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Abstract

Kerfing is a subtractive manufacturing method to create flexible surfaces from stiff planar
materials. While the kerf structures are ubiquitous in indoor and outdoor architectures due to
their pleasing aesthetics, they have potential applications for tuning the indoor acoustics and
altering the dynamic response of the building from winds, traffics, etc., by varying their
geometrical parameters (kerf pattern, cut density, cut thickness, etc.) and locally deforming the
kerf cells. However, the dynamics responses of the kerf structures have never been explored
before. This research presents an investigation on the dynamic response, in terms of mode
shapes, natural frequencies, and stress wave propagations, of the flexible kerf cells. The
influence of material behaviors, i.e., elastic and viscoelastic, on the dynamic response of the
kerf cells is also investigated. Mathematical models are used to understand the interplay
between material behavior, geometrical kerf pattern, and dynamic responses. Experimental
tests using scanning laser vibrometry are performed to study the mode shapes and frequencies
on two kerf cells with stainless steel (SS) and medium density fiber (MDF) materials.
Responses from the mathematical models are compared to experimental results in order to
validate the modeling approach. Understanding the dynamics responses of kerf cells in
association with their geometrical and material characteristics can lead to a systematic design

of kerf structures exposed to various dynamics loadings.
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1. Introduction

In modern architecture, curved and complex surfaces have been a subject of interest for several
decades. In contrast to simple and flat geometries, the complex and curved surfaces are
aesthetically pleasing, and they have potential applications in both indoor and outdoor
architectures [1]. For example, complex freeform structures can be used to design the facades
whose shapes can be reconfigured to minimize the adverse effects of strong winds on the
structural integrity of a building [2]. Comparably, these reconfigurable structures deployed in
indoor architectures have the potential to tune the acoustics of a space. However, current
construction materials such as wood, metal, and concrete, which are used for complex freeform
structures, are relatively stiff which leads to difficulties in creating curved surfaces out of them.

Kerfing or relief cutting is a subtractive manufacturing approach to create various
degrees of flexibility in surfaces from stiff planar materials like metals, wood, and processed
wood (medium density fiberboard (MDF), plywood, etc.). Fig. 1 shows examples of shape
reconfigurations of the kerf surfaces. There have been several studies on different kerf patterns
that allow bending of the kerf surfaces in single, double, or multiple axes, e.g., [3], [4], [5], [6].
With complex tessellated patterns cut onto a stiff material, it is possible to bend the kerf
surfaces into a wide variety of complex shapes. Hoffer et al. physically implemented kerf
structures at a larger scale by fabricating a kerf pavilion by bending the plywood [7]. These
previous studies mainly explored the influence of kerf patterns on the bending and flexibility
of kerf structures. Chen et al. studied the deformations of kerf surfaces with two different kerf
patterns [8]. They demonstrated the design and analysis of three-dimensional (3D) shapes out
of kerf surfaces and showed that altering the topological kerf patterns enables achieving desired
3D shapes while minimizing the stresses. Understanding the dynamic response (natural
frequencies, mode shapes, and stress wave propagations) of kerf surfaces is crucial if the kerf

surfaces are to be used for facades and/or indoor acoustic panels, which is currently lacking.



Fig. 1 Different patterns and reconfigurations of architectural kerf structures [9]

[10]

At a glance, the kerf patterns can be seen as typical architected materials, lattice
materials [11-13] and hierarchical lattices [14]. However, there is a significant difference
between the kerf patterns and traditional 2D architected, lattice materials and hierarchical
lattices (see Fig. 2). Each kerf cell comprises a continuous flow of a slender element through
folding like patterns inside the cell. This pattern allows flexibility and multiple shape changes
within the cell. As can be seen later, inside each kerf cell it is possible to have multiple
deformed shapes (from combinations of bending, twisting, and elongation/contraction).
Typical architected and lattice materials are formed by arrangements of closed single cells,
whereas in the hierarchical lattices closed finer cells are arranged in successive smaller scales.
The closed single cell in these lattices (traditional and hierarchical) has a limited flexibility
within the cell. The 2D architected materials like in Fig. 2 (top) are mostly utilized for their

in-plane deformations, while the kerf panels are often dominated by their out of plane



deformations with some limited in-plane deformations. Kerf panels allow not only for

macroscopic (surface) shape changes, but also microscopic (within a single cell) shape

changes.

____________

Fig. 2 Comparison between lattice structures [13, 15, 16] (top) and kerf structures

(bottom)

There have been experimental and analytical studies on understanding the dynamic
response (natural frequencies, mode shapes, and stress wave propagations) of lattice structures,
while to our knowledge the studies on the dynamic responses of kerf structures are still lacking.
In lattice structures, experimental tests using base excitation and laser vibrometry have been
used to determine their modal response, as discussed by Popescu [17] and Bilal et al. [18],
which will be considered for the experimental test in our study. In case of modeling, beam
elements are widely used to determine the modal behavior of lattice structures because they are
computationally less expensive. For example, Jennet et al. used beam elements to determine
bending and torsional modes of the morphing wing lattice structure to assess its suitability for
intended actuation [19]. They also investigated the modal response of modular reconfigurable
systems such as bridges, boats and shelter structures, etc. using beam elements [20]. Zelhofer
et al. also used linear elastic beam theory to study the modal behavior to determine in-plane

and out-of-plane mode shapes followed by investigating wave motion in a variety of 2-D lattice



structures [21]. The important geometrical parameters such as thickness and width of the beam,
which significantly influence the modal response of the structure, can be incorporated directly
to the beam element when modeling lattice structures [22, 23]. Beside the geometrical aspects,
material behaviors have crucial effects on the dynamic responses of the structures. Langley et
al. discussed the material viscoelastic behaviors and damping properties in analyzing the modal
response of a 2-D beam grillage system [24].

The present study investigates the dynamic response with a focus on modal analysis
and stress wave propagation in the standalone kerf unit cells. The kerf cells are modeled as an
assembly of beam elements with bending, torsional, and extensional motions. Two different
materials, 1.e., stainless steel (SS) and medium density fiber (MDF) are considered for the kerf
cells. The SS kerf surface is modeled as a linear elastic material, while the MDF kerf surface
is modeled as a linear viscoelastic material. The responses from the beam element models are
compared to the responses determined from shell and continuum finite elements. To validate
the beam element model, modal experiments are conducted using Scanning Laser Vibrometry.
This research also discusses the steady-state response of the kerf unit cells followed by an
understanding of stress wave propagation in these kerf cells. The outline of the paper is
described as follows. Section 2 discusses the studied kerf pattern, followed by the beam
element model formulation in Section 3. Section 4 presents the modal analyses of the MDF
and SS kerf cells using the beam element model, and the comparisons with shell and 3D
continuum FE analyses and experimental tests. Section 5 discusses steady-state response and

stress wave propagations in the kerf cells. Finally concluding remarks are given in Section 6.

2. Kerf Patterns
The kerf patterns considered in this study are cut on a SS shim stock and an MDF board with

a thickness of 0.031 in. and 0.125 in., respectively. The basic mechanical properties of the



stainless-steel shim stock and MDF board are shown in Table 1. Although there are several
cut patterns in literature [5, 6], we consider only one pattern in this study, i.e., a hexagon
domain with a triangular spiral pattern, see Fig. 3. The hexagonal domain has six identical
connection points which are referred as handles in this study. To understand the modal
responses of this complex pattern, hexagon unit cells of side length 1 in. are laser cut from SS
shim stock and MDF board, respectively. During laser cutting, the gap width of the SS
specimen is kept to 0.006 in. and the gap width of the MDF specimen is 0.025 in. The MDF is
a viscoelastic material and an experimental test was conducted to determine the viscoelastic
properties of the MDF, as discussed in Appendix C [25]. Table 2 presents the material
parameters for the viscoelastic MDF with a constitutive material model discussed in Appendix
A.

Table 1 Elastic properties of SS and MDF

SS properties
Elastic Modulus 29588 ksi (204 GPa)
Poisson ratio 0.29
Tensile strength 130 ksi (896 MPa)
Yield Strength 40 ksi (276 MPa)
Shear Modulus 1.147 x 10* ksi (79 GPa)
MDF Properties
Elastic Modulus 580 ksi (4 GPa)
. _ Poisson ratio 0.25
Elastic properties Density 7.37 x 107 Ibs/in* (788 kg/m?)
Tensile strength 2.6 ksi (18 MPa)
Shear Modulus 232 ksi (1.6 GPa)




Fig.3 HD kerf unit cell. MDF (left); SS (right). Top shows the actual materials,
Bottom shows the models

Table 2. Prony series parameters for the viscoelastic MDF

i T; (S) E; (ksi) E; (GPa)
1 100 249 1.72
2 1000 176 1.21
3 5000 69.4 0.48

3. Beam element model for analyzing dynamics responses of kerf cells
To study the modal response of the kerf unit-cells, we consider representing the segments in
the kerf unit cell as continuous three-dimensional beams with a rectangular cross-section (see
Fig. 4). In the three-dimensional beam considered in this study, x; axis is in the axial direction,
whereas x, and x5 axes are in the lateral directions. In the case of the MDF unit cell, the beam
has a thickness of 0.125 in. and the width of the beam is 0.0450 in. Contrarily, for the SS, the
beam thickness is 0.031 in., and the beam width is 0.0565 in. Table 3 presents the geometrical
properties of the beam cross-sections for both unit cells. The mode shapes and resonance
frequencies extracted from the modal analysis depends on the geometric properties and
constitutive material properties of the beam. For example, a beam made up of MDF has a
thicker cross-section resulting in combinations of in-plane bending (x; — x3 plane), out-of-
plane bending (x; — x, plane), axial stretching, and twisting. Contrastingly, the SS beam is
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relatively slender, i.e. the length is significantly larger than its thickness, so the out of plane

bending is dominant and the in-plane bending and axial stretching mode shapes are rarely

observed.
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Fig. 4 Modeling kerf unit cell: a. Kinematic representation of continuous three-
dimensional beam; b. Folded beam; c. Kerf triangle unit cell; d. Kerf hexagon domain

Table 3 Geometric properties of SS and MDF beam cross-sections in unit cells

Second moment Second moment Torsional
Unit cell Area (in?) of area of area constant
I, (107 in%) I35 (107 in%) J (x107% in*)
SS 0.031 x 0.0565 0.047 0.014 0.037
MDF 0.125 x 0.0450 0.095 0.732 0.29

3.1 Beam element model formulation
We consider a straight continuous beam element which can undergo various deformations
such as in-plane bending, out-of-plane bending, axial stretching, transverse shearing, and
twisting. As MDF and SS are relatively stiff materials, the underlying assumption of strains
being small is not voided and the large deformations are mostly from large rotations.

The beam considered in this study is a three-dimensional beam which is dominated by
large curvatures with relatively small stretch in the longitudinal axis. The axial and shear strains
in the beam about normal and lateral directions are defined as (see Fig. 4 for the axes):

du d
_1(x1't) + x3ﬂ

o 995 &p
7 dx, 0xq

(x1,t) — x; 9%, (x1,t) + w(xy, x3) d_xf



V12:_(P3+Z%i+(§_z_x3);_i V13:‘P2+Z_zj+(§_):+xz):_i (1)
where €;; and u, are the strain and displacement in the axial direction, respectively, y;, and
¥13 are the transverse shear strains, u, and u; are the lateral displacements along x, and x5
axes, respectively, ¢, and ¢; are the rotations due to bending about x, and x; axes,
respectively, w is the warping function, and f is the angle of twist. When a linear elastic and
isotropic material is considered, the stresses in the beam are:
011 = E€11 T2 =GY12 T13 = Gz (2)

where E is the linear elastic modulus, G is the shear modulus, oy, is axial stress, 71, and 743

are the shear stresses. The forces and moments acting on the beam are summarized below:

N = fAO 0-11A; VZ = on TlZdA; V3 = on T13dA
M; = on X301,d4; M; = _on X,011dA;T = on(_x3T12 + X;T13)dA; (3)

where N is the axial force, V, and V3 are the shear forces along x, and x; axes, respectively,
noted that M, and M; are the bending moments about x, and x; axes and T is the twisting

moment about x; axis. The equations of motion for the beam element are given as:

d?u; - _0¢3 | 0%uy) _ - ¢y | 0%uz\ _ .
EAGE = pAiy; kGA( oy ax%) = pAiiy; kGA ( o ax%) = pAiis;
62<p2 dus ..
—El, 2 )~ kGA <<P2 + ﬁ) = ply¢y;
1 1
a2 a .
El33 (?@3) — kGA (—fﬂs + a_z:) = plz393;
32/3 .
G]a_xf = plpp; 4)

where p is the mass density of the material, 4 is the cross-sectional area, I, and I35 are the
second moments of an area about x, and x5 axes, respectively, I, is the polar moment of an
area, and J is the torsional constant. The correction factor, k is used to enforce uniform shear

stress and shear strain distributions.



The SS beam is slender as mentioned earlier in this section so transverse shear strains
¥12 and y43 can be ignored. The motion of the beam is dominated by bending about x; axis,
with minimal motion in x, axis and possible twisting about the x; axis. Therefore, the equations

of motion reduce to:

d?u . 0%¢ .
EA dx%l = pAuy; —El, (_ax;) = ply¢y;
92 . 0? -
Elyy (55) = plsadis G55 = phyb; (5)

The MDF shows a viscoelastic response, which dissipates energy. We modeled the
MDF beam as an isotropic viscoelastic material. The MDF unit cell is a thick beam as compared
to the SS beam so transverse shear effects might not be negligible. The equations of motion for

the MDF beam are summarized below:

d’u ..
AE xd 2 = pAily
1
kaG +d (=405 4 T2 _ g
* _—— =
dx;  dx? Ptz
kaG + d (992 4 ) _ pay
* _— =
dx;  dx? Pt
d* @, dus ..
—IE +d ax? )~ kAG * d <<P2 + d_x1> = ply ¢,
d*ps du, ..
I33E * d e kAG * d (—fﬂs + d_x1> = pl33¢3
dzﬁ _ .
JG +d () = plf ©)
. . ! dG(s)
where the convolution operator in Eq. (6) means F *dG = F(¢)G(0) + f F(t-s) ds . The
0 S

relaxation modulus is modeled as E(¢) = E(o0) + AE(¢) . Due to limited data, Poisson’s ratio is

E(1)
2(1+v)

assumed time-independent v, and the shear relaxation modulus is given as G(t) =
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At the steady-state, the material properties are defined as:
E'(w) = E'(w) + iE" (w)
G'(w) =G"(w) +iG"(w) (7)
where, E' and G' are the storage extensional and shear moduli, E”' and G'" are the loss
extensional and shear moduli of the material. The storage and the loss extensional moduli are

expressed in terms of the relaxation modulus as:

E'(w) = E(0) +T@cos(ws)ds
s
. X (®)
E"(w)=-] Msin(a)s)ds

o
We assume that the corresponding Poisson’s ratio vis constant and the storage and loss shear

E'a) .
2(1+v)’

E"(a))
2(1+v)

moduli are expressed as G'(w) = G"(w)=

The system of equations given earlier are separable in time and space, and the vibration
is harmonic with respect to time, so the deformation solutions q = [uy, Uy, Us, P, @3, 1T have

the following forms:

q;(x1,1) = ¢,(x)) y; (1) = ¢, (x))e’” )
The equations formed after substituting Equation (9) to Eq (5) or Eq. (6), and imposing
boundary and initial conditions leads to the characteristic equations, which are solved
numerically to determine the resonance frequencies and corresponding mode shapes. The
influence of viscoelastic materials on the resonant frequency of the system are discussed in

Appendix A.

3.2 Parametric studies of kerf cells with different materials and geometrical parameters
To examine the modal response of SS and MDF folded beams, we chose a range of

values of angle, 8 (Fig. 4b). The minimum angle between the two beams depends on the kerf
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width, speed, and power of the laser cutter. With laser cutting, the minimum angle to avoid
burning of the corner is around 10°. Fig. 5 shows the modal response of SS and MDF single
folded beams with free-free boundary conditions. For all values of 6, the first modes of the SS
and MDF beams show the same shapes, which are attributed to the in-plane bending of the
beams. Even though SS folded beam is slender and has lower second moment of area, I3
compared to I,,, the first mode shape is showing in-plane bending. The first mode shape
depends on both, subtended angle, 6 and ratio of second moment of areas, I,,/I53. It can be
noticed from Fig. 6 that as the angle (8) increases, the first mode shows out-of-plane motion
dominantly because the folded beam is approaching the geometrical shape of a straight beam
which shows out-of-plane mode shape for the first mode. Similarly, increasing the ratio of
I, /133 makes the first mode shape out-of-plane because higher second moment of area I,,

inhibits in-plane motion.
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Modes 6 = 15° 6 = 30° 0 = 60° 6 = 90° 6 = 150°

814.65 Hz 827.51 Hz 880.38 Hz 971 87 Hz 1227.70 Hz
11
SS X3 X3 X3 3 X3
1699.40 Hz 1882.40 Hz 1930.30 Hz 1938.70 Hz 1942.80 Hz
111
X3 X3 X3 X3 X3
2796.20 Hz 2975.20 Hz 2970.20 Hz | 2777.70 Hz 2532.0 Hz
\
I X3 X3 X3 X3 X3
X1 |_X1 X1 X |_X1
209.22 Hz 212.53 Hz 226.10 Hz 249.59 Hz 315.27 Hz
MDF 11 X3§ X3 é X3 $ X3 \J x\f
3
X X] |_X1 |_Xl |_X1
1267.40 Hz 1180.90 Hz 103460 Hz | 961.91 Hz 913.17 Hz

1 X1 X]
1300.50 Hz 1306.90 Hz 335.60 Hz | 1395.40 Hz 1674.00 Hz

>

=

[

Fig.5 Mode shapes of foldable beams

In the folded beam system (Fig. 5), increasing the values of 8 increases the stiffness of
the systems, as indicated by an increase in the natural frequencies. The SS systems have higher
frequencies due to the higher elastic modulus (see Table 1). The second and third mode shapes
show different responses for the SS and MDF folded beams. In the SS beams, we observe out-
of-plane bending modes, and at the junction between the two beams twisting occurs. These

responses are attributed to the low second moments of an area about the two bending axes



(Table 3). In the MDF beams, both second and third modes are governed by the in-plane
bending. The out-of-plane bending in the lower modes of MDF is absent due to the high value
of the second moment of an area /33 and torsional constant J. By selecting the cut patterns,

density, and materials, we can control the mode shapes and frequencies of the kerf cells.
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Fig.6 Variation of first modal frequency in SS folded beam
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Several folded beams with any arbitrary subtended angle, 8 can be formed continuously
to achieve a customized kerfing pattern. For example, 8 = 90° is chosen to achieve the
Archimedean square pattern as shown in Fig. 2. In this study, we choose 8 = 60° to create a
triangular unit cell as shown in Fig 4¢. These triangular unit cells with three handles clamped
show modal responses governed by the modal responses of the folded beams discussed in Fig.
6. The earlier mode shapes are dominated by out-of-plane bending for the SS unit cell while
in-plane bending shapes are seen for the MDF triangular unit cell (see Fig. 7). The high second
moment of area about the out-of-plane axis (x,) in MDF triangular unit cell inhibits its out-of-
plane motion. More details about derivation of equations of motion for several folded beams

is discussed in Appendix B.
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Fig.7 Mode shapes showing normalized displacements for triangular unit cells (first,

MDF

second, and third modes)

4. Simulation of the modal response of hexagon kerf domains

4.1 Responses of MDF and SS hexagon kerf domains
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Upon understanding the modal response of triangular unit cells, we study the hexagonal domain
made up of six triangular unit cells (see Fig. 4d). We first compare the responses analyzed
using the beam element to the 3D continuum element, C3D8, and shell element, S3 in
ABAQUS. The 3D continuum element allows generating the unit cell with a precise kerfing
pattern which enables to capture more detailed mode shapes and their corresponding
frequencies. We ran mesh convergence studies to determine sufficient numbers of elements for
both 3D and shell elements suitable to capture all the required mode shapes. However, the 3D
continuum elements are computationally expensive, when performing modal analysis on large
kerf surfaces made of numerous unit cells. The beam elements can take in-plane and out-of-
plane bending, transverse shearing, twisting, and axial stretching into consideration. We use
the SS hexagonal domain to compare the modal response, from beam elements with 3D
continuum and shell elements. As beams in the SS unit cell have a high slenderness ratio, shell
elements can be used to mesh the unit cell. They reduce a computational cost relative to using
3D elements. Within ABAQUS/Standard, Lanczos method is used to solve the eigenvalue
problem [26]. The elastic properties of SS are shown in Table 1. The six handles of the SS
hexagon unit cell are constrained using clamped boundary conditions such as there are no
displacements and rotations at the handles. These boundary conditions are chosen to mimic the
experimental set-up in determining the mode shapes and frequencies (Appendix C). Overall,
the modal response of the SS hexagonal domain generated using the 3D continuum element
and shell element matches well with the modal response from beam elements (see Fig. 8).
Similarly, the modal analyses are performed on the MDF kerf domain. The boundary
conditions are similar to the clamp boundary conditions applied to the SS domain. In this
analysis, we use the viscoelastic properties of MDF. To obtain time-dependent mechanical
properties of MDF, we conducted creep experiments on multiple MDF dog-bone shaped

specimens. More details about creep experiments are given in Appendix C. The relaxation
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—t/t;

N
modulus is given as E(7) = E(x)+ Y, E;e "'" and the material parameters are determined from

i=1
the creep data (see Table 2). The initial modulus from Table 1 is £(0) = 580ksi (4GPa), and

thus the relaxed modulus is FE(o0) =85.6ksi (0.59GPa). The comparison of the MDF kerf

surface meshed with 3D continuum elements and beam elements is shown in Fig. 8. Since the
MDF unit cell is thick it is not suitable to mesh it using the shell elements. The mode shapes
are similar, but there is a slight discrepancy between the modal frequencies. The difference
between modal frequencies is higher in the modes (2, 3, 4, 5, 8, 9) which have in-plane bending.
However, the modal frequencies are almost similar for modes (1, 6, 7) with out-of-plane
bending. The higher discrepancies between the beam and 3D continuum models in the in-plane
modes can be attributed to the possible contacts between segments in the kerf cells under the

in-plane deformations. The out-of plane modes do not exhibit contacts between segments.

1400 | é é é é
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17



700 -

o O
A
— 600 A
< 7 0 A B
S 500 |
2 N R
8
=400 |
8
300 1 1 1 1 1 1 1 J
1 2 3 4 5 6 7 8 9

Modes
Obeam A 3D Continuum

Fig.8 Comparison of beam elements with shell elements and 3D continuum elements in
SS hexagonal surface (top); Comparison of beam elements with 3D continuum elements
in MDF hexagonal surface (bottom)

The results in Fig. 9 show contour plots of displacements for the first seven modes and
their respective frequencies. In this analysis, as both hexagonal domains have symmetric kerf
patterns, uniform boundary conditions, isotropic and homogeneous materials we see
periodicity in the mode shapes. Also, paired modes are observed in both SS and MDF surfaces.
For example, 2" and 3™ modes, 4" and 5™ modes are paired modes in both SS and MDF
surfaces. In the SS surface, all lower mode shapes are out-of-plane because of the high second
moment of area in the in-plane axis as compared to the out-of-plane axis. Also, the thin kerf
width in the SS specimen inhibits any in-plane motion. Contrarily, the MDF specimen shows

both in-plane and out-of-plane modes as their second moments of area are comparable. SS has

a higher material stiffness relative to MDF which leads to higher resonance frequencies for the

SS surface.
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Fig.9 Mode shapes showing normalized displacement and resonance frequencies of SS and MDF hexagon domain
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4.2 Comparison between model and experiment results

The experiments are conducted on the hexagon domain of SS and MDF specimens to validate
the mode shapes and corresponding modal frequencies determined from the beam model. All
experimental details are discussed in Appendix C. The comparison of mode shapes and
resonance frequencies is shown in Fig. 10 to Fig. 13. The mode shapes below mode eight
obtained from scanning laser vibrometry are similar to mode shapes obtained from the model.
Also, the resonance frequencies match well in both SS and MDF hexagon domains, except
some mismatches seen for the MDF surface. The junctions between the segments in the both
SS and MDF kerf unit cells are non-slender and bulky. To simplify the model, the assumption
of using same cross-sectional dimensions at the junctions between the beams in the beam
element model can lead to discrepancy between model and experimental results. A similar
issue about the effect of non-slender strut junctions on the effective stiffness of three-
dimensional lattice architectures has been discussed by Portela et al. [27]. At higher frequencies
(>1700 Hz in SS and >800 Hz in MDF), there is a mismatch between the results from the beam
model and the vibrometry for both hexagon domains. Due to the complexity of the kerf pattern,
different segments of the kerf unit cell start vibrating in-phase and out-of-phase vigorously at
higher frequencies. The definite number of measurement points taken on the specimen captures
the dynamic behavior at lower frequencies (<1000 Hz in SS and <600 Hz in MDF) but is not
able to capture the motion of several local vibrating segments at higher frequencies (>1000
Hz). Secondly, the noise becomes dominant at higher frequencies (>2000 Hz) as observed in
the measurement data which makes it difficult to extract clean higher-order modes (>20) from
the experimental data. Moreover, during the measurement, several higher-order modes (>10)
are superposed which makes it difficult to compare with the model as the model produces

uncoupled modes.
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Fig.13 Comparison of resonance frequencies for MDF hexagon domain

Fig. 13 shows that the model results with the viscoelastic properties of MDF match

well with the experiments as compared to the model with elastic properties of MDF. The stress

relaxation in the MDF lowers the resonant frequencies compared to the undamped (elastic)
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responses, as discussed in Appendix A. In the case of the SS kerf hexagonal domain, all the
mode shapes extracted from the experiment agree well with the model except the fourth mode
shape, which is asymmetric. A cut imperfection due to excess material is observed in the SS
kerf domain as shown in Fig. 14. This excess material causes the asymmetry in the fourth
experimental mode shape of the specimen as shown in Fig. 10. The effect of this area is also

observed in the higher modes (>8).

Fig.14 Area of excess material during laser kerfing of the SS specimen

The responses from the MDF kerf cells are more complicated compared to the SS
responses since the MDF is made up of wood fiber networks and epoxy causing heterogeneity
and non-uniformities in the properties of the kerf structures, which can affect the modal
frequencies and shapes. The analyses in this study ignore the heterogeneity and possible non-
uniformity of the MDF kerf cells. Another possibility of the mismatches between the
experiment and model is due to the boundary conditions. In the analyses, perfectly clamped
boundary conditions at six handles of the hexagon domain are imposed. However, especially
in the case of experimental tests on MDF, it is difficult to achieve perfectly clamped boundary
conditions at six handles even after using epoxy and bolts. The clamped handles tend to slide
with minimal displacements possible when the specimen is perturbed during experimentation.
Overall, both kerf geometry and material behavior affect the modes shapes and frequencies.

The kerf geometries have a strong influence on the mode shapes and frequencies, while the

23



mechanical behavior of the materials affect the modal frequencies and amplitude of
deformation.

In this study up till now, all modeling and experiments are done on a hexagonal domain
unit cell with clamped boundary conditions on the six handles. The purpose is to compare the
modal responses from the beam model and experiment and to understand the interplay of
material and geometrical features on the modal responses. In order to predict the modal
behavior of a large panel made up of hexagonal domain unit cells, periodic boundary conditions
implemented on a representative single unit cell may be suitable. We discuss the modal
behaviors of the hexagon domain with periodic boundary conditions in Appendix D for
demonstrating responses of kerf systems with different boundary conditions. We can also
physically model larger panels with multiple connected cells, so we do not need to use and
model a representative unit-cell to represent the larger panel. However, investigating the
dynamics responses of large kerf panels is beyond the scope of this paper and will be

considered in the next study.

5. Dynamic behavior of SS and MDF hexagon domains

5.1 Steady state responses
With an understanding of the modal behavior of both SS and MDF hexagon domains, we now
examine the steady-state responses of kerf systems when exposed to dynamic loadings. We
applied a sinusoidal force at one edge of the hexagonal domain and obtained the steady-state
displacement results at the center of the domain. Fig. 15 shows the displacement variation in
the center of the SS and MDF hexagonal domain, respectively. Since the mode shapes for the
MDF hexagon domain combine both in-plane and out-of-plane modes as discussed in Section
4, at a resonant frequency the MDF hexagon domain shows both in-plane (ui and u3) and out-

of plane (u2) deflections due to the dynamic loading (Fig. 15). Contrarily, the SS hexagon
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domain shows only deflection in the out-of-plane axis (u2) at its resonance frequencies, which
is correlated with its mode shapes. Hence, the kerf geometry particularly affects both modal
frequencies and mode shapes. Since SS is stiffer compared to MDF, the SS hexagonal domain
shows lower displacement amplitude at resonance. It can be concluded that material behavior
of these kerf unit cells not only influences the modal frequencies, but it affects the amplitude

of deformation also.
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Fig.15 Steady-state dynamic analyses of hexagon domains (beam element). SS (top);
MDF (bottom)

5.2 Stress wave propagation
The dynamic loading of kerf structures leads to generation of stress waves in these
flexible structures. We want to examine how the stress wave propagates and the magnitude of

stresses in the kerf unit cell. The kerf cell consists of slender beams with reduced load bearing
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ability compared to the solid structures, and thus examining the stress magnitude and
propagation is important to study the feasibility of using kerf structures under dynamics
loading. To study the propagation of stress waves through these kerf structures, we simulated
two cases. In the first case, the kerf hexagon domain is subject to a sinusoidal loading of 331
Hz at its center. Whereas in the second case, it is actuated with the same loading from the right
corner of the hexagon domain. As it is important to study the stress wave propagation behavior
at resonance, the input loading is applied at first modal frequency of the MDF kerf hexagon
domain. The comparison between the maximum principal stress in the MDF solid structure and
the MDF kerf structure at two step times is shown in Fig. 16 and Fig. 17. The stress wave
propagates faster in the solid domain compared to the kerf structure. The kerf structure delays
the propagation of the stress wave. Most of the region of the kerf structure undergoes smaller
stress compared to the solid structure due to the flexibility of the kerf structure. Instead of
resisting forces, the kerf structures reduce the stress by deforming their flexible members
(microstructures). This aspect of the kerf structures can be useful for their applications in
indoor and outdoor architectures where propagation of stress is detrimental and need to be
suppressed. We considered both beam and 3D solid element models to study the stress wave
propagation behavior. The stress wave propagation in kerf structures made up of beam
elements and 3D continuum elements is similar. Therefore, beam elements being
computationally less expensive compared to 3D continuum elements would be suitable to study

wave propagation in large scale kerf structures [28].
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5.3 Altering dynamic responses
The continuous flow of slender members in a kerf structure enhances their flexibility
which makes them easily undergo both microscopic and macroscopic shape changes. The
capability of the kerf structures to easily deform can be used to alter their dynamic responses.
For example, the shape of the kerf structure can be changed to evade resonant frequencies as
shown in this example. We demonstrated the microscopic shape change of the MDF and SS

hexagon domain by actuating one of the triangular unit cell out-of-plane (along x, axis) by 1
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mm and 3mm in SS and MDF unit cells, respectively as shown in Fig 18. Subsequently, we
applied a sinusoidal force of 5 N at the top edge of the deformed hexagon domain varying with

the first resonance frequency (determined in Section 4.1) of the flat hexagon domain.

Fig.18 Reconfigured microscopic shape of kerf hexagon domains. SS (left); MDF
(right)

We first performed analyses on understanding the influence of pre-stresses from
reconfiguring the kerf unit cell. We compared the modal response of a deformed SS unit cell
with and without taking stresses due to pre-deformation into consideration. It can be noticed
from the results in Fig. 19 that the modal behavior (mode shapes and modal frequencies) of the
deformed unit cell is similar with and without considering pre-deformation stresses. Moreover,
the root mean square error (RMSE) between resonance frequencies for the deformed unit cell
with and without pre-deformation stresses is 1.09 Hz, which is low compared to the magnitude
of frequencies. It is noted that slightly deforming the unit-cell induces stresses mostly around
the actuated region, while the rest of the unit-cell has zero stresses (see Appendix E for further
discussion). This explains the insignificant effect of preexisting stresses on the dynamics
responses. However, by slightly reconfiguring the microscopic shape, we can shift the modal
frequencies associated with the mode shapes that involve in the motion of the actuated unit
cell. Therefore, the stresses due to microscopic shape change are neglected in further dynamic

analyses.
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We demonstrated that the dynamics responses due to loading with a frequency of the
first resonance frequency is altered as resonance behavior is not observed in both unit cells (see
Fig. 20). In addition to altered dynamics response, the MDF kerf unit cell shows attenuation in
the vibration response due to its viscoelastic nature (see Fig. 20).

We compared the modal response from the flat and deformed unit cells. It can be
noticed in Fig. 21 that by marginally varying the microscopic shape of the kerf structure, there
is a considerable frequency shift from flat kerf hexagon domain for the modes, which
specifically involve in the motion of the actuated triangular unit cell (circled in Fig. 18). For
example, the SS unit cell (mode 1 and mode 3) and MDF unit cell (mode 1 and mode 7) of flat
unit-cells involve out-of-plane mode shapes as seen in Section 4.1. The actuated section of the
triangular portion of the deform cells coincides with the out of plane mode shapes mentioned
above, which cause frequency shifts for these particular modes. In the case of SS hexagon
domain, the first resonant frequency for the deformed hexagon domain is 120 Hz higher than
the flat structure. Similarly, for the MDF hexagon domain, the first resonant frequency for the
deformed hexagon domain is 70 Hz higher than the flat structure. However, the modes, which

do not involve the motion in actuated triangular unit cell, do not undergo any frequency change.
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The actuation of the kerf structures can be easily done using active materials, such as

shape memory polymers, as demonstrated in the previous study [9, 10, 29, 30]. This attribute

augments their potential application in facades of the building where resonance behavior can

be avoided which will be systematically studied in a separate paper on large kerf panels. Due

to the viscoelastic nature of the MDF deformed kerf structure, an attenuation of the vibration

response is expected.
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Fig.20 Transient dynamic analysis of reconfigured hexagon domains (beam element). SS
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6. Conclusion
This research investigates the dynamics responses (mode shapes, modal frequencies, and stress
wave propagation) of kerf cells to potentially use kerf structures beyond their aesthetical
function for tuning the dynamics responses in building constructions. Kerfing (relief cutting)
induces flexibility in the panels but also reduces the load-carrying ability of the panels.
Through formulating a 3D beam element model and conducting experiments we have explored
the mode shapes and frequencies of two kerf cells of hexagon domains out of elastic stainless

steel (SS) and viscoelastic medium density fiber (MDF) panels. The kerf geometries have a
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strong influence on the mode shapes and frequencies, while the mechanical properties of the
materials only affect the modal frequencies and amplitude of deformations. The kerf cells can
undergo in-plane and out-of-plane mode shapes, which are governed by the two second
moments of an area of the beam segments in the kerf cells and the subtended angle between
two beam segments that form kerf patterns. The out-of-plane mode shapes involve bending
and/or twisting of the segments in the kerf cells, while the pure in-plane mode shapes are
mainly governed by bending of the segments. We have demonstrated that the beam elements
are capable of capturing the modal responses of the kerf cells when compared to models
generated using 3D continuum and shell finite elements. The advantage of using the beam
element model is that it reduces the computational costs when exploring kerf cells and kerf
structures with multiple cells and can be easily exploited in parametric studies to investigate
the effect of varying geometries and material properties on the dynamic responses of the kerf
structures. The beam element model becomes less accurate when the segments in the kerf cell
are stocky, i.e., in the case of low-cut density. However, in that situation, the panel becomes
less flexible, approaching the characteristics of a solid panel.

We have simulated a stress wave propagation in a hexagon kerf domain exposed to
dynamics loading to examine its load-bearing characteristics. The kerf structure delays the
propagation of the stress wave and undergoes smaller stress amplitude compared to the solid
structure. Due to its flexibility, instead of resisting forces, the kerf structures reduce the stress
by deforming their flexible members (microstructures). When using dissipative materials, e.g.,
viscoelastic material, in kerf structures, an additional attenuation in the deformation amplitude
can further dissipate the mechanical energy. The flexibility of kerf structures makes it easy to
deform the local members (microstructures) and alter the global shapes, which can be

potentially used to tune the dynamics response of the structures.

33



In the future, the developed mathematical model can be used to study the effect of
different kerf densities and kerf patterns on the modal response of large-scale kerf structures
and understanding the local and global shape changes in tuning the dynamics response
characteristics in large kerf panels. With understanding the dynamic response of large kerf
panels, they can be better implemented in indoor and outdoor architectures for various purposes
such as controlling the indoor acoustics and altering the wind response of the buildings,

respectively.
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Appendix A

This section discusses the influence of viscoelastic materials on the resonant frequency of a
system. The partial differential equations for the beam in Eq. (4) or Eq. (6) with the
displacement vector in Eq. (9) can be written in general as:

M(q) + L(q) = F(x,7) (A.1)
To present an analytical solution, we ignore the transverse shear and bending coupling, so we
can reduce Eq. (A.1) to:

M(G;)+ L(g;) = Fi(x,1) (A.2)
where M() and L() are linear differential operator', ¢; = ¢,(x)y;(¢) and F; = ¢(x) f;(¢) , and thus

Eq. (A.2) with a viscoelastic material is rewritten as:

Vi +Cxdy; = f;(0) (A.3)

where C; = . Since Eq. (A.3) is written for each scalar component of the displacement,

1

L(¢)
(

to reduce complexity we further eliminate the subscript i in the rest of the formulation. Consider

an input f(t) = f, sinwt, at the steady-state the displacement takes the following form:

()= yysinat + y, sin ot =)y + 3 sin (ot +5(w)) (A.4)
Substituting Eq. (A.4) int Eq. (A.3) and with the complex property C*(w) =C'(w)+iC "(a)) ,
we have:

C'— o> C"
yi=Jo (C'—a)z)g)+C”2; =1/ (C'—w2)2+C"2 (A.5)

The displacement amplitude is

2
"L(u)=a, +a1d—u+a2d—?+...
dx dx
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It is noted that a),f = (C(0). The variable C(¢) is a function of the modulus of the material and
inertial property. For example, for the first component of the displacement vector in Eq. (9),
Ci(t)=E(t)/ p, the second component neglecting the rotational coupling C,(¢) =kG(?)/ p,
etc. Consider a viscoelastic material whose relaxation modulus is described by
E(t)=E(»)+ Ele_[/ 'R, where E(w) is the long-term (relaxed) modulus and 7 is the
characteristics of relaxation time that indicates how quickly the stress relaxes. The
instantaneous (initial) modulus is given as E(0) = E(o0) + E|, which corresponds to a modulus
of elastic materials. The ratio Eoo/E(0) measures the extent of stress relaxation. The
corresponding complex moduli are:

_E@)+EO) @)’ @7R(E(0) - E(®)

£ 2 ? 2
1+ (w7p) 1+ (w7R)

(A.7)

It is seen that C'/ C(0)=E" E(0); C"/C(0)=E"/E(0). We define a parameter & =10,
where o, 1s the natural frequency of an undamped system and thus £is interpreted as the ratio
of the material relaxation time to the natural period of the system. A low value & indicates the

material relaxes faster than the natural period. Thus, Eq. (A.7) is rewritten as:

w

2
E(oo)/E((»{éJ o ff(l—E(oo)/Em»

c) > ) 2
(0) 1+(w§j 0) 1+(w§j
[0

n a)l’l

(A.8)

b

To illustrate the implication of the viscoelastic material on the resonant frequency of
the system, we constructed the plots of the normalized displacement amplitude against the

normalized excitation frequency by substituting Eq. (A.8) into Eq. (A.6). Fig. A1 shows the
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resonant frequency responses of a system with a viscoelastic (dissipative) material for different
£ and Eoo/ E(0). The use of viscoelastic materials can lower the resonant frequency of the
systems in addition to attenuate the responses. With a proper choice of a viscoelastic
characteristic of the material compared to the natural frequency of the system, it is possible to
tune the resonance in the system, which would be beneficial for flexible facades under dynamic

loads.

E~/E(0)=0.5

E~/E(0)=0.1

0 0.5 1 1.5 2

Fig. A1 Resonant frequency responses of a system with a viscoelastic material
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Appendix B
With the understanding of the modal response of the straight continuous beam, we
consider continuous folded beams with a constant angle, 6 (see Fig. 4). The folded beams are
a combination of identical straight beams where i = 1,2, .... N + 1, with N folds connect the

beams at an arbitrary angle. The displacements for each beam segment (i) are:
uP(x,0)uP(xt) 0 <2 <1® (B.1)

To derive the equations of motion for the folded beams, continuity conditions at xfi) = [ and

xfﬂ) = 0 are used. The continuity conditions imply that the resultants of internal moments
and forces are equal and the displacements are continuous at x() = [ and x(Hl) 0. The

continuity conditions are:

ug? (1O, £) = [_COSQ —sina7 {ul (0, 0)
0,0 = Lsing —cosel |0,

6u2 (L+1)

1 i+1
o (VD=3 mﬂvw—l”mo+d”m@;

uy u+D o -
o (V) =——Gn 0.0 =-¢,""(0.0+n;" (0.0
1 X1

(@) (995 (19D¢) 1 (z+1) 2™ (0,0)
E(l)] (27 E @+ )1 % :

@ (20090 _ Ly i+ (00500 |
EQIL ( y 0 )= EC L W ’

(100 (i+1)
kG®OAW® <—<p§”(l(i>, t) + M) = kGUrDAGHD <_(p§i+1>(0, £) + a%—m'”);

) (i+1)
ax1 X
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(B.2)

For the folded SS beam, these continuity conditions are substituted in Equation (5) to
determine the equations of motion. Similarly, for folded MDF beams, these conditions are

substituted in Equation (6) to determine the equations of motion.
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Appendix C

Modal experiments

The six handles of the hexagon specimens (see Fig. 3 and Fig. C1) are clamped in customized-
built fixtures. For the SS specimen, the six handles of the specimen are clamped in the
aluminum fixture with grooves to restrict the in-plane vibration and the cap is bolted from top
to inhibit out-of-plane motion during actuation as shown in Fig. C1. Similarly, the MDF
specimen is clamped in the 3-D printed fixture made from Polylactic acid (PLA) plastic
(Gizmodorks, Temple City, CA). Also, the handles of the MDF specimen are epoxied in the
grooves designed in the fixture using a 50133 plastic bonder (J-B Weld, Atlanta, GA) to avoid
any slippage at the handles.

To experimentally determine the mode shapes and frequencies on these complex
specimens, scanning laser vibrometry is chosen as it is a non-contact measurement technique
[17, 22, 31]. The fixture assembly with the specimen is bolted on the x/y stage of the scanning
laser vibrometer (MSA-100-3D, Polytec, Irvine, CA) as shown in Fig. C1. To actuate the
specimen, piezo actuator (P-885.91, Physik Instrumente GmbH & Co.KG, Germany) is used
which is glued to the fixture instead of the specimen to avoid adding mass to the specimen
which will alter the dynamics of the kerf structure. The scanning laser vibrometer is used to
perform a modal analysis with the input of 8V chirp excitation from the piezo actuator.

As the surface of the SS specimen is shiny so the specimen is sprayed with an occlusion
spray to avoid the mirror effect, which will lead to good quality measurement. In the case of
the SS specimen, the velocity output range for scanning laser vibrometer is kept 10 mm/s with
a sampling rate of 15.65 kHz. A Fast Fourier Transform (FFT) is performed within a selected
bandwidth between 1 Hz — 6250 Hz. For the SS specimen, 744 points on the surface of the SS
are used as measurement locations, each scanning point and FFT averaged 12 times. For the

MDF specimen, the velocity output range for the vibrometer is 20 mm/s with a sampling rate
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of 12.5 kHz. The bandwidth is 1 Hz - 5000 Hz and the number of points on the MDF specimen
is kept similar to the SS specimen. As compared to the test on the SS specimen, each point is
averaged 8 times during the test. The Frequency Response Function (FRF) for each data point,
average FRF is obtained and stored in a file that is post-processed in the PSV software (Polytec,

Irvine, CA) to extract mode shapes and resonance frequencies.

Fig.C1 Experimental test setup for testing hexagon specimens. (a) Scanning laser
vibrometer (MSA-100-3D, Polytec, Irvine, CA) (b) HD SS specimen clamped in the
fixture (¢) HD MDF specimen clamped in the fixture

Creep experiments

Uniaxial creep tests are performed on MDF dogbone specimens to characterize the viscoelastic
properties. The creep tests are performed at constant room temperature (25 °C) and 50% of the
ultimate tensile strength of MDF. A constant uniaxial load is applied to the dogbone specimens

for 2 hours at room temperature. A linear viscoelastic model is used to capture the creep

behavior (Fig. C2) using the Prony parameters on the time-dependent compliance

N
D()= D(0)+ 3. D, (1 ot/ ) The instantaneous compliance D(0) =1/ E,, where E, is the
i=1
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elastic modulus of the MDF given in Table 1. The time-dependent parameters are then

calibrated by fitting the data in Fig. C2. The time parameters z_; in the Prony function with

three terms are determined as 100, 1000, and 5000 seconds, respectively, and the calibrated
values for D; are 107, 2x1073, 7x 1073 ksi!, respectively. The beam element model discussed
above is expressed in terms of a relaxation modulus, it is then necessary to obtain the relaxation

modulus of the MDF material from the creep responses. The time-dependent relaxation

N
modulus of the following form E(z) = E(w0)+ Y E;e /% is considered and the material
i=1

parameters are determined by using a Laplace transform method, E(s)D(s)=1/ s, where s is

the transform variable, £(s)and D(s) are the Laplace transforms of £(f) and D(¢), respectively.

The time-dependent relaxation moduli are given in Table 2.

002 ~ Uniaxialresponse of MDF dogbone specimens
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Figure. C2 Uniaxial creep responses of MDF samples
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Appendix D

Responses of hexagon kerf domain with periodic boundary conditions

By using Floquet-Bloch theorem for wave propagation [22, 32, 33], the complex
displacements on the hexagonal domain unit cell are following:
q, = qlbei(k1(1+sin§)+k3sine)a g, = qbei(2k35i"9)“ D.1)
where the subscripts 7, [, b, and t represent displacements corresponding to right, left, bottom,
and top, respectively. The double subscripts represent displacements of the handles: for
example, rt denotes the right top handle as shown in Fig. D1. The side length of the unit cell
is denoted as a and @ is the angle subtended between the beams in the unit cell as mentioned
earlier. k¢ and k3 are components of the wave vector of the plane wave. The above mentioned
Floquet conditions are prescribed on the MDF hexagonal domain unit cell. The nonzero modes
at (ky = 0,k3 = 0) and corresponding frequencies are determined (see Fig. D1). From the
results, it can be noticed that the unit cell with periodic boundary conditions shows both in-
plane and out-of-plane mode shapes. However, as expected, the mode shapes and modal
frequencies change as compared to the unit cell with clamped boundary conditions. The
resonance frequencies decrease compared to the unit cell with clamped boundary conditions
which shows us that the structure is becoming more compliant. Also, more out-of-plane mode
shapes are observed in the initial modes. These responses are expected since adding more cells

to form larger kerf panels leads to more compliant panels and out-of-plane deformations are

easier to achieve in the larger panels.
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Fig.D1 Unit cell showing nomenclature used in Floquet conditions (top); Mode Shapes
showing normalized displacement and natural frequencies of MDF hexagonal domain
with periodic boudary conditions (bottom)
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Appendix E

Influences of Pre-deformed Stresses

We performed an additional analysis to examine the extend of pre-deformations on the dynamics
responses of the kerf unit-cell. One triangular unit cell of SS hexagon domain is actuated by prescribing
I mm and 0.5 mm out of plane displacements and modal analysis was performed. The modal behaviors
(mode shapes and modal frequencies) remain the same when the unit cell is deformed by 0.5 mm and
1 mm, as shown in Fig. E.1. The SS hexagon domain actuated by 1 mm undergoes higher maximum
principal stress compared to SS hexagon domain actuated by 0.5 mm as shown in Fig. E.2. The stresses
are kept below the yield stress of the stainless-steel material (Table 1). It can be also be noticed that
due to marginal pre-deformation, most of the hexagon domain does not undergo any stress except a
certain region of the actuated triangle unit cell. Therefore, the stresses due to pre-deformation do not

have significant effect on the modal analyses.
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Frequency (Hz

ODeform (1 mm) X Deform (0.5 mm) OFlat

Figure E.1 Comparisons of modal frequencies with different actuation levels.

47



Deform {1 mm) Deform (0.5 mm)

. 180 MPa .D MPa .-13{} MPa

Figure E.2 Principal stresses in deformed unit-cells
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