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ABSTRACT

Recognizing expected utility as a valid design criterion,
there are cases where uncertainty is such that this criterion fails
to distinguish clearly between design alternatives. These cases
may be characterized by broad and significantly overlapping
utility probability distributions. Not uncommonly in such cases,
the utility distributions of the alternatives may be highly corre-
lated as the result of some uncertain variables being shared by
the alternatives, because modeling assumptions may be the same
across alternatives, or because difference information may be
obtained by means of an independent source. Because expected
utility is evaluated for alternatives independently, maximization
of expected utility typically fails to take these correlations into
account, thus failing to make use of all available design infor-
mation. Correlation in expected utility across design alternatives
can be taken into account only by computing the expected util-
ity difference, namely the “differential expected utility,” between
pairs of design alternatives. However, performing this calcula-
tion can present significant difficulties of which excessive com-
puting times may be key. This paper outlines the mathematics
of differential utility and presents an example case, showing how
a few simplifying assumptions enabled the computations to be
completed with approximately 24 hours of desktop computing
time. The use of differential utility in design decision making
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can, in some cases, provide significant additional clarity, assur-
ing better design choices.

NOMENCLATURE
Q A possible outcome of a decision
C  Cost

COP Heat pump coefficient of performance
DD Degree-days
H A state-of-information
J A performance measure, an objective function
P Probability
R Insulation rating
T Temperature
THL Total heat loss
Annual inflation rate
Rate of heat exchange
Discount rate
Time
Utility, risk-adjusted value
{u} Expected utility
Is less than, x < y reads x is less than y
Is greater than, x > y reads x is greater than y
Is greater than or equal to, x > y reads x is greater than or
equal toy
Is preferred to, A > B reads A is preferred to B
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Is indifferent to, A ~ B reads A is indifferent to B

Is preferred or indifferent to, A = B reads A is preferred or
indifferent to B

| Subject to the condition that, P{A|B} reads the probability
of A given the value of B

Y 2

1 Introduction

Consider the following problem. An engineer is asked to
design a home heating and air conditioning system. There are
two fundamentally different systems from which the engineer
may choose: gas heat combined with an air conditioner, and
an electric heat pump system. The design criterion is mini-
mum net present value (NPV) of total system cost over a pe-
riod of 10 years. This design criterion can be reformulated as
a maximization of expected utility, accounting for uncertainties
including such variables as initial cost, maintenance costs, fu-
ture energy costs, weather and inflation rates. Relatively good
data are available for initial cost and maintenance costs, but fu-
ture energy costs, weather and inflation rates are quite uncer-
tain. Indeed, these uncertainties dominate the analysis, resulting
in rather broad and overlapping distributions of NPV of system
costs. Thus, although one system will have the highest expected
utility, the engineer will not have a great deal of confidence that
the highest expected utility system will indeed be the lowest cost
system.

It is interesting to note, however, that while future energy
costs, weather and inflation rates are quite uncertain, they are
highly correlated across the system alternatives. Obviously, the
prices of electricity and gas are strongly correlated, while the
weather and inflation rates are actually the same regardless of
which system is chosen. These correlations in “exogenous” vari-
ables comprise information that is not taken into account by sim-
ply choosing the alternative with the highest expected utility.

In the 1970’s, sharp increases in the price of oil provided
a strong incentive to both the commercial airlines and the U.S.
Air Force to reduce aircraft separation on oceanic routes, partic-
ularly in the heavily traveled North Atlantic track system. On
the one hand, reduction of aircraft separation would significantly
reduce fuel consumption while, on the other hand, it would in-
crease the risk of a collision [1]. Despite the fact that there had
never been a collision between commercial aircraft on an oceanic
route, the concern for collision risk was a paramount considera-
tion. An acceptable level of risk was specified in the form of a
Target Level of Safety noting, “the risk of collision due to loss of
lateral separation [shall] not exceed 0.2 fatal aircraft accidents in
107 flying hours” [2]. Even at current traffic levels, this translates
to approximately one collision every 20 years. Clearly, actuarial
data could not be used as a basis for separation standards deci-
sions. Thus, decisions would have to be made on the basis of a
mathematical model. In the 1960’s, a collision risk model was
developed by the Royal Aircraft Establishment under the direc-

tion of Reich [3-5]. The model incorporated conservative as-
sumptions including, aircraft comprise rectangular cuboids that
enclose the entire airframe, and pilots do not see and avoid other
aircraft. The navigation errors of aircraft using the North At-
lantic track system were estimated based on a sample of roughly
120,000 radar traces obtained on aircraft as they departed the
track system, which were parameterized as probability distribu-
tions of various types to accommodate the relatively sparse data
for extreme navigational deviations. Overall, it was unlikely that
the model-estimated collision risk was accurate to an order of
magnitude.

Despite the considerable lack of confidence in the accuracy
of the Reich model, the model errors across track system de-
sign alternatives were very highly correlated, thus enabling con-
fidence in a statement that one design poses less collision risk
than another.

The above examples illustrate two cases where there is con-
siderable uncertainty in the estimation of expected utility, one be-
cause of uncertainty in exogenous variables such as the weather,
and the other because of model assumptions. Nonetheless, cor-
relations between system alternatives enable clear performance
distinctions among the system alternatives. In these cases re-
liance on expected utility decision making would typically ne-
glect the correlation among alternatives which, when taken into
account, could significantly improve confidence in system design
decision making. This paper addresses this loss of information
in the decision making process and offers an approach to its in-
clusion.

We first address the role of information in engineering de-
cision making, then derive the mathematics for inclusion of cor-
relation among design alternatives in the analysis of these alter-
natives. Finally, we illustrate the mathematics with an example
problem.

2 Information

Decision theory links the concept of information to deci-
sions. Roughly, information is the basis upon which a decision is
made. However, despite this notion, there are subtle differences
in the definitions of information. Howard and Abbas [6] note
that, “The linking of what we can do and what we want to do
is provided by what we know, also known as our information.”
More precisely, they define the concept of a clairvoyant, who is
an entity capable of predicting with both precision and certainty
the outcome of any measurably observable event such as a coin
flip or the outcome of an engineering decision. With this notion,
the clairvoyant can provide a decision-maker with perfect infor-
mation. Thus, by this definition, the decision-maker has perfect
information when she can predict with precision and certainty
the outcomes of all alternatives available in a particular decision
situation.

Hazelrigg [7], provides a definition that is slightly different.
His definition is that a state of perfect information exists when
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the decision-maker can be certain that her preferred choice is
the alternative selected from the set of available alternatives that
will result in the most preferred outcome. With this definition,
Hazelrigg defines a state-of-information as the probability that
the decision-maker’s preferred choice will indeed result in the
most preferred outcome given the set of available alternatives.
Computation of the state-of-information proceeds as follows.
We can graph a typical decision as shown in Fig. 1. The
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FIGURE 1. A typical decision.

available alternatives may be denoted A;. Each alternative, A;,
provides a range of possible outcomes, €;;, with each outcome
occurring with probability P;;. Associated with each outcome is
areal scalar measure referred to as utility, u;;, such that if

Qi = Qp (D
then

uij > uyy (2
Further, if

Qij ~ Qg (3)
then

ujj = uyy 4
Now define the variable

= {li S ®

Thus, 5{/ is 0 if outcome 1/ is preferred to outcome i, otherwise
itis 1. Given this definition of 8/, the probability that alternative
A; will result in an outcome that is preferred or indifferent to
alternative Aj is given by

P =YPr;Y s/p (6)
j J

Let the preferred alternative be A;. We now determine the state
of information as the probability that the following statement is
true,

Alternative A, will produce an outcome that is pre-
ferred or indifferent to any other alternative.

This probability is

H=]]F ©)
I#1

This definition of the state of information is such that H; is
unity if the decision maker is certain that alternative A, will pro-
vide an outcome that is preferred or indifferent to the outcomes
that would result from the other available alternatives. The value
of H, decreases as the state of information is degraded. If the
best choice from among # alternatives is completely random, one
could expect H; = 1/n. For example, this would be the case in
calling the flip of a fair coin. It is important to recognize, how-
ever, that the case of H; = 1 does not imply zero uncertainty.
This is a key difference between the definitions of Howard and
Hazelrigg.

Given this definition and invoking the preference [8], “I want
the best system I can get,” it is clear that improving the state-of-
information can lead to better design decisions provided that the
cost of the improved information is less than its value. This is
the motivation for this work.

3 Mathematics

Consider a case where we seek to compare two engineering
alternatives, A and B, against a scalar performance criterion J,
where J(A) = f(x,z) and J(B) = g(y,z). The variables x, y and
z may be uncertain and the functions f and g may be both ap-
proximate and uncertain. The variables z are common to both
alternatives. Thus, the performance of alternatives A and B are
correlated and, if we were to evaluate A and B independently, for
example, using a Monte Carlo method, this correlation would not
be a factor in the determination of J(A) and J(B).

In order to take the correlation between J(A) and J(B) into
account, we create the difference model, J(A) —J(B) = h(x,y,z).
This difference model provides an additional condition on the de-
termination of J(A) and J(B), which enables us to better estimate
these performances. However, this is not the end of the prob-
lem. Simply because the expected performance E{J(A)} may
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be greater than the expected performance E{J(B)}, we cannot
conclude that A is the better alternative. For example, A may
allow the possibility of a low probability but highly undesirable
consequence, thus making the lower performing but less risky
alternative B more desirable. As a result, we must compare the
expected utilities E{u[J(A)]} and E{u[J(B)]}. In the case where
utility equals performance, this evaluation is simple, as the dif-
ferential utility, E{u[J(A)]} — E{u[J(B)]}, does not depend on
the values E{u[J(A)]} or E{u[J(B)]}. But when this is not the
case, such as when the decision-maker is risk averse, then it is
necessary to evaluate both E{u[J(A)]} and E{u[J(B)]} given the
condition J(A) — J(B) = h(x,y,z). Only this way can we evalu-
ate the differential utility, AE{u[J(A) — J(B)]}. This becomes a
rather challenging problem in Monte Carlo analysis.

To begin, we shall invoke Bayes Theorem in an expanded
form.

P{J(A)-J(B)|h(x,y,2)} =
P{h(x,y,z)J(A) - J(B)}P{J(A)-J(B)}  (B)
P{h(x,y,2)}

where the notation P{J(A)-J(B)} means the probability that both
J(A) and J(B) occur. Notice that the term P{h(x,y,z)|J(A)
J(B)} takes on the value 1 when for the specific values of J(A)
and J(B) the condition J(A) —J(B) = h(x,y,z) is met, and it is 0
otherwise. Thus, Eq. 8 reduces to

_ PUUA)-J(B)}

PUA) I B)hxy0) =00 b mmd O

Recognizing that P{J(A) -J(B)} is defined only when the condi-
tion on J(A) —J(B) = h(x,y,z) is met. Then,

P{J(A)-J(B)} = P{J(A) - J(B)|h(x,y,2) }P{h(x,y,2)} (10)

Obtaining analytic solutions to the terms of the right-hand side
of Eq. 10 can be very difficult if possible. However, we can elim-
inate the need for analytic solutions if we solve this equation by
means of a Monte Carlo simulation. Also note that the marginal
probabilities, P{J(A)} and P{J(B)}, may be found by summing
the probabilities, for example, of J(B) for a given value of J(A),

P{J(A)} =) P{I(B)|J(A)} (11)

In a Monte Carlo simulation, this becomes merely a sum of bin
counts divided by the total bin count across all values of J(A).

It is important to note that the equation for the difference,
J(A) —J(B), may be simply the difference in the models for J(A)

and J(B), but may also derive from an entirely different condi-
tion, such as a measurement or estimate of this difference invok-
ing an independent source. For example, suppose you wish to
estimate the elevation and azimuth of two proximate stars using
a telescope. You could center each star separately in the lens
of the telescope and measure the elevation and azimuth of the
telescope to obtain the elevation and azimuth for each star. In
addition, however, you could measure the angular difference of
the stars by observing them directly through the telescope. This
difference measure would enable you to refine the independent
measurements through the introduction of additional informa-
tion.

4 lllustrative Example

The problem formulation and subsequent computations im-
posed by Eq. 10 can be a bit confusing. So, we shall offer a
simple engineering example intended only as a guide. An engi-
neer has been asked to recommend a heating system for a house
with the goal of minimizing total system cost over a period of 10
years. Two alternative systems have been proposed, a gas-fired
furnace and an electric heat pump system. To keep the analysis
simple, we shall neglect the possible need for air conditioning
and deal only with the heating requirements, but we will adjust
the installation costs to account for the additional need of an air
conditioner with the gas system. Our example will relate rather
loosely to the case of a two-story, mid-size house with a living
area of about 2,800 square feet, located in a typical northeastern
area of the U.S.

To begin, we shall construct a rudimentary heat-loss model
assuming that the house loses heat through its vertical walls and
upper ceiling. We shall assume the house to have a rectangular
shape of 30 by 48 feet, with a vertical elevation of 18 feet and
an upper ceiling area of 1440 square feet. This provides a total
heat-loss area, A, of 4248 square feet. We shall further assume an
average R-factor for the heat-loss surfaces of 13 feet?>-hour/BTU.
This leads to an hourly heat-loss rate of

A(60—T)  4248(60—T)
R o 13

qL= =3268(60—T) (12

Where gy is the rate of heat loss in BTU/hour, and T is the out-
door temperature, taking 60°F to be the “base” outdoor tempera-
ture above which the heat loss is nil. Thus, assuming that heat is
required only when the outside temperature is less than 60°F, the
total daily heat loss, THL, is

THL = 7843DD (13)

where DD are degree-days, given as the integral of 60 — T for
that time during which the outside temperature is below 60°F.
Note that, because of daily fluctuations in temperature, days with
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average temperatures above 60°F may still have nonzero degree-
days.

The computation of energy consumed by the gas furnace is
the total heat loss divided by the efficiency of the gas furnace.

THL
qc = 100,000 hg = —— (14)
ule

where g¢ is the energy in BTU provided by the gas and g is the
gas consumption in therms (1 therm equals 100,000 BTU). We
can now compute the present values of total cost of gas heat as
the sum of the inflated and discounted costs of furnace purchase
and installation, annual maintenance and energy.

tn|:1+l

t
CG = CGinst + Z (CGmaint + CGenergy) (15)
=L+

Where r is the annual discount rate and i is the inflation rate,
taken here to be a constant. n is the number of days in each case
of the simulation.

The energy requirement for a heat pump system is a bit more
complex as the relationship between degree-days and total heat
loss is not linear. A heat pump system requires less energy input
than is transferred into the house. For the heat pump system, we
use a coefficient of performance, COP, to relate the rate of energy
input to the rate of heat-loss,

qu 1 qu
4q - 7L 1
dt COP dt (16)

where the daily energy input is the integral of dgy /dt for that
time during the day for which the outside temperature is be-
low 60°F. Thus, the daily energy cost for the heat pump sys-
tem is the daily gy times the cost per BTU of electrical energy,
0.000293071C,ec- The coefficient of performance for a typical
heat pump is a function of the outside temperature as shown in
Fig. 2 [9]. For simulation purposes, it is convenient to obtain an
analytical expression for COP. This expression takes the form of
a logistic function.

o~ [2:410+0.874(60—1)/7.97

COP = 2.88{1 — ¢l N1 an

We can now compute the present value of total costs for the heat
pump system as the sum of the inflated and discounted heat pump
purchase and installation cost, annual maintenance costs and en-
ergy costs.

t=n|:1+i

t
Ch = CHinst + Z 1 :| (CHmainl + CHenergy) (18)
i—oL1+7
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FIGURE 2. COP for a typical heat pump. The COP of the heat pump
is the ratio of heat output to electric energy input.

Finally, we convert the present values of total system costs
into a measure of utility assuming that the decision maker has
a net worth, W, dedicated to home heating of $10,000, with the
preference to retain as much of this amount as possible. We then
take utility to be $10,000 — C, where C is the total system cost
(Cg or Cg), adjusted for the decision maker’s risk preference.
The risk preference taken for this example is u = log(W — C).
The decision maker would then select the system with the high-
est expected utility. Via the mechanism of expected utility, we
can account for risks that could alter the preferred choice. For
example, heat pumps are more prone to rare but expensive fail-
ures than gas systems. The possibility, albeit of low probability,
of a large expense some years in the future could deter the deci-
sion maker from choosing this alternative.

The data for this example are as follows:

Input Variables

Deterministic variables
R=13
Coreer =$0.10/kWhr
Cgas =10.38 $/1,000 cuft
Crinst =%$2,000%
Ciinst =$2,200
Gas energy, 1027 BTU/cuft
n =0.85
igas —lefec = 1%
kWhr/BTU=0.000293071
Stochastic variables, triangular distributions
(min, most likely, max values)
igas (0.952%, 1.923%, 3.922%)
Chimaint (3450, $700, $1,200)
CGmaint ($150, $300, $1,000)
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Calculation of
degree-days

Create database
of 10-yr cases
Download Extract uncorrelated
temperature temperatures
database (Tnin & Tinax) Create database
of 10-yr cases
correlated
Heat pump Heat pump
model COP table —
(COP) (T, & AT)
Cost models
for heat
COP table i
(Tay & AT) i
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House heat . 1scgunt and
Example inflation rates
lossmodel — .
house (r and i)
(qL)

FIGURE 3. A framework for computation of utility difference.

Footnotes from table on previous page
*Price includes credit because a heat pump system
does not need air conditioning.

5 Computational Procedure

The illustrative example was solved using a Monte Carlo
simulation procedure. The logic flow of this simulation is shown
in Fig. 3. The inputs to the analysis are shown in light green,
and the result is in light blue. The straw colored boxes denote
computations.

Monte Carlo simulations have the distinct advantage that
they simplify the mathematics and programming of a solution
considerably, thus significantly reducing the likelihood of errors
and time spent coding the solution. But this advantage comes at
the heavy cost of computational time. Indeed, Monte Carlo sim-
ulations can easily require run times that render them useless.
The run times even for this simple problem could have easily
run into weeks or more of desktop computer time. As a result,
we devoted considerable effort to finding ways of reducing the
computational operations needed to achieve results.

We began by obtaining a database of daily temperatures, in-
cluding 85 continuous years of minimum and maximum daily
temperatures. The temperature database was obtained from the
National Oceanic and Atmospheric Administration (NOAA) [10]
covering the time period from August 1, 1935, to July 31, 2020,
for a total of 31,047 days. The minimum and maximum daily
temperatures, T,,;,, and T, were extracted from this database,
and a daily average temperature, T, = (Tuax — Tiin) /2, Was com-
puted as the average of these temperatures. We then created a
histogram of the daily average temperatures as shown in Fig. 4.

Cost Model risk Compu@ .
simulations preferences expected utility
uncorrelated (u=In[W —C]) (E{u})
Cost Determine Determine
simulations joint marginal
correlated probabilities probabilities
0.04 11 ]
B“ | 7777777777777 L
£ 003 g ]
5 . L
S
2002 ]
g
m
0.01} ]
0.00-
0 20 40 60 80 100

TLZV7 OF

FIGURE 4. Histogram of T, data, bin width 2°F. Data obtained from
the NOAA database for Newark, New Jersey, airport (EWR).

Upon first thought, it would seem reasonable that an analysis
of heating costs would require the random simulation of a tem-
perature profile over the 10-year period of each simulation. How-
ever, on further consideration, it becomes apparent that we need
obtain only the total heating requirements, and this computation
can be based on a sampling of daily values of 7, and the maxi-
mum variation of temperature from the average, AT = Tyox — Ty,
neglecting any day-to-day correlation in these temperatures. We
now make one more simplifying assumption, taking daily tem-
perature profiles to be sinusoids with temperatures ranging from
Tay — AT to T,, +AT . This greatly simplifies the simulation while
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maintaining the essence of the problem.

Given this insight, we computed the daily temperature vari-
ations from the average temperature, AT = T,,,,x — Ty, and cre-
ated histograms of these temperature variations for temperature
blocks of 10°F, an example of which is shown in Fig. 5. Com-

0.14+ ] 1

0.12- g ]
2 0.10F | Data for the ]
= . temperature
= 008" range 41-50°F ]
o
£.0.06" ]
R
Mm 0.04- 1

0.02 1

0.00 Ll L L L L L L L e

5 10 15 20
AT, °F

FIGURE 5. Histogram of AT data, bin width 1°F. AT is the differ-
ence between the maximum temperature and the average temperature as
recorded on a day-by-day basis.

paring these histograms, it was noted that there is little variation
in the distributions of AT as a function of 7;,. Thus, we chose
the histogram shown in Fig. 5 as a baseline distribution for AT
Then, from these histograms, we created two tables of integer
temperature values, one for T, and the other for AT. The order
in which the temperatures are given in these tables is not relevant.
Let n and m be the numbers of entries in each of these tables.
Now, we select two uniformly distributed integers, N and M,
ranging between 1 and n or m respectively, and by simply looking
up in the respective tables the temperature values corresponding
to these indices, we can create a random set of daily temperatures
with precisely the same distributional forms as shown in the fig-
ures. Aside from the computation of the random numbers, which
is very quick, generating temperature data for the simulation by
this process requires no additional computation.

With the assumptions outlined above, we can now compute
heating degree-days for each heating system as a function of 7,
and AT. These computations convert heat loss into required en-
ergy input. Results of these computations are shown in Figs. 6
and 7, where degree-days, DD, have been computed for each
integer combination of 7, and AT. These results were stored in
a look-up table indexed by T, and AT for values of T, from 1 to
100, and AT from 1 to 25. This reduced the number of times we
would need to evaluate DD from something in excess of 3 billion
times to a total of 2,500 times for each heating system.

AT, °F

AT, °F

DD =0

O 20 40 60 80 100
Tav, OF

FIGURE 6. Daily gas-heat system degree-days.

DD =0

0 20 40 60 80 100
T[l\h OF

FIGURE 7. Daily heat pump equivalent degree-days.
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The next step in the computational process was to compute
10-year cases of daily temperatures. To enable the Monte Carlo
analyses that determine cost distributions, we chose to compute
three sets of 1,000,000 cases each. Two sets were for use in com-
puting cost distributions independently for the heat pump and gas
heating systems, and the third set was for computing the differen-
tial cost distributions. For the differential cost computation, each
case used the same sequence of temperatures for both heating
systems.

Once we had simulated cases of daily temperatures, 7, and
AT, we next used these cases together with the tabular data il-
lustrated in Figs. 6 and 7 to obtain a degree-day table includ-
ing degree-day records for both systems, both uncorrelated and
correlated. This table enabled cost computations for each sys-
tem for each of the 1,000,000 sets of cases, thus providing three
independent sets of cost distributions. First, we obtained cost
distributions for each system independently as shown in Fig. 8,
which shows the heat pump system to have marginally lower ex-
pected cost than the gas system, but with considerable overlap in
the probability distributions of cost. We then used these data to
obtain the difference distribution shown in Fig. 9. Together, Figs.
8 and 9 show a distinct cost advantage for the heat pump system
with the cost of the heat pump system lower than the cost of
the gas system with probability 0.656. We then computed these
same distributions using the third set of temperature data where
the costs of both heating systems were determined from the same
temperature set, that is, these results are correlated through the
variables T, AT, r and i. The results are shown in Fig. 10.

Interestingly, comparing this figure to Fig. 8, we see that the
addition of information relating to the correlation between these
alternatives of the above four variables has obtained the result
that the gas heating system is favored, contradicting the result
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0.0000 - : :
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Total heating cost, $

FIGURE 8. Estimated distributions of heating costs for heat pump
(solid line) and gas (dashed line) systems computed independently.
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FIGURE 9. Difference distribution of heating costs for heat pump mi-
nus gas systems computed independently.
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FIGURE 10. Estimated distributions of heating costs for heat pump
(solid line) and gas (dashed line) systems computed accounting for cor-
relation in weather and inflation.

shown in Fig. 8. Again, we plot the difference in cost between
the two systems, Fig. 11, now using the correlation information,
and we obtain the conclusion that the gas heating system has
probability 0.6664 of being the cost-effective alternative.

With the above calculations completed, we can move on to
an evaluation of the joint probability distributions of the costs of
the heat pump and gas heating systems accounting for the con-
dition, J(A) —J(B) = h(x,y,z). This distribution, in the form of
a 3-dimensional histogram, is shown in Fig. 12. Despite the fact
that this histogram made use of 1,000,000 cases, each involving a
10-year cost simulation, it is evident that perhaps ten times more
simulations would be necessary to obtain a reasonably smooth
result in the vicinity of the most likely point. Upon completion of
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FIGURE 11. Difference distribution of heating costs for heat pump
minus gas systems accounting for correlation.

Bin probability

FIGURE 12. Joint distribution of heating costs for heat pump and gas
systems accounting for correlation (bin size $10 x $10).

the preliminary computations, which consumed about 20 hours
of computer time, the final computation to obtain the results of
Fig. 12 took an additional 4 hours of computation on a desktop
computer with a processor speed of 3.3 GHz. It is easy to see
that problems of this sort can be limited by computing capability
and time.

At this point, it remains only to determine the expected utili-
ties of the two heating system alternatives and, from that, the dif-
ferential utility. To do this, we must first compute the marginal
probabilities of each system, that is, the probabilities of total
heating costs for each system as would be seen when projected
onto the axes of Fig. 12. The histograms of these probabilities

would appear as edge views of Fig. 12. In other words, they are
computed as the sum of the bin counts of the histogram perpen-
dicular to the axis of the system in question divided by the total
of all bin counts (1,000,000 in this case). These probabilities are
shown in Fig. 13. It is from these distributions that we can com-
pute the expected utilities of the two systems. For the gas heat
system we obtain E{ug} = 8.37612, and for the heat pump sys-
tem we obtain E{ug} = 8.36972, confirming that the gas system
would be preferred over the heat pump system consistent with
the data of the example.
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FIGURE 13. Marginal distributions of heating costs for heat pump
(solid line) and gas (dashed line) systems accounting for correlation.

6 Conclusions

The objective of the research presented here is to provide
a method for the introduction of additional information into the
analysis of alternatives in otherwise ambiguous decision situa-
tions. In particular, we show that information may be derived
from correlation among uncertain variables relating to different
alternatives that is not available when analyzing the alternatives
independently. In the example problem involving the evaluation
of two alternative heating systems, while there is considerable
uncertainty in the weather and future energy prices, significantly
effecting our ability to accurately predict total system costs, the
weather will be the same regardless which system is chosen, and
prices for different forms of energy will be highly correlated. In-
troducing this information into the analysis provides additional
clarity and, in the case presented, it even flipped the decision.

We show that information that emerges from a comparative
evaluation of alternatives may derive from correlations among
variables in a difference model (performance of alternative A mi-
nus performance of alternative B), it may arise because of the
similarity of modeling assumptions made independently in the
analyses of the alternatives, or it may come from a source that
is unique to the performance difference between the alternatives
such as a difference estimate or measurement.
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We see that, for a risk neutral decision maker, a probability
distribution on performance differences among alternatives is all
that is needed to support the decision. However, for a decision
maker who is not risk neutral, it is necessary to determine util-
ity differences, referred to in this work as the differential utility,
among the alternatives. This is because the utility difference de-
pends on the decision maker’s overall level of “satisfaction” (for
example, net wealth) given the risky performance outcomes of
the alternatives. Thus, it is necessary to compute a joint prob-
ability distribution of the performance measures of the alterna-
tives and their respective differences. This can lead to significant
computational intensity, possibly requiring days of computing.
This is because we did not find a way to efficiently solve Eq. 9,
which requires enforcing the condition J(A) —J(B) = h(x,y,z).
Because of the transcendental nature of these terms, there is no
simple way to ensure that every Monte Carlo simulation meets
this condition. Indeed, the condition is met only by a small per-
centage of the simulation cases, and these are the only useful
cases.

While the use of Monte Carlo simulation greatly reduces the
mathematical complexity, it does so at the cost of computational
time. Indeed, the computational time required even for a prob-
lem as simple as that presented here can easily run into days or
even months on a typical desktop computer. Thus, we found
it necessary to make a number of simplifying assumptions and
to break the overall analysis into a number of steps designed to
save computing time. For example, we created tables of quanti-
ties that would require repetitive computation, thus converting a
computational procedure into a table lookup using readily avail-
able indices. This is the case with the computation of degree-
days for both heat pump and gas systems. By assuming that daily
temperature profiles are sinusoidal, degree-days depend only on
average daily temperature and maximum deviation from the av-
erage temperature. This computational simplification alone may
have cut the overall computational time in half. Another sim-
plification dealt with the creation of a set of randomly gener-
ated daily temperature profiles. By allowing daily temperature
profiles to be created independent of day-to-day correlations in
weather and allowing the sampling process to adequately rep-
resent each year’s worth of daily profiles enabled another com-
putational efficiency. This should be apparent when one realizes
that the simulations presented here required the generation of ap-
proximately 3.65 x 10° such profiles. Unfortunately, tricks such
as these are peculiar to the particular problem at hand, making it
difficult to generalize the computational procedure as pictured in
Fig. 3.

As a result of the above complexities, while differential util-
ity can be quite helpful in providing clarity in the case of de-
cisions where a clear dominance of one alternative over others
is not otherwise available, the computational effort needed may
diminish the value of the analysis. This said, it would appear
that reliance more on analytical solutions and less on Monte
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Carlo simulation could prove to dramatically reduce computa-
tional times while retaining most of the mathematical conve-
nience of the Monte Carlo approach and render differential utility
an available protocol in otherwise difficult decision situations. It
is suggested that this would be a beneficial focus of future work.
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