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Abstract
Despite the great success of Convolutional Neural Networks (CNNs) in Computer Vision and Natural Language Processing, the
working mechanism behind CNNs is still under extensive discussion and research. Driven by strong demand for the theoretical
explanation of neural networks, some researchers utilize information theory to provide insight into the black-box model. How-
ever, to the best of our knowledge, employing information theory to quantitatively analyze and qualitatively visualize neural
networks has not been extensively studied in the visualization community. In this paper, we combine information entropies and
visualization techniques to shed light on how CNN works. Specifically, we first introduce a data model to organize the data that
can be extracted from CNN models. Then we propose two ways to calculate entropy under different circumstances. To provide
a fundamental understanding of the basic building blocks of CNNs (e.g., convolutional layers, pooling layers, normalization
layers) from an information-theoretic perspective, we develop a visual analysis system, CNNSlicer. CNNSlicer allows users
to interactively explore the amount of information changes inside the model. With case studies on the widely used benchmark
datasets (MNIST and CIFAR-10), we demonstrate the effectiveness of our system in opening the black-box of CNNs.

CCS Concepts
• Human-centered computing → Visual analytics;

1. Introduction

The Convolutional Neural Networks (CNNs) is a type of deep neu-
ral networks that have shown impressive breakthrough in many ap-
plication domains such as computer vision, speech recognition and
natural language processing [KSZQ19]. Different from the tradi-
tional multilayer perceptrons which only consist of fully connected
layers, CNNs have additional building blocks such as the convo-
lution layers, pooling layers, normalization layers, dropout layers,
etc. Through a combination of these layers, CNN models can ex-
tract features of different levels to generate the final result. Despite
its great success, because of the lack of explanation of CNNs, de-
signing and evaluating the model is still a challenging task.

As a result, the interpretation of the black-box systems in deep
neural networks (DNN) models has received a lot of attention
lately. Researchers proposed various visualization methods to in-
terpret DNNs such as CNNVis [LSL∗17], LSTMVis [SGPR18],
GANViz [WGYS18], etc. By making the learning and decision
making process more transparent, the reliability of the model can
be better confirmed which allows researchers to improve and diag-
nose the models more effectively.

Since a CNN model can extract features of different levels, it
can be thought of as an information distillation process. Measuring
the information change during this information distillation process

makes it possible to open the black box of neural network models.
In 2017, the work by Shwartz-Ziv and Tishby [ST17] tackle the
problem using information theory to analyze the learning process
of DNNs via a technique called Information Plane. However, their
focus is to give a theoretical bound of neural networks instead of
a though visual analysis of information flow in the network at dif-
ferent granularities. Although plenty of works have been done to
visualize DNNs, to the best of our knowledge, using information
theory as a comprehensive analytic tool to visualize and analyze
deep learning models has not been fully studied in the visualization
community. In this paper, we aim to bring together information the-
ory and visual analytics for analyzing CNN models.

To better understand the information distillation process of
CNNs, we start with treating the model as a black box and analyze
its input and output. Then we get into the details of the model’s
building blocks such as layers and channels. There are multiple
angles to assess the information, e.g., measure the amount of infor-
mation inside the input data, between the input and output, between
the intermediate layers, and among the channels. To systematically
formulate the queries, we introduce a data model in the form of
a four-dimensional hypercube that allows users to systematically
query the data from various stages of CNN models. The dimen-
sions of this data model represent the input, layers, channels, and
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training epochs. Different slicing or aggregation operations on this
hypercube are introduced to glean insights into the model. To cal-
culate the information flow through CNN models, we propose two
different types of entropy: inter-sample entropy and intra-sample
entropy. Inter-sample entropy is the entropy from a set of samples,
including the input and the intermediate results, in their original
high-dimensional space, and intra-sample entropy is the entropy for
each data sample such as an image or a feature map. We design and
develop a visual analysis system, CNNSlicer. CNNSlicer aims to
reveal the information inside the model and help users understand
the learning process of a CNN model or evaluate a well-trained
CNN model in the testing phase.

In summary, the contributions of our work are: (1) We propose
a novel hypercube data model to help users make more systematic
queries to the information available in CNN models. (2) We pro-
pose two types of entropy, inter-sample entropy and intra-sample
entropy, each reveals a different insight into the information distil-
lation process of CNNs. (3) We combine visual analysis of CNNs
with information theory and develop a system, CNNSlicer that al-
lows users to perform visual queries into the CNN models.

2. Related work

2.1. Visual Analytics for Deep Learning

In both visualization and machine learning fields, an increasing
number of researchers are now focusing on developing methods
to allow the visual analysis of deep learning models to diagnose,
evaluate, understand and even refine the model. In the visualization
community, scientists integrate multiple visual components with
proper interactions to let user explore and understand the model.
For example, CNNVis [LSL∗17] was proposed to assist users in
exploring and understanding the role of each neuron in the model.
By only analyzing the input and output, Manifold [ZWM∗19] was
designed to help the development and diagnosis of the model. To
understand and interpret the Deep Q-Network (DQN), DQNViz
[WGSY19] encodes details of the training process in the system
for users to perform comprehensive analysis. In the machine learn-
ing field, there are some popular works on Explainable Artificial
Intelligence (XAI) [ADRS∗19], such as saliency map [FV17], loss
landscape visualization [LXTG17], sensitivity analysis [CE11] and
deconvolution [ZF13].

2.2. Information Theory and Applications in Deep Learning

Information theory, first introduced by Claude Shannon in 1948, is
a theory focusing on information quantification and communica-
tion [Sha48]. Shannon defined several fundamental concepts such
as entropy, relative entropy and channel capacity to measure in-
formation in a statistical way [Sha48]. Even to date, information
theory is still popular in areas like mathematics, computer sci-
ence (e.g., feature selection [HXZ20]) and electrical engineering
(e.g., compression [HXZ20]), etc. It also has been employed in
deep learning field. For example, cross-entropy, in information the-
ory, measures how different two probability distributions are. In
deep learning, the cross-entropy loss is widely used in classifica-
tion tasks to measures the distance between the predicted labels
and the true labels.

Besides the loss design, there has been some attempt to open
the black box of deep learning models via information theory. One
of the pioneering works done by Tishby and Zaslavsky [TZ15] is
the Information Bottleneck. In their work, a layered neural network
model is taken as a Markov Chain with every layer only depends on
the output of the previous layer. The evolution of the mutual infor-
mation between the input and hidden layers, and between hidden
layers and the output during training is depicted in the informa-
tion plane to investigate the training dynamics. With this informa-
tion plane, the authors observed that DNNs aim to first compress
the input into a compact representation and then learn to increase
the model’s generalizability by forgetting some information. How-
ever, their goal is more on giving a theoretical background of neural
networks from an information perspective. The information plane
visualization is limited to show only the mutual information trajec-
tories between several layers. Different from information plane, we
want to utilize information theory and some visualization methods
to open the black box of CNNs from different granularities such as
layers, channels, and different training epochs.

3. Background

3.1. Convolutional Neural Network

Convolutional Neural Networks (CNNs) have various building
blocks including fully connected layers, convolutional layers, pool-
ing layers, non-linear activations, dropout, normalization, etc. With
these layers stacked up multiple times, CNNs are able to automat-
ically extract hierarchical features from the input. Consider a stan-
dard CNN model as an information distillation process, each layer
is extracting and purifying the input information into concise repre-
sentations. Initially, the model has no idea what to filter out given a
large amount of information. During training, the model’s weights
get updated through backpropagation and its output converges to
the expected result. When the model is well trained, it can reduce
and summarize the input by keeping only the most salient charac-
teristics of the data to perform the underlying inference task. This
fundamental nature of CNNs is what motivates us to develop a
framework to evaluate and explain how a neural network model
process information and how the information flows through the
model.

3.2. Information Theory

In information theory, entropy (Shannon’s entropy [Sha48] to be
more specific) is a widely used metric to measure the amount of
disorder (information) in the system. In a random process, if an
event is more common, the occurrence of this event contains less
information than a rare event. That is to say, given a random event,
higher probability means lower information content. From this in-
tuition, the information content of a stochastic event x can be de-
fined as the negative log of its probability p(x):

I(x) =−logb(p(x)) (1)

In Shannon’s entropy [Sha48], the logarithmic base of the log is 2,
so the resulting unit is "bit".

For a stochastic system, if each random event can happen with
almost the same probability, this system is almost unpredictable.
From the information theoretic point of view, the system is more
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disorder. On the other hand, when only a few events are more likely
to happen, the output will be less surprising and hence the system
contains less information. Thus, the amount of information for a
system, also known as the entropy [Sha48], is defined as the ex-
pected value of all random events’ information content:

H(X) = E[I(X)] = E[−logb(P(X))] =−
n

∑
i=1

P(xi)logbP(xi) (2)

where n is the number of possible stochastic events of the system.

In [Sha48], Shannon also defined a theoretical upper bound for a
communication system. The system has six components as shown
in Fig. 1. The information source produces the original information
to be transmitted to the destination. A transmitter encodes the infor-
mation into a suitable representation that can be transmitted from
the transmitter to the receiver through the communication channel.
The receiver is a decoder which decodes the received information
and sends it to the destination. During transmission, the addition of
channel noise will cause signal interference. Shannon defined the
capacity (i.e., mutual information) of a noisy channel by [Sha48]:

MI = H(X)−H(X |Y ) (3)

where H(X) measures the amount of information in the information
source and the conditional entropy H(X |Y ) gives us the amount of
uncertainty for the source information X given the destination in-
formation Y . In other words, H(X |Y ) measures the amount of in-
formation loss during the transmission. If Y has exactly the same
amount of information as X , then given Y there would be no un-
certainty about X . In this case, H(X |Y ) equals zero. However, as
we have inevitable noise added during transmission, in practice
H(X |Y ) is not zero.

Information
Source Transmitter Receiver Destination

Noise 

Communication
channel

Figure 1: A communication system transmits encoded source infor-
mation to the destination through a noisy communication channel.

As we discuss in Section 3.1, CNNs can be seen as extracting
and purifying the input information through consecutive layers. In
information theory, entropy can measure the amount of informa-
tion in a system. In our case, the system is a neural network model.
Since the information is “compressed” into the output-relevant in-
formation, one may wonder whether the entropy keep decreasing
as we get into deeper layers. On the other hand, through iterative
training, the optimized model is more sure about what to output
given an input. This means the randomness of the system is de-
creasing when making inferences. Can the entropy of the model
reflect this change? Furthermore, how does the entropy of the fea-
ture maps from a specific layer change during training? If we can
answer the above questions, we will improve the transparency of
the CNN model through information theory.

4. A CNN Information Analysis Framework

4.1. Requirement Analysis

Our work tries to help users analyze and visualize CNN from an
information theoretic point of view. After thoroughly discussing

with a machine learning and information theory expert, we come
up with the following visual analysis requirements:

• R1: Provide an overview as well as the basic building blocks
of a CNN model. CNN models have hierarchical structures. To
go along with this property, our visual design also requires such
a hierarchy. From the overview of the model to the details of
the architecture, this top-down visualization can assist users to
understand the model in a more intuitive way.
• R2: Develop a unified data model for CNNs. As we discuss be-

fore, there are various information queries one can make to im-
prove the transparency of the CNN model. Visualizing all possi-
ble queries in a theoretical way would help users to gain a deeper
understanding of the model. However, a large amount of data
are generated during the training process and CNN architectures
vary depends on the application. Thus, a unified CNN model rep-
resentation is needed.
• R3: Visualize information statistics of the model. To give a

clue about how the CNN model makes decisions from an infor-
mation theoretic perspective, the statistics associated with each
building block of the model need to be analyzed. Since there is a
huge amount of statistical information, we need better data orga-
nization and effective visual designs to avoid visual clutter. With
detailed statistics, users can find interesting directions for further
analysis and potential explanations for the model.
• R4: Support multifaceted analysis of the model’s learned fea-

tures. Besides the statistical information, to get insight into the
functionality of the intermediate layers, comprehensive visual-
ization to display detailed multifaceted information in the model
is required. For example, the visualization of the various features
that the model learned.

4.2. dCNN: A Data Model for CNNs

As we stated before, it is important to formulate the queries sys-
tematically to evaluate and interpret the information flow inside a
CNN model. In this section, we formalize a data model to repre-
sent the information available in CNN models in a comprehensive
way, regardless of the specific type of CNN architecture. This data
model helps us organize the information queries and make the CNN
explanation process more systematic.

The data available in the entire CNN model can be thought of as
a four-dimensional array, denoted as dCNN(X ,L,C,T ) where each
dimension of the array serves as a key. A specific value of the key
is used to slice the array and obtain the information stored within.

The first dimension of the array is the input data (training or test-
ing) dimension, denoted as X . Within this dimension, each specific
instance, or a value in the dimension represents an input, for ex-
ample, an input training image. In the case of classification neural
networks, the dimension X can be further divided into subgroups
where each subgroup represents data in a specific class.

The second dimension in the multidimensional array is the layer
dimension, denoted as L. As we know, a CNN contains multiple
layers, from the input to hidden to the output layers, and each of
the layers plays a specific role. For example, the earlier layers are
responsible for extracting low-level features such as edges and col-
ors. As we go deeper into the model, low-level features are com-
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bined into high-level features such as contours or textures and then
objects can be extracted. As each layer acts like a ‘function’ whose
output only depends on the input from the previous layer, the input
information gets distilled layer by layer.

Given a particular layer in the CNN, there exist multiple con-
volution kernels, also known as filters and the output of which is
often called a channel. If we fix at a layer, there can be multiple
channels to be chosen for analysis, which prompts the necessity of
having the next dimension in the array that represents the channels,
denoted as C. For any CNN model, it is crucial to have multiple
filters to be trained, and as a result, multiple feature maps will be
produced for a given input. Intuitively, each channel is activated by
some specific features in the input. It is also known that more filters
do not necessarily guarantee more information from the input to be
captured since some filters may be ‘dead’ where no information is
extracted. Since the capability of a filter can be checked by the cor-
responding feature maps, it is reasonable that we focus on feature
maps when evaluating the filters.

Finally, a CNN model is trained through many iterations of back-
propagation and gradient descent. When the input training data are
divided into many small batches, called mini-batches, a backprop-
agation is conducted for each mini-batch and an iteration that goes
through all mini-batches is called an epoch. To track the progress
of training for a CNN model over time, we index the data in the
last dimension of the four-dimensional array by its epoch number,
denoted as T .

As a result, we propose to use a four-dimensional hypercube to
represent the data related to a CNN model. The four dimensions
are data (X), layer (L), channel (C), and training epoch (T ). We
denote this data structure as dCNN(X ,L,C,T ). Inside the four-
dimensional array, each specific entry is often an array, for exam-
ple, an input image, a feature map in the hidden layer, or an array
of probability values, one for each possible output label. Different
slicing or aggregation operations on this hypercube lead to different
information queries and facilitate the evaluation and interpretation
of the CNN model.

X
C

L

T

t1

t2x.label = 0

Figure 2: Slice the data model by input (X) dimension to get all
intermediate data in the CNN model, given input class label 0.

4.3. Slicing dCNN as Information Query

The data model described in Section 4.2 defines a 4-dimensional
hypercube to represent all data that can be extracted from a CNN
model. To analyze the data in a CNN model, we can first slice the
hypercube based on the analysis need, followed by calculating var-
ious entropy measures from the slicing result. Below we first ex-
plain the meaning of data slicing. The calculation of entropies is
explained in Section 4.4.
• Slicing by Input X:dCNN(x,−,−,−) means we slice the hy-

percube on the X dimension where x is a particular instance or

a set of instances. The notation − indicates all values in the re-
spective dimension. For example, x = {x′|x′.label = 0} returns
all the data with label 0 from all epochs, all layers and chan-
nels. H(dCNN(x,−,−,−)) denotes its entropy. It may not be
very helpful to calculate H(dCNN(x,−,−,−)) across so many
layers and channels, we need to further constrain the query.
• Slice by Input, Layer, and/or Epoch: When slicing on both X

and L dimensions, we have dCNN(x, l,−,−), where l ∈ [0, |L|]
specifies which layer we are interested in for a given input x,
and |L| is the index of the last CNN layer. dCNN(x, l,−,−) rep-
resents all feature maps at layer l for all epochs given input x.
To track the training process across different epochs, we need to
further index the data on the T dimension. H(dCNN(x, l,−, t))
is the entropy of output from layer l during training epoch t given
the input x. dCNN(X ,0,−,0) is the initial condition where the
input is the entire set X which have not gone through any layer
of the model. So the layer index and the training epoch are all
zeros. In this case, H(dCNN(X ,0,−,0)) measures the diversity
of the input X . Besides entropy, it is also possible to calculate
the conditional entropy H(a|b), where a = H(dCNN(x, l1,−, t))
and b = dCNN(x, l2,−, t)). It describes given the output of layer
l2, how much we know about the output of layer l1 at training
epoch t. The mutual information H(a)−H(a|b), as defined in
Equation 3, measures how much information gets lost between
layer l1 and l2 at training epoch t. This fulfill our goal of query-
ing the information change between layers.
• Slice by Input, Layer, Channel, and/or Epoch: Previously, we

have H(dCNN(x, l,−,−)) and H(dCNN(x, l,−, t)) measure the
amount of information that a layer contains. However not ev-
ery channel in this layer is useful. We can further slice the four
dimensional array along the C dimension to investigate a partic-
ular channel. dCNN(x, l,c, t) returns the output (feature map) of
channel c in layer l at training epoch t given input x. c ∈ [0, |Cl |]
specifies which channel we are focused on, and |Cl | is the num-
ber of channels in layer l. H(dCNN(x, l,c, t)) measures the in-
formation content of the output in channel c.

4.4. Entropy Calculation for dCNN

In this work, we adopt entropy as a measure of information con-
tent for CNNs. The calculation of entropy, however, needs to be
specially tailored to the need of analysis. Specifically, for the four-
dimensional data model mentioned above, the calculation of en-
tropy depends on how the array is sliced.

We propose two types of entropy calculations for our data model.
The first entropy that can be calculated is called inter-sample en-
tropy, which is to calculate how diverse the data are in the high di-
mensional space. For example, the entropy of the training image set
for classification where each image is a sample from a high dimen-
sional space. This type of entropy is often an indicator of whether
the data from the input or in the immediate layers of CNNs is suf-
ficiently diverse, and how the information represented in a set of
samples is distilled across the different layers of a CNN. To calcu-
late this entropy, we need to consider the distribution of the data
samples in the high-dimensional space. The second type of entropy
is intra-sample entropy. The intra-sample entropy considers the en-
tropy within each data sample. For example, the entropy of an input
image or the entropy of a particular feature map. To calculate the
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intra-sample entropy, we use histograms of the data sample. In this
case, an image is not considered as a high dimensional point but a
one-dimensional histogram of the pixel values where the entropy
can be efficiently calculated. Below we describe the calculation
methods in detail.

4.4.1. Inter-Sample Entropy Calculation

The purpose of inter-sample entropy calculation is to measure the
diversity of the data samples in their original space, which is of-
ten high-dimensional. As the set of samples are going through the
different layers of a neural network, redundant or irrelevant in-
formation for the inference task is discarded which will, in turn,
change the distribution of the layer output. Monitoring how the
entropy is changed often provides an important hint on how the
neural network is doing. As an example, considering our dCNN
data model and assuming X is the set of all training images in the
MNIST dataset where each data sample in X is an image of size
28*28 in a 784-dimensional space. If we want to measure the di-
versity of the training set X , we can first slice the CNN data ar-
ray by dCNN(X ,0,−,0), and then calculate the inter-sample en-
tropy, denoted as H(dCNN(x,0,−,0)), to measure whether the in-
put samples have sufficient diversity. Below we explain how the
inter-sample entropy is computed.

As defined in Equation 2, when calculating the entropy, we need
the probability for each of the states in the system. To obtain the
probabilities for calculating the inter-sample entropy, we adopt an
idea inspired by a dimensionality reduction technique, Uniform
Manifold Approximation and Projection (UMAP) [LMM18]. In
UMAP, to create a distribution for high dimensional points, the dis-
tance between a pair of samples i and j is converted into a proba-
bility by an exponential distribution function. With the probabilities
between all sample pairs, we can then calculate the inter-sample en-
tropy as the expected value of the information content for all sample
pairs.

The exponential distribution is widely used to model relation-
ships between random variables. For any data point xi, the simi-
larity between xi and another point x j is given by the conditional
probability Pj|i:

Pj|i = exp(
−‖xi− x j‖

σi
) (4)

where σi is the scale parameter of the distribution for each xi. An
adaptive exponential kernel for each point are more powerful to
model the real data distribution in high-dimensional space, as a re-
sult, each σi is set to satisfy Equation 5:

k

∑
j=1

exp(
−‖xi− x j‖

σi
) = log2(k) (5)

where k is the number of data points.

To make the above probability calculation computationally effi-
cient, for each sample, we only consider its k-nearest neighbours in
the high-dimensional space. Before computing entropy, the proba-
bilities are symmetrized and normalized. To make them symmetric,
we average Pj|i and Pi| j:

Pi, j =
Pj|i +Pi| j

2N
(6)

where N is the number of data points. Then we normalize the joint
probability table. Now we have probability for each of the states,
we plug Equation 6 into the entropy Equation 2 to calculate inter-
sample entropy. The inter-sample entropy calculation is similar to
the joint entropy, which considers the probabilities of all pairs of
data samples in dataset X .

H(X) =−
n

∑
i=1

n

∑
j=1

Pi, jlog2Pi, j (7)

4.4.2. Intra-Sample Entropy Calculation

The intra-sample entropy measures the randomness of the values
in each data sample, regardless of the data sample’s dimensional-
ity. For example, when estimating the entropy for an image or a
feature map, we only take the value distributions of the pixels into
consideration. We use histograms for probability estimation which
is also often adopted to measure the quality of images for image
processing applications.

The calculation details are as follows. First, we normalize the
value range to (−1,1), divide the range into B(e.g.,B = 32) equal-
size intervals (bins), and then put the values of a data sample (e.g.
an image’s or a feature map’s pixel values) into these bins. The
resulting frequency distribution is a histogram. Then we use the
normalized frequency distribution as the probability distribution to
calculate the intra-sample entropy. This approach is straightforward
and computationally efficient which reflects the sharpness or blurri-
ness of value distributions. One example of using intra-sample en-
tropy is when we want to calculate the randomness within a group
of feature maps, which is denoted as H(dCNN(x, l,c, t)) where x
is a set of input images from the same class. This is useful for the
evaluation and understanding of CNN’s filters. Because a ‘dead’
filter will not be activated by different inputs, the value distribution
on one channel can give some idea about the corresponding filter.
It is feasible that we use intra-sample entropy for each feature map
and use the averaged result as the final H(dCNN(x, l,c, t)).

5. Information Query via CNNSlicer

In the previous section, we formulate a four-dimensional hyper-
cube dCNN(X ,L,C,T ) to represent a CNN model. By slicing on
the hypercube, we are able to perform information analysis of a
CNN. To meet our requirements stated in Section 4.1, we develop
a visual analysis system, called CNNSlicer, with four visual com-
ponents. Our framework is developed based on d3.js † with Flask
framework‡ as backend to support the interactions with the data and
views. The neural network model is implemented using Pytorch§.
Wee use Matplotlib ¶ to pre-process and generate some analytic
figures. In this section, we describe the four visual components of
CNNSlicer and show how various information measures can assist
the analysis of CNN models.

† https://d3js.org/
‡ http://flask.pocoo.org/
§ https://pytorch.org/
¶ https://matplotlib.org/
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Figure 3: System Overview. (A) Performance overview of the selected model; (B) Query View: for user to perform queries; (C) Layer view:
display multifaceted information of layers; (D) Channel view: show detailed intra-sample entropies and deconvolutional results of channels.

5.1. Training Performance View

To help users evaluate the training performance of the model (R3),
we design the training performance view in Fig. 3(A). In this view,
users can analyze the model’s quality, the diversity of the input data
and the training loss.

5.1.1. Evaluate CNN Model Quality

The quality of the CNN model is evaluated by a confusion matrix in
Fig. 3(A1), and the information queries between the model’s input
and output as shown in Fig. 3(A2-A3).

The confusion matrix (Fig. 3(A1)) shows how confused the
model is between two classes. Each row of the confusion matrix
represents all instances of predicting an actual class to all classes.
The cell color indicates how many instances are predicted as the
column class but actually belong to the row class. The higher value
the brighter is the color.

Consider the CNN model as a communication system, where
the input x is transmitted to the output layer through the model.
The information queries between input x and output y will reflect
the model’s information distillation ability. To perform informa-
tion queries about input and output layers, we slice the data model
dCNN. dCNN(x,0,−,0) returns the input x. Given the input x, the
output y of the CNN model at training epoch t can be denoted as
dCNN(x, |L|,−, t), where |L| is the index of the output layer.

As discussed in Section 3.2, H(x.label|y = i) measures given
the predicted labels y being class i, how much uncertainty we
have about the ground truth labels x.label. On the other hand,

H(y|x.label = i) measures the randomness of the model’s predic-
tions in the output for the data samples in class i at epoch t. The
calculation of H(x.label|y = i) and H(y|x.label = i) can be done
via Shannon’s entropy. That is, for a given class i, to calculate
H(y|x.label = i) we need p(y = j|x.label = i) where j ∈ [0,9].
These probabilities can be obtained from the model output. Then
we can directly use the Shannon’s entropy equation to evaluate.

The conditional entropy plots (Fig. 3(A2-A3)) shows the un-
certainties of the model. The horizontal axis in each plot is the
training epochs and the vertical axis is the conditional entropy
(H(x.label|y = i) or H(y|x.label = i)). These line charts can assist
users to monitor the uncertainty change over training epochs.

5.1.2. Evaluate Input Diversity

Increasing the training data size will usually improve the model’s
robustness and accuracy. However, if the training data is not well
distributed, it can lead the model to optimize in a non-optimal di-
rection and affect the speed of convergence. Therefore, it is worth
to evaluate the diversity of the input (i.e., inter-sample entropy
H(dCNN(x,0,−,0)) in high-dimensional space). The inter-sample
entropy of input is displayed in Fig. 3(A4).

5.2. Query View

There are various information queries users can make according
to different slicing operations. To assist users to make proper in-
formation queries from different granularities, we design a query
view as shown in Fig. 3(B). This view is linked to the layer view
and channel view. In this view, all layers of the CNN architecture
are visually available. To support the top-down analysis (R1) of the
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CNN model, users can select layers by checking the checkboxes
(Fig. 3(B1)) or select channels from one layer by clicking one of
the radio buttons (Fig. 3(B2)).

5.3. Layer View

In the previous sections, we have discussed about slicing the
data model and performing information queries about the input
(dCNN(x,0,−,0)) and the output (dCNN(x, |L|,−, t)). In this sec-
tion, we focus on the information flow between the intermediate
layers. To visualize the amount of information transmitted between
layers, we design a layer view as shown in Fig. 3(C). After slic-
ing the layer dimension of the hypercube by selecting layers in the
query view, the layer view will be updated.

We adopt mutual information to evaluate the information be-
tween layers and show the result in a heatmap ( Fig. 3(C1)). The
slider in Fig. 3(C2) is used to visualize the mutual information over
training epochs. The heatmap can be sorted by rows or columns
based on the average or maximum value within the row or col-
umn vectors. The layer view also contains a visualization of feature
maps (R4) to help users gain more insight of the layer.

5.3.1. Evaluate the Information Between Layers

Suppose users are interested in how the information flows from
layer li to layer l j during training. Then all layers before li can
be taken as a transmitter and all layers after l j can be taken as
a receiver. The stacked layers between layer li and l j represent
the noisy communication channel. The mutual information (Equa-
tion 3) between layer li and layer l j at epoch t is used to mea-
sure the transmitted information, i.e., H(X)−H(X |Y ) where X =
dCNN(x, li,−, t) and Y = dCNN(x, l j,−, t).

Normally, each layer’s output has multiple channels generated
by different filters. To reduce the analysis complexity and make the
explanation process more clear, we consider each channel as one
representation of this layer’s output. That is, given a group of input
instances, the mutual information between layer li and layer l j is
calculated based on the feature maps from all channel pairs, one
channel from layer li and another from layer l j.

However, feature maps from layer li and layer l j have differ-
ent dimensionality. To compute their joint distribution, we adopt a
similar idea that uses distances in high-dimensional space between
two samples as the similarity measurement. Instead of converting
distances into probabilities using exponential or Gaussian distribu-
tions, we map the distances into a 2-dimensional histogram, where
one axis of the histogram represents the bins that discretize the pair-
wise feature map distances in one channel from layer li, and the
other axis represents the bins of the distances in one channel from
layer l j. Any entry in the 2D histogram records the frequency of
the joint distance pairs from the two channels, one from layer i and
another from layer j, computed from the feature maps. After the
2D histogram is established, we can compute the joint entropy of
two channels, the entropy of each channel, the conditional entropy
between channel pairs, and the mutual information between one
channel in layer i and one channel in layer j.

The 2D histograms are useful in this case since it combines

these two high-dimensional spaces and studies the distance corre-
lation between two filters. One alternative approach is to use a 2D-
Gaussian distribution that take the distance pairs from two layers
as input to do the probability mapping. Due to the computational
complexity, our approach is based on 2D histograms.

The sorted heatmap in Fig. 3(C1) is used to visualize the matrix
of mutual information between the channels from two layers. The
horizontal axis of this heatmap are channels of layer li and the ver-
tical axis are channels of layer l j. The color at position (x,y) in the
heatmap encodes the mutual information between layer li and layer
l j using the feature maps from the x-th filter of layer li and the
y-th filter of layer l j. A brighter color indicates a smaller mutual
information between these two channels which means the channel
undergoes higher information loss or less correlation between the
two channels’ outputs. One column of this heatmap represents the
mutual information calculated based on feature maps from one fil-
ter in layer li and feature maps from all filters in layer l j. If there are
64 filters in layer l j, then there will be 64 mutual information val-
ues in this column. By sorting the matrix columns by the maximum
values we mean: (1) compute the maximum value of each column;
(2) sort these maximum values and keep the sorted indexes; (3) re-
arrange the columns based on these indexes. We perform similar
operations for rows. After sorting, patterns of mutual information
between layers become clear. When users hover over one rectangle
of the heatmap, the text showing layer index, channel index and
mutual information will be updated in Fig. 3(C3). When they click
on one rectangle, feature maps from the corresponding“column fil-
ter” and “row filter” will also show up in Fig. 3(C3).

5.4. Channel View

If we further slice dCNN(x, l,−, t) on the channel dimension,
we get dCNN(x, l,c, t) which are all the feature maps generated
by filter c. Since filters are the most fundamental building blocks
of a CNN model, it is important to investigate the information of
filter c’s output (i.e., channel c). When users click one of the radio
buttons layer in the query view, the information statistics for each
channel of this layer (R1, R3) is updated in channel view, as shown
in Fig. 3(D). To reveal what information gets filtered out during
the information distillation process, we adopt a Deconvolutional
Network (deconvnet) [ZTF11] to project a filter’s output back to
the input image space (R4) in Fig. 3(D2). In the channel view, we
utilize a small multiple chart as shown in Fig. 3(D3) to visualize all
channels’ intra-sample entropies’ changes over training epochs. We
also employ circle-packing diagrams with two levels of hierarchy,
as shown in Fig. 3(D1) to compare intra-sample entropies between
different input classes.

5.4.1. Evaluate the Information in Channels

To calculate H(dCNN(x, l,c, t)) (i.e., the intra-sample entropy
of channel c), we first compute the intra-sample entropy at channel
c for every input, then we take the average of these entropies. To
evaluate a channel’s performance on different classes, we compute
the channel’s intra-sample entropy for input with different classes.

In the small multiple chart (Fig. 3(D3)), each box represents a
channel, the x-axis of each line in the box represents epochs, y-axis
presents the entropy, and different colors represent different classes.
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To reduce visual clutter, the system only shows four channels at a
time and users can scroll down to analyze other channels.

The input data are further divided into subgroups according to
their true labels and every subgroup is represented as a circle in the
circle-packing diagram. In Fig. 3(D1), the first-level circle repre-
sents the class. The size of first-level circle represents the entropy
of all feature maps belong to this class. Inside each first-level cir-
cle, there are smaller second-level circles representing channels.
The size of the second-level circle has a positive correlation with
the intra-sample entropy of the channel (i.e., weighted by a power
function to make circles more distinguishable). Assuming a CNN
has 32 channels in this layer, then there will be 32 second-level
circles inside each first-level circle. The color of the second-level
circles represents the channel index. If users click on the first-level
circle of one class, the circle-packing diagram will zoom in and
show the inner second-level circles. By hovering over the second-
level circles, users can check the channel’s intra-sample entropy.

We utilize a deconvnet to visualize what information the feature
map contains about the input. In [ZF13], given one input image,
feature maps of all channels in a layer are pushed back to the input
image space by successively unpooling and filtering to get the de-
convolutional result. In our work, given one input image, we only
use the feature map from the channel we are interested in to get the
deconvolutional result in the input image space, this can show how
much information from the input remains in this channel. When
users click on one second-level circle, the deconvolutional results
of this filter will be updated in Fig. 3(D2).

BA

Figure 4: (A) Training loss for datasets with 100, 500, 1000, and
2000 samples per class; (B) inter-sample entropy for datasets with
100, 500, 1000, and 2000 samples per class.

6. Case Studies

6.1. Diversity of the Input

Take the MNIST dataset as an example. This dataset has ten
classes. Experts random sample 100, 500, 1000, and 2000 sam-
ples respectively from each class resulting in four different datasets
(x1,x2,x3,x4). To analysis the diversity of the datasets, they calcu-
late the inter-sample entropy H(dCNN(xi,0,−,0)) with i ∈ [1,4].
In Fig. 4(B), the horizontal axis shows the number of samples per
class and the vertical axis is the inter-sample entropy for the dataset.
They train the model based on these datasets separately. The train-
ing loss is shown in Fig. 4(A) where the horizontal axis represents
the training epoch and the vertical axis is the loss value. Fig. 4(A)
and Fig. 4(B) share the same color scheme which makes it eas-
ier for users to connect the training performance with the diver-
sity of training data. For example, blue represents the dataset with

100 samples per class. The blue line in Fig. 4(A) takes more than
150 epochs before the loss becomes flat and stable (a slower con-
vergence speed compare with others). The blue bar in Fig. 4(B)
shows a lower inter-sample entropy (i.e., 19.89815) compared to
other datasets (i.e., 22.959736, 24.094230 and 25.161577), mean-
ing the dataset is less diverse. On the other hand, the dataset with
2000 samples per class has the highest diversity, and the training
loss is steeper and converges much faster (at about epoch 50). Thus,
the experts have the conclusion that datasets with high inter-sample
entropy, i.e., diversity, do converge faster.

6.2. Information Between Input and Output

Users can select different input sizes in the training performance
view. After the selection, the confusion matrix and line charts get
updated. Fig. 5 shows a juxtaposition comparison of H(x.label|y =
i) with input size 1000 (Fig. 5(A)) and 10000 (Fig. 5(B)). For
H(x.label|y = i), when the input size is 10000, it gets stabilized
faster (at about epoch 25) compared with input size 1000 which
still dramatically goes ups and downs until epoch 70. This con-
firms that training with larger input data gets stabilized faster, and
“stabilized” here means the uncertainty about the input class given
output gets stable.

BA

C

Class 0

Class 1

Class 4

Class 7

Class 9

Class 5

Figure 5: (A) H(x.label|y = i) with input size 1000, i ∈ [0,9]; (B)
H(x.label|y = i) with input size 10000, i ∈ [0,9].

A

Predicted

Ac
tu
al

Figure 6: Confusion matrix at training epoch 10.

In Fig. 5(A), at the beginning, H(x.label|y = 0), H(x.label|y =
1) and H(x.label|y = 4) are high indicating some instances belong
to other classes get wrongly classified into class 0, 1 and 4. In Fig. 6,
the brighter columns (column 0, 1 and 4) in confusion matrix ver-
ifies this. In Fig. 5(A), H(x.label|y = 7) is low at the beginning.
This means the model does not have much randomness during pre-
diction for this class. The low entropy here is a reflection of a high
precision score. As shown in Fig. 6(A), among all instances classi-
fied into class 7, most of them are belong to class 7. The segments
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in Fig. 5(C) shows H(x.label|y = 5) and H(x.label|y = 9) are in-
finity in earlier epochs. In Fig. 6, we can see column 5 and column
9 are all zeros (no instances get classified into these two classes).
The model has a hard time learning to predict class 9 and 5. This is
the information we can not get from a single accuracy score.

From several case studies, we show that it is effective to use
entropy as the evaluation metric to visualize the training perfor-
mance. The visualization clearly tells us when the training gets
stabilized. Besides, unlike the accuracy measure which only tells
how many instances get correctly classified, entropy encodes infor-
mation about wrong predictions such as how uncertain (random)
the predictions are. Entropy (H(x.label|y = i), i ∈ [0,9]) can help
users locate when the model has high precision. However, low en-
tropy does not indicate good performance since all samples can be
wrongly classified into one class and still has low entropy, although
the chance for this to happen is not high.

Layer View

A B

C

D

Figure 7: Layer view. (A) Heatmap of mutual information between
layer 3 (horizontal axis) and layer 4 (vertical axis); (B) two filters
with similar patterns; (C) feature maps from filter 19 in layer 3;
(D) feature maps from filter 55 in layer 4.

6.3. Information Between Layers

The experts adopt the CNN classification model trained on the
CIFAR-10 dataset for this case study. First, they choose layer 3
(horizontal axis) and layer 4 (vertical axis) in the query view. They
select epoch 100 and sort the heatmap by the maximum value for
each dimension. In Fig. 7(A), they observed two filters (filter 8 and
filter 30 in layer 3) highlighted in the back rectangle in (B) have
similar patterns. Their hypothesis is that these two filters are simi-
lar. To verify their hypothesis, they visualize the feature maps from
these two filters and the other two randomly selected filters in layer
3 as shown in Fig. 8. The first row (A) in Fig. 8 are the input images.
From the second row to the bottom row, they are feature maps from
filter 0, filter 24, filter 8 and filter 30 respectively. We can see filter

8 and filter 30 (the last two rows (D) and (E)) perform similarly
which verifies their hypothesis.

A

B

D

C

E

Figure 8: (A) original input; (B) to (E) are feature maps at layer 3
from filter 0, filter 24, filter 8, filter 30 respectively.

Figure 9: From left to right, they are heatmaps of mutual informa-
tion between layer 2 and layer 3 sorted by maximum value in each
dimension at epoch 0, epoch 40 and epoch 120.

CA B

Figure 10: (A) Mutual information between layer 1 and layer 3;
(B)mutual information between layer 1 and layer 5; (C) mutual
information between layer 1 and layer 7. All at epoch 120.

Experts are interested in the information flow between layer 2
and layer 3. There is a max-pooling between these two layers.
When they drag the epoch slider, they can see the change of mutual
information over the training time in Fig. 9. From left to right, they
are heatmaps of mutual information at epoch 0, 40, and 120 respec-
tively. Because experts are investigating the information change be-
fore and after a max-pooling, the corresponding filters are expected
to be similar which makes the diagonal of these heatmaps have the
highest mutual information. In the earlier training epochs, many
rows and columns have similar patterns, indicating some filters are
redundant. Through iterative training, there are fewer dark square
patterns and similar rows and columns are decreasing, indicating
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filters in the convolutional layer before this activation are learning
to extract useful features.

To investigate the connection between formation flow and the
model’s depth, experts compare mutual information between layer
1 and latter layers (i.e., layer 3, layer 5, layer 7) at epoch 120. Intu-
itively, with each layer of the network learning to reduce the irrele-
vant information in input, the mutual information between the input
and deeper layers will decrease. This explains the phenomenon that
the mutual information heatmap between these layers are getting
brighter as we approach deeper layers, as shown in Fig. 10.

6.4. Information Inside Channels

Experts use the CNN model trained on CIFAR-10 dataset to in-
vestigate the information inside channels. Fig. 11(A) is the small
multiples chart for layer 1 and Fig. 11(B) is for layer 11. By com-
paring these two plots, they conclude that filters in lower layers are
more consistent among all input classes. However, filters of higher
layers perform more differently and the behavior depends on the
class of the input. This may be because normally filters in lower
convolutional layers are trained to extract diverse and detailed fea-
tures which are common for all classes. But in higher layers, filters
will combine low-level features into class-related high-level repre-
sentations. Besides, since low-level feature maps have more high
frequency details (contains more irrelevant information), channels
in lower layers have relatively higher entropies comparing to higher
layers as shown in Fig. 11(C) and Fig. 11(D).

C

D

A

B

Figure 11: Small multiples charts for layer 1 (A) and layer 11 (B).

Channel 31

A B

Class 0

Class 6

Channel 18

Channel 15

Channel 23

Channel 12

Figure 12: Channel view. (A) circle-packing diagram for all chan-
nels in one epoch; (B) zoom-in of class 6.

Experts are interested in the channel’s performance differences
when classifying different classes. Fig. 12(A) is the circle-packing
diagram of layer 3 at epoch 80. Among these 11 big circles, 10 of
them representing 10 different classes and the remaining one repre-
senting the whole dataset. In Fig. 12(A), class 0, which is the class
“airplane”, has the smallest intra-sample entropies. They also zoom
in the circle of class 6 as shown in Fig. 12(B), by comparing the
size of circles and hovering over the circles to see the intra-sample
entropy values, they locate some channels with higher entropies
such as channel 23, 18 and 12. They notice in Fig. 12(B), there is a
small second-level circle in the lower left region. By hovering over
it, they find it is channel 31 with entropy 1.795243. They find for
every class, the intra-sample entropy of this channel is small. To
gain insight into the function of this filter, they adopt deconvnet to
visualize this filter’s learned features. In class 6, they click on the
small circle of channel 31. Fig. 13(A) is the deconvolutional result.
They also visualize other filters such as filter 23 who has higher
inter-sample entropy in Fig. 13(B). From Fig. 13 we can see the
result of filter 31 contains fewer details compared to filter 23. This
means filter 31 distills the input information too much. From the
case studies, we demonstrate the hierarchy of circle-packing dia-
gram gives users insight into the performance of the filter.

BA

Figure 13: Deconvolutional result for feature maps in channel 31
(A) and channel 23 (B) in layer 3.

7. Conclusion and Future Work

In this work, we combine visualization with an information-
theoretic approach to help evaluate and understand the informa-
tion distillation process of CNNs. To begin with, we formalize a
data model to store the information available in a CNN model. A
four-dimensional hypercube is derived from the data model, con-
sisting of four dimensions (i.e., input(X), layer(L), channel(C) and
epoch (T)). By slicing on the hypercube, we are able to systemat-
ically formulate various information queries of a CNN. Based on
the analysis need, we propose two types of entropies: inter-sample
entropy and intra-sample entropy. We also develop a visual analysis
system, CNNSlicer, from which users can explore the flow of infor-
mation inside a CNN. We use the MNIST and CIFAR-10 datasets
to demonstrate how to use CNNSlicer to evaluate and analyze the
CNN model, such as comparing the convergence speed of training,
and the information changes between layers.

In the future, we plan to extend our framework to analyzing
other types of neural networks such as Recurrent Neural Networks
(RNNs), Generative Adversarial Networks (GANs), and Attention-
based transformers. We will also look into the roles of various neu-
ral network components using information theory, such as the acti-
vation functions, batch normalization and skip connection. We be-
lieve our information theoretical framework will provide a unique
perspective to opening the black-box of deep learning neural net-
works.
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