an important fact later on.

The conductance of V is abbreviated as Ψ(G) := Ψ(V ;G), and likewise for the local
spread s(G) := s(V ;G). Finally, for convenience we introduce the following functionals:

dmax(C;G) := max
u∈C

deg(u;G), dmin(C;G) := min
u∈C

deg(u;G)

dmax(G) := dmax(V ;G), dmin(G) := dmin(V ;G)

We note that dmin(G)2 ≤ dmin(G) · n ≤ vol(G) ≤ dmax(G) · n, and that for any S ⊆ V ,
|S| · dmin(G) ≤ vol(S;G) (where |S| is the cardinality of S.)

Organization. In the following sections we establish: (Section A.1) an upper bound on
the misclassification error of PPR in terms of α and Φ(C;G) (Lemma 7), and an analogous
result for aPPR (Corollary 18); (Section A.2) a uniform bound on the perturbations of the
PPR vector, to be used later in the proof of Theorem 44 (consistency of PPR); (Section

A.3) upper bounds on the mixedness of q
(t)
v (as a function of t) and pv (as a function of α),

which will be helpful in the proofs of Proposition 8 and Theorem 17; (Section A.4) an upper
bound on τ∞(G) in terms of Ψ(G) and s(G) (Proposition 8); and (Section A.5) an upper
bound on the normalized cut Φ(Ĉ;G) in terms of Φ(C;G), to be used later in the proof of
Theorem 17 (negative example).

A.1 Misclassification Error of Clustering with PPR and aPPR

For a candidate cluster C ⊆ V , we use the tilde-notation G̃ = G[C] to refer to the subgraph

of G induced by C. Similarly we write q̃
(t)
v := q(v, t; G̃) for the t-step distribution of the

lazy random walk over G̃, π̃ = π(G[C]) for the stationary distribution of q̃
(t)
v (we will always

assume G[C] is connected), and p̃v := p(v, α; G̃) for the PPR vector over G̃.

Proof of Lemma 7. As mentioned in the main text, Lemma 7 is equivalent, up to
constants, to Lemma 3.4 in Allen-Zhu et al. (2013), and the proof of Lemma 7 proceeds
along very similar lines to the proof of that lemma. In fact, we directly use the following
three inequalities, derived in that work:
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• (c.f. Lemma 3.2 of Allen-Zhu et al. (2013)) For any seed node v ∈ C, the PPR
vector is lower bounded,

p̃v(u) ≥
3

4

(
1− α · τ∞(G̃)

)
· π̃(u), for every u ∈ C. (36)

• (c.f. Corollary 3.3 of Allen-Zhu et al. (2013)) For any seed node v ∈ C,
there exists a so-called leakage distribution ℓ = ℓ(v) such that supp(ℓ) ⊆ C, ‖ℓ‖1 ≤
2Φ(C;G)/α, and

pv(u) ≥ p̃v(u)− p̃ℓ(u), for every u ∈ C. (37)

• (c.f. Lemma 3.1 of Allen-Zhu et al. (2013)) There exists a set Cg ⊂ C with
vol(Cg;G) ≥ 1

2vol(C;G) such that for any seed node v ∈ Cg, the following inequality
holds

pv(C
c) ≤ 2

Φ(C;G)

α
. (38)

We use (36)-(38) to separately upper bound vol(Sβ,v\C;G), vol(C int\Sβ,v;G) and vol(Cbdry\
Sβ,v;G); here C int ∪ Cbdry = C is a partition of C, with

C int :=
{
u ∈ C : deg(u; G̃) >

(
1− α · β · vol(C;G)

)
deg(u;G)

}
,

consisting of those vertices u ∈ C with sufficient large degree in G̃.

First we upper bound vol(Sβ,v \ C;G). Observe that for any u ∈ Sβ,v \ C, pv(u) >
β · deg(u;G). Summing up over all such vertices, from (38) we conclude that

vol(Sβ,v \ C;G) ≤ pv(C
c)

β
≤ 2

Φ(C;G)

β · α . (39)

Next we upper bound vol(C int \ Sβ,v;G). From (36) and (37) we see that

pv(u) ≥
3

4

(
1− α · τ∞(G̃)

)
· π̃(u)− p̃ℓ(u) for all u ∈ C.

If additionally u 6∈ Sβ,v then pv(u) ≤ β deg(u;G), and for all such u ∈ C \ Sβ,v,

3

4

(
1− α · τ∞(G̃)

)
· π̃(u)− β deg(u;G) ≤ p̃ℓ(u). (40)

On the other hand, for any u ∈ C int it holds that

π̃(u) =
deg(u; G̃)

vol(G̃)
≥ deg(u; G̃)

vol(G)
≥ (1− αβvol(C;G)) deg(u;G)

vol(C;G)
;

by plugging this in to (40) we obtain

(
3(1− αβvol(C;G)) ·

(
1− ατ∞(G̃)

)

4vol(C;G)
− β

)
· deg(u;G) ≤ p̃ℓ(u), for all u ∈ C int \ Sβ,v;
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and summing over all such u gives

(
3(1− αβvol(C;G)) ·

(
1− ατ∞(G̃)

)

4vol(C;G)
−β

)
·vol

(
C int\Sβ,v;G

)
≤ p̃ℓ

(
C int\Sβ,v

)
≤ 2

Φ(C;G)

α
.

The upper bounds on α and β in (11) imply

(
3(1− αβvol(C;G)) ·

(
1− ατ∞(G̃)

)

4vol(C;G)
− β

)
≥ 2

3
β,

and we conclude that

vol(C int \ Sβ,v;G) ≤ 3Φ(C;G)

αβ
. (41)

Finally, we upper bound vol(Cbdry \ Sβ,v;G). Indeed, for any u ∈ Cbdry,

1

vol(C;G)

∑

w 6∈C

1((u,w) ∈ E) ≥ α · β · deg(u;G)

and summing over all such vertices yields

vol(Cbdry;G) ≤ 1

αβvol(C;G)

∑

u∈Cbdry

w 6∈C

1((u,w) ∈ E) ≤ Φ(C;G)

α · β . (42)

The claim follows upon summing the upper bounds in (39), (41) and (42). �

If the cluster estimate Ĉ is instead obtained by sweep cutting the aPPR vector p
(ε)
v , a

similar upper bound on vol(Ĉ △ C) holds, provided that ε is sufficiently small.

Corollary 18 For a set C ⊆ V , suppose that α, β satisfy (11), and additionally that

ε ≤ 1

25vol(C;G)
. (43)

Then there exists a set Cg ⊂ C with vol(Cg;G) ≥ 1
2vol(C

g;G) such that for any v ∈ Cg, the

sweep cut Sβ,v of the aPPR vector p
(ε)
v satisfies

vol(Sβ,v △ C;G) ≤ 6
Φ(C;G)

αβ
. (44)

Proof of Corollary 18. Recall that the upper bound (12) on vol(Ĉ △ C;G) comes from com-
bining the upper bounds on vol(Ĉ \C;G), vol(C int \ Ĉ;G) and vol(Cbdry \ Ĉ;G) in (39), (41)

and (42). From the upper bound p
(ε)
v (u) ≤ pv(u) for all u ∈ V , it is clear that both (39)

and (42) continue to hold when the aPPR vector is used instead of the PPR vector.
It remains only to establish an upper bound on vol(C int \ Ĉ;G). For any u ∈ C \ Sβ,v,

from inequality (37) and the lower bound p
(ε)
v (u) ≥ pv(u) − ε deg(u;G) in (2) we deduce

that
3

4

(
1− α · τ∞(G̃)

)
· π̃(u)− (β + ε) deg(u;G) ≤ p̃ℓ(u). (45)
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Following the same steps as used in the proof of Lemma 7 yields the following inequality:

(
3(1− αβvol(C;G)) ·

(
1− ατ∞(G̃)

)

4vol(C;G)
−β

)
·vol

(
C int\Sβ,v;G

)
≤ p̃ℓ

(
C int\Sβ,v

)
≤ 2

Φ(C;G)

α
.

The upper bounds on α, β in (11), and on ε in (43), imply that

(
3(1− αβvol(C;G)) ·

(
1− ατ∞(G̃)

)

4vol(C;G)
− β

)
≥ 2

3
β,

and we conclude that

vol(C int \ Sβ,v;G) ≤ 3Φ(C;G)

αβ
. (46)

Summing the right hand sides of (37), (42), and (46) yields the claim. �

A.2 Uniform Bounds on PPR

As mentioned in our main text, in order to prove Theorem 44, we require a uniform bound
on the PPR vector. Actually, we require two such bounds: for a candidate cluster C ⊆ V
and an alternative cluster C ′ ⊆ V , we require a lower bound on pv(u) for all u ∈ C, and
an upper bound on pv(u

′) for all u′ ∈ C ′. In Lemma 19 we establish an upper bound that
holds for all vertices u in the interior Co of C, and a lower bound holds for all vertices u′ in
the interior of C ′

o of C ′; here

Co =
{
u ∈ C : deg(u, G̃) = deg(u;G)

}
, and C ′

o =
{
u ∈ C ′ : deg(u,G[C ′]) = deg(u;G)

}
,

and we remind the reader that G̃ = G[C].

Lemma 19 Let C and C ′ be disjoint subsets of V , and suppose that

α ≤ 1

2τ∞(G̃)
.

Then there exists a set Cg ⊆ C with vol(Cg;G) ≥ vol(C;G)/2 such that for any v ∈ Cg,

pv(u) ≥
3

8
π̃(u)− 2Φ(C;G)

dmin(G̃) · α
for all u ∈ Co (47)

and

pv(u
′) ≤ 2Φ(C;G)

dmin(C ′;G) · α for all u ∈ C ′
o. (48)

“Leakage” and “soakage” vectors. To prove Lemma 19, we will make use of the following
explicit representation of the leakage distribution ℓ from (38), as well as an analogously
defined soakage distribution s:

ℓ(t) := ev(WĨ)t(I −D−1D̃), ℓ =
∞∑

t=0

(1− α)tℓ(t)

s(t) := ev(WĨ)tW (I − Ĩ), s =

∞∑

t=0

(1− α)ts(t).

(49)
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In the above, Ĩ ∈ Rn×n is a diagonal matrix with Iuu = 1 if u ∈ C and 0 otherwise, and D̃
is the diagonal matrix with D̃uu = deg(u; G̃) if u ∈ C, and 0 otherwise.

These quantities admit a natural interpretation in terms of random walks. For u ∈ C,
ℓ(t)(u) is the probability that a lazy random walk over G originating at v stays within C for
t steps, arriving at u on the tth step, and then “leaks out” of C on the (t+1)st step. On the
other hand, for u 6∈ C, s(t)(u) is the probability that a lazy random walk over G originating
at v stays within C for t steps and is then “soaked up” into u on the (t+ 1)st step. The
vectors ℓ and s then give the total mass leaked and soaked, respectively, by the PPR vector.

Three properties of ℓ and s are worth pointing out. First, supp(ℓ) ⊆ C \ Co and
supp(s) ⊆ V \ C. Second, ‖ℓ(t)‖1 = ‖s(t)‖1 for all t ∈ N, and so ‖ℓ‖1 = ‖s‖1. Third, for
any u ∈ V \ C, pv(u) = ps(u). The first two properties are immediate. The third property
follows by the law of total probability, which implies that

q(τ)v (u) =

τ∑

t=0

q
(τ−t)

s(t)
(u), for all u ∈ V \ C.

or in terms of the PPR vector,

pv(u) = α
∞∑

τ=0

(1− α)τq(τ)v (u) = α
∞∑

τ=0

τ∑

t=0

(1− α)τq
(τ−t)

s(t)
(u).

Substituting ∆ = τ + t and rearranging gives the claimed property, as

pv(u) = α
∞∑

τ=0

τ∑

t=0

(1−α)τq
(τ−t)

s(t)
(u) =

∞∑

∆=0

∞∑

t=0

(1−α)∆+tq
(∆)

s(t)
(u) = α

∞∑

∆=0

(1−α)∆q(∆)
s (u) = ps(u).

Proof of Lemma 19. We first show (47). From (38) and (37), we have that

pv(u) ≥
3

4

(
1− α · τ∞(G̃)

)
· π̃(u)− p̃ℓ(u) for all u ∈ C,

where ℓ has support supp(ℓ) ⊆ C with ‖ℓ‖1 ≤ 2Φ(C;G)/α. Recalling that u ∈ Co implies
that u 6∈ supp(ℓ), as a consequence of (66),

p̃ℓ(u) ≤
‖ℓ‖1

dmin(G̃)
for all u ∈ Co,

establishing (47). The proof of (48) follows similarly:

pv(u) = ps(u)
(i)

≤ ‖s‖1
dmin(C ′;G)

=
‖ℓ‖1

dmin(C ′;G)
, for all u ∈ C ′

o,

where the presence of dmin(C
′;G) on the right hand side of (i) can be verified by inspect-

ing (67). �
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A.3 Mixedness of Lazy Random Walk and PPR Vectors

In this subsection, we give upper bounds on h(t) := h
q
(t)
v

and h(α) := hpv . Although similar

bounds exist in the literature (see in particular Theorem 1.1 of (Lovász and Simonovits,
1990) and Theorem 3 of (Andersen et al., 2006)), we could not find precisely the results we
needed, and so for completeness we state and prove these results ourselves.

Theorem 20 For any k ∈ [0, 2m], t0 ∈ N and t ≥ t0,

h(t)(k) ≤ 1

2t0
+

dmax(G)

dmin(G)2
+

m

dmin(G)2

(
1− Ψ(G)2

8

)t−t0

. (50)

Theorem 21 Let φ be any constant in [0, 1]. Either the following bound holds for any t ∈ N

and any k ∈ [dmax(G), 2m− dmax(G)]:

h(α)(k) ≤ αt+
2α

1 + α
+

dmax(G)

dmin(G)2
+

m

dmin(G)2

(
1− φ2

8

)t

,

or there exists some sweep cut Sj of pv such that Φ(Sj ;G) < φ.

The proofs of these upper bounds will be similar to each other (in places word-for-
word alike), and will follow a similar approach and use similar notation to that of (Lovász
and Simonovits, 1990; Andersen et al., 2006). For h : [0, 2m] → [0, 1], 0 ≤ K0 ≤ m and
k ∈ [K0, 2m−K0], define

LK0(k;h) =
2m−K0 − k

2m− 2K0
h(K0) +

k −K0

2m− 2K0
h(2m−K0)

to be the linear interpolant of h(K0) and h(2m−K0), and additionally let

C(K0;h) := max

{
h(k)− LK0(k;h)√

sk
: K0 ≤ k ≤ 2m−K0

}
.

where we use the notation sk := min{k, 2m− k}, and treat 0/0 as equal to 1. Our first pair
of Lemmas upper bound h(t) and h(α) as a function of LK0 and C(K0). Lemma 22 implies
that if t is large relative to Ψ(G), then h(t)(·) must be small.

Lemma 22 (c.f. Theorem 1.2 of (Lovász and Simonovits, 1990)) For any K0 ∈ [0,m],
k ∈ [K0, 2m−K0], t0 ∈ N and t ≥ t0,

h(t)(k) ≤ LK0(k;h
(t0)) + C(K0;h

(t0))
√

sk ·
(
1− Ψ(G)2

8

)t−t0
(51)

Lemma 23 implies that if the PPR random walk is not well mixed, then some sweep cut
of pv must have small normalized cut.

Lemma 23 (c.f Theorem 3 of (Andersen et al., 2006)) Let φ ∈ [0, 1]. Either the fol-
lowing bound holds for any t ∈ N, any K0 ∈ [0,m], and any k ∈ [K0, 2m−K0]:

h(α)(k) ≤ αt+ LK0(k;h
(α)) + C(K0;h

(α))
√

sk

(
1− φ2

8

)t

(52)

or else there exists some sweep cut Sj of pv such that Φ(Sj ;G) < φ.
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In order to make use of these Lemmas, we require upper bounds on LK0(·, h) and C(K0;h),
for each of h = h(t0) and h = h(α). Of course, trivially LK0(k;h) ≤ max{h(K0);h(2m−K0)}
for any k ∈ [K0, 2m − K0]. As it happens, this observation will lead to sufficient upper
bounds on LK0(k, h) for both h = h(t0) (Lemma 24) and h = h(α) (Lemma 25).

Lemma 24 For any t0 ∈ N and K0 ∈ [0,m], the following inequalities hold:

h(t0)
(
2m−K0

)
≤ K0

2m
and h(t0)

(
K0

)
≤ K0

dmin(G)2
+

1

2t0
. (53)

As a result, for any k ∈ [K0, 2m−K0],

LK0(k;h
(t0)) ≤ max

{K0

2m
,

K0

dmin(G)2
+

1

2t0

}
=

K0

dmin(G)2
+

1

2t0
. (54)

Lemma 25 For any α ∈ [0, 1] and K0 ∈ [0,m], the following inequalities hold:

h(α)
(
2m−K0

)
≤ K0

2m
and h(α)

(
K0

)
≤ K0

dmin(G)2
+

2α

1 + α
. (55)

As a result, for any k ∈ [K0, 2m−K0],

LK0(k;h
(α)) ≤ max

{K0

2m
,

K0

dmin(G)2
+

2α

1 + α

}
=

K0

dmin(G)2
+

2α

1 + α
. (56)

We next establish an upper bound on CK0(k;h), which rests on the following key
observation: since h(k) is concave and LK0(K0;h) = h(K0), it holds that

h(k)− LK0(k)√
sk

≤
{
h′(K0)

√
k, k ≤ m

−h′(2m−K0)
√
2m− k, k > m.

(57)

(Since h is not differentiable at k = kj , here h′ refers to the right derivative of h.)

Lemma 26 gives good estimates for h′(K0) and h′(2m−K0), which hold for both h = h(t0)

and h = h(α), and result in an upper bound on C(K0;h). Both the statement and proof of
this Lemma rely on the following explicit representation of the Lovasz-Simonovits curve hq(·).
Order the vertices q(u(1))/ deg(u(1);G) ≥ q(u(2))/ deg(u(2);G) ≥ · · · ≥ q(u(n))/ deg(u(n);G).
Then for each j = 0, . . . , n−1, and for all k ∈ [vol(Sj), vol(Sj+1)), the function hq(k) satisfies

hq(k) =

j∑

i=0

(
q(u(i))− π(u(i))

)
+

(
k − vol(Sj ;G)

)

deg(u(j+1);G)

(
q(u(j+1))− π(u(j+1))

)
. (58)

Lemma 26 The following statements hold for both h = h(α) and h = h(t0).

• Let K0 = k1 = deg(v;G) if u(1) = v, and otherwise K = 0. Then

h′
(
K0

)
≤ 1

dmin(G)2
. (59)
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• For all K0 ∈ [0,m],

h′(2m−K0) ≥ − dmax(G)

dmin(G) · vol(G)
. (60)

As a result, letting K0 = deg(v;G) if u(1) = v, and otherwise letting K0 = 0, we have

C(K0, h) ≤
√
m

dmin(G)2
.

A.3.1 Proof of Theorems 20 and 21

Proof of Theorem 20. Take K0 = 0 if u(1) 6= v, and otherwise take K0 = deg(v;G).
Combining Lemmas 22, 24 and 26, we obtain that for any k ∈ [K0, 2m−K0],

h(t)(k) ≤ 1

2t0
+

K0

dmin(G)2
+

√
m

dmin(G)2

√
sk
(
1− Ψ2(G)

8

)t−t0

≤ 1

2t0
+

dmax(G)

dmin(G)2
+

m

dmin(G)2

(
1− Ψ2(G)

8

)t−t0
,

where the second inequality follows since we have chosen K0 ≤ dmax(G), and since sk ≤ m.
If K0 = 0, we are done.

Otherwise, we suppose k ∈ [0, deg(v;G)) ∪ (2m− deg(v;G), 2m]. If k ∈ [0, deg(v;G))
then

h(t)(k)
(63)

≤ h(t0)(k)
(i)

≤ h(t0)(K0)
(53)

≤ K0

dmin(G)2
+

1

2t0
, (61)

where (i) follows since k ∈ [0,K0], and h(t0) is linear over [0,K0) with h(t0)(0) = 0 and
h(t0)(K0) ≥ 0. For similar reasons, if k ∈ (2m− deg(v;G), 2m] then

h(t)(k) ≤ h(t0)(k) ≤ h(t0)(2m−K0) ≤
deg(v;G)

2m
. (62)

Since the ultimate upper bounds in (61) and (62) are each no greater than that of (51), the
claim follows. �

Proof of Theorem 21. The proof of Theorem 21 follows immediately from Lemmas 23, 25
and 26, taking K0 = 0 if u(1) 6= v and otherwise K0 = deg(v;G). �

A.3.2 Proofs of Lemmas

In what follows, for a distribution q and vertices u,w ∈ V , we write q(u,w) := q(u)/d(u) ·
1{(u,w) ∈ E}, and similarly for a collection of dyads Ẽ ⊆ V × V we write q(Ẽ) :=∑

(u,w)∈Ẽ
q(u,w).

Proof of Lemma 22. We will prove Lemma 22 by induction on t. In the base case t = t0,
observe that C(K0;h

(t0)) ·
√

sk ≥ h(t0)(k) − LK0(k;h
(t0)) for all k ∈ [K0, 2m − K0], which

implies

LK0(k;h
(t0)) + C(K0;h

(t0)) ·
√

sk ≥ h(t0)(k).
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Now, we proceed with the inductive step, assuming that the inequality holds for t0, t0 +
1, . . . , t − 1, and proving that it thus also holds for t. By the definition of LK0 , the
inequality (51) holds when k = K0 or k = 2m −K0. We will additionally show that (51)
holds for every kj = vol(Sj), j = 1, 2, . . . , n such that kj ∈ [K0, 2m−K0]. This suffices to
show that the inequality (51) holds for all k ∈ [K0, 2m − K0], since the right hand side
of (51) is a concave function of k.

Now, we claim that for each kj , it holds that

q(t)v [kj ] ≤
1

2

(
q(t−1)
v [kj − skjΨ(G)] + q(t−1)

v [kj + skjΨ(G)]
)
. (63)

To establish this claim, we note that for any u ∈ V

q(t)v (u) =
1

2
q(t−1)
v (u) +

1

2

∑

w∈V

q(t−1)
v (w, u) =

1

2

∑

w∈V

(
q(t−1)
v (u,w) + q(t−1)

v (w, u)
)
,

and consequently for any S ⊂ V ,

q(t)v (S) =
1

2

{
q(t−1)
v (in(S)) + q(t−1)

v (out(S))
}

=
1

2

{
q(t−1)
v

(
in(S) ∪ out(S)

)
+ q(t−1)

v

(
in(S) ∩ out(S)

)}

where in(S) = {(u,w) ∈ E : u ∈ S} and out(S) = {(w, u) ∈ E : w ∈ S}. We deduce that

q(t)v [kj ] = q(t)v (Sj) =
1

2

{
q(t−1)
v

(
in(Sj) ∪ out(Sj)

)
+ q(t−1)

v

(
in(Sj) ∩ out(Sj)

)}

≤ 1

2

{
q(t−1)
v

[
|in(Sj) ∪ out(Sj)|

]
+ q(t−1)

v

[
|in(Sj) ∩ out(Sj)|

]}

=
1

2

{
q(t−1)
v

[
kj + cut(Sj ;G)

]
+ q(t−1)

v

[
kj − cut(Sj ;G)

]}

≤ 1

2

{
q(t−1)
v

[
kj + skjΦ(Sj ;G)

]
+ q(t−1)

v

[
kj − skjΦ(Sj ;G)

]}

≤ 1

2

{
q(t−1)
v

[
kj + skjΨ(G)

]
+ q(t−1)

v

[
kj − skjΨ(G)

]}
,

establishing (63). The final two inequalities both follow from the concavity of q
(t)
v [·].

Subtracting kj/2m from both sides, we get

h(t)(kj) ≤
1

2

{
h(t−1)

(
kj + skjΨ(G)

)
+ h(t−1)

(
kj − skjΨ(G)

)}
. (64)

At this point, we divide our analysis into cases.

Case 1. Assume kj − Ψ(G)skj and kj + 2Ψ(G)skj are both in [K0, 2m − K0]. We are
therefore in a position to apply our inductive hypothesis to both terms on the right hand
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side of (64), and obtain the following:

h(t)(kj) ≤
1

2

(
LK0

(
kj −Ψ(G)skj ;h

(t0)
)
+ LK0

(
kj +Ψ(G)skj ;h

(t0)
))

+

1

2
C
(
K0;h

(t0)
)
·
(√

kj −Ψ(G)skj +

√
kj +Ψ(G)skj

)(
1− Ψ(G)2

8

)t−t0−1

= LK0(k;h
(t0)) +

1

2
C(K0;h

t0)

(√
kj −Ψ(G)skj +

√
kj +Ψ(G)skj

)(
1− Ψ(G)2

8

)t−t0−1

≤ LK0(k;h
(t0)) +

1

2
C(K0;h

(t0))

(√
skj −Ψ(G)skj +

√
skj +Ψ(G)skj

)(
1− Ψ(G)2

8

)t−t0−1

.

A Taylor expansion of
√
1 + Ψ(G) around Ψ(G) = 0 yields the following bound:

√
1 + Ψ(G) +

√
1−Ψ(G) ≤ 2− Ψ(G)2

4
,

and therefore

h(t)(kj) ≤ LK0(k;h
(t0)) +

C(K0;h
(t0))

2
·
√

skj ·
(
2− Ψ(G)2

4

)(
1− Ψ(G)2

8

)t−1

= LK0(kj ;h
(t0)) + C(K0;h

(t0))
√

skj

(
1− Ψ(G)2

8

)t−t0

.

Case 2. Otherwise one of kj − 2Ψ(G)skj or kj + 2Ψ(G)skj is not in [K0, 2m − K0].
Without loss of generality assume kj < m, so that (i) we have kj − 2Ψ(G)skj < K0 and (ii)
kj + (kj −K0) ≤ 2m−K0. We deduce the following:

h(t)(kj)
(i)

≤ 1

2

(
h(t−1)(K0) + h(t−1)

(
kj + (kj −K0)

))

(ii)

≤ 1

2

(
h(t0)(K0) + h(t)

(
kj + (kj −K0)

))

(iii)

≤ 1

2

(
LK0(K0;h

(t0)) + LK0(2kj −K0;h
(t0)
)

+

C(K0;h
(t0))

√
2kj −K0

(
1− Ψ(G)2

8

)t−t0−1)

≤ LK0(kj ;h
(t0)) + C(K0;h

(t0))

√
2skj

2

(
1− Ψ(G)2

8

)t−t0−1

≤ LK0(kj ;h
(t0)) + C(K0;h

(t0))
√

skj ·
(
1− Ψ(G)2

8

)t−t0

where (i) follows from (64) and the concavity of h(t−1), we deduce (ii) from (64), which
implies that h(t)(k) ≤ h(t0)(k), and (iii) follows from applying the inductive hypothesis to
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h(t−1)(2kj −K0). �

Proof (of Lemma 23). We will show that if Φ(Sj ; g) ≥ φ for each j = 1, . . . , n, then (52)
holds for all t and any k ∈ [K0, 2m−K0].

We proceed by induction on t. Our base case will be t = 0. Observe that C(K0;h
(α)) ·√

sk ≥ h(α)(k)− LK0(k;h
(α)) for all k ∈ [K0, 2m−K0], which implies

LK0(k;h
(α)) + C(K0;h

(α)) ·
√

sk ≥ h(α)(k).

Now, we proceed with the inductive step. By the definition of LK0 , the inequality (52)
holds when k = K0 or k = 2m−K0. We will additionally show that (52) holds for every
kj = vol(Sj), j = 1, 2, . . . , n such that kj ∈ [K0, 2m −K0]. This suffices to show that the
inequality (52) holds for all k ∈ [K0, 2m−K0], since the right hand side of (52) is a concave
function of k.

By Lemma 5 of Andersen et al. (2006), we have that

pv[kj ] ≤ α+
1

2

(
pv[kj − cut(Sj ;G)] + pv[kj + cut(Sj ;G)]

)

≤ α+
1

2

(
pv[kj − Φ(Sj ;G)skj ] + pv[kj +Φ(Sj ;G)skj ]

)

≤ α+
1

2

(
pv[kj − φskj ] + pv[kj + φskj ]

)

and subtracting kj/2m from both sides, we get

h(α)(kj) ≤ α+
1

2

(
h(α)(kj − φskj) + h(α)(kj + φskj)

)
(65)

From this point, we divide our analysis into cases.
Case 1. Assume kj − 2φskj and kj + 2φskj are both in [K0, 2m−K0]. We are therefore

in a position to apply our inductive hypothesis to (65), yielding

h(α)(kj) ≤ α+ α(t− 1)
1

2

(
LK0(kj − φskj) + LK0(kj + φskj)

)
+

1

2
C(K0;h

(α))
(√

kj − φskj +

√
kj + φskj

)(
1− φ2

8

)t−1

≤ αt+ LK0(k;h
(α)) +

1

2

(
C(K0;h

(α))
(√

kj − φskj +

√
kj + φskj

)(
1− φ2

8

)t−1)

≤ αt+ LK0(k;h
(α)) +

1

2

(
C(K0;h

(α))
(√

skj − φskj +
√

skj + φskj
)(

1− φ2

8

)t−1)
.

and therefore

h(α)(kj) ≤ αt+ LK0(k;h
(α)) +

C(K0;h
(α))

2
·
√

skj ·
(
2− φ2

4

)(
1− φ2

8

)t−1

= αt+ LK0(k;h
(α)) + C(K0;h

(α))
√

skj

(
1− φ2

8

)t

.
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Case 2. Otherwise one of kj −2φskj or kj +2φskj is not in [K0, 2m−K0]. Without loss of
generality assume kj < m, so that (i) we have kj−2φskj < K0 and (ii) kj+(kj−K0) ≤ 2m−K0.
By the concavity of h, and applying the inductive hypothesis to h(α)2kj −K0), we have

h(α)(kj) ≤ α+
1

2

(
h(α)(K0) + h

(
kj + (kj −K0)

))

≤ α+
α(t− 1)

2
+

1

2

(
LK0(K0; p

α) + LK0(2kj −K0

))
+

C(K0;h
(α))
√

Ğ2kj −K0

(
1− φ2

8

)t−1)

≤ αt+ LK0(kj) + C(K0;h
(α))

√
2skj

2

(
1− φ2

8

)t−1

≤ αt+ LK0(kj) + C(K0;h
(α))
√

skj ·
(
1− φ2

8

)t

.

�

Proof of Lemma 24. We will prove that the inequalities of (53) hold at the knot points of
h(t0), whence they follow for all K0 ∈ [0,m].

We first prove the upper bound on h(t0)(2m − K0), when 2m − K0 = kj for some
j = 0, . . . , n− 1. Indeed, the following manipulations show the upper bound holds for hq(·)
regardless of the distribution q. Noting that hq(2m) = 0, we have that,

hq(kj) = hq(kj)− hq(2m) =
n∑

i=j+1

q(u(i))− π(u(i)) ≤
n∑

i=j+1

π(u(i)) = 1− kj
2m

=
K0

2m
.

In contrast, when K0 = kj the upper bound on h(t0)(·) depends on the properties of

q = q
(t0)
v . In particular, we claim that for any t ∈ N,

q(t)v (u) ≤





1

dmin(G)
, if u 6= v

1

dmin(G)
+

1

2t
, if u = v.

(66)

This claim follows straightforwardly by induction. In the base case t = 0, the claim is
obvious. If the claim holds true for a given t ∈ N, then for u 6= v,

q(t+1)
v (u) =

1

2

∑

w 6=u

q(t)v (w, u) +
1

2
q(t)v (u)

≤ 1

2dmin(G)

∑

w 6=u

q(t)v (w) +
1

2dmin(G)

≤ 1

dmin(G)
,

(67)
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where the last inequality holds because q
(t)
v is a probability distribution (i.e. the sum of its

entries is equal to 1). Similarly, if u = v, then

q(t+1)
v (v) =

1

2

∑

w 6=v

q(t)v (w, v) +
1

2
q(t)v (v)

≤ 1

2dmin(G)

∑

w 6=u

q(t)v (w) +
1

2dmin(G)
+

1

2t+1

≤ 1

dmin(G)
+

1

2t+1
,

and the claim (66) is shown. The upper bound on h(t0)(K0) for K0 = kj follows straightfor-
wardly:

h(t0)(K0) ≤
j∑

i=0

q(t0)v (u(j)) ≤
j

dmin(G)
+

1

2t0
≤ K0

dmin(G)2
+

1

2t0
,

where the last inequality follows since vol(S) ≥ |S| · dmin(G) for any set S ⊆ V . �

Proof of Lemma 25. We have already established the first upper bound in (55), in the proof
of Lemma 24. Then, noting that from (66),

pv(u) = α

∞∑

t=0

(1−α)tq(t)v (u) ≤





α
∞∑

t=0

(1− α)t
( 1

dmin(G)
+

1

2t

)
=

1

dmin(G)
+

2α

1− α
if u = v

α

∞∑

t=0

(1− α)t
1

dmin(G)
=

1

dmin(G)
if u 6= v,

(68)
the second upper bound in (55) follows similarly to the proof of the equivalent upper bound
in Lemma 24. �

Proof of Lemma 26. The result of the Lemma follows obviously from (57), once we show
(59)-(60). We begin by showing (59). Inspecting the representation (58), we see that for any
distribution q and knot point kj , the right derivative of hq can always be upper bounded,

h′q(kj) ≤
q(u(j+1))

deg(u(j+1);G)
.

We have chosen K0 = kj so that v 6= u(j+1), and so (66) implies that h′q(kj) ≤ 1/(dmin(G)2),

for either q = q
(t)
v or q = pv.

On the other hand, the inequality (60) follows immediately from the representation (58),
since for any K0 ∈ [0,m], taking j so that 2m−K0 ∈ [kj , kj+1),

h′(2m−K0) ≥ −
π(u(j+1))

deg(u(j+1);G)
≥ − dmax(G)

dmin(G) · vol(G)
.

�
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A.4 Proof of Proposition 8

To prove Proposition 8, we first give an upper bound on the total variation distance between

q
(t)
v and its limiting distribution π, then upgrade to the desired uniform upper bound (15).
The total variation distance between distributions q and p is

TV(q, p) :=
1

2

∑

u∈v

∣∣q(u)− p(u)
∣∣

It follows from the representation (58) that

TV(q, π) = max
S⊆V

{
q(S)− π(S)

}
= max

j=1,...,n

{
q(Sj)− π(Sj)

}
= max

k∈[0,2m]
hq(k),

so that Theorem 20 gives an upper bound on TV(q
(t)
v , π). We can then use the following

result to upgrade to a uniform upper bound.

Lemma 27 For any t∗ ∈ N,

max
u∈V

{π(u)− q
(t∗+1)
v (u)

π(u)

}
≤ 1

s(G)

( t∗∑

t=0

TV(q
(t)
v , π)

2t∗−t
+

TV(q
(0)
v , π)

2t∗

)
.

The proof of Proposition 8 is then straightforward.

Proof of Proposition 8. Put T = 8/(Ψ(G)2) ln(4/s(G)) + 4. We will use Theorem 20 to show

that TV(q
(T )
v , π) ≤ 1/4. This will in turn imply (Montenegro (2002) pg. 13) that for all

t ≥ t∗ := T log2(32/s(G)),

TV(q(t)v , π) ≤ 1

32
s(G). (69)

Finally, let τ∗ = t∗ + 4 log2(1/s(G)). Applying Lemma 27 gives

max
u∈V

{π(u)− q
(τ∗+1)
v (u)

π(u)

}
≤ 1

s(G)

( τ∗∑

t=0

TV(q
(t)
v , π)

2τ∗−t
+

TV(q
(0)
v , π)

2τ∗

)

=
1

s(G)

( τ∗∑

t=t∗+1

TV(q
(t)
v , π)

2τ∗−t
+

t∗∑

t=0

TV(q
(t)
v , π)

2τ∗−t
+

TV(q
(0)
v , π)

2τ∗

)

≤ 1

4
,

where the final inequality follows from (69) and the crude upper bound TV(q, π) ≤ 1,
which holds for any distribution q. Taking maximum over all v ∈ V , we conclude that
τ∞(G) ≤ τ∗ + 1, which implies the claim of Proposition 8.
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It remains to show that TV(q
(T )
v , π) ≤ 1/4. Choosing t0 = 4 in the statement of

Theorem 20, we have that

TV(q(T )
v , π) ≤ 1

16
+

dmax(G)

dmin(G)2
+

1

2s(G)

(
1− Ψ(G)2

8

)T−4

≤ 1

8
+

1

2s(G)

(
1− Ψ(G)2

8

)T−4

≤ 1

8
+

1

2s(G)
exp
(
−Ψ(G)2

8
(T − 4)

)
=

1

4
,

where the middle inequality follows by assumption. �

Proof of Lemma 27. Our goal will be to establish the recurrence relation (72). To derive (72),
the key observation is the following equivalence (see equation (16) of Morris and Peres
(2005)):

π(u)− q
(t+1)
v (u)

π(u)
=
∑

w∈V

(
π(w)− q(t)v (w)

)
·
(q(1)w (u)− π(u)

π(u)

)

=
∑

w 6=u

(
π(w)− q(t)v (w)

)
·
(q(1)w (u)− π(u)

π(u)

)
+ (70)

(
π(u)− q(t)v (u)

)
·
(q(1)u (u)− π(u)

π(u)

)
. (71)

We separately upper bound each term on the right hand side of (70). The sum over all

w 6= u can be related to the TV distance between q
(t)
v and π using Hölder’s inequality,

∑

w 6=u

(
π(w)− q(t)v (w)

)
·
(q(1)w (u)− π(u)

π(u)

)
≤ 2TV(q(t)v , π) ·max

w 6=u

∣∣∣q
(1)
w (u)− π(u)

π(u)

∣∣∣

≤ 2TV(q(t)v , π) ·max

{
1,max

w 6=u

q
(1)
w (u)

π(u)

}

≤ 2TV(q(t)v , π) · m

dmin(G)2
=

TV(q
(t)
v , π)

s(G)
.

On the other hand, the second term on the right hand side of (70) satisfies

(
π(u)− q(t)v (u)

)
·
(q(1)u (u)− π(u)

π(u)

)
≤
(
π(u)− q(t)v (u)

)
·
(1/2− π(u)

π(u)

)
≤ π(u)− q

(t)
v (u)

2π(u)
,

so that we obtain the recurrence relation

π(u)− q
(t+1)
v (u)

π(u)
≤ TV(q

(t)
v , π)

s(G)
+

π(u)− q
(t)
v (u)

2π(u)
. (72)
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From (72) along with the initial condition

{π(u)− q
(1)
v (u)

π(u)

}
≤ 1 ≤ 2(1− π(v)) ≤ 2

TV(q
(0)
v , π)

s(G)
,

—where the second inequality follows because π(v) ≤ dmax(G)/(2m) ≤ dmax(G)/dmin(G)2 ≤
1/16—we obtain the upper bound

π(u)− q
(t+1)
v (u)

π(u)
≤ 1

s(G)

( t∗∑

t=0

TV(q
(t)
v , π)

2t∗−t
+

TV(q
(0)
v , π)

2t∗

)
.

This inequality holds for each u ∈ V , and taking the maximum over u completes the proof
of Lemma 27. �

A.5 Spectral Partitioning Properties of PPR

The following theorem is the main result of Section A.5. It relates the normalized cut of
the sweep sets Φ(Sβ;G) to the normalized cut of a candidate cluster C ⊆ V , when pv is
properly initialized within C.

Theorem 28 (c.f. Theorem 6 of Andersen et al. (2006)) Suppose that

dmax(G) ≤ vol(C;G) ≤ max
{2
3
vol(G); vol(G)− dmax(G)

}
(73)

and

max
{
288Φ(C;G) · ln

( 36

s(G)

)
, 72Φ(C;G) +

dmax(G)

dmin(G)2

}
<

1

18
. (74)

Set α = 36 · Φ(C;G). The following statement holds: there exists a set Cg ⊆ C of large
volume, vol(Cg;G) ≥ 5/6 · vol(C;G), such that for any v ∈ Cg, the minimum normalized
cut of the sweep sets of pv satisfies

min
β∈(0,1)

Φ(Sβ,v;G) < 72

√
Φ(C;G) · ln

( 36

s(G)

)
. (75)

A few remarks:

• Theorem 28 is similar to Theorem 6 of Andersen et al. (2006), but crucially the above
bound depends on log

(
1/s(G)

)
rather than logm. In the case where dmin(G)2 ≍ vol(G)

and thus s(G) ≍ 1, this amounts to replacing a factor of O(logm) by a factor of O(1),
and therefore allows us to obtain meaningful results in the limit as m → ∞.

• For simplicity, we have chosen to state Theorem 28 with respect to a specific choice
of α = 36 · Φ(C;G), but if α ≈ 36 · Φ(C;G) then the Theorem will still hold up to
constant factors.
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It follows from Markov’s inequality (see Theorem 4 of Andersen et al. (2006)) that there
exists a set Cg ⊆ C of volume vol(Cg;G) ≥ 5/6 · vol(C;G) such that for any v ∈ Cg,

pv(C) ≥ 1− 6Φ(C;G)

α
. (76)

The claim of Theorem 28 is a consequence of (76) along with Theorem 21, as we now
demonstrate.

Proof of Theorem 28. From (76), the upper bound in (73), and the choice of α = 36 ·Φ(C;G),

pv(C)− π(C) ≥ 1

3
− 6Φ(C;G)

α
=

1

6
. (77)

Now, put

t∗ =
1

648Φ(C;G)
, φ2

∗ =
8

t∗
· ln
( 36

s(G)

)
,

and note that by (74) φ2
∗ ∈ [0, 1]. It therefore follows from (77) and Theorem 21 that either

1

6
≤ pv(C)− π(C) ≤ 1

18
+ 72Φ(C;G) +

dmax(G)

dmin(G)2
+

1

2s(G)
·
(
1− φ2

∗

8

)t∗

, (78)

or minβ∈(0,1)Φ(Sβ,v;G) ≤ φ2
∗. But by (74)

72Φ(C;G) +
dmax(G)

dmin(G)2
<

1

18
,

and we have chosen φ∗ precisely so that

1

2s(G)
·
(
1− φ2

∗

8

)t∗

≤ 1

2s(G)
exp
(
−φ2

∗t∗
8

)
≤ 1

18
.

Thus the inequality (78) cannot hold, and so it must be that minβ∈(0,1)Φ(Sβ,v;G) ≤ φ2
∗.

This is exactly the claim of the theorem. �

Appendix B. Sample-to-Population Bounds

In this appendix, we prove Propositions 9 and 10, by establishing high-probability finite-
sample bounds on various functionals of the random graph Gn,r: cut, volume, and normalized
cut (B.2), minimum and maximum degree, and local spread (B.3), and conductance (B.4).
To establish these results, we will use several different concentration inequalities, and we
begin by reviewing these in (B.1). Throughout, we denote the empirical probability of a
set S ⊆ Rd as Pn(S) =

∑n
i=1 1{xi ∈ S}/n, and the conditional (on being in C) empirical

probability as P̃n =
∑n

i=1 1{xi ∈ (S ∩ C)}/ñ, where ñ = |C[X]| is the number of sample
points that are in C. For a probability measure Q, we also write

dmin(Q) := inf
x∈supp(Q)

degP,r(x), and dmax(Q) := sup
x∈supp(Q)

degP,r(x). (79)
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B.1 Review: Concentration Inequalities

We use Bernstein’s inequality to control the deviations of the empirical probability of S.

Lemma 29 (Bernstein’s Inequality.) Fix δ ∈ (0, 1). For any measurable S ⊆ Rd, each
of the inequalities,

(1− δ)P(S) ≤ Pn(S) and Pn(S) ≤ (1 + δ)P(S),

hold with probability at least 1− exp
{
−nδ2P(S)/(2 + 2δ)

}
≥ 1− exp

{
−nδ2P(S)/4

}
.

Many graph functionals are order-2 U-statistics, and we use Bernstein’s inequality to
control the deviations of these functionals from their expectations. Recall that Un is an
order-2 U-statistic with kernel ϕ : Rd × Rd → R if

Un =
1

n(n− 1)

n∑

i=1

∑

j 6=i

ϕ(xi, xj).

We write ‖ϕ‖∞ = supx,y |ϕ(x, y)|.

Lemma 30 (Bernstein’s Inequality for Order-2 U-statistics.) Fix δ ∈ (0, 1). As-
sume ‖ϕ‖∞ ≤ 1. Then each of the inequalities,

(1− δ)EUn ≤ Un and Un ≤ (1 + δ)EUn,

hold with probability at least 1− exp{−nδ2EUn/(4 + 4δ/3)} ≥ 1− exp{−nδ2EUn/6}.

Finally, we use Lemma 31—a combination of Bernstein’s inequality and a union bound—
to upper and lower bound dmax(Gn,r) and dmin(Gn,r). For measurable sets S1, . . . ,SM , we
denote pmin := minm=1,...,M P(Am), and likewise let pmax := maxm=1,...,M P(Am)

Lemma 31 (Bernstein’s inequality + union bound.) Fix δ ∈ (0, 1). For any measur-
able S1, . . . ,SM ⊆ Rd, each of the inequalities

(1− δ)pmin ≤ min
m=1,...,M

Pn(Am), and max
m=1,...,M

Pn(Am) ≤ (1 + δ)pmax

hold with probability at least 1−M exp{−nδ2pmin/(2 + 2δ)} ≥ 1−M exp{−nδ2pmin/4}.

B.2 Sample-to-Population: Normalized Cut

In this subsection we establish (16). For a set S ⊆ Rd, both cutn,r(S[X]) and voln,r(S[X])
are order-2 U-statistics:

cutn,r(S[X]) =

n∑

i=1

∑

j 6=i

1{‖xi − xj‖ ≤ r} · 1{xi ∈ S} · 1{xj 6∈ S},

and

voln,r(S[X]) =
n∑

i=1

∑

j 6=i

1{‖xi − xj‖ ≤ r} · 1{xi ∈ S}.
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Therefore with probability at least 1− exp{−nδ2cutP,r(S)/4},

1

n(n− 1)
cutn,r(S[X]) ≤ (1 + δ)cutP,r(S),

and likewise with probability at least 1− exp{−nδ2volP,r(S)/4} − exp{−nδ2volP,r(Sc)/4},

(1− δ)volP,r(S) ≤
1

n(n− 1)
voln,r(S[X]), and (1− δ)volP,r(Sc) ≤ 1

n(n− 1)
voln,r(Sc[X])

Consequently, for any δ ∈ (0, 1/3),

Φn,r(C[X]) ≤ 1 + δ

1− δ
· cutP,r(C)
min{volP,r(C), volP,r(Cc)} =

1 + δ

1− δ
· ΦP,r(C) ≤ (1 + 3δ) · ΦP,r(C)

with probability at least 1 − 3 exp{−nδ2cutP,r(C)/4}. This establishes (16) upon taking
b1 := 3cutP,r(C)/4. �

B.3 Sample-to-Population: Local Spread

In this subsection we establish (18). To ease the notational burden, let G̃n,r := Gn,r

[
C[X]

]
.

Conditional on ñ, it follows from Lemma 31 that with probability at least 1− ñ exp{−(ñ−
1)δ2dmin(P̃)/4},

(1− δ) · dmin(P̃) ≤
1

ñ− 1
dmin(G̃n,r), (80)

Likewise it follows from Lemma 30 that with probability at least 1− exp{−ñδ2vol
P̃,r

(C)/6},

(1− δ) · vol
P̃,r

(C) ≤ 1

ñ(ñ− 1)
vol(G̃n,r).

Finally, it follows from Lemma 29 that with probability at least 1− exp{−nδ2P(C)/4}

ñ ≥ (1− δ) · n · P(C), (81)

and therefore by (17), (ñ− 1)/ñ ≥ 1− δ. Consequently for any δ ∈ (0, 1/3),

sn,r(C[X]) =
dmin(G̃n,r)

2

vol(G̃n,r)
=

ñ− 1

ñ
·

1
(ñ−1)2

dmin(G̃n,r)
2

1
ñ(ñ−1)vol(G̃n,r)

≥ (1− δ)3

(1 + δ)
·dmin(P̃)

2

vol
P̃,r

(C) ≥ (1−4δ)·sP,r(C).

with probability at least 1− n exp{−nP(C) · δ2dmin(P̃)/9} − exp{−nP(C)δ2 · vol
P̃,r

(C)/14} −
exp{−nδ2P(C)/4}. This establishes (18) upon taking b2 := P(C) · dmin(P̃)/14. �

B.4 Sample-to-Population: Conductance

In this section we establish (20). As mentioned in our main text, the proof of (20) relies
on a high-probability upper bound of the ∞-transportation distance between P and Pn,
from (Garćıa Trillos and Slepčev, 2015). We begin by reviewing this upper bound, which
we restate in Theorem 32. Subsequently in Proposition 33, we relate the ∞-transportation
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distance between two measures Q1 and Q2 to the difference of their conductances. Together
these results will imply (20).

Review: ∞-transportation distance and transportation maps. We give a brief review of some
of the main ideas regarding ∞-transportation distance, and transportation maps. This
discussion is largely taken from (Garćıa Trillos and Slepčev, 2015; Garćıa Trillos et al., 2016),
and the reader should consult these works for more detail.

For two measures Q1 and Q2 on a domain D, the ∞-transportation distance ∆∞(Q1,Q2)
is

∆∞(Q1,Q2) := inf
γ

{
esssupγ

{
|x− y| : (x, y) ∈ D ×D

}
: γ ∈ Γ(Q1,Q2)

}

where Γ(Q1,Q2) is the set of all couplings of Q1 and Q2, that is the set of all probability
measures on D ×D for which the marginal distribution in the first variable is Q1, and the
marginal distribution in the second variable is Q2.

Suppose Q1 is absolutely continuous with respect to the Lebesgue measure. Then
∆∞(Q1,Q2) can be more simply defined in terms of push-forward measures and transportation
maps. For a Borel map T : D → D, the push-forward of Q1 by T is T♯Q1, defined for Borel
sets U as

T♯Q1(U) = Q1(T
−1(U)).

A transportation map from Q1 to Q2 is a Borel map T for which T♯Q1 = Q2. Transportation
maps satisfy two important properties. First, the transportation distance can be formulated
in terms of transportation maps:

∆∞(Q1,Q2) = inf
T

‖Id− T‖L∞(Q1)

where Id : D → D is the identity mapping, and the infimum is over transportation maps T
from Q1 to Q2. Second, they result in the following change of variables formula; if T♯Q1 = Q2,
then for any g ∈ L1(Q2),

∫
g(y) dQ2(y) =

∫
g(T (x)) dQ1(x). (82)

∞-transportation distance between empirical and population measures. We now review
the relevant upper bound on ∆∞(P,Pn), which holds under the following mild regularity
conditions.

(A11) The distribution P has density g : D → (0,∞) such that there exist gmin ≤ 1 ≤ gmax

for which
(∀x ∈ D) gmin ≤ g(x) ≤ gmax.

(A12) The distribution P is defined on a bounded, connected, open domain D ⊆ Rd. If d ≥ 2
then additionally D has Lipschitz boundary.

When d = 1, it follows from Proposition 6.2 of Dudley (1968) that ∆∞(P,Pn) ≤ B5‖F−Fn‖∞
for some positive constant B5, and in turn from the DKW inequality that

∆∞(P,Pn) ≤ B5

√
ln(2n/B2)

n
(83)
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with probability at least 1−B2/n.

When d ≥ 2, Garćıa Trillos and Slepčev (2015) derive an upper bound on the transporta-
tion distance ∆∞(P,Pn).

Theorem 32 (Theorem 1.1 of Garćıa Trillos and Slepčev (2015)) Suppose P satis-
fies (A11) and (A12). Then, there exists positive constants B2 and B5 that do not depend
on n, such that with probability at least 1−B2/n:

∆∞(P,Pn) ≤ B5 ·





ln(n)3/4

n1/2
, if d = 2,

ln(n)1/d

n1/d
, if d ≥ 3.

Assuming the candidate cluster C and conditional distribution P̃ satisfy (A1) and (A2),
then (83) (d = 1) or Theorem 32 (d ≥ 2) apply to ∆∞(P̃, P̃n); we will use these upper
bounds on ∆∞(P̃, P̃n) to show (20).

Lower bound on conductance using transportation maps. Let Q1 and Q2 be probability
measures, with Q1 absolutely continuous with respect to Lebesgue measure, and let T
be a transportation map from Q1 to Q2. We write ∆T (Q1,Q2) := ‖Id − T‖L∞(Q1). To
facilitate easy comparison between the conductances of two arbitrary distributions, let
Ψr(Q) := ΨQ,r(supp(Q)) for a distribution Q. In the following Proposition, we lower bound
Ψr(Q2) by Ψr(Q1), plus an error term that depends on ∆(Q1,Q2).

Proposition 33 Let Q1 be a probability measure that admits a density g with respect to
ν(·), let Q2 be an arbitrary probability measure, and let T be a transportation map from Q1

to Q2. Suppose ∆T (Q1,Q2) ≤ r/(4(d− 1)). It follows that

Ψr(Q2) ≥ Ψr(Q1) ·
(
1− B6∆T (Q1,Q2)(

1−Ψr(Q1)
)
·
(
dmin(Q2)

)2
)
− B6∆T (Q1,Q2)(

1−Ψr(Q1)
)
·
(
dmin(Q2)

)2 , (84)

where B6 := 4dνdr
d−1 ·maxx∈Rd{g(x)} is a positive constant that does not depend on Q2.

We note that the lower bound can also be stated with respect to the ∞-optimal transport
distance ∆∞(Q1,Q2).

Proof of Proposition 33. Throughout this proof, we will write ∆12 = ∆T (Q1,Q2), and
ĎvolQ,r(R) = min

{
volQ,r

(
R
)
, volQ,r

(
Rc
)}

for conciseness. Naturally, the proof of Proposi-
tion 33 involves using the transportation map T to relate cutQ2,r(·) to cutQ1,r(·), and likewise

volQ2,r(·) to volQ1,r(·). Define the remainder term R
(∆)
ǫ,Q1

(x) =
∫
1{ǫ ≤ ‖x−y‖ ≤ ǫ+∆} dQ1(y)
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for any ǫ,∆ > 0. Then for any set S ⊆ supp(Q2), we have that

cutQ2,r(S) =
∫∫

1{‖x− y‖ ≤ r} · 1{x ∈ S} · 1{y ∈ Sc} dQ2(y) dQ2(x)

(i)
=

∫∫
1{‖T (x)− T (y)‖ ≤ r} · 1{x ∈ T−1(S)} · 1{y ∈ T−1(S)c} dQ1(y) dQ1(x)

(ii)

≥
∫∫

1{‖x− y‖ ≤ r − 2∆12} · 1{x ∈ T−1(S)} · 1{y ∈ T−1(Sc)} dQ1(y) dQ1(x)

= cutQ1,r

(
T−1(S)

)
−
∫

R
(2∆12)
r−2∆12,Q1

(x) dQ1(x) (85)

where (i) follows from the change of variables formula (82), and (ii) follows from the triangle
inequality. Similar reasoning implies that

volQ2,r(S) ≤ volQ1,r

(
T−1(S)

)
+

∫
R

(2∆12)
r,Q1

(x) dQ1(x). (86)

For any x ∈ Rd, since 0 ≤ ∆12 ≤ r/(4(d− 1)), the remainder terms can be upper bounded
as follows:

R
(2∆12)
r−2∆12,Q1

(x) ≤ νdr
d
{
1−

(
1− 2∆12

r

)d}
·max
x∈Rd

{g(x)} ≤ 4dνdr
d−1 ·max

x∈Rd
{g(x)}

︸ ︷︷ ︸
=B6

·∆12,

and

R
(2∆12)
r,Q1

(x) ≤ νdr
d
{(

1 +
2∆12

r

)d
− 1
}
·max
x∈Rd

{g(x)} ≤ B6 ·∆12.

Plugging these bounds on the remainder terms back into (85) and (86) respectively, we see
that

ΦQ2,r(S) ≥
cutQ1,r

(
T−1(S)

)
−B6∆12

ĎvolQ1,r(T
−1(S)) +B6∆12

= ΦQ1,r(T
−1(S)) ·

(
ĎvolQ1,r(T

−1(S))
ĎvolQ1,r(T

−1(S)) +B6∆12

)
− B6∆12

ĎvolQ1,r(T
−1(S)) +B6∆12

(86)

≥ ΦQ1,r(T
−1(S)) ·

(
ĎvolQ2,r(S)−B6∆12

ĎvolQ2,r(S)

)
− B6∆12

ĎvolQ2,r(S)
.

We would like to conclude by taking an infimum over S on both sides, but in order to ensure
that the remainder term is small we must specially handle the case where ĎvolQ2,r(S) is small.
Let

Lr(Q1,Q2) =
{
S ⊆ supp(Q2) : ĎvolQ2,r(S) ≥ (1−Ψr(Q1)) · dmin(Q2)

2
}
.

On the one hand, taking an infimum over all sets S ∈ Lr(Q1,Q2), we have that

inf
S:S∈Lr(Q1,Q2)

ΦQ2,r(S) ≥ Ψr(Q1)·
(
1− B6∆12

(1−Ψr(Q1)) · dmin(Q2)2

)
− B6∆12

(1−Ψr(Q1)) · dmin(Q2)2

On the other hand, we claim that

Φr,Q2(R) ≥ Ψr(Q1), for any R 6∈ L(Q1,Q2). (87)
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To derive (87), suppose that R ⊆ supp(Q2) and R 6∈ L(Q1,Q2). Without loss of generality,
we shall assume that volQ2,r(R) ≤ (1 − Ψr(Q1)) · dmin(Q2)

2 (otherwise we can work with
respect to Rc.) Then, for all x ∈ R,

∫
1{‖x− y‖ ≤ r} · 1{y ∈ Rc} dQ2(y) ≥ degQ2,r(x)−Q2(R)

≥ degQ2,r(x)−
volQ2,r(R)

dmin(Q2)

≥ dmin(Q2) ·Ψr(Q2),

whence integrating over all x ∈ R and dividing by volQ2,r(R) yields (87). This completes
the proof of Proposition 33.

Putting the pieces together. First, we note that

Ψr(P̃) = Ψ
P̃,r

(supp(P̃)) = ΨP,r(C), and Ψr(P̃n) = Ψ
P̃n,r

(supp(P̃n)) = Ψn,r(C[X]),

so that we may apply Proposition 33 to get a lower bound on Ψn,r(C[X]) in terms of ΨP,r(C),
∆∞(P̃, P̃n), and dmin(P̃n). To begin, we recall from Section B.3 that the lower bound on
minimum degree,

dmin(P̃n) =
1

ñ

(
dmin(G̃n,r) + 1

)
≥ 1√

2
dmin(P̃),

is satisfied with probability at least 1− (n+ 1) exp{−nb2/16}. On the other hand, taking

b6 :=
1

B6
Ψr(P̃) · (1−Ψr(P̃)) · dmin(P̃)

2, and B1 := B5

(
min

{
b6,

r

4(d− 1)

})−1
,

by (83) (if d = 1) or Theorem 32 (if d ≥ 2) along with (19), we have that

∆∞(P̃, P̃n) ≤ B5
(log n)pd

min{n1/2, n1/d} ≤ min
{
b6,

r

4(d− 1)

}
· δ

with probability at least 1−B2/n. Finally, appealing first to Proposition 33 and then to the
bounds we have just established on dmin(P̃n) and ∆∞(P̃, P̃n), we conclude that the sample
conductance is lower bounded,

Ψr(P̃n) ≥ Ψr(P̃) ·
(
1− B6∆∞(P̃n, P̃)(

1−Ψr(P̃)
)
·
(
dmin(P̃n)

)2
)
− B6∆∞(P̃n, P̃)(

1−Ψr(P̃)
)
·
(
dmin(P̃n)

)2

≥ Ψr(P̃)(1− 2δ),

with probability at least 1−B2/n− (n+ 1) exp{−nb2/16}, establishing (20) upon taking
b3 := b2/16. �

Appendix C. Population Functionals for Density Clusters

In this appendix, we prove Lemma 13 (in Section C.4), Proposition 14 (in Section C.5),
and Proposition 15 (in Section C.6), by establishing bounds on the population-level local
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spread, normalized cut, and conductance of a thickened density cluster Cλ,σ. In these proofs,
we make use of some estimates on the volume of spherical caps (given in Section C.1);
some isoperimetric inequalities (Section C.2), and some reverse isoperimetric inequalities
(Section C.3). Finally, in Section C.7, for the hard case distribution P defined in (31) and
L defined in (32), we establish bounds on the population-level normalized cut ΦP,r(L) and
local spread sP,r(X ); these will be useful in the proof of Theorem 17. Throughout, we write
νd := ν(B(0, 1)) for the Lebesgue measure of a d-dimensional unit ball.

C.1 Balls, Spherical Caps, and Associated Estimates

In this section, we derive lower bounds on the volume of the intersection between two balls
in Rd, and the volume of a spherical cap. Results of this type are well-known, but since we
could not find exactly the statements we desire, for completeness we also supply proofs. We
use the notation B(x, r) for a ball of radius r centered at x ∈ Rd, and capr(h) for a spherical
cap of height h and radius r. Recall that the Lebesgue measure of a spherical cap is

ν
(
capr(h)

)
=

1

2
νdr

dI1−a

(
d+ 1

2
;
1

2

)
,

where a = (r − h)2/r2, and

I1−a(z, w) =
Γ(z + w)

Γ(z)Γ(w)

∫ 1−a

0
uz−1(1− u)w−1du,

is the cumulative distribution function of a Beta(z, w) distribution, evaluated at 1−a. (Here
Γ(·) is the gamma function).

Lemma 34 For any x, y ∈ Rd and r > 0, it holds that

ν
(
B(x, r) ∩B(y, r)

)
≥ νdr

d

(
1− ‖x− y‖

r

√
d+ 2

2π

)
. (88)

For any x, y ∈ Rd and r, σ > 0 such that ‖x− y‖ ≤ σ, it holds that,

ν
(
B(x, r) ∩B(y, σ)

)
≥ 1

2
νdr

d

(
1− r

σ

√
d+ 2

2π

)
. (89)

Lemma 35 For any 0 < h ≤ r, and a = 1− (2rh− h2)/r2,

ν
(
capr(h)

)
≥ 1

2
νdr

d

(
1− 2

√
a ·
√

d+ 2

2π

)
.

An immediate implication of (89) is that for any x ∈ Cλ,σ,

ν
(
B(x, r) ∩ Cλ,σ

)
≥ 1

2
νdr

d

(
1− r

σ

√
d+ 2

2π

)
. (90)
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Proof of Lemma 34. First, we prove (88). The intersection B(x, r) ∩B(y, r) consists of two

symmetric spherical caps, each of height h = r − ‖x−y‖
2 . As a result, by Lemma 35 we have

ν
(
B(x, r) ∩B(y, r)

)
≥ νdr

d
(
1− 2

√
a ·
√

d+ 2

2π

)

where a = ‖x− y‖2/(4r2), and the claim follows.
Next we prove (89). Assume that ‖x − y‖ = σ, as otherwise if 0 ≤ ‖x − y‖ < σ the

volume of the overlap will only be larger. Then B(x, r) ∩B(y, σ) contains a spherical cap of

radius r and height h = r − r2

2σ , from Lemma 35 we deduce

ν
(
B(x, r) ∩B(y, σ)

)
≥ 1

2
νdr

d

(
1− 2

√
a ·
√

d+ 2

2π

)

for a = (r − h)2/r2 = r2/(4σ2), and the claim follows. �

Proof of Lemma 35. For any 0 ≤ a ≤ 1, we have that

∫ 1−a

0
u(d−1)/2(1− u)−1/2du =

∫ 1

0
u(d−1)/2(1− u)−1/2du−

∫ 1

1−a
u(d−1)/2(1− u)−1/2du.

The first integral is simply

∫ 1

0
u(d−1)/2(1− u)−1/2du =

Γ
(
d+1
2

)
Γ
(
1
2

)

Γ
(
d
2 + 1

) ,

whereas for all u ∈ [0, 1] and d ≥ 1, the second integral can be upper bounded as follows:

∫ 1

1−a
u(d−1)/2(1− u)−1/2du ≤

∫ 1

1−a
(1− u)−1/2du =

∫ a

0
u−1/2du = 2

√
a.

As a result,

ν
(
capr(h)

)
≥ 1

2
νdr

d

(
1− 2

√
a

Γ(d2 + 1)

Γ(d+1
2 )Γ(12)

)
≥ 1

2
νdr

d

(
1− 2

√
a ·
√

d+ 2

2π

)
.

�

C.2 Isoperimetric Inequalities

Dyer and Frieze (1991) establish the following isoperimetric inequality for convex sets.

Lemma 36 (Isoperimetry of a convex set.) For any partition (R1,R2,R3) of a convex
set K ⊆ Rd, it holds that

ν(R3) ≥ 2
dist(R1,R2)

diam(K)
min(ν(R1), ν(R2)).

Abbasi-Yadkori (2016) points out that if S is the image of a convex set under a Lipschitz
measure-preserving mapping g : Rd → Rd, a similar inequality can be obtained.
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Corollary 37 (Isoperimetry of Lipschitz embeddings of convex sets.) Suppose S is
the image of a convex set K under a mapping g : Rd → Rd such that

‖g(x)− g(y)‖ ≤ M · ‖x− y‖, for all x, y ∈ K, and det(∇g(x)) = 1 for all x ∈ K.

Then for any partition (Ω1,Ω2,Ω3) of S,

ν(Ω3) ≥ 2
dist(Ω1,Ω2)

diam(K)M
min(ν(Ω1), ν(Ω2)).

C.3 Reverse Isoperimetric Inequalities

For any set C ⊆ Rd and σ > 0, let Cσ := {x : dist(x, C) ≤ σ}. We begin with an upper bound
on the volume of Cσ+δ as compared to Cσ.

Lemma 38 For any bounded set C ⊆ Rd and σ, δ > 0, it holds that

ν(Cσ+δ) ≤ ν(Cσ) ·
(
1 +

δ

σ

)d
. (91)

Lemma 38 is a reverse isoperimetric inequality. To see this, note that if δ ≤ σ/d then(
1 + δ/σ

)d ≤ 1 + d · δ/(σ − dδ), and we deduce from (91) that

ν(Cσ+δ \ Cσ) = ν(Cσ+δ)− ν(Cδ) ≤
dδ

σ − dδ
· ν(Cσ). (92)

We use (92) along with Assumption (A4) to derive a density-weighted reverse isoperimetric
inequality.

Lemma 39 Let Cλ,σ satisfy Assumption (A1) and (A4) for some θ, γ and λσ. Then for
any 0 < r ≤ σ/d, it holds that

P
(
Cλ,σ+r \ Cλ,σ

)
≤
(
1 +

dr

σ − dr

)
· dr
σ

·
(
λσ − θ

rγ

γ + 1

)
· ν(Cλ,σ). (93)

Proof of Lemma 38. Fix δ′ > 0, and take ǫ = δ + δ′. We will show that

ν(Cσ+ǫ) ≤ ν(Cσ) ·
(
1 +

ǫ

σ

)d
, (94)

whence taking a limit as δ′ → 0 yields the claim.

To show (94), we need to construct a particular disjoint covering A1(σ+ǫ), . . . ,AN (σ+ǫ)
of Cσ+δ. To do so, we first take a finite set of points x1, . . . , xN such that the net B(x1, σ +
ǫ), . . . , B(xN , σ + ǫ) covers Cσ+δ. Note that such a covering exists for some finite N = N(ǫ)
because Cσ+δ is bounded, and the closure of Cσ+δ is thus a compact subset of ∪x∈CB(x, σ+ǫ).
Defining A1(s), . . . ,AN (s) for a given s > 0 to be

A1(s) := B(x1, s), and Aj+1(s) := B(xj+1, s) \
j⋃

i=1

B(xi, s) for j = 1, . . . , N − 1,
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we have that A1(σ + ǫ), . . . ,AN (σ + ǫ) is a disjoint covering of Cσ+δ, and so ν(Cσ+δ) ≤∑N
j=1 ν

(
Aj(σ + ǫ)

)
.

We claim that for all j = 1, . . . , N , the function s 7→ ν
(
Aj(s)

)
/ν
(
B(xj , s)

)
is monotoni-

cally non-increasing in s. Once this claim is verified, it follows that

ν(Aj(σ + ǫ)) = ν
(
B(xj , σ + ǫ)

)
· ν

(
Aj(σ + ǫ)

)

ν
(
B(xj , σ + ǫ)

)

≤
(
1 +

ǫ

σ

)d
· ν
(
B(xj , σ)

)
· ν

(
Aj(σ)

)

ν
(
B(xj , σ)

)

=
(
1 +

ǫ

σ

)d
· ν
(
Aj(σ),

and summing over j, we see that

ν(Cσ+δ) ≤
N∑

j=1

ν
(
Aj(σ + ǫ)

)
≤
(
1 +

ǫ

σ

)d
·

N∑

j=1

ν
(
Aj(σ)

)
≤
(
1 +

ǫ

σ

)d
ν(Cσ).

The last inequality follows since A1(σ), . . . ,AN (σ) are disjoint subsets of the closure of Cσ.
It remains to verify that s 7→ ν

(
Aj(s)

)
/ν
(
B(xj , s)

)
is monotonically non-increasing.

For any 0 < s < t and j = 1, . . . , N , suppose x ∈ Aj(T ) − xj , meaning x ∈ B(0, t) and
x 6∈ B(xi − xj , t) for any i = 1, . . . , j − 1. Thus (s/t)x ∈ B(0, s), and

‖(s/t)x− (xi−xj)‖ ≥ ‖x− (xi−xj)‖−‖x− (s/t)x‖ > t− (1− s/t)‖x‖ ≥ t− (1− s/t)t = s,

or in other words (s/t)x 6∈ B(xi − xj , s) for any i = 1, . . . , j − 1. Consequently,

(
Aj(t)− xj

)
⊂ t

s
·
(
Aj(s)− xj

)
,

and applying ν(·) to both sides yields the claim. �

Proof of Lemma 39. Fix k ∈ N. To establish (93), we partition Cλ,σ+r \ Cλ,σ into thin tubes
T1, . . . , Tk, with the jth tube Tj defined as Tj := Cλ,σ+jr/k \ Cλ,σ+(j−1)r/k. We upper bound
the Lebesgue measure of each tube Tj using (92):6

ν(Tj) ≤
dr/k

σ − dr/k
ν(Cλ,σ+(j−1)r/k) ≤

dr/k

σ − dr/k
ν(Cλ,σ+r) ≤

(
1+

dr

σ − dr

)
· dr/k

σ − dr/k
·ν(Cλ,σ),

and the maximum density within each tube using (A4):

max
x∈Tj

f(x) ≤ λσ − θ
(j − 1

k
r
)γ

;

combining these upper bounds, we see that

P
(
Cλ,σ+r \Cλ,σ

)
=

k∑

j=1

P(Tj) ≤
(
1+

dr

σ − dr

)
· dr/k

σ − dr/k
·ν(Cλ,σ) ·

(k−1∑

j=0

λσ−θrγ
( j
k

)γ)
. (95)

6. Note that C must be bounded, since the density f(x) ≥ λσ > 0 for all x ∈ C.
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Treating the sum in the previous expression as a Riemann sum of a non-increasing function
evaluated at 0, . . . , k − 1 gives the upper bound

k−1∑

j=0

λσ − θrγ
( j
k

)γ
≤ λσ +

∫ k−1

0

(
λσ − θrγ

(x
k

)γ)
dx ≤ kλσ + (k − 1)

θrγ

γ + 1

(k − 1

k

)γ
,

and plugging back in to (95), we obtain

P
(
Cλ,σ+r \ Cλ,σ

)
≤
(
1 +

dr

σ − dr

)
· dr

σ − dr/k
ν(Cλ,σ) ·

(
λ− θrγ

γ + 1
·
(k − 1

k

)γ+1
)
.

The above inequality holds for any k ∈ N, and taking the limit of the right hand side as
k → ∞ yields the claim. �

C.4 Proof of Lemma 13

The population-level local spread of Cλ,σ is

sP,r(Cλ,σ) =
(
dmin(P̃)

)2

vol
P̃,r

(Cλ, σ)
,

where we recall that P̃(S) = P(S∩Cλ,σ)
P(Cλ,σ)

for Borel sets S, and dmin(P̃) := minx∈Cλ,σ{degP̃,r(x)}2.
To lower bound sP,r(Cλ,σ), we first lower bound dmin(P̃), and then upper bound vol

P̃,r
(Cλ, σ).

Using the lower bound f(x) ≥ λσ for all x ∈ Cλ,σ stipulated in (A3), we deduce that

dmin(P̃) = min
x∈Cλ,σ

{∫
1{‖x− y‖ ≤ r} dP̃(y)

}

≥ λσ

P(Cλ,σ)
· min
x∈Cλ,σ

{∫

Cλ,σ

1{‖x− y‖ ≤ r} dy
}

≥ λσ

P(Cλ,σ)
· 1
2
νdr

d ·
(
1− r

σ

√
d+ 2

2π

)
,

where the final inequality follows from Lemma 34.
On the other hand, using the upper bound f(x) ≤ Λσ for all x ∈ Cλ,σ, we deduce that

vol
P̃,r

(Cλ,σ) =
∫∫

1{‖x− y‖ ≤ r} dP̃(y) dP̃(x)

≤ Λ2
σ

P(Cλ,σ)2
·
∫

Cλ,σ

∫

Cλ,σ

1{‖x− y‖ ≤ r} dy dx

≤ Λ2
σ

P(Cλ,σ)2
· νdrd · ν(Cλ,σ)

≤ Λ2
σ

P(Cλ,σ)2
· ν2drd ·

(ρ
2

)d
;

the final inequality follows from (A5), which along with the isodiametric inequality for convex
sets (Gruber, 2007) implies ν(Cλ,σ) = ν(K) ≤ νd(ρ/2)

d. The claim of Lemma 13 follows. �
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C.5 Proof of Proposition 14

By Assumption (A6), we have that ΦP,r(Cλ,σ) = cutP,r(Cλ,σ)/volP,r(Cλ,σ), and to prove
Proposition 14 we must therefore upper bound cutP,r(Cλ,σ) and lower bound volP,r(Cλ,σ).

Let Cλ,σ+r = {x : dist(x, Cλ) ≤ σ + r}. We upper bound cutP,r(Cλ,σ) in terms of the
probability mass of Cλ,σ+r \ Cλ,σ:

cutP,r(Cλ,σ) =
∫∫

1{‖x− y‖ ≤ r} · 1{x ∈ Cλ,σ} · 1{y 6∈ Cλ,σ} dP(y) dP(x)

≤
∫∫

1{‖x− y‖ ≤ r} · 1{x ∈ Cλ,σ} · 1{y ∈ Cλ,σ+r \ Cλ,σ} dP(y) dP(x)

≤ λνdr
d · P

(
Cλ,σ+r \ Cλ,σ

)
.

On the other hand, using the lower bound f(x) ≥ λσ for all x ∈ Cλ,σ, we lower bound
volP,r(Cλ,σ) in terms of the Lebesgue measure of Cλ,σ:

volP,r(Cλ,σ) =
∫∫

1{‖x− y‖ ≤ r} · 1{x ∈ Cλ,σ} dP(y) dP(x)

≥ λ2
σ ·
∫∫

1{‖x− y‖ ≤ r} · 1{x, y ∈ Cλ,σ} dy dy

≥ λ2
σ · 1

2
νdr

d ·
(
1− r

σ

√
d+ 2

2π

)
· ν(Cλ,σ).

The claim of Proposition 14 follows upon using Lemma 39 to upper bound P
(
Cλ,σ+r \ Cλ,σ

)
.

�

C.6 Proof of Proposition 15

The following Lemma lower bounds the population-level uniform conductance Ψν,r(Cλ,σ).
We note that for convex sets, results of this type are well known (see e.g. Vempala (2005)
and references therein).

Lemma 40 Suppose Cλ,σ satisfies Assumption (A5) with respect to some ρ ∈ (0,∞) and
M ∈ [1,∞). For any 0 < r ≤ σ ·

√
2π/(d+ 2), it holds that

Ψν,r(Cλ,σ) ≥
(
1− r

4ρM

)
·
(
1− r

σ

√
d+ 2

2π

)2
·
√
2π

36
· r

ρM
√
d+ 2

. (96)

Noting that ΨP,r(Cλ,σ) ≥ Ψν,r(Cλ,σ) · λ2
σ/Λ

2
σ, Proposition 15 follows from (96).

Proof of Lemma 40. For ease of notation, throughout this proof we write ν̃ for the uniform
probability measure over Cλ,σ, put ℓνdrd := minx∈Cλ,σ ν(B(x, r) ∩ Cσ) and a := r/(2ρM).

Let S be an arbitrary measurable subset of Cλ,σ, and let R = Cλ,σ \ S. For a given
δ ∈ (0, 1), let the δ-interior of S be

Sδ := {x ∈ S : ν
(
B(x, r) ∩R

)
≤ ℓδνdr

d};
define Rδ likewise, and let Bδ = Cλ,σ \ (Sδ ∪Rδ) consist of the remaining boundary points.
As is standard (see for example Dyer and Frieze (1991); Lovász and Simonovits (1990)), the
proof of Lemma 40 uses several inequalities to lower bound the normalized cut Φν̃,r(S).
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• Bounds on cut and volume. We can lower bound cutν̃,r(S) as follows:

ν(Cλ,σ)2 · cutν̃,r(S) =
∫

S

∫

R
1(‖x− y‖ ≤ r) dy dx

=
1

2

(∫

S

∫

R
1(‖x− y‖ ≤ r) dy dx+

∫

R

∫

S
1(‖x− y‖ ≤ r) dy dx

)

≥ 1

2
δℓνdr

d · ν(Bδ).

We can upper bound volν̃,r(S) as follows:

ν(Cλ,σ)2 · volν̃,r(S) =
∫

Cλ,σ

∫

S
1(‖x− y‖ ≤ r) dy dx ≤ νdr

dν(S)

and likewise for volν̃,r(R). Therefore,

Φν̃,r(S) ≥
δℓ · ν(Bδ)

2 ·min{ν(S), ν(R)} . (97)

• Isoperimetric inequality. Applying Corollary 37, we have that

ν(Bδ) ≥ 2 · dist(Sδ,Rδ)

ρM
·min

{
ν(Sδ), ν(Rδ)

}
. (98)

• Lebesgue measure of δ-interiors. Suppose ν(Sδ) ≤ (1 − a) · ν(S) or ν(Rδ) ≤
(1 − a) · ν(R). Then ν(Bδ) ≥ a ·min{ν(S), ν(R)}, and combined with (97) we have
that Φν̃,r(S) ≥ δaℓ/2. Otherwise,

min
{
ν(Sδ), ν(Rδ)

}
≥ (1− a) ·min

{
ν(S), ν(R)

}
. (99)

• Distance between δ-interiors. For any x ∈ Sδ and y ∈ Rδ, we have that

ν
(
B(x, r) ∩B(y, r)

)
= ν

(
B(x, r) ∩B(y, r) ∩R

)
+ ν
(
B(x, r) ∩B(y, r) ∩ S

)
+

ν
(
B(x, r) ∩B(y, r) ∩ Cc

λ,σ

)

≤ ν
(
B(x, r) ∩R

)
+ ν
(
B(y, r) ∩ S

)
+ ν
(
B(x, r) ∩ Cc

λ,σ

)

≤
(
2ℓδ + (1− ℓ)

)
· νdrd.

It follows from (88) that

‖x− y‖ ≥ r

νdrd
·
(
νdr

d − ν
(
B(x, r) ∩B(y, r)

))
·
√

2π

d+ 2
≥ r · ℓ · (1− 2δ) ·

√
2π

d+ 2
,

and taking the infimum over all x ∈ Sδ and y ∈ Rδ, we have

dist(Sδ,Rδ) ≥ r · ℓ · (1− 2δ) ·
√

2π

d+ 2
. (100)

Combining (97)-(100) and taking δ = 1/3 implies that

Φν̃,r(S) ≥ min

{
(1− a) · r

ρM
· ℓ

2

9
·
√

2π

d+ 2
,
aℓ

6

}

and the claim follows from (90), which implies that ℓ ≥ 1/2 · (1− r/σ)
√

2π/(d+ 2). �
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C.7 Population Functionals, Hard Case

Let P be the hard case distribution over rectangular domain X , defined as in (31), and L
the lower half of X . Suppose r ∈ (0, σ/2). Then the population normalized cut ΦP,r(L) is
upper bounded,

ΦP,r(L) ≤
8

3
· r
ρ
. (101)

and the population local spread sP,r(X ) is lower bounded,

sP,r(X ) ≥ πr2ǫ2

2ρσ
(102)

Proof of (101). Noting that volP,r(L) = volP,r(X \ L), it suffices to upper bound cutP,r(L)
and lower bound volP,r(L). Note that for any x = (x1, x2) ∈ L, if x2 ≤ −r the ball B(x, r)
and the set X \ L are disjoint. As a result,

cutP,r(L) ≤ P

({
x ∈ X : x2 ∈ (−r, 0)

})
· dmax(P) ≤

r

2ρ
· πr

2

2σρ
.

On the other hand, noting that degP,r(x) ≥ πr2

2σρ for all x ∈ C(1) such that dist(x, ∂C(1)) > r,
we have

volP,r(L) ≥ P

({
x ∈ C(1) ∩ L : dist(x, ∂C(1)) > r

})
· πr

2

2σρ

=
(σ − 2r)(ρ− r)

2σρ
· πr

2

2σρ

≥ 3

16
· πr

2

2σρ

where the last inequality follows since r ≤ 1
4σ ≤ 1

4ρ. �

Proof of (102). The statement follows since

dmin(P) ≥
πr2

2
·min
x∈X

f(x) =
πr2

2
· ǫ

ρσ
,

and

volP,r(X ) ≤ dmax(P) ≤
πr2

2σρ
.

�

Appendix D. Proof of Major Theorems

We now prove the three major theorems of our paper: Theorem 12 (in Section D.1),
Theorem 16, and Theorem 17. Throughout, we use the notation ñ = |C[X]| and G̃n,r =
Gn,r

[
C[X]

]
as defined above.
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D.1 Proof of Theorem 12

We begin by recalling some probabilistic estimates needed for the proof of Theorem 12, along
with the probability with which they hold.

Probabilistic estimates. Throughout the proof of Theorem 12, we will assume (i) that the
inequalities (16)-(20) are satisfied; (ii) that the volume of C[X] is upper and lower bounded,

(1− δ) · volP,r(C) ≤
1

n(n− 1)
voln,r(C[X]) ≤ (1 + δ) · volP,r(C); (103)

(iii) that the number of sample points in C is lower bounded,

ñ ≥ (1− δ) · n · P(C) (17)
=⇒ ñ− 1 ≥ (1− δ)2 · n · P(C); (104)

and finally (iv) that the minimum and maximum degree of G̃n,r are lower and upper bounded
respectively,

1

ñ− 1
dmin(G̃n,r) ≥ (1− δ) · dmin(P̃), and

1

ñ− 1
dmax(G̃n,r) ≤ (1 + δ) · dmax(P̃). (105)

By Propositions 9 and 10, and Lemmas 29-31, these inequalities are satisfied with probability
at least 1−B2/n− 4 exp{−b1δ

2n} − (2n+ 2) exp{−b2δ
2n} − (n+ 1) exp{−b3n}.

Proof of Theorem 12. We use Lemma 7 to upper bound ∆(Ĉ, C[X]). In order to do so,
we must verify that the tuning parameters α and (L,U) satisfy the condition (11) of this
lemma, i.e. that α ≤ 1/

(
2τ∞(G̃n,r)

)
and U ≤ 1/

(
5voln,r(C[X])

)
. In order to verify the

upper bound on α, we will use Proposition 8 to upper bound τ∞(G̃n,r), which we may validly
apply because

dmax(G̃n,r)(
dmin(G̃n,r)

)2 ≤ (1 + δ)

(1− δ)2
· dmax(P̃)

(ñ− 1) ·
(
dmin(P̃)

)2 ≤ (1 + δ)

(1− δ)4
· dmax(P̃)

nP(C)
(
dmin(P̃)

)2 ≤ 1

16
.

The last inequality in the above follows by taking B3 := 16 · dmax(P̃)/
(
dmin(P̃)

)2
in (24).

Therefore by Proposition 8, along with inequalities (18) and (20) and the initialization
conditions (21) and (22), we have that α ≤ 1/45 ∧ 1/

(
2τ∞(G̃n,r)

)
. On the other hand, by

the upper bound on voln,r(C[X]) given in (103) and the initialization condition (21), we
have that U ≤ 1/

(
5voln,r(C[X])

)
. In summary, we have confirmed that the condition (11) is

satisfied.
Invoking Lemma 7, we conclude that there exists a set C[X]g ⊂ C[X] of volume at least

voln,r(C[X]g) ≥ voln,r(C[X])/2, such that for any β ∈ (L,U),

voln,r(Sβ,v △ C[X]) ≤ 60 · Φn,r(C[X])

αL
≤ 60

(1 + 2δ)

(1− 4δ)2
· Φn,r(C[X])

αP,r(C, δ)
· n(n− 1)volP,r(C)

Noting that Ĉ = Sβ,v for some β ∈ (L,U), the claimed upper bound (25) on ∆(Ĉ, C[X])
then follows from the upper bound (16) on Φn,r(C[X]) and the upper bound on volP,r(C)
in (103). �
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D.2 Proof of Theorem 16

From Theorem 12, we have that with probability 1 − B2/n − 4 exp{−b1δ
2n} − (2n +

2) exp{−b2δ
2n}− (n+1) exp{−b3n}, there exists a set Cλ,σ[X]g ⊂ Cλ,σ[X] of volume at least

voln,r(Cλ,σ[X]g) ≥ voln,r(Cλ,σ[X])/2, such that

∆(Ĉ, Cλ,σ[X])

voln,r(Cλ,σ[X])
≤ 60 · (1 + 3δ)(1 + 2δ)

(1− 4δ)2(1− 2δ)
· ΦP,r(Cλ,σ)
αP,r(Cλ,σ, δ)

≤ 1020

ln(2)
· (1 + 3δ)(1 + 2δ)

(1− 4δ)2(1− 2δ)
· ΦP,r(Cλ,σ)
ΨP,r(Cλ,σ)2

· ln2
( 32

(1− 3δ)sP,r(C)
)

The claimed upper bound (30) on ∆(Ĉ, Cλ,σ[X]) then follows from the bounds (27)-(29) on
the population-level local spread, normalized cut, and conductance of Cλ,σ, noting that the
condition r ≤ σ/(4d) implies that (1− r/(4ρL)) ≥ 1− 1/16 and 1− r/σ ·

√
(d+ 2)/(2π) ≥

1− 1/
√
32, and taking

C1,δ :=
1175040

π · ln(2) · (1− 1/16)2 · (1− 1/
√
32)4

· (1 + 3δ)(1 + 2δ)

(1− 4δ)2(1− 2δ)

C2,δ :=
144

(1− 1/
√
32)

· 1

1− 3δ
.

�

D.3 Proof of Theorem 17

We start by defining some constants, to make our proof statements easier to digest. Put

C3,δ :=
288(1 + δ)

(1− δ)

√
8/3 + 8δ, C4,δ :=

72

(1− 3δ)π
,

B1,δ := 768 · (1 + 3δ) · ln
(
C4,δ

ρσ

r2ǫ2

)
, B2,δ :=

(1 + δ)2

(1− δ)2
· ρσ

r2ǫ2

B4 := 1 +
48σρ

r2
+

4ρ

r
, b4 := b8 ∧ cutP,r(L) ∧ dmin(P)/14 ∧ volP,r(L ∩ C(1)),

b8 := volP,r(X )/4 ∧ ǫr2

4ρσ
∧ πr3

8σρ2
.

To prove Theorem 17, we use Theorem 28, Proposition 9 and (101) to show that the cluster
estimate Ĉ must have a small normalized cut. On the other hand, in Lemma 41 we establish
that any set Z ⊆ X which is close to C(1)[X]—meaning voln,r(Z △ C(1)[X]) is small—has a
large normalized cut.

Lemma 41 Fix δ ∈ (0, 1). With probability at least 1 − B4 exp{−nδ2b8}, the following
statement holds:

Φn,r(Z) ≥ (1− δ)2

4(1 + δ)π

(
1− 2

σρ

(1− δ)r2n2
voln,r(Z △ C(1)[X])

)
ǫ2r

σ
, for all Z ⊆ X. (106)
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We therefore conclude that voln,r(Ĉ △ C(1)[X]) must be large. In the remainder of this, we
detail the probabilistic estimates used in the proof of Theorem 17, and then give a formal
proof of Theorem 17 and then of Lemma 41.

Probabilistic estimates. In addition to (106), we will assume (i) that the graph normalized
cut of L and local spread of X are respectively upper and lower bounded,

Φn,r(L[X]) ≤ (1 + 3δ) · ΦP,r(L), and sn,r(X) ≥ (1− 3δ) · sP,r(X );

(ii) that the graph volume of L is upper and lower bounded,

(1− δ)volP,r(L) ≤
1

n(n− 1)
voln,r(L[X]) ≤ (1 + δ)volP,r(L);

(iii) that the graph volumes of L ∩ C(1) and C(1) are respectively lower and upper bounded,

(1− δ)volP,r(L ∩ C(1)) ≤ 1

n(n− 1)
voln,r(L[X] ∩ C(1)[X])

1

n(n− 1)
voln,r(C(1)[X]) ≤ (1 + δ)volP,r(C(1));

(iv) that the graph volume of X is lower bounded,

1

n(n− 1)
voln,r(X) ≥ (1− δ)volP,r(X );

and finally (v) that the maximum degree of Gn,r is upper bounded,

1

n− 1
dmax(Gn,r) ≤ (1 + δ)dmax(P).

It follows from Lemma 41, Propositions 9 and 10, and Lemmas 29 and 31 that these estimates
are together satisfied with probability at least 1−B4 exp{−nδ2b8}−3 exp{−nδ2cutP,r(L)}−
(2n+2) exp{−nδ2·dmin(P)/14}−5 exp{−nδ2volP,r(L∩C(1))} ≥ 1−(B4+2n+10) exp{−nδ2b4}.

Proof of Theorem 17. As mentioned, we would like to use Theorem 28 to upper bound
Φn,r(Ĉ), and so we first verify that the conditions of Theorem 28 are met. In particular, we
have each of the following.

• Recall that n ≥ 8 · (1 + δ)/(1 − δ) (33) and that volP,r(L) ≥ 3/16 · πr2/(2σρ) (as
shown in the proof of (101)). It is additionally clear that dmax(P) ≤ πr2/(2ρσ), and
consequently,

dmax(Gn,r) ≤ (n− 1) · (1 + δ)dmax(P) ≤
1

3
n2(1− δ)volP,r(L) ≤

1

3
voln,r(L[X]). (107)

Therefore the lower bound in condition (73) is satisfied.
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• Note that δ ∈ (0, 1/7) implies (1− δ)/(1 + δ) > 3/4, and additionally that volP,r(L) ≤
volP,r(X )/2. It follows that

voln,r(X) ≥ n(n− 1)(1− δ)volP,r(X )

≥ 2n(n− 1)(1− δ)volP,r(L) ≥ 2
(1− δ)

(1 + δ)
voln,r(L[X])

≥ 3

2
voln,r(L[X]).

(108)

Therefore the upper bound in condition (73) is satisfied.

• By (101), the normalized cut of L satisfies the following upper bound,

Φn,r(L[X]) ≤ (1 + 3δ) · ΦP,r(L) ≤ (8/3 + 8δ) · r
ρ
, (109)

and by (102) the local spread of X satisfies the following lower bound,

sn,r(X) ≥ (1− 3δ) · sP,r(X ) ≥ (1− 3δ) · πr
2

2ρσ
. (110)

The constants B1,δ and B2,δ in assumption (33) are chosen so that condition (74) is
satisfied.

As a result, we may apply Theorem 28, and deduce the following: there exists a set L[X]g ⊂ L
of large volume, voln,r(L[X]g) ≥ 5/6 · voln,r(L[X]), such that for any seed node v ∈ L[X]g,

the normalized cut of the PPR cluster estimate Φn,r(Ĉ) satisfies the following upper bound:

Φn,r(Ĉ) < 72

√
Φn,r(L[X]) · ln

( 36

sn,r(X)

)
≤ 72

√
(8/3 + 8δ) · r

ρ
· ln
( 72ρσ

(1− 3δ)πr2ǫ2

)
.

Combined with Lemma 41, this implies

(1− δ)2

4(1 + δ)π

(
1− 2

σρ

(1− δ)r2n2
voln,r(Ĉ △ C(1)[X])

)
ǫ2r

σ

≤ 72

√
(8/3 + 8δ) · r

ρ
· ln
( 72ρσ

(1− 3δ)πr2ǫ2

)
,

(111)

and solving for voln,r(Ĉ △ C(1)[X]) yields (34).
We conclude by observing that the set L[X]g must have significant overlap with C(1)[X].

In particular,

voln,r(L[X]g ∩ C(1)[X]) ≥ voln,r
(
(L ∩ C(1))[X]

)
− 1

6
voln,r

(
L[X]

)

(i)

≥ n(n− 1) ·
(
(1− δ)− 1

2
(1 + δ)

)
volP,r(L ∩ C(1))

(ii)

≥ n(n− 1) · 1
7
volP,r(L ∩ C(1))

(iii)

≥ 1

8
voln,r(L ∩ C(1))
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where in (i) we have used volP,r(L) ≤ 3volP,r(C(1)), and in (ii) and (iii) we have used
δ ∈ (0, 1/7). �

Proof of Lemma 41. To lower bound the normalized cut Φn,r(Z), it suffices to lower bound
cutn,r(Z) and upper bound voln,r(Z). A crude upper bound on the volume is simply

voln,r(Z) ≤ voln,r(Gn,r)
(i)

≤ (1 + δ)volP,r(X )n(n− 1) ≤ (1 + δ)
πr2

ρσ
n2 (112)

where by Lemma 30, inequality (i) holds with probability at least 1−exp
{
−nδ2volP,r(X )/4

}
.

This crude upper bound will suffice for our purposes.

We turn to lower bounding cutn,r(Z). Establishing this lower bound is considerably
more involved, and we start by giving an outline of our approach to build intuition.

• Discretization. Intuitively, we will approximate the cut of Z by discretizing the space
X into a collection of rectangular bins sQ. We will consider a subset of bins ∂ sZ ⊆ sQ,
which we call the discretized boundary of Z, and which consists of those bins Q ∈ sQ
containing many points xi ∈ Z adjacent, in the graph Gn,r, to many xj ∈ X \ Z. This
discretization allows us to relate cutn,r(Z) to the number of bins in the discretized
boundary ∂ sZ, as in (113).

• Slicing. In order to lower bound the number of bins in the discretized boundary |∂ sZ|,
we consider a second partition of X into horizontal slices R. We argue that for each
slice R, one of two things must be true: either R contains a bin belonging to the
discretized boundary of Z, Q ∈ ∂ sZ, or (Z △ C(1)[X]) ∩R has a “substantial” volume,

voln,r

(
(Z △ C(1)[X]) ∩R

)
≥ Rmin,

where Rmin is a random quantity defined in (115). Summing over all slices R then
gives a lower bound on |∂ sZ|, as in (115).

• Probabilistic Guarantees. The lower bound (115) depends on two random quantities:
the minimum number of points in any bin (denoted by Qmin), and Rmin, which was
discussed in the previous bullet. We give suitable lower bounds on each quantity, which
hold with high probability, and which suffice to complete the proof of Lemma 41.

Now, we fill in the details, working step-by-step.

Step 1: Discretization. We begin by discretizing X into a collection of bins. To that end, to
each k1 ∈

[
12σ
r

]
, k2 ∈

[4ρ
r

]
associate the bin7

Q(k1,k2) :=

[
−3σ

2
+

(k1 − 1)

4
r,−3σ

2
+

k1
4
r

]
×
[
−ρ

2
+

(k2 − 1)

4
r,−ρ

2
+

k2
4
r

]
;

7. Here we are assuming, without loss of generality, that 12σ/r ∈ N and 4ρ/r ∈ N, and using the notation
[x] = {1, . . . , x} for x ∈ N.
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and let Q =
{
Q(k1,k2) : k1 ∈

[
12σ
r

]
, k2 ∈

[4ρ
r

]}
be the collection of such bins. Next, we define

the binned set Z ⊂ Q to contain all bins Q ∈ sQ for which Z ∩Q is larger than X \ Z ∩Q;
in mathematical notation,

Z :=

{
Q ∈ Q : Pn(Z ∩Q) ≥ 1

2
Pn(Q)

}
.

Then the discretized boundary ∂ sZ is

∂Z :=

{
Q(k1,k2) ∈ Z : ∃(ℓ1, ℓ2) ∈

[12σ
r

]
×
[4ρ
r

]
s.t. Q(ℓ1,ℓ2) 6∈ sZ, ‖(k1, k2)− (ℓ1, ℓ2)‖1 = 1

}
.

Intuitively, every point xi ∈ Z which belongs to a cube in the boundary set ∂Z will have
many edges to X \ Z. Formally, letting Qmin := minQ∈Q Pn(Q), we have

cutn,r(Z) ≥ cutn,r(Z ∩
{
xi ∈ Z

}
) ≥ 1

4

∣∣∂Z
∣∣Q2

min. (113)

To establish the last inequality, we reason as follows: first, for every cube Q(k1,k2) ∈ ∂Z,

there exists a cube Q(ℓ1,ℓ2) 6∈ Z such that ‖(k1, k2)− (ℓ1, ℓ2)‖1 ≤ 1; second, since each cube
has side length r/4, this implies that for every xi ∈ Q(k1,k2) and xj ∈ Q(ℓ1,ℓ2) the edge (xi, xj)
belongs to Gn,r.

Step 2: Slicing. Now we move on lower bounding the size of the discretized boundary
∣∣∂ sZ

∣∣.
To do so, we divide X into slices horizontally. Let

Rk =

{
(x1, x2) ∈ X : x2 ∈

[
−ρ

2
+

(k − 1)

4
r,−ρ

2
+

k

4
r
]}

be the kth horizontal slice, and sRk =
{
Q(k1,k) ∈ Q : k1 ∈ [12σr ]

}
be the binned version of Rk.

For every k, we are in one of three cases:

1. sRk ∩ sZ = ∅, in which case

voln,r

((
Z △ C(1)[X]

)
∩Rk

)
≥ 1

2
voln,r(C(1)[X] ∩Rk), or

2. sRk ∩ sZ = sRk, in which case

voln,r

((
Z △ C(1)[X]

)
∩Rk

)
≥ 1

2
voln,r(C(2)[X] ∩Rk), or

3. sRk ∩ ∂ sZ 6= ∅.
In words, these cases describe, for each slice R, the situation in which the set Z has a
“substantial” boundary (Case 3), or the situation in which Z does not have a substantial
boundary, and instead has a substantial difference with C(1) (Cases 1 and 2).

Now, let N(R) be the number of slices which contain a boundary cell,

N(R) := #

{
k ∈

[
2ρ

r

]
: sRk ∩ ∂ sZ 6= ∅

}
.
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and let Rmin be the minimum volume of the intersection of any slice Rk with the density
clusters C(1), C(2); formally,

Rmin := min
k

{
voln,r(C(1)[X] ∩Rk) ∧ voln,r(C(2)[X] ∩Rk)

}
. (114)

Summing over all slices Rk, we have from our previous analysis that,

voln,r

(
Z △ C(1)[X]

)
=

∑

k∈[2ρ/r]

voln,r

(
(Z △ C(1)[X]) ∩Rk

)
≥ Rmin

[
2ρ

r
− N(R)

2

]
.

Rearranging this expression and noting that
∣∣∂ sZ

∣∣ ≥ N(R), we obtain the following lower
bound on the cardinality of the discretized boundary,

∣∣∂ sZ
∣∣ ≥ N(R) ≥ 2

(2ρ
r

− voln,r(Z △ C(1)[X])

Rmin

)
. (115)

Combining (113) and (115), we have that

cutn,r(Z) ≥ 1

4
N(R)Q2

min

≥
(
ρ

r
− voln,r(Z △ C(1)[X])

2Rmin

)
Q2

min (116)

for all Z ⊂ X.

Step 3: Probabilistic guarantees. It remains to lower bound the random quantities Rmin and
Qmin. To do so, we first lower bound the expected probability of any cell Q,

min
Q∈Q

P(Q) ≥ ǫr2

4ρσ
, (117)

and the expected volume of C(1)[X] ∩Rk and C(2)[X] ∩Rk,

volP,r(C(1) ∩Rk) = volP,r(C(2) ∩Rk) ≥
πr3

4σρ2
for all k. (118)

Since Qmin and Rmin are obtained by taking the minimum of functionals over a fixed
number of sets in n, they concentrate tightly around their means. Specifically, note that the
total number of cubes is

∣∣Q
∣∣ = 48σρ

r2
, and the total number of horizontal slices is 4ρ

r . Along
with (117) and (118), by Lemma 31

Qmin ≥ (1− δ)
ǫr2

4ρσ
n and Rmin ≥ (1− δ)

πr3

4σρ2
n(n− 1),

with probability at least 1− 48σρ
r2

exp
{
−nδ2ǫr2

4ρσ

}
− 4ρ

r exp
{
−n(n−1)δ2πr3

8σρ2

}
. Combining these

lower bounds with (112) and (116), we obtain

Φn,r(Z) ≥ (1− δ)2

4(1 + δ)π

(
1− 2

σρ

(1− δ)r2n2
voln,r(Z △ C(1)[X])

)
ǫ2r

σ
,

for all Z ⊆ X. �
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Appendix E. Additional Results: aPPR and Separation of Clusters via

PPR

In this appendix, we prove two additional results regarding PPR remarked upon in our main
text. In Section E.1, we show that clustering using the aPPR vector satisfies an equivalent
guarantee to Theorem 12. In Section E.2, we show that the PPR vector can perfectly
distinguish two distinct density clusters Cλ, C′

λ.

E.1 Generic Cluster Recovery with aPPR

Our formal claim regarding cluster recovery with aPPR is contained in Corollary 42.

Corollary 42 Consider instead of Algorithm 1 using the approximate PPR vector from
Andersen et al. (2006) satisfying (2), and forming the corresponding cluster estimate Ĉ in
the same manner. Then provided we take

ε =
1

25(1 + δ)n(n− 1)volP,r(C)
, (119)

under the assumptions of Theorem 12 the upper bound on symmetric set difference in (25)
still holds.

Proof of Corollary 42. Note that the choice of ε in (119) implies ε ≤ 1/
(
25voln,r(C[X])

)

with probability at least 1− exp
{
−nδ2volP,r(C)

}
. The proof of Corollary 42 is then identical

to that of Theorem 12, except one uses Corollary 18 rather than Lemma 7 to relate the
symmetric set difference to the graph normalized cut and mixing time. �

E.2 Perfectly Distinguishing Two Density Clusters

As mentioned in our main text, the symmetric set difference does not measure whether Ĉ
can (perfectly) distinguish any two distinct clusters Cλ, C′

λ ∈ Cf (λ). We therefore also study
a second notion of cluster estimation, first introduced by Hartigan (1981).

Definition 43 For an estimator Ĉ ⊆ X and distinct clusters Cλ, C′
λ ∈ Cf (λ), we say Ĉ

separates Cλ from C′
λ if

Cλ[X] ⊆ Ĉ and Ĉ ∩ C′
λ[X] = ∅. (120)

The bound on symmetric set difference (30) does not imply (120), which requires a
uniform bound over the PPR vector pv. As an example, suppose that we were able to show
that for all C′ ∈ Cf (λ), C′ 6= C, and each u ∈ C, u′ ∈ C′,

pv(u
′)

deg(u′;G)
≤ 1

10
· 1

n(n− 1)volP,r(Cλ,σ)
<

1

5
· 1

n(n− 1)volP,r(Cλ,σ)
≤ pv(u)

deg(u;G)
. (121)

Then, any (L,U) satisfying (21) and any sweep cut Sβ for β ∈ (L,U) would result in a

cluster estimate Ĉ fulfilling both conditions laid out in (120). In Theorem 44, we show that
a sufficiently small upper bound on ∆(Ĉ, Cλ,σ[X]) ensures that with high probability the
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uniform bound (121) is satisfied, and hence implies that Ĉ will separate Cλ from C′
λ. In what

follows, put

c1,δ :=
(1− δ)5

4
·min

{( 3

8(1 + δ)
− 1

5

)
,
1

10

}

and note that if δ ∈ (0, 7/8) then c1,δ > 0. (In fact, we will have to take δ ∈ (0, 1/4) in order to
use Propositions 9 and 10). Additionally, denote P′ for the conditional distribution of a sample
point given that it falls in C′

λ,σ, i.e. P
′(S) := P(S ∩ C′

λ,σ)/P(C′
λ,σ), and G′

n,r := Gn,r[C′
λ,σ] for

the subgraph of Gn,r induced by C′
λ,σ.

Theorem 44 For any δ ∈ (0, 1/4) any n ∈ N such that

1

n
≤ δ ·

4P(C′
λ,σ)

3
(122)

and otherwise under the same conditions as Theorem 12, the following statement holds with
probability at least 1−B2/n− 4 exp{−b1δ

2n} − (n+ 2) exp{−b3n} − 3(n+ 3) exp{−b7δ
2n}:

there exists a set Cλ,σ[X]g ⊆ Cλ,σ[X] of large volume, voln,r(Cλ,σ[X]g) ≥ voln,r(Cλ,σ[X])/2,
such that if Algorithm 1 is δ-well-initialized and run with any seed node v ∈ Cλ,σ[X]g, and
moreover

κP,r(Cλ,σ, δ) ≤ c1,δ ·
min

{
P(Cλ,σ)2 · dmin(P̃)

2,P(C′
λ,σ)

2 · dmin(P
′)2
}

volP,r(Cλ,σ)
(123)

then the PPR estimated cluster Ĉ satisfies (120).

Before we prove Theorem 44, we make a few brief remarks:

• In one sense, Theroem 44 is a strong result: if the density clusters Cλ, C′
λ satisfies

the requirement (123), and we are willing to ignore the behavior of the algorithm in
low-density regions, Theorem 44 guarantees that PPR will perfectly distinguish the
candidate cluster Cλ from C′

λ.

• On the other hand, unfortunately the requirement (123) is rather restrictive. Suppose
the density cluster Cλ,σ satisfies (A3). Then from the following chain of inequalities,

∆(Ĉ, Cλ,σ[X])

voln,r(Cλ,σ[X])

(Thm. 12)

≤ κP,r(C, δ)
(123)

≤ c1,δ ·
P(Cλ,σ)2 · dmin(P̃)

2

volP,r(Cλ,σ)
(A3)

≤ c1,δ ·
Λσ

λσ
νdr

d,

we see that in order for (123) to be met, it is necessary that ∆(Ĉ, Cλ,σ[X])/voln,r(Cλ,σ[X])
be on the order of rd. In plain terms, we are able to recover a density cluster Cλ in
the strong sense of (120) only when we can guarantee the volume of the symmetric
set difference will be very small. This strong condition is the price we pay in order to
obtain the uniform bound in (121).

• The proof of Theorem 44 relies heavily on Lemma 19. This lemma—or more accurately,
the equation (66) used in the proof of the lemma—can be thought of as a smoothness
result for the PPR vector, showing that the mass of pv(·) cannot be overly concentrated
at any one vertex u ∈ V . However, (66) is a somewhat crude bound. By plugging
a stronger result on the smoothness of pv(·) in to the proof of Lemma 19, we could
improve the uniform bounds of the lemma, and in turn show that the conclusion of
Theorem 44 holds under weaker conditions than (123).
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Now we recall some probabilistic estimates before proceeding to the proof of Theorem 44.

Probabilistic estimates. As in the proof of Theorem 12, we will assume that the inequali-
ties (16)-(20) and (103)-(105) are satisfied. We will additionally assume that

n′ ≥ (1− δ) · n · P(C′
λ,σ)

(122)
=⇒ n′ − 1 ≥ (1− δ)2 · n · P(C′

λ,σ) (124)

and that
1

n′ − 1
dmin(G

′
n,r) ≥ (1− δ) · dmin(P

′). (125)

By Propositions 9-10 and Lemmas 29-31, these inequalities hold with probability at least
1 − B2/n − 4 exp{−b1δ

2n} − (n + 1) exp{−b3n} − (3n + 3) exp{−b7δ
2n}, taking b7 :=

b2 ∧ P(C′
λ,σ) · dmin(P

′)/9.

Proof of Theorem 44. We have already verified in the proof of Theorem 12 that α ≤
1/(2τ∞(G̃n,r)), and we may therefore apply Lemma 19, which gives a lower bound on pv(u)
for all u ∈ Cλ,σ[X]o and an upper bound on pv(u

′) for all pv(u
′) for all u′ ∈ C′

λ,σ[X]o. These
bounds are useful because r ≤ σ, which implies that Cλ[X] ⊆ Cλ,σ[X]o and likewise that
C ′
λ[X] ⊆ C′

λ,σ[X]o. We will show that these bounds in turn imply (121), from which the
claim of the theorem follows.

We begin with the lower bound in (121). From (in order) Lemma 19, our assorted
probabilistic estimates, and the assumed lower bound (123) on κP,r(C, δ), we have that for
all u ∈ Cλ[X],

pv(u)

degn,r(u)
≥ 3

8voln,r(C[X])
− 2

Φn,r(Cλ,σ[X])

dmin(G̃n,r)2α

≥ 1

n(n− 1)

(
3

8(1 + δ)volP,r(Cλ,σ)
− 4 · n(n− 1)

(ñ− 1)2
· κP,r(Cλ,σ, δ)
(1− δ)dmin(P̃)2

)

≥ 1

n(n− 1)

(
3

8(1 + δ)volP,r(Cλ,σ)
− 4 · κP,r(Cλ,σ, δ)

(1− δ)5P(C)2dmin(P̃)2

)

≥ 1

5n2volP,r(Cλ,σ)
.

An equivalent derivation implies the upper bound in (121): for all u′ ∈ C′
λ[X],

pv(u
′)

degn,r(u
′)

≤ 2
Φn,r(Cλ,σ[X])

dmin(G′
n,r)

2α

≤ 4 · 1

(n′ − 1)2
· κ(Cλ,σ, δ)
(1− δ)dmin(P′)2

≤ 4
κ(Cλ,σ, δ)

n2(1− δ)5P(C′
λ,σ)

2dmin(P′)2
≤ 1

10n2volP,r(Cλ,σ)
,

completing the proof of Theorem 44. �

Appendix F. Experimental Details

Finally, we detail the settings of our experiments, and include an additional figure.
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F.1 Experimental Settings for Figure 2

Let Rσ,ρ = [−σ/2, σ/2]× [−ρ/2, ρ/2] be the two-dimensional rectangle of width σ and height
ρ, centered at the origin. We sample n = 8000 points according to the density function
fρ,σ,λ, defined over domain X = [−1, 1]2 and parameterized by ρ, σ and λ as follows:

fρ,σ,λ(x) :=





λ, if x ∈ Rσ,ρ − (−.5, 0) or x ∈ Rσ,ρ + (−.5, 0)

4− 2λρσ

1− 2ρσ
, if x ∈ X , x 6∈ Rσ,ρ − (−.5, 0) and x 6∈ Rσ,ρ + (−.5, 0).

(126)

Then θ := λ− 4−2λρσ
1−2ρσ measures the difference in density between the density clusters and the

rest of the domain. The first column displays n = 8000 points sampled from three different
parameterizations of fρ,σ,λ:

ρ = .913, σ = .25, (λ− θ)/λ = .25 (top panel)

ρ = .25, σ =, (λ− θ)/λ = .05 (middle panel)

ρ = .5, σ = .25, (λ− θ)/λ = .12 (bottom panel.)

In each of the first, second, and third rows, we fix two parameters and vary the third. In
the first row, we fix σ = .25, (λ− θ)/λ = .25, and vary ρ from .25 to 2. In the second row,
we fix ρ = 1.8, (λ − θ)/λ = .05, and vary σ from .1 to .2 In the third row, we fix ρ = .5,
σ = .25 and vary (λ− θ)/λ from .1 to .25. In the first and third rows, we take r = σ/8; in
the second row, where we vary σ, we take r = .1/8.

F.2 Experimental Settings for Figure 3

To form each of the three rows in Figure 3, n = 800 points are independently sampled
following a ’two moons plus Gaussian noise model’. Formally, the (respective) generative
models for the data are

Z ∼ Bern(1/2), θ ∼ Unif(0, π) (127)

X(Z, θ) =

{
µ1 + (r cos(θ), r sin(θ)) + σǫ, if Z = 1

µ2 + (r cos(θ),−r sin(θ)) + σǫ, if Z = 0
(128)

where

µ1 = (−.5, 0), µ2 = (0, 0), ǫ ∼ N(0, I2) (row 1)

µ1 = (−.5,−.07), µ2 = (0, .07), ǫ ∼ N(0, I2) (row 2)

µ1 = (−.5,−.125), µ2 = (0, .125), ǫ ∼ N(0, I2) (row 3)

for Id the d × d identity matrix. In all cases σ = .07. In each case λ is taken as small as
possible such that there exist exactly two distinct density clusters, which we call Cλ and C′

λ;
r is taken as small as possible so that each vertex has at least 2 neighbors. The first column
consists of the empirical density clusters Cλ[X] and C′

λ[X] for a particular threshold λ of
the density function; the second column shows the PPR plus minimum normalized sweep
cut cluster, with hyperparameter α and all sweep cuts considered; the third column shows
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(d)

Figure 4: True density (column 1), PPR (column 2), minimum normalized cut (column 3) and
estimated density (column 4) clusters for two-moons with 10 dimensional noise. Seed
node for PPR denoted by a black cross.

the global minimum normalized cut, computed according to the algorithm of Bresson et al.
(2012); and the last column shows a cut of the density cluster tree estimator of Chaudhuri
and Dasgupta (2010).

Performance of PPR with high-dimensional noise. Figure 4 is similar to Figure 3 of the
main text, but with parameters

µ1 = (−.5,−.025), µ2 = (0, .025), ǫ ∼ N(0, I10).

The gray dots in (a) (as in the left-hand column of Figure 3 in the main text) represent
observations in low-density regions. While the PPR sweep cut (b) has relatively high
symmetric set difference with the chosen density cut, it still recovers separates Cλ[X] and
C′
λ[X], in the sense of Definition 43.
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convergence of the graph laplacian on random geometric graphs toward the laplace–
beltrami operator. Foundations of Computational Mathematics, 20(4):827–887, 2020.
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