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Abstract 

Kerfing is a subtractive manufacturing method to create flexible surfaces from stiff planar 

materials. While the kerf structures are ubiquitous in indoor and outdoor architectures due to 

their pleasing aesthetics, they have potential applications for tuning the indoor acoustics and 

altering the dynamic response of the building from winds, traffics, etc., by varying their 

geometrical parameters (kerf pattern, cut density, cut thickness, etc.) and locally deforming the 

kerf cells. However, the dynamics responses of the kerf structures have never been explored 

before. This research presents an investigation on the dynamic response, in terms of mode 

shapes, natural frequencies, and stress wave propagations, of the flexible kerf cells. The 

influence of material behaviors, i.e., elastic and viscoelastic, on the dynamic response of the 

kerf cells is also investigated. Mathematical models are used to understand the interplay 

between material behavior, geometrical kerf pattern, and dynamic responses. Experimental 

tests using scanning laser vibrometry are performed to study the mode shapes and frequencies 

on two kerf cells with stainless steel (SS) and medium density fiber (MDF) materials. 

Responses from the mathematical models are compared to experimental results in order to 

validate the modeling approach. Understanding the dynamics responses of kerf cells in 

association with their geometrical and material characteristics can lead to a systematic design 

of kerf structures exposed to various dynamics loadings. 
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1. Introduction 

In modern architecture, curved and complex surfaces have been a subject of interest for several 

decades. In contrast to simple and flat geometries, the complex and curved surfaces are 

aesthetically pleasing, and they have potential applications in both indoor and outdoor 

architectures [1]. For example, complex freeform structures can be used to design the facades 

whose shapes can be reconfigured to minimize the adverse effects of strong winds on the 

structural integrity of  a  building [2]. Comparably, these reconfigurable structures deployed in 

indoor architectures have the potential to tune the acoustics of a space. However, current 

construction materials such as wood, metal, and concrete, which are used for complex freeform 

structures, are relatively stiff which leads to difficulties in creating curved surfaces out of them.  

Kerfing or relief cutting is a subtractive manufacturing approach to create various 

degrees of flexibility in surfaces from stiff planar materials like metals, wood, and processed 

wood (medium density fiberboard (MDF), plywood, etc.). Fig. 1 shows examples of shape 

reconfigurations of the kerf surfaces. There have been several studies on different kerf patterns 

that allow bending of the kerf surfaces in single, double, or multiple axes, e.g., [3], [4], [5], [6]. 

With complex tessellated patterns cut onto a stiff material, it is possible to bend the kerf 

surfaces into a wide variety of complex shapes. Hoffer et al. physically implemented kerf 

structures at a larger scale by fabricating a kerf pavilion by bending the plywood [7]. These 

previous studies mainly explored the influence of kerf patterns on the bending and flexibility 

of kerf structures. Chen et al. studied the deformations of kerf surfaces with two different kerf 

patterns [8]. They demonstrated the design and analysis of three-dimensional (3D) shapes out 

of kerf surfaces and showed that altering the topological kerf patterns enables achieving desired 

3D shapes while minimizing the stresses. Understanding the dynamic response (natural 

frequencies, mode shapes, and stress wave propagations) of kerf surfaces is crucial if the kerf 

surfaces are to be used for facades and/or indoor acoustic panels, which is currently lacking. 
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Fig. 1 Different patterns and reconfigurations of architectural kerf structures [9] 

[10] 

 

At a glance, the kerf patterns can be seen as typical architected materials, lattice 

materials [11-13] and hierarchical lattices [14]. However, there is a significant difference 

between the kerf patterns and traditional 2D architected, lattice materials and hierarchical 

lattices (see Fig. 2). Each kerf cell comprises a continuous flow of a slender element through 

folding like patterns inside the cell. This pattern allows flexibility and multiple shape changes 

within the cell. As can be seen later, inside each kerf cell it is possible to have multiple 

deformed shapes (from combinations of bending, twisting, and elongation/contraction). 

Typical architected and lattice materials are formed by arrangements of closed single cells, 

whereas in the hierarchical lattices closed finer cells are arranged in successive smaller scales. 

The closed single cell in these lattices (traditional and hierarchical) has a limited flexibility 

within the cell. The 2D architected materials like in Fig. 2 (top) are mostly utilized for their 

in-plane deformations, while the kerf panels are often dominated by their out of plane 
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deformations with some limited in-plane deformations. Kerf panels allow not only for 

macroscopic (surface) shape changes, but also microscopic (within a single cell) shape 

changes.  

 

Fig. 2 Comparison between lattice structures [13, 15, 16] (top) and kerf structures 

(bottom) 

 

There have been experimental and analytical studies on understanding the dynamic 

response (natural frequencies, mode shapes, and stress wave propagations) of lattice structures, 

while to our knowledge the studies on the dynamic responses of kerf structures are still lacking. 

In lattice structures, experimental tests using base excitation and laser vibrometry have been 

used to determine their modal response, as discussed by Popescu [17] and Bilal et al. [18], 

which will be considered for the experimental test in our study. In case of modeling, beam 

elements are widely used to determine the modal behavior of lattice structures because they are 

computationally less expensive. For example, Jennet et al. used beam elements to determine 

bending and torsional modes of the morphing wing lattice structure to assess its suitability for 

intended actuation [19]. They also investigated the modal response of modular reconfigurable 

systems such as bridges, boats and shelter structures, etc. using beam elements [20]. Zelhofer 

et al. also used linear elastic beam theory to study the modal behavior to determine in-plane 

and out-of-plane mode shapes followed by investigating wave motion in a variety of 2-D lattice 
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structures [21]. The important geometrical parameters such as thickness and width of the beam, 

which significantly influence the modal response of the structure, can be incorporated directly 

to the beam element when modeling lattice structures [22, 23]. Beside the geometrical aspects, 

material behaviors have crucial effects on the dynamic responses of the structures. Langley et 

al. discussed the material viscoelastic behaviors and damping properties in analyzing the modal 

response of a 2-D beam grillage system [24].  

The present study investigates the dynamic response with a focus on modal analysis 

and stress wave propagation in the standalone kerf unit cells. The kerf cells are modeled as an 

assembly of beam elements with bending, torsional, and extensional motions. Two different 

materials, i.e., stainless steel (SS) and medium density fiber (MDF) are considered for the kerf 

cells. The SS kerf surface is modeled as a linear elastic material, while the MDF kerf surface 

is modeled as a linear viscoelastic material. The responses from the beam element models are 

compared to the responses determined from shell and continuum finite elements. To validate 

the beam element model, modal experiments are conducted using Scanning Laser Vibrometry. 

This research also discusses the steady-state response of the kerf unit cells followed by an 

understanding of stress wave propagation in these kerf cells. The outline of the paper is 

described as follows. Section 2 discusses the studied kerf pattern, followed by the beam 

element model formulation in Section 3. Section 4 presents the modal analyses of the MDF 

and SS kerf cells using the beam element model, and the comparisons with shell and 3D 

continuum FE analyses and experimental tests. Section 5 discusses steady-state response and 

stress wave propagations in the kerf cells. Finally concluding remarks are given in Section 6.  

 

2. Kerf Patterns 

The kerf patterns considered in this study are cut on a SS shim stock and an MDF board with 

a thickness of 0.031 in. and 0.125 in., respectively. The basic mechanical properties of the 
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stainless-steel shim stock and MDF board are shown in Table 1. Although there are several 

cut patterns in literature [5, 6], we consider only one pattern in this study, i.e., a hexagon 

domain with a triangular spiral pattern, see Fig. 3. The hexagonal domain has six identical 

connection points which are referred as handles in this study. To understand the modal 

responses of this complex pattern, hexagon unit cells of side length 1 in. are laser cut from SS 

shim stock and MDF board, respectively. During laser cutting, the gap width of the SS 

specimen is kept to 0.006 in. and the gap width of the MDF specimen is 0.025 in. The MDF is 

a viscoelastic material and an experimental test was conducted to determine the viscoelastic 

properties of the MDF, as discussed in Appendix C [25]. Table 2 presents the material 

parameters for the viscoelastic MDF with a constitutive material model discussed in Appendix 

A. 

Table 1 Elastic properties of SS and MDF 

SS properties 

Elastic properties 

Elastic Modulus 
Poisson ratio 

Density 
Tensile strength 
Yield Strength 
Shear Modulus 

29588 ksi (204 GPa) 
0.29 

7.37 x 10-4 lbfs2/in4 (7880 kg/m3) 
130 ksi (896 MPa) 
40 ksi (276 MPa) 

1.147 x 104 ksi (79 GPa) 

MDF Properties 

Elastic properties 

Elastic Modulus 
Poisson ratio 

Density 
Tensile strength 
Shear Modulus 

580 ksi (4 GPa) 
0.25 

7.37 x 10-5 lbfs2/in4 (788 kg/m3) 
2.6 ksi (18 MPa) 
232 ksi (1.6 GPa) 
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Fig.3 HD kerf unit cell. MDF (left); SS (right). Top shows the actual materials, 
Bottom shows the models 

 

Table 2. Prony series parameters for the viscoelastic MDF  
 

𝑖𝑖 𝜏𝜏𝑖𝑖 (s) 𝐸𝐸𝑖𝑖 (𝑘𝑘𝑘𝑘𝑘𝑘) 𝐸𝐸𝑖𝑖  (𝐺𝐺𝐺𝐺𝐺𝐺) 
1 100 249 1.72 
2 1000 176 1.21 
3 5000 69.4 0.48 

 

3. Beam element model for analyzing dynamics responses of kerf cells 

To study the modal response of the kerf unit-cells, we consider representing the segments in 

the kerf unit cell as continuous three-dimensional beams with a rectangular cross-section (see 

Fig. 4). In the three-dimensional beam considered in this study, 𝑥𝑥1 axis is in the axial direction, 

whereas 𝑥𝑥2 and 𝑥𝑥3 axes are in the lateral directions. In the case of the MDF unit cell, the beam 

has a thickness of 0.125 in. and the width of the beam is 0.0450 in. Contrarily, for the SS, the 

beam thickness is 0.031 in., and the beam width is 0.0565 in. Table 3 presents the geometrical 

properties of the beam cross-sections for both unit cells. The mode shapes and resonance 

frequencies extracted from the modal analysis depends on the geometric properties and 

constitutive material properties of the beam. For example, a beam made up of MDF has a 

thicker cross-section resulting in combinations of in-plane bending (𝑥𝑥1 − 𝑥𝑥3 plane), out-of-

plane bending (𝑥𝑥1 − 𝑥𝑥2 plane), axial stretching, and twisting. Contrastingly, the SS beam is 
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relatively slender, i.e. the length is significantly larger than its thickness, so the out of plane 

bending is dominant and the in-plane bending and axial stretching mode shapes are rarely 

observed.  

 
Fig. 4 Modeling kerf unit cell: a. Kinematic representation of continuous three-

dimensional beam; b. Folded beam; c. Kerf triangle unit cell; d. Kerf hexagon domain 
 
 

 

Table 3 Geometric properties of SS and MDF beam cross-sections in unit cells 

Unit cell Area (in2) 
Second moment 

of area 
𝐼𝐼22 (×10-5 in4) 

Second moment 
of area 

𝐼𝐼33 (×10-5 in4) 

Torsional 
constant 

J (×10-5 in4) 
SS 0.031 x 0.0565 0.047 0.014 0.037 

MDF 0.125 x 0.0450 0.095 0.732 0.29 
 

3.1 Beam element model formulation 

 We consider a straight continuous beam element which can undergo various deformations 

such as in-plane bending, out-of-plane bending, axial stretching, transverse shearing, and 

twisting. As MDF and SS are relatively stiff materials, the underlying assumption of strains 

being small is not voided and the large deformations are mostly from large rotations. 

 The beam considered in this study is a three-dimensional beam which is dominated by 

large curvatures with relatively small stretch in the longitudinal axis. The axial and shear strains 

in the beam about normal and lateral directions are defined as (see Fig. 4 for the axes): 

𝜖𝜖11 =  
𝑑𝑑𝑢𝑢1
𝑑𝑑𝑥𝑥1

(𝑥𝑥1, 𝑡𝑡) + 𝑥𝑥3
𝜕𝜕𝜑𝜑2
𝜕𝜕𝑥𝑥1

(𝑥𝑥1, 𝑡𝑡) − 𝑥𝑥2
𝜕𝜕𝜑𝜑3
𝜕𝜕𝑥𝑥1

(𝑥𝑥1, 𝑡𝑡) + 𝜔𝜔(𝑥𝑥2, 𝑥𝑥3)
𝑑𝑑2𝛽𝛽
𝑑𝑑𝑥𝑥12
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𝛾𝛾12 = −𝜑𝜑3 + 𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥1

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

− 𝑥𝑥3�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

  𝛾𝛾13 = 𝜑𝜑2 + 𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥1

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥3

+ 𝑥𝑥2�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

                    (1) 

where 𝜖𝜖11 and 𝑢𝑢1 are the strain and displacement in the axial direction, respectively, 𝛾𝛾12 and 

𝛾𝛾13 are the transverse shear strains, 𝑢𝑢2 and 𝑢𝑢3 are the lateral displacements along 𝑥𝑥2 and 𝑥𝑥3 

axes, respectively, 𝜑𝜑2 and 𝜑𝜑3 are the rotations due to bending about 𝑥𝑥2 and 𝑥𝑥3 axes, 

respectively, 𝜔𝜔 is the warping function, and 𝛽𝛽 is the angle of twist. When a linear elastic and 

isotropic material is considered, the stresses in the beam are: 

    𝜎𝜎11 = 𝐸𝐸𝜖𝜖11 𝜏𝜏12 = 𝐺𝐺𝛾𝛾12 𝜏𝜏13 = 𝐺𝐺𝛾𝛾13               (2) 

where 𝐸𝐸 is the linear elastic modulus, 𝐺𝐺 is the shear modulus, 𝜎𝜎11 is axial stress, 𝜏𝜏12 and 𝜏𝜏13 

are the shear stresses. The forces and moments acting on the beam are summarized below: 

𝑁𝑁 = ∫ 𝜎𝜎11𝐴𝐴
 
𝐴𝐴𝑜𝑜

;   𝑉𝑉2 = ∫ 𝜏𝜏12𝑑𝑑𝑑𝑑
 
𝐴𝐴𝑜𝑜

;  𝑉𝑉3 = ∫ 𝜏𝜏13𝑑𝑑𝑑𝑑
 
𝐴𝐴𝑜𝑜

 

𝑀𝑀2 = ∫ 𝑥𝑥3𝜎𝜎11𝑑𝑑𝑑𝑑
 
𝐴𝐴𝑜𝑜

;   𝑀𝑀3 = −∫ 𝑥𝑥2𝜎𝜎11𝑑𝑑𝑑𝑑
 
𝐴𝐴𝑜𝑜

; 𝑇𝑇 = ∫ (−𝑥𝑥3𝜏𝜏12 +  𝑥𝑥2𝜏𝜏13)𝑑𝑑𝑑𝑑 
𝐴𝐴𝑜𝑜

; (3) 

where 𝑁𝑁 is the axial force, 𝑉𝑉2 and 𝑉𝑉3 are the shear forces along 𝑥𝑥2 and 𝑥𝑥3 axes, respectively, 

noted that 𝑀𝑀2 and 𝑀𝑀3 are the bending moments about 𝑥𝑥2 and 𝑥𝑥3 axes and 𝑇𝑇 is the twisting 

moment about 𝑥𝑥1 axis. The equations of motion for the beam element are given as: 

𝐸𝐸𝐸𝐸 𝑑𝑑2𝑢𝑢1
𝑑𝑑𝑥𝑥12

= 𝜌𝜌𝜌𝜌𝑢̈𝑢1; 𝑘𝑘𝑘𝑘𝑘𝑘 �− 𝜕𝜕φ3
𝜕𝜕𝑥𝑥1

+ 𝜕𝜕2𝑢𝑢2
𝜕𝜕𝑥𝑥12

� = 𝜌𝜌𝜌𝜌𝑢̈𝑢2;  𝑘𝑘𝑘𝑘𝑘𝑘 �𝜕𝜕φ2
𝜕𝜕𝑥𝑥1

+ 𝜕𝜕2𝑢𝑢3
𝜕𝜕𝑥𝑥12

� = 𝜌𝜌𝜌𝜌𝑢̈𝑢3; 

−𝐸𝐸𝐼𝐼22 �
𝜕𝜕2𝜑𝜑2
𝜕𝜕𝑥𝑥12

� − 𝑘𝑘𝑘𝑘𝑘𝑘 �𝜑𝜑2 +
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥1

� = 𝜌𝜌𝐼𝐼22𝜑̈𝜑2; 

𝐸𝐸𝐼𝐼33 �
𝜕𝜕2𝜑𝜑3
𝜕𝜕𝑥𝑥12

� − 𝑘𝑘𝑘𝑘𝑘𝑘 �−𝜑𝜑3 + 𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥1

� = 𝜌𝜌𝐼𝐼33𝜑̈𝜑3; 

𝐺𝐺𝐺𝐺 𝜕𝜕
2𝛽𝛽
𝜕𝜕𝑥𝑥12

= 𝜌𝜌𝐼𝐼𝑝𝑝𝛽̈𝛽;     (4) 

where 𝜌𝜌 is the mass density of the material, A is the cross-sectional area, 𝐼𝐼22 and 𝐼𝐼33 are the 

second moments of an area about 𝑥𝑥2 and 𝑥𝑥3 axes, respectively, 𝐼𝐼𝑝𝑝 is the polar moment of an 

area, and 𝐽𝐽 is the torsional constant. The correction factor, 𝑘𝑘 is used to enforce uniform shear 

stress and shear strain distributions.   
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The SS beam is slender as mentioned earlier in this section so transverse shear strains 

𝛾𝛾12 and 𝛾𝛾13 can be ignored. The motion of the beam is dominated by bending about 𝑥𝑥3 axis, 

with minimal motion in 𝑥𝑥2 axis and possible twisting about the x1 axis. Therefore, the equations 

of motion reduce to: 

𝐸𝐸𝐸𝐸 𝑑𝑑2𝑢𝑢1
𝑑𝑑𝑥𝑥12

= 𝜌𝜌𝜌𝜌𝑢̈𝑢1;  −𝐸𝐸𝐼𝐼22 �
𝜕𝜕2𝜑𝜑2
𝜕𝜕𝑥𝑥12

� = 𝜌𝜌𝐼𝐼22𝜑̈𝜑2; 

𝐸𝐸𝐼𝐼33 �
𝜕𝜕2𝜑𝜑3
𝜕𝜕𝑥𝑥12

� = 𝜌𝜌𝐼𝐼33𝜑̈𝜑3;  𝐺𝐺𝐺𝐺 𝜕𝜕
2𝛽𝛽
𝜕𝜕𝑥𝑥12

= 𝜌𝜌𝐼𝐼𝑝𝑝𝛽̈𝛽;    (5) 

The MDF shows a viscoelastic response, which dissipates energy. We modeled the 

MDF beam as an isotropic viscoelastic material. The MDF unit cell is a thick beam as compared 

to the SS beam so transverse shear effects might not be negligible. The equations of motion for 

the MDF beam are summarized below: 

𝐴𝐴𝐴𝐴 ∗ 𝑑𝑑 �
𝑑𝑑2𝑢𝑢1
𝑑𝑑𝑥𝑥12

� = 𝜌𝜌𝜌𝜌𝑢̈𝑢1 

𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 𝑑𝑑 �−
𝑑𝑑𝜑𝜑3
𝑑𝑑𝑥𝑥1

+
𝑑𝑑2𝑢𝑢2
𝑑𝑑𝑥𝑥12

� = 𝜌𝜌𝜌𝜌𝑢̈𝑢2 

𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 𝑑𝑑 �
𝑑𝑑𝜑𝜑2
𝑑𝑑𝑥𝑥1

+
𝑑𝑑2𝑢𝑢3
𝑑𝑑𝑥𝑥12

� = 𝜌𝜌𝜌𝜌𝑢̈𝑢3 

−𝐼𝐼22𝐸𝐸 ∗ 𝑑𝑑 �
𝑑𝑑2𝜑𝜑2
𝑑𝑑𝑥𝑥12

� − 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 𝑑𝑑 �𝜑𝜑2 +
𝑑𝑑𝑢𝑢3
𝑑𝑑𝑥𝑥1

� = 𝜌𝜌𝐼𝐼22𝜑̈𝜑2 

𝐼𝐼33𝐸𝐸 ∗ 𝑑𝑑 �
𝑑𝑑2𝜑𝜑3
𝑑𝑑𝑥𝑥12

� − 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 𝑑𝑑 �−𝜑𝜑3 +
𝑑𝑑𝑢𝑢2
𝑑𝑑𝑥𝑥1

� = 𝜌𝜌𝐼𝐼33𝜑̈𝜑3 

𝐽𝐽𝐽𝐽 ∗ 𝑑𝑑 �𝑑𝑑
2𝛽𝛽
𝑑𝑑𝑥𝑥12

� = 𝜌𝜌𝐼𝐼𝑝𝑝𝛽̈𝛽         (6) 

where the convolution operator in Eq. (6) means
0

( )( ) (0) ( )
t dG sF dG F t G F t s ds

ds
∗ = + −∫ . The 

relaxation modulus is modeled as ( ) ( ) ( )E t E E t= ∞ + ∆ . Due to limited data, Poisson’s ratio is 

assumed time-independent ν,  and the shear relaxation modulus is given as 
( )( )

2(1 )
E tG t

ν
=

+
. 
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At the steady-state, the material properties are defined as: 

𝐸𝐸∗(𝜔𝜔) = 𝐸𝐸′(𝜔𝜔) + 𝑖𝑖𝐸𝐸′′(𝜔𝜔) 

     𝐺𝐺∗(𝜔𝜔) = 𝐺𝐺′(𝜔𝜔) + 𝑖𝑖𝐺𝐺′′(𝜔𝜔)    (7) 

where, 𝐸𝐸′ and 𝐺𝐺′ are the storage extensional and shear moduli, 𝐸𝐸′′ and 𝐺𝐺′′ are the loss 

extensional and shear moduli of the material. The storage and the loss extensional moduli are 

expressed in terms of the relaxation modulus as: 

( ) ( )

( ) ( )

( )
'( ) (0) cos

( )
"( ) sin

o

o

d E s
E E s ds

ds

d E s
E s ds

ds

ω ω

ω ω

∞

∞

∆
= +

∆
= −

∫

∫
     (8) 

We assume that the corresponding Poisson’s ratio ν is constant and the storage and loss shear 

moduli are expressed as 
'( ) "( )'( ) ;      "( )

2(1 ) 2(1 )
E EG Gω ωω ω

ν ν
= =

+ +
. 

The system of equations given earlier are separable in time and space, and the vibration 

is harmonic with respect to time, so the deformation solutions 𝑞𝑞 = [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝜑𝜑2,𝜑𝜑3,𝛽𝛽]𝑇𝑇 have 

the following forms: 

1 1 1( , ) ( ) ( ) ( ) ir t
i i i iq x t x y t x eφ φ= =     (9) 

The equations formed after substituting Equation (9) to Eq (5) or Eq. (6), and imposing 

boundary and initial conditions leads to the characteristic equations, which are solved 

numerically to determine the resonance frequencies and corresponding mode shapes. The 

influence of viscoelastic materials on the resonant frequency of the system are discussed in 

Appendix A.  

 

3.2 Parametric studies of kerf cells with different materials and geometrical parameters 

To examine the modal response of SS and MDF folded beams, we chose a range of 

values of angle, 𝜃𝜃 (Fig. 4b). The minimum angle between the two beams depends on the kerf 
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width, speed, and power of the laser cutter. With laser cutting, the minimum angle to avoid 

burning of the corner is around 10°. Fig. 5 shows the modal response of SS and MDF single 

folded beams with free-free boundary conditions. For all values of 𝜃𝜃, the first modes of the SS 

and MDF beams show the same shapes, which are attributed to the in-plane bending of the 

beams. Even though SS folded beam is slender and has lower second moment of area, 𝐼𝐼33 

compared to 𝐼𝐼22, the first mode shape is showing in-plane bending. The first mode shape 

depends on both, subtended angle, 𝜃𝜃 and ratio of second moment of areas, 𝐼𝐼22/𝐼𝐼33. It can be 

noticed from Fig. 6 that as the angle (𝜃𝜃) increases, the first mode shows out-of-plane motion 

dominantly because the folded beam is approaching the geometrical shape of a straight beam 

which shows out-of-plane mode shape for the first mode. Similarly, increasing the ratio of 

𝐼𝐼22/𝐼𝐼33 makes the first mode shape out-of-plane because higher second moment of area 𝐼𝐼22 

inhibits in-plane motion. 
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Fig.5 Mode shapes of foldable beams 

 

In the folded beam system (Fig. 5), increasing the values of 𝜃𝜃 increases the stiffness of 

the systems, as indicated by an increase in the natural frequencies. The SS systems have higher 

frequencies due to the higher elastic modulus (see Table 1). The second and third mode shapes 

show different responses for the SS and MDF folded beams. In the SS beams, we observe out-

of-plane bending modes, and at the junction between the two beams twisting occurs. These 

responses are attributed to the low second moments of an area about the two bending axes 



14 
 

(Table 3). In the MDF beams, both second and third modes are governed by the in-plane 

bending. The out-of-plane bending in the lower modes of MDF is absent due to the high value 

of the second moment of an area I33 and torsional constant J. By selecting the cut patterns, 

density, and materials, we can control the mode shapes and frequencies of the kerf cells.  

 

 

 

Fig.6 Variation of first modal frequency in SS folded beam 

15
30

45
60

90
120

150
175

450
650
850

1050
1250

0.
1

0.
5 1 3 5 10 12 14 16 18 20

θ (°)

Fr
eq

ue
nc

y 
(H

z)

I₂₂/I₃₃

15
30

45
60

90
120

150
175

450
650
850

1050
1250

0.
1

0.
5 1 3 5 10 12 14 16 18 20

θ (°)

Fr
eq

ue
nc

y 
(H

z)

I₂₂/I₃₃

450-650 650-850 850-1050 1050-1250 1250-1300

Out-of-plane                   In-plane   



15 
 

 

Several folded beams with any arbitrary subtended angle, 𝜃𝜃 can be formed continuously 

to achieve a customized kerfing pattern. For example, 𝜃𝜃 = 90° is chosen to achieve the 

Archimedean square pattern as shown in Fig. 2. In this study, we choose 𝜃𝜃 = 60° to create a 

triangular unit cell as shown in Fig 4c. These triangular unit cells with three handles clamped 

show modal responses governed by the modal responses of the folded beams discussed in Fig. 

6. The earlier mode shapes are dominated by out-of-plane bending for the SS unit cell while 

in-plane bending shapes are seen for the MDF triangular unit cell (see Fig. 7). The high second 

moment of area about the out-of-plane axis (𝑥𝑥2) in MDF triangular unit cell inhibits its out-of-

plane motion. More details about derivation of equations of motion for several folded beams 

is discussed in Appendix B. 

 

 

Fig.7 Mode shapes showing normalized displacements for triangular unit cells (first, 

second, and third modes) 

 

4. Simulation of the modal response of hexagon kerf domains 

4.1 Responses of MDF and SS hexagon kerf domains  

 1.0               0.5               0.0        
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Upon understanding the modal response of triangular unit cells, we study the hexagonal domain 

made up of six triangular unit cells (see Fig. 4d). We first compare the responses analyzed 

using the beam element to the 3D continuum element, C3D8, and shell element, S3 in 

ABAQUS. The 3D continuum element allows generating the unit cell with a precise kerfing 

pattern which enables to capture more detailed mode shapes and their corresponding 

frequencies. We ran mesh convergence studies to determine sufficient numbers of elements for 

both 3D and shell elements suitable to capture all the required mode shapes. However, the 3D 

continuum elements are computationally expensive, when performing modal analysis on large 

kerf surfaces made of numerous unit cells. The beam elements can take in-plane and out-of-

plane bending, transverse shearing, twisting, and axial stretching into consideration. We use 

the SS hexagonal domain to compare the modal response, from beam elements with 3D 

continuum and shell elements. As beams in the SS unit cell have a high slenderness ratio, shell 

elements can be used to mesh the unit cell. They reduce a computational cost relative to using 

3D elements. Within ABAQUS/Standard, Lanczos method is used to solve the eigenvalue 

problem [26]. The elastic properties of SS are shown in Table 1. The six handles of the SS 

hexagon unit cell are constrained using clamped boundary conditions such as there are no 

displacements and rotations at the handles. These boundary conditions are chosen to mimic the 

experimental set-up in determining the mode shapes and frequencies (Appendix C). Overall, 

the modal response of the SS hexagonal domain generated using the 3D continuum element 

and shell element matches well with the modal response from beam elements (see Fig. 8).  

Similarly, the modal analyses are performed on the MDF kerf domain. The boundary 

conditions are similar to the clamp boundary conditions applied to the SS domain. In this 

analysis, we use the viscoelastic properties of MDF. To obtain time-dependent mechanical 

properties of MDF, we conducted creep experiments on multiple MDF dog-bone shaped 

specimens. More details about creep experiments are given in Appendix C. The relaxation 
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modulus is given as /

1
( ) ( ) i

N t
i

i
E t E E e τ−

=
= ∞ + ∑  and the material parameters are determined from 

the creep data (see Table 2). The initial modulus from Table 1 is (0) 580ksi (4GPa)E = , and 

thus the relaxed modulus is ( ) 85.6ksi (0.59GPa)E ∞ = . The comparison of the MDF kerf 

surface meshed with 3D continuum elements and beam elements is shown in Fig. 8. Since the 

MDF unit cell is thick it is not suitable to mesh it using the shell elements. The mode shapes 

are similar, but there is a slight discrepancy between the modal frequencies. The difference 

between modal frequencies is higher in the modes (2, 3, 4, 5, 8, 9) which have in-plane bending. 

However, the modal frequencies are almost similar for modes (1, 6, 7) with out-of-plane 

bending. The higher discrepancies between the beam and 3D continuum models in the in-plane 

modes can be attributed to the possible contacts between segments in the kerf cells under the 

in-plane deformations. The out-of plane modes do not exhibit contacts between segments.  
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Fig.8 Comparison of beam elements with shell elements and 3D continuum elements in 
SS hexagonal surface (top); Comparison of beam elements with 3D continuum elements 

in MDF hexagonal surface (bottom) 
 

The results in Fig. 9 show contour plots of displacements for the first seven modes and 

their respective frequencies. In this analysis, as both hexagonal domains have symmetric kerf 

patterns, uniform boundary conditions, isotropic and homogeneous materials we see 

periodicity in the mode shapes. Also, paired modes are observed in both SS and MDF surfaces. 

For example, 2nd and 3rd modes, 4th and 5th modes are paired modes in both SS and MDF 

surfaces. In the SS surface, all lower mode shapes are out-of-plane because of the high second 

moment of area in the in-plane axis as compared to the out-of-plane axis. Also, the thin kerf 

width in the SS specimen inhibits any in-plane motion. Contrarily, the MDF specimen shows 

both in-plane and out-of-plane modes as their second moments of area are comparable. SS has 

a higher material stiffness relative to MDF which leads to higher resonance frequencies for the 

SS surface. 
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Fig.9 Mode shapes showing normalized displacement and resonance frequencies of SS and MDF hexagon domain

Kerf structure Modes 

1 2 3 4 5 6 7 

SS (3D continuum) 

       
488.45 Hz 875.03 Hz 875.06 Hz 1240.90 Hz 1240.90 Hz 1350.80 Hz 1376.60 Hz 

SS (Beam element) 

       
465.71 Hz 814.09 Hz 814.09 Hz 1172.00 Hz 1172.00 Hz 1296.00 Hz 1312.20 Hz 

MDF (3D 
continuum) 

       
338.76 Hz 469.89 Hz 469.94 Hz 497.34 Hz 497.43 Hz 548.14 Hz 548.29 Hz 

MDF (Beam 
element) 

       
331.25 Hz 491.21 Hz 491.21 Hz 521.55 Hz 521.55 Hz 549.54 Hz 549.54 Hz 

 1.0                0.5             0.0        
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4.2 Comparison between model and experiment results 

The experiments are conducted on the hexagon domain of SS and MDF specimens to validate 

the mode shapes and corresponding modal frequencies determined from the beam model. All 

experimental details are discussed in Appendix C. The comparison of mode shapes and 

resonance frequencies is shown in Fig. 10 to Fig. 13. The mode shapes below mode eight 

obtained from scanning laser vibrometry are similar to mode shapes obtained from the model. 

Also, the resonance frequencies match well in both SS and MDF hexagon domains, except 

some mismatches seen for the MDF surface. The junctions between the segments in the both 

SS and MDF kerf unit cells are non-slender and bulky. To simplify the model, the assumption 

of using same cross-sectional dimensions at the junctions between the beams in the beam 

element model can lead to discrepancy between model and experimental results. A similar 

issue about the effect of non-slender strut junctions on the effective stiffness of three-

dimensional lattice architectures has been discussed by Portela et al. [27]. At higher frequencies 

(>1700 Hz in SS and >800 Hz in MDF), there is a mismatch between the results from the beam 

model and the vibrometry for both hexagon domains. Due to the complexity of the kerf pattern, 

different segments of the kerf unit cell start vibrating in-phase and out-of-phase vigorously at 

higher frequencies. The definite number of measurement points taken on the specimen captures 

the dynamic behavior at lower frequencies (<1000 Hz in SS and <600 Hz in MDF) but is not 

able to capture the motion of several local vibrating segments at higher frequencies (>1000 

Hz). Secondly, the noise becomes dominant at higher frequencies (>2000 Hz) as observed in 

the measurement data which makes it difficult to extract clean higher-order modes (>20) from 

the experimental data. Moreover, during the measurement, several higher-order modes (>10) 

are superposed which makes it difficult to compare with the model as the model produces 

uncoupled modes.   
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Model 
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Fig.10 Comparison of modal response showing normalized displacements for SS 
hexagon domain 

 
 
 

 

Fig.11 Comparison of resonance frequencies for SS hexagon domain 
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 Modes 
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Experiment 
 

 
  

Model 
(Beam 
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Fig.12 Comparison of modal response showing normalized displacements for MDF 

hexagon domain 

 

 

Fig.13 Comparison of resonance frequencies for MDF hexagon domain 

 

Fig. 13 shows that the model results with the viscoelastic properties of MDF match 

well with the experiments as compared to the model with elastic properties of MDF. The stress 

relaxation in the MDF lowers the resonant frequencies compared to the undamped (elastic) 
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responses, as discussed in Appendix A. In the case of the SS kerf hexagonal domain, all the 

mode shapes extracted from the experiment agree well with the model except the fourth mode 

shape, which is asymmetric. A cut imperfection due to excess material is observed in the SS 

kerf domain as shown in Fig. 14. This excess material causes the asymmetry in the fourth 

experimental mode shape of the specimen as shown in Fig. 10. The effect of this area is also 

observed in the higher modes (>8).     

 

Fig.14 Area of excess material during laser kerfing of the SS specimen 

 

The responses from the MDF kerf cells are more complicated compared to the SS 

responses since the MDF is made up of wood fiber networks and epoxy causing heterogeneity 

and non-uniformities in the properties of the kerf structures, which can affect the modal 

frequencies and shapes. The analyses in this study ignore the heterogeneity and possible non-

uniformity of the MDF kerf cells. Another possibility of the mismatches between the 

experiment and model is due to the boundary conditions. In the analyses, perfectly clamped 

boundary conditions at six handles of the hexagon domain are imposed. However, especially 

in the case of experimental tests on MDF, it is difficult to achieve perfectly clamped boundary 

conditions at six handles even after using epoxy and bolts. The clamped handles tend to slide 

with minimal displacements possible when the specimen is perturbed during experimentation. 

Overall, both kerf geometry and material behavior affect the modes shapes and frequencies. 

The kerf geometries have a strong influence on the mode shapes and frequencies, while the 
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mechanical behavior of the materials affect the modal frequencies and amplitude of 

deformation. 

In this study up till now, all modeling and experiments are done on a hexagonal domain 

unit cell with clamped boundary conditions on the six handles. The purpose is to compare the 

modal responses from the beam model and experiment and to understand the interplay of 

material and geometrical features on the modal responses. In order to predict the modal 

behavior of a large panel made up of hexagonal domain unit cells, periodic boundary conditions 

implemented on a representative single unit cell may be suitable. We discuss the modal 

behaviors of the hexagon domain with periodic boundary conditions in Appendix D for 

demonstrating responses of kerf systems with different boundary conditions. We can also 

physically model larger panels with multiple connected cells, so we do not need to use and 

model a representative unit-cell to represent the larger panel. However, investigating the 

dynamics responses of large kerf panels is beyond the scope of this paper and will be 

considered in the next study. 

 

5. Dynamic behavior of SS and MDF hexagon domains 

5.1 Steady state responses 

With an understanding of the modal behavior of both SS and MDF hexagon domains, we now 

examine the steady-state responses of kerf systems when exposed to dynamic loadings. We 

applied a sinusoidal force at one edge of the hexagonal domain and obtained the steady-state 

displacement results at the center of the domain. Fig. 15 shows the displacement variation in 

the center of the SS and MDF hexagonal domain, respectively. Since the mode shapes for the 

MDF hexagon domain combine both in-plane and out-of-plane modes as discussed in Section 

4, at a resonant frequency the MDF hexagon domain shows both in-plane (u1 and u3) and out-

of plane (u2) deflections due to the dynamic loading (Fig. 15). Contrarily, the SS hexagon 
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domain shows only deflection in the out-of-plane axis (u2) at its resonance frequencies, which 

is correlated with its mode shapes. Hence, the kerf geometry particularly affects both modal 

frequencies and mode shapes. Since SS is stiffer compared to MDF, the SS hexagonal domain 

shows lower displacement amplitude at resonance. It can be concluded that material behavior 

of these kerf unit cells not only influences the modal frequencies, but it affects the amplitude 

of deformation also.  

 

 
Fig.15 Steady-state dynamic analyses of hexagon domains (beam element). SS (top); 

MDF (bottom) 
 
 

5.2 Stress wave propagation 

The dynamic loading of kerf structures leads to generation of stress waves in these 

flexible structures. We want to examine how the stress wave propagates and the magnitude of 

stresses in the kerf unit cell. The kerf cell consists of slender beams with reduced load bearing 
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ability compared to the solid structures, and thus examining the stress magnitude and 

propagation is important to study the feasibility of using kerf structures under dynamics 

loading. To study the propagation of stress waves through these kerf structures, we simulated 

two cases. In the first case, the kerf hexagon domain is subject to a sinusoidal loading of 331 

Hz at its center. Whereas in the second case, it is actuated with the same loading from the right 

corner of the hexagon domain. As it is important to study the stress wave propagation behavior 

at resonance, the input loading is applied at first modal frequency of the MDF kerf hexagon 

domain. The comparison between the maximum principal stress in the MDF solid structure and 

the MDF kerf structure at two step times is shown in Fig. 16 and Fig. 17. The stress wave 

propagates faster in the solid domain compared to the kerf structure. The kerf structure delays 

the propagation of the stress wave. Most of the region of the kerf structure undergoes smaller 

stress compared to the solid structure due to the flexibility of the kerf structure. Instead of 

resisting forces, the kerf structures reduce the stress by deforming their flexible members 

(microstructures). This aspect of the kerf structures can be useful for their applications in 

indoor and outdoor architectures where propagation of stress is detrimental and need to be 

suppressed. We considered both beam and 3D solid element models to study the stress wave 

propagation behavior. The stress wave propagation in kerf structures made up of beam 

elements and 3D continuum elements is similar. Therefore, beam elements being 

computationally less expensive compared to 3D continuum elements would be suitable to study 

wave propagation in large scale kerf structures [28].   
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Time step 𝟖𝟖.𝟖𝟖𝟖𝟖 𝝁𝝁𝝁𝝁 𝟑𝟑𝟑𝟑.𝟏𝟏 𝝁𝝁𝝁𝝁  

Solid 

  

Kerf (3D continuum) 

  

Kerf (beam element) 

  
 
 
 

Fig.16 Propagation of stress wave (Maximum principal stress) when loading at the 
center 
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Time step 𝟏𝟏𝟏𝟏.𝟓𝟓 𝝁𝝁𝝁𝝁 𝟖𝟖𝟖𝟖 𝝁𝝁𝝁𝝁 

Solid 

  

Kerf (3D continuum) 

  

Kerf (beam element) 

  
 

 
 

Fig.17 Propagation of stress wave (Maximum principal stress) when loading from the 
right corner 

 

5.3 Altering dynamic responses 

The continuous flow of slender members in a kerf structure enhances their flexibility 

which makes them easily undergo both microscopic and macroscopic shape changes. The 

capability of the kerf structures to easily deform can be used to alter their dynamic responses. 

For example, the shape of the kerf structure can be changed to evade resonant frequencies as 

shown in this example. We demonstrated the microscopic shape change of the MDF and SS 

hexagon domain by actuating one of the triangular unit cell out-of-plane (along 𝑥𝑥2 axis) by 1 

                 0.15 Pa          0 Pa           -1.20 Pa    
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mm and 3mm in SS and MDF unit cells, respectively as shown in Fig 18. Subsequently, we 

applied a sinusoidal force of 5 N at the top edge of the deformed hexagon domain varying with 

the first resonance frequency (determined in Section 4.1) of the flat hexagon domain.  

 

Fig.18 Reconfigured microscopic shape of kerf hexagon domains. SS (left); MDF 
(right) 

 

We first performed analyses on understanding the influence of pre-stresses from 

reconfiguring the kerf unit cell. We compared the modal response of a deformed SS unit cell 

with and without taking stresses due to pre-deformation into consideration. It can be noticed 

from the results in Fig. 19 that the modal behavior (mode shapes and modal frequencies) of the 

deformed unit cell is similar with and without considering pre-deformation stresses. Moreover, 

the root mean square error (RMSE) between resonance frequencies for the deformed unit cell 

with and without pre-deformation stresses is 1.09 Hz, which is low compared to the magnitude 

of frequencies. It is noted that slightly deforming the unit-cell induces stresses mostly around 

the actuated region, while the rest of the unit-cell has zero stresses (see Appendix E for further 

discussion). This explains the insignificant effect of preexisting stresses on the dynamics 

responses. However, by slightly reconfiguring the microscopic shape, we can shift the modal 

frequencies associated with the mode shapes that involve in the motion of the actuated unit 

cell. Therefore, the stresses due to microscopic shape change are neglected in further dynamic 

analyses.  
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Fig.19 Comparison of modal frequencies of deformed SS hexagon domain with 

and without pre-deformation stresses 

 

We demonstrated that the dynamics responses due to loading with a frequency of the 

first resonance frequency is altered as resonance behavior is not observed in both unit cells (see 

Fig. 20). In addition to altered dynamics response, the MDF kerf unit cell shows attenuation in 

the vibration response due to its viscoelastic nature (see Fig. 20). 

We compared the modal response from the flat and deformed unit cells. It can be 

noticed in Fig. 21 that by marginally varying the microscopic shape of the kerf structure, there 

is a considerable frequency shift from flat kerf hexagon domain for the modes, which 

specifically involve in the motion of the actuated triangular unit cell (circled in Fig. 18). For 

example, the SS unit cell (mode 1 and mode 3) and MDF unit cell (mode 1 and mode 7) of flat 

unit-cells involve out-of-plane mode shapes as seen in Section 4.1. The actuated section of the 

triangular portion of the deform cells coincides with the out of plane mode shapes mentioned 

above, which cause frequency shifts for these particular modes. In the case of SS hexagon 

domain, the first resonant frequency for the deformed hexagon domain is 120 Hz higher than 

the flat structure. Similarly, for the MDF hexagon domain, the first resonant frequency for the 

deformed hexagon domain is 70 Hz higher than the flat structure. However, the modes, which 

do not involve the motion in actuated triangular unit cell, do not undergo any frequency change.    
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The actuation of the kerf structures can be easily done using active materials, such as 

shape memory polymers, as demonstrated in the previous study [9, 10, 29, 30].  This attribute 

augments their potential application in façades of the building where resonance behavior can 

be avoided which will be systematically studied in a separate paper on large kerf panels. Due 

to the viscoelastic nature of the MDF deformed kerf structure, an attenuation of the vibration 

response is expected. 

 

 

Fig.20 Transient dynamic analysis of reconfigured hexagon domains (beam element). SS 
(top); MDF (bottom) 
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Fig.21 Comparison of modal frequencies of flat and deformed hexagon domains (beam 
element). SS (top); MDF (bottom) 

 
 

6. Conclusion 

This research investigates the dynamics responses (mode shapes, modal frequencies, and stress 

wave propagation) of kerf cells to potentially use kerf structures beyond their aesthetical 

function for tuning the dynamics responses in building constructions. Kerfing (relief cutting) 

induces flexibility in the panels but also reduces the load-carrying ability of the panels. 

Through formulating a 3D beam element model and conducting experiments we have explored 

the mode shapes and frequencies of two kerf cells of hexagon domains out of elastic stainless 

steel (SS) and viscoelastic medium density fiber (MDF) panels. The kerf geometries have a 
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strong influence on the mode shapes and frequencies, while the mechanical properties of the 

materials only affect the modal frequencies and amplitude of deformations. The kerf cells can 

undergo in-plane and out-of-plane mode shapes, which are governed by the two second 

moments of an area of the beam segments in the kerf cells and the subtended angle between 

two beam segments that form kerf patterns. The out-of-plane mode shapes involve bending 

and/or twisting of the segments in the kerf cells, while the pure in-plane mode shapes are 

mainly governed by bending of the segments. We have demonstrated that the beam elements 

are capable of capturing the modal responses of the kerf cells when compared to models 

generated using 3D continuum and shell finite elements. The advantage of using the beam 

element model is that it reduces the computational costs when exploring kerf cells and kerf 

structures with multiple cells and can be easily exploited in parametric studies to investigate 

the effect of varying geometries and material properties on the dynamic responses of the kerf 

structures. The beam element model becomes less accurate when the segments in the kerf cell 

are stocky, i.e., in the case of low-cut density. However, in that situation, the panel becomes 

less flexible, approaching the characteristics of a solid panel.   

 We have simulated a stress wave propagation in a hexagon kerf domain exposed to 

dynamics loading to examine its load-bearing characteristics. The kerf structure delays the 

propagation of the stress wave and undergoes smaller stress amplitude compared to the solid 

structure. Due to its flexibility, instead of resisting forces, the kerf structures reduce the stress 

by deforming their flexible members (microstructures). When using dissipative materials, e.g., 

viscoelastic material, in kerf structures, an additional attenuation in the deformation amplitude 

can further dissipate the mechanical energy. The flexibility of kerf structures makes it easy to 

deform the local members (microstructures) and alter the global shapes, which can be 

potentially used to tune the dynamics response of the structures.   
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In the future, the developed mathematical model can be used to study the effect of 

different kerf densities and kerf patterns on the modal response of large-scale kerf structures 

and understanding the local and global shape changes in tuning the dynamics response 

characteristics in large kerf panels. With understanding the dynamic response of large kerf 

panels, they can be better implemented in indoor and outdoor architectures for various purposes 

such as controlling the indoor acoustics and altering the wind response of the buildings, 

respectively. 
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Appendix A 

 

This section discusses the influence of viscoelastic materials on the resonant frequency of a 

system. The partial differential equations for the beam in Eq. (4) or Eq. (6) with the 

displacement vector in Eq. (9) can be written in general as: 

( ) ( ) ( , )x t+ =M q L q F             (A.1) 

To present an analytical solution, we ignore the transverse shear and bending coupling, so we 

can reduce Eq. (A.1) to: 

( ) ( ) ( , )i i iM q L q F x t+ =             (A.2) 

where M() and L() are linear differential operator1, ( ) ( )i i iq x y tφ= and ( ) ( )i i iF x f tφ= , and thus 

Eq. (A.2) with a viscoelastic material is rewritten as: 

( )i i i iy C dy f t+ ∗ =              (A.3) 

where ( )
( )

i
i

i

LC
M

φ
φ

= . Since Eq. (A.3) is written for each scalar component of the displacement, 

to reduce complexity we further eliminate the subscript i in the rest of the formulation. Consider 

an input ( ) sinof t f tω= , at the steady-state the displacement takes the following form:  

( )2 2
1 2 1 2( ) sin sin sin ( )y t y t y t y y tω ω ω δ ω= + = + +            (A.4) 

Substituting Eq. (A.4) int Eq. (A.3) and with the complex property ( )*( ) '( ) "C C iCω ω ω= + , 

we have: 

( ) ( )
2

1 22 22 2 2 2

' ";      
' " ' "

o o
C Cy f y f

C C C C

ω

ω ω

−
= =

− + − +
           (A.5) 

The displacement amplitude is  

                                                 

1 
2

1 2 2( ) ...o
du d uL u a a a
dx dx

= + + +  
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( )2 2 22 2 2

2

/ (0)

' " ' "
(0) (0)

o o

n

f f Cy
C C C C

C C
ω ω

ω

= =
   − +

− +       

  (A.6) 

It is noted that 2 (0)n Cω = . The variable C(t) is a function of the modulus of the material and 

inertial property. For example, for the first component of the displacement vector in Eq. (9), 

1( ) ( ) /C t E t ρ= , the second component neglecting the rotational coupling 2 ( ) ( ) /C t kG t ρ= , 

etc. Consider a viscoelastic material whose relaxation modulus is described by 

/
1( ) ( ) RtE t E E e τ−= ∞ + , where ( )E ∞  is the long-term (relaxed) modulus and Rτ  is the 

characteristics of relaxation time that indicates how quickly the stress relaxes. The 

instantaneous (initial) modulus is given as 1(0) ( )E E E= ∞ + , which corresponds to a modulus 

of elastic materials. The ratio / (0)E E∞  measures the extent of stress relaxation. The 

corresponding complex moduli are: 

2

2 2
( ) (0)( ) ( (0) ( ))' ;      "

1 ( ) 1 ( )
R R

R R

E E E EE Eωτ ωτ
ωτ ωτ

∞ + − ∞
= =

+ +
  (A.7) 

It is seen that '/ (0) '/ (0);   "/ (0) "/ (0)C C E E C C E E= = . We define a parameter R nξ τ ω= , 

where nω is the natural frequency of an undamped system and thus ξ is interpreted as the ratio 

of the material relaxation time to the natural period of the system. A low value ξ  indicates the 

material relaxes faster than the natural period. Thus, Eq. (A.7) is rewritten as: 

2

2 2

( ) / (0) (1 ( ) / (0))
' ";      

(0) (0)
1 1

n n

n n

E E E E
C C

C C

ω ωξ ξ
ω ω

ω ωξ ξ
ω ω

 
∞ + − ∞ 

 = =
   

+ +   
   

  (A.8) 

To illustrate the implication of the viscoelastic material on the resonant frequency of 

the system, we constructed the plots of the normalized displacement amplitude against the 

normalized excitation frequency by substituting Eq. (A.8) into Eq. (A.6). Fig. A1 shows the 
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resonant frequency responses of a system with a viscoelastic (dissipative) material for different 

ξ  and / (0)E E∞ . The use of viscoelastic materials can lower the resonant frequency of the 

systems in addition to attenuate the responses. With a proper choice of a viscoelastic 

characteristic of the material compared to the natural frequency of the system, it is possible to 

tune the resonance in the system, which would be beneficial for flexible facades under dynamic 

loads. 

 

 

Fig. A1 Resonant frequency responses of a system with a viscoelastic material 
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Appendix B 

With the understanding of the modal response of the straight continuous beam, we 

consider continuous folded beams with a constant angle, 𝜃𝜃 (see Fig. 4). The folded beams are 

a combination of identical straight beams where 𝑖𝑖 = 1,2, … .𝑁𝑁 + 1, with 𝑁𝑁 folds connect the 

beams at an arbitrary angle. The displacements for each beam segment (i) are: 

𝑢𝑢1
(𝑖𝑖)�𝑥𝑥1

(𝑖𝑖), 𝑡𝑡�,𝑢𝑢3
(𝑖𝑖)�𝑥𝑥1

(𝑖𝑖), 𝑡𝑡�        0 ≤ 𝑥𝑥1
(𝑖𝑖) ≤ 𝑙𝑙(𝑖𝑖)             (B.1) 

To derive the equations of motion for the folded beams, continuity conditions at 𝑥𝑥1
(𝑖𝑖) = 𝑙𝑙 and 

𝑥𝑥1
(𝑖𝑖+1) = 0 are used. The continuity conditions imply that the resultants of internal moments 

and forces are equal and the displacements are continuous at 𝑥𝑥1
(𝑖𝑖) = 𝑙𝑙 and 𝑥𝑥1

(𝑖𝑖+1) = 0. The 

continuity conditions are: 

�
𝑢𝑢1

(𝑖𝑖)(𝑙𝑙(𝑖𝑖), 𝑡𝑡)
𝑢𝑢3

(𝑖𝑖)(𝑙𝑙(𝑖𝑖), 𝑡𝑡)
� = �−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� �
𝑢𝑢1

(𝑖𝑖+1)(0, 𝑡𝑡)

𝑢𝑢3
(𝑖𝑖+1)(0, 𝑡𝑡)

� 

𝜕𝜕𝑢𝑢2
(𝑖𝑖)

𝜕𝜕𝑥𝑥1
(𝑖𝑖) (𝑙𝑙(𝑖𝑖), 𝑡𝑡) = 𝜕𝜕𝑢𝑢2

(𝑖𝑖+1) 

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) (0, 𝑡𝑡) ≡ 𝜑𝜑3

(𝑖𝑖+1)(0, 𝑡𝑡) + 𝛾𝛾12
(𝑖𝑖+1)(0, 𝑡𝑡); 

𝜕𝜕𝑢𝑢3
(𝑖𝑖)

𝜕𝜕𝑥𝑥1
(𝑖𝑖) �𝑙𝑙

(𝑖𝑖), 𝑡𝑡� =
𝜕𝜕𝑢𝑢3

(𝑖𝑖+1)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) (0, 𝑡𝑡) ≡ −𝜑𝜑2

(𝑖𝑖+1)(0, 𝑡𝑡) + 𝛾𝛾13
(𝑖𝑖+1)(0, 𝑡𝑡); 

𝐸𝐸(𝑖𝑖)𝐼𝐼22
(𝑖𝑖) �𝜕𝜕𝜑𝜑2

(𝑖𝑖)�𝑙𝑙(𝑖𝑖),𝑡𝑡�

𝜕𝜕𝑥𝑥1
(𝑖𝑖) � =  𝐸𝐸(𝑖𝑖+1)𝐼𝐼22

(𝑖𝑖+1) �𝜕𝜕𝜑𝜑2
(𝑖𝑖+1)(0,𝑡𝑡)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) �;      

 𝐸𝐸(𝑖𝑖)𝐼𝐼33
(𝑖𝑖) �𝜕𝜕𝜑𝜑3

(𝑖𝑖)�𝑙𝑙(𝑖𝑖),𝑡𝑡�

𝜕𝜕𝑥𝑥1
(𝑖𝑖) � =  𝐸𝐸(𝑖𝑖+1)𝐼𝐼33

(𝑖𝑖+1) �𝜕𝜕𝜑𝜑3
(𝑖𝑖+1)(0,𝑡𝑡)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) � ; 

𝑘𝑘𝐺𝐺(𝑖𝑖)𝐴𝐴(𝑖𝑖) �−𝜑𝜑3
(𝑖𝑖)�𝑙𝑙(𝑖𝑖), 𝑡𝑡� +

𝜕𝜕𝑢𝑢2
(𝑖𝑖)�𝑙𝑙(𝑖𝑖), 𝑡𝑡�

𝜕𝜕𝑥𝑥1
(𝑖𝑖) � =  𝑘𝑘𝐺𝐺(𝑖𝑖+1)𝐴𝐴(𝑖𝑖+1) �−𝜑𝜑3

(𝑖𝑖+1)(0, 𝑡𝑡) +
𝜕𝜕𝑢𝑢2

(𝑖𝑖+1)(0, 𝑡𝑡)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) � ; 
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𝑘𝑘𝐺𝐺(𝑖𝑖)𝐴𝐴(𝑖𝑖) �𝜑𝜑2
(𝑖𝑖)�𝑙𝑙(𝑖𝑖), 𝑡𝑡� +

𝜕𝜕𝑢𝑢3
(𝑖𝑖)�𝑙𝑙(𝑖𝑖), 𝑡𝑡�

𝜕𝜕𝑥𝑥1
(𝑖𝑖) �

= 𝐸𝐸(𝑖𝑖+1)𝐴𝐴(𝑖𝑖+1) 𝑑𝑑𝑢𝑢1
(𝑖𝑖+1)(0, 𝑡𝑡)

𝑑𝑑𝑥𝑥1
(𝑖𝑖+1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

− 𝑘𝑘𝐺𝐺(𝑖𝑖+1)𝐴𝐴(𝑖𝑖+1) �𝜑𝜑2
(𝑖𝑖+1)(0, 𝑡𝑡) +

𝜕𝜕𝑢𝑢3
(𝑖𝑖+1)(0, 𝑡𝑡)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐; 

𝐸𝐸(𝑖𝑖)𝐴𝐴(𝑖𝑖) 𝑑𝑑𝑢𝑢1
(𝑖𝑖)(𝑙𝑙(𝑖𝑖), 𝑡𝑡)

𝑑𝑑𝑥𝑥1
(𝑖𝑖)

=  𝐸𝐸(𝑖𝑖+1)𝐴𝐴(𝑖𝑖+1) 𝑑𝑑𝑢𝑢1
(𝑖𝑖+1)(0, 𝑡𝑡)

𝑑𝑑𝑥𝑥1
(𝑖𝑖+1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑘𝑘𝐺𝐺(𝑖𝑖+1)𝐴𝐴(𝑖𝑖+1) �𝜑𝜑2
(𝑖𝑖+1)(0, 𝑡𝑡) +

𝜕𝜕𝑢𝑢3
(𝑖𝑖+1)(0, 𝑡𝑡)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠; 

𝐺𝐺(𝑖𝑖)𝐽𝐽(𝑖𝑖) 𝜕𝜕
2𝛽𝛽(𝑖𝑖)

𝜕𝜕𝑥𝑥1
(𝑖𝑖)2

= 𝐺𝐺(𝑖𝑖+1)𝐽𝐽(𝑖𝑖+1) 𝜕𝜕
2𝛽𝛽(𝑖𝑖+1)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1)2

 .         (B.2) 

For the folded SS beam, these continuity conditions are substituted in Equation (5) to 

determine the equations of motion. Similarly, for folded MDF beams, these conditions are 

substituted in Equation (6) to determine the equations of motion.  
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Appendix C 

Modal experiments 

The six handles of the hexagon specimens (see Fig. 3 and Fig. C1) are clamped in customized-

built fixtures. For the SS specimen, the six handles of the specimen are clamped in the 

aluminum fixture with grooves to restrict the in-plane vibration and the cap is bolted from top 

to inhibit out-of-plane motion during actuation as shown in Fig. C1. Similarly, the MDF 

specimen is clamped in the 3-D printed fixture made from Polylactic acid (PLA) plastic 

(Gizmodorks, Temple City, CA). Also, the handles of the MDF specimen are epoxied in the 

grooves designed in the fixture using a 50133 plastic bonder (J-B Weld, Atlanta, GA) to avoid 

any slippage at the handles.  

To experimentally determine the mode shapes and frequencies on these complex 

specimens, scanning laser vibrometry is chosen as it is a non-contact measurement technique 

[17, 22, 31]. The fixture assembly with the specimen is bolted on the x/y stage of the scanning 

laser vibrometer (MSA-100-3D, Polytec, Irvine, CA) as shown in Fig. C1. To actuate the 

specimen, piezo actuator (P-885.91, Physik Instrumente GmbH & Co.KG, Germany) is used 

which is glued to the fixture instead of the specimen to avoid adding mass to the specimen 

which will alter the dynamics of the kerf structure. The scanning laser vibrometer is used to 

perform a modal analysis with the input of 8V chirp excitation from the piezo actuator. 

As the surface of the SS specimen is shiny so the specimen is sprayed with an occlusion 

spray to avoid the mirror effect, which will lead to good quality measurement. In the case of 

the SS specimen, the velocity output range for scanning laser vibrometer is kept 10 mm/s with 

a sampling rate of 15.65 kHz. A Fast Fourier Transform (FFT) is performed within a selected 

bandwidth between 1 Hz – 6250 Hz. For the SS specimen, 744 points on the surface of the SS 

are used as measurement locations, each scanning point and FFT averaged 12 times. For the 

MDF specimen, the velocity output range for the vibrometer is 20 mm/s with a sampling rate 
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of 12.5 kHz. The bandwidth is 1 Hz - 5000 Hz and the number of points on the MDF specimen 

is kept similar to the SS specimen. As compared to the test on the SS specimen, each point is 

averaged 8 times during the test. The Frequency Response Function (FRF) for each data point, 

average FRF is obtained and stored in a file that is post-processed in the PSV software (Polytec, 

Irvine, CA) to extract mode shapes and resonance frequencies.      

 

 

 

Fig.C1 Experimental test setup for testing hexagon specimens. (a) Scanning laser 
vibrometer (MSA-100-3D, Polytec, Irvine, CA) (b) HD SS specimen clamped in the 
fixture (c) HD MDF specimen clamped in the fixture 
 

Creep experiments 

Uniaxial creep tests are performed on MDF dogbone specimens to characterize the viscoelastic 

properties. The creep tests are performed at constant room temperature (25 °C) and 50% of the 

ultimate tensile strength of MDF. A constant uniaxial load is applied to the dogbone specimens 

for 2 hours at room temperature. A linear viscoelastic model is used to capture the creep 

behavior (Fig. C2) using the Prony parameters on the time-dependent compliance 

( )/

1
( ) (0) 1 ci

N t
i

i
D t D D e τ−

=
= + −∑ . The instantaneous compliance (0) 1/ oD E= , where Eo is the 
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elastic modulus of the MDF given in Table 1. The time-dependent parameters are then 

calibrated by fitting the data in Fig. C2. The time parameters ciτ in the Prony function with 

three terms are determined as 100, 1000, and 5000 seconds, respectively, and the calibrated 

values for Di are 10-3, 2x10-3, 7x 10-3 ksi-1, respectively. The beam element model discussed 

above is expressed in terms of a relaxation modulus, it is then necessary to obtain the relaxation 

modulus of the MDF material from the creep responses. The time-dependent relaxation 

modulus of the following form /

1
( ) ( ) i

N t
i

i
E t E E e τ−

=
= ∞ + ∑ is considered and the material 

parameters are determined by using a Laplace transform method, 2ˆ ˆ( ) ( ) 1/E s D s s= , where s is 

the transform variable, ˆ ( )E s and ˆ ( )D s are the Laplace transforms of E(t) and D(t), respectively. 

The time-dependent relaxation moduli are given in Table 2.  

 

 

Figure. C2 Uniaxial creep responses of MDF samples 
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Appendix D 

Responses of hexagon kerf domain with periodic boundary conditions 

By using Floquet-Bloch theorem for wave propagation [22, 32, 33], the complex 

displacements on the hexagonal domain unit cell are following: 

𝑞𝑞𝑟𝑟𝑟𝑟 = 𝑞𝑞𝑙𝑙𝑙𝑙𝑒𝑒
𝑖𝑖�𝑘𝑘1�1+𝑠𝑠𝑠𝑠𝑠𝑠

𝜃𝜃
2�+𝑘𝑘3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑎𝑎  𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑏𝑏𝑒𝑒

𝑖𝑖(2𝑘𝑘3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑎𝑎        (D.1) 

where the subscripts 𝑟𝑟, 𝑙𝑙, 𝑏𝑏, and 𝑡𝑡 represent displacements corresponding to right, left, bottom, 

and top, respectively. The double subscripts represent displacements of the handles: for 

example, 𝑟𝑟𝑟𝑟 denotes the right top handle as shown in Fig. D1. The side length of the unit cell 

is denoted as 𝑎𝑎 and 𝜃𝜃 is the angle subtended between the beams in the unit cell as mentioned 

earlier. 𝑘𝑘1 and 𝑘𝑘3 are components of the wave vector of the plane wave. The above mentioned 

Floquet conditions are prescribed on the MDF hexagonal domain unit cell. The nonzero modes 

at (𝑘𝑘1 = 0,𝑘𝑘3 = 0) and corresponding frequencies are determined (see Fig. D1). From the 

results, it can be noticed that the unit cell with periodic boundary conditions shows both in-

plane and out-of-plane mode shapes. However, as expected, the mode shapes and modal 

frequencies change as compared to the unit cell with clamped boundary conditions. The 

resonance frequencies decrease compared to the unit cell with clamped boundary conditions 

which shows us that the structure is becoming more compliant. Also, more out-of-plane mode 

shapes are observed in the initial modes. These responses are expected since adding more cells 

to form larger kerf panels leads to more compliant panels and out-of-plane deformations are 

easier to achieve in the larger panels.  
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Fig.D1 Unit cell showing nomenclature used in Floquet conditions (top); Mode Shapes 
showing normalized displacement and natural frequencies of MDF hexagonal domain 

with periodic boudary conditions (bottom) 
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Appendix E 

Influences of Pre-deformed Stresses 

We performed an additional analysis to examine the extend of pre-deformations on the dynamics 

responses of the kerf unit-cell. One triangular unit cell of SS hexagon domain is actuated by prescribing 

1 mm and 0.5 mm out of plane displacements and modal analysis was performed. The modal behaviors 

(mode shapes and modal frequencies) remain the same when the unit cell is deformed by 0.5 mm and 

1 mm, as shown in Fig. E.1. The SS hexagon domain actuated by 1 mm undergoes higher maximum 

principal stress compared to SS hexagon domain actuated by 0.5 mm as shown in Fig. E.2. The stresses 

are kept below the yield stress of the stainless-steel material (Table 1). It can be also be noticed that 

due to marginal pre-deformation, most of the hexagon domain does not undergo any stress except a 

certain region of the actuated triangle unit cell. Therefore, the stresses due to pre-deformation do not 

have significant effect on the modal analyses.  

 

 

 

Figure E.1 Comparisons of modal frequencies with different actuation levels. 
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Figure E.2 Principal stresses in deformed unit-cells 


