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Abstract
Advances in multi-agent reinforcement learning
(MARL) enable sequential decision making for a
range of exciting multi-agent applications such as
cooperative AI and autonomous driving. Explain-
ing agent decisions is crucial for improving sys-
tem transparency, increasing user satisfaction, and
facilitating human-agent collaboration. However,
existing works on explainable reinforcement learn-
ing mostly focus on the single-agent setting and
are not suitable for addressing challenges posed by
multi-agent environments. We present novel meth-
ods to generate two types of policy explanations for
MARL: (i) policy summarization about the agent
cooperation and task sequence, and (ii) language
explanations to answer queries about agent behav-
ior. Experimental results on three MARL domains
demonstrate the scalability of our methods. A user
study shows that the generated explanations signifi-
cantly improve user performance and increase sub-
jective ratings on metrics such as user satisfaction.

1 Introduction
Recent years have witnessed a growing body of research
in multi-agent reinforcement learning (MARL), enabling se-
quential decision making for a range of exciting multi-agent
applications such as cooperative AI [Dafoe et al., 2020] and
autonomous driving [Kiran et al., 2021]. Generating expla-
nations about agent decisions is crucial for improving sys-
tem transparency, increasing user satisfaction, and facilitating
human-agent collaboration [Kraus et al., 2020; Chakraborti
et al., 2020]. However, existing works on explainable re-
inforcement learning (RL) mostly focus on the single-agent
setting [Wells and Bednarz, 2021; Heuillet et al., 2021;
Puiutta and Veith, 2020].

Generating explanations for MARL agents that interact
with each other in a common environment poses significant
challenges. The combinatorial nature of MARL (i.e., the
joint state/action space grows exponentially with the num-
ber of agents) leads to scalability issues. Explanations should
provide adequate information about agent behavior, including
the interaction (e.g., cooperation) among multiple agents, for
user understanding. Furthermore, explanations should avoid

redundant information that may overwhelm or confuse users,
thus decreasing user satisfaction and trust.

To tackle these challenges, we develop novel methods to
generate two types of policy explanations for MARL: (i) pol-
icy summarization, and (ii) query-based language explana-
tions. Our methods rely on first building an abstract represen-
tation of MARL policy as a multi-agent Markov decision pro-
cess (MMDP), which can be obtained by abstracting samples
observed during the MARL policy evaluation. The proposed
method generates a summarization about the most probable
sequence of agent behavior under a given MARL policy, by
finding the most probable path through the MMDP abstrac-
tion and extracting information about agent cooperation and
task sequence. The generated policy summarizations can help
users to have a global view of agent decisions and support
human-agent collaboration (e.g., users may adjust their work-
flow based on agents’ task sequence).

Additionally, we developed methods for generating lan-
guage explanations to answer three types of queries about
agent behavior, including “When do [agents] do [actions]?”,
“Why don’t [agents] do [actions] in [states]?”, “What do
[agents] do in [conditions]?” Such explanations can enable
users to understand specific agent decisions, debug faulty
agent behavior, and refine user mental models. Our work is
inspired by the method proposed in [Hayes and Shah, 2017],
which computes a minimal Boolean logic expression cov-
ering states satisfying the query criteria, and converts the
Boolean expression to explanations via language templates.
However, we find that a naive adaptation of this method for
MARL generates explanations with redundant information
and has limited scalability. Further, the generated explana-
tions do not necessarily capture agent cooperation, which
is imperative for explaining MARL. We proposed improved
methods that address these limitations by leveraging MARL
domain knowledge (e.g., agent cooperation requirements) to
filter relevant agent states and actions.

We applied a prototype implementation of the proposed
methods to three benchmark MARL domains: (i) multi-
robot search and rescue, (ii) multi-robot warehouse, and (iii)
level-based foraging [Papoudakis et al., 2021]. Experimen-
tal results demonstrate that the proposed methods can gener-
ate policy summarizations and query-based explanations for
large MARL environments with up to 19 agents.

Finally, we conducted a user study to evaluate the quality



of generated explanations. We measured user performance on
correctly answering questions based on explanations, to test
user understanding of agent behavior. We also collected user
subjective ratings on explanation goodness metrics [Hoffman
et al., 2018]. The results show that the generated explanations
significantly improve user performance and increase subjec-
tive ratings on various metrics including user satisfaction.

2 Related Work
Explaining agent decision making has recently emerged as a
focus area within the explainable AI paradigm. [Chakraborti
et al., 2020] provides a survey about this emerging landscape
of explainable decision making. [Kraus et al., 2020] pro-
poses Explainable Decisions in Multi-Agent Environments
(xMASE) as a new research direction, emphasizing many
challenges of generating multi-agent explanations, such as
accounting for agent interactions and user satisfaction.

Explainable RL has been attracting increasing interest, as
shown in several recent surveys [Wells and Bednarz, 2021;
Heuillet et al., 2021; Puiutta and Veith, 2020]. In particular,
[Wells and Bednarz, 2021] points out the lack of user stud-
ies as a major limitation across existing works. Moreover,
current approaches mostly focus on the single-agent setting,
while generating explanations for MARL has received scant
attention so far. [Kazhdan et al., 2020] extracts MARL model
as abstract argumentations, which do not explicitly consider
agent cooperation on the same tasks as in our work.

The proposed methods are inspired by several prior works.
[Topin and Veloso, 2019] develops Abstracted Policy Graphs
(i.e., Markov chains of abstract states) for explaining single-
agent RL. Our work differs in that we adopt MMDP to repre-
sent multi-agent policy abstractions. [Amir and Amir, 2018]
summarizes agent behavior by extracting trajectories from
agent simulations and visualized them as videos. Inspired
by this idea, we created GIF animations as the baseline for
evaluating policy summarizations in the user study. But we
extracted the sequence of agent actions differently, focusing
on the agent cooperation. [Hayes and Shah, 2017] generates
RL policy descriptions to answer queries. We adapted this
method to multi-agent environments and proposed significant
improvements, which will be described in Section 4.

3 Policy Abstraction and Summarization
We describe how to build an abstract representation of MARL
policy in Section 3.1, and present the method for generating
policy summarization in Section 3.2.

3.1 Policy Abstraction
In the context of MARL, a group of N agents interact with
each other in a common environment and make decisions in-
fluenced by the joint states of all agents. Agent decisions can
be captured by a joint policy π : X → ∆(A), which is a
function mapping the set of joint states X = {(x1, . . . , xN )}
to a probabilistic distribution over the set of joint actions
A = {(a1, . . . , aN )}, where xi (resp. ai) denotes the state
(resp. action) of agent i. Once a policy is trained, agents can
act upon it in any given state. But there is a lack of a global
view of the entire policy. Further, the size of the policy grows

Figure 1: Example MARL domain of multi-robot search and rescue.

exponentially with the number of agents and state variables.
To address these issues, we propose to build an abstract repre-
sentation of the policy as the basis for generating explanations
about agent behavior.

We use the multi-agent Markov decision process (MMDP)
framework to represent MARL policy abstraction. Formally,
an MMDP is a tuple (S,A, T ), where S = {(s1, . . . , sN )} is
the joint (abstract) state space,A is the joint action space, and
T is the transition function. Let F be a set of Boolean pred-
icates indicating features of the MARL domain. We denote
by f(xi) = 1 if an agent state xi satisfies a feature predicate
f ∈ F . An abstract state si is then given by the satisfac-
tion of all feature predicates f ∈ F , where each bit of the
binary encoding of si ∈ N corresponds to the satisfaction of
a predicate f(xi). Thus, the choice of features affects the ab-
straction level and should include adequate information for
explanations. In this work, we assume that users specify a set
of feature predicates for a given MARL domain.

Once an MARL policy is trained, we build an MMDP dur-
ing the policy evaluation stage. For each sample (x,a,x′),
determine an MMDP transition s

a−→ s′ by finding the ab-
stract state s (resp. s′) corresponding to x (resp. x′). When
policy evaluation terminates (e.g., converging to the expected
reward), compute the transition probability T (s,a, s′) via fre-
quency counting.
Properties. The resulting MMDP is a sound abstraction of
the MARL policy because, by construction, every MMDP
transition with non-zero probability corresponds to at least
one sampled policy decision. The state space size |S| is
bounded by O(2|F|N ), depending on the number of agents
N and feature predicates |F|. In practice, a trained MARL
policy may only induce a small set of reachable states.

Example 1 Figure 1(a) shows an example MARL domain
where three robotic agents cooperate to complete search and
rescue tasks. Rescuing the victim requires the cooperation of
an unmanned aerial vehicle (UAV) and an unmanned ground
vehicle (UGV). Any agent can fight the fire, which is blocked
by the wall and obstacle. Removing the obstacle requires
the cooperation of two UGVs. Given a trained MARL pol-
icy, we build an MMDP abstraction with 6 feature predicates
indicating whether each task is detected or completed (e.g.,
victim detect, victim complete). An agent can only detect
a task in a neighboring grid (e.g., UAV detects the victim in
Figure 1(a)). The resulting MMDP has 63 (reachable) states
and 577 transitions.

3.2 Policy Summarization
A policy abstraction containing hundreds of states and tran-
sitions is too complex for humans to understand. An alterna-



Algorithm 1 Generating Policy Summarization
Input: policy abstractionM = (S,A, T ), task completion predicates Fc ⊆ F
Output: policy summarization Z
1: Z ← {}
2: Compute the most probable path ρ throughM
3: for 0 ≤ t ≤ |ρ| do
4: y ← new array
5: for 1 ≤ i ≤ N do
6: y[i]← {}
7: for f ∈ Fc do
8: if agent state sit in the path ρ satisfies f then
9: insert f to y[i]
10: insert non-empty array y to Z
11: return Z

tive way of communicating agent behavior is to show execu-
tion traces; however, a lengthy trace may be burdensome for
users to review. To overcome these limitations, we develop
a method to generate policy summarization, illustrating the
agent cooperation and task sequence for the most probable
sequence of agent behavior under a given MARL policy.

Algorithm 1 shows the proposed method, which takes the
input of a policy abstractionM and a set of predicatesFc rep-
resenting the completion of tasks (subgoals) in a givenMARL
domain. The first step is to compute the most probable path
ρ = s0

a0−→ s1
a1−→ · · · from the initial state to a goal state in

the MMDPM, which represents the most probable sequence
of agent decisions under the policy. This problem can be
solved by converting the MMDP to a directed weighted graph
with edge weight e(s,a, s′) = − log T (s,a, s′) for each tran-
sition, and then applying the Dijkstra’s algorithm [Dijkstra et
al., 1959] to find the shortest path.

Next, the algorithm loops through every joint state st in the
path ρ to extract the agent cooperation and task sequence. At
each step t, the algorithm checks if an agent state sit satisfies
any task completion predicate f ∈ Fc and inserts completed
task f into the array element y[i] (line 4-9). An agent only
satisfies a task completion predicate at step t when it finishes
the task and receives a reward. We assume that if a task is
completed via the cooperation of multiple agents, they must
satisfy the task predicate f at the same step t and each receive
a portion of the reward. Thus, the agent cooperation is rep-
resented as multiple elements of the array y sharing the same
task. Only non-empty arrays containing completed tasks are
inserted into the summarization Z . When the algorithm ter-
minates, the generated summarization is visualized as a chart,
with each column corresponding to a non-empty y-array and
each row representing an agent’s task sequence.
Properties. The generated policy summarization Z is sound,
because it is derived from the most probable path of a sound
policy abstraction (see Section 3.1). The complexity of com-
puting the most probable path is bounded byO(|S|2), follow-
ing the complexity of the Dijkstra’s algorithm and depending
on the MMDP state space size. The rest of Algorithm 1 is
bounded by O(|ρ| · N · |Fc|), depending on the path length
and the number of agents and tasks.

Example 2 We apply Algorithm 1 using the policy abstrac-
tion and task predicates from Example 1. There are 8 states
in the most probable path from the initial state (i.e., all agents
starting in the green grid) to a goal state (i.e., all tasks have

been completed). Figure 1(b) visualizes the generated sum-
marization, with column names (i.e., T1, T2, T3) indicating
the sequence of task completions: UGV2 and UAV cooper-
ate to rescue the victim; next, UGV1 and UGV2 cooperate to
remove the obstacle; and lastly, UAV fights the fire.

4 Query-Based Explanations
While policy summarization provides a global view of the
agent behavior under a MARL policy, users may also query
about specific agent decisions. In this section, we develop
methods for generating language explanations to answer the
following three types of queries:

• “When do [agents] do [actions]?” for identifying con-
ditions for action(s) of a single or multiple agent(s) .

• “Why don’t [agents] do [actions] in [states]?” for un-
derstanding differences in expected and observed behav-
iors of a single or multiple agent(s).

• “What do [agents] do in [predicates]?” for revealing
agent behavior under specific conditions described by
the given predicates.

Our work is inspired by a method developed in [Hayes and
Shah, 2017] to generate query-based explanations for single-
agent RL. In the following, we propose newmethods to tackle
limitations posed by adapting this baseline method to multi-
agent environments.

4.1 Explanations for When Query
Algorithm 2 presents both the baseline and proposed methods
for answering “When do agents Gq do actions Aq?”, where
Gq and Aq are sets of agents and actions, respectively. The
text in blue highlights changes about relevancy filters (RF)
for the proposed method (called WithRF) compared to the
baseline (called NoRF).

WithRF starts the algorithm (line 1-5) by identifying rele-
vant agentsG, features F , and action setsA based on domain
knowledge (e.g., agent cooperation requirements). For exam-
ple, consider a query “When does UAV rescue the victim?”.
The domain knowledge is that rescuing the victim requires
the cooperation of a UAV and a UGV (Example 1). Thus, the
relevant agent set G is {UVA,UGV 1,UGV 2}. The relevant
feature set F is {victim detect, victim complete}, while
predicates about the fire and obstacle are irrelevant. The
relevant action setsA is an array with each element represent-
ing one possible set of agent actions required for cooperation:
[{UAV rescue,UGV1 rescue}, {UAV rescue,UGV2 rescue}],
which can be generated based on the aforementioned domain
knowledge about agent cooperation requirements.

Both NoRF and WithRF loop through all the joint states
s ∈ S of the policy abstraction MMDP and check all the en-
abled (i.e., with non-zero transition probability) joint actions
a in state s. In line 9 of Algorithm 2, NoRF checks if a is
compatible with Aq; that is, every agent action a ∈ Aq is
contained in the joint action a = (a1, . . . , aN ). By contrast,
WithRF checks if a is compatible with at least one set of rel-
evant actions contained in the array A. Following the previ-
ous example, NoRF checks if a contains UAV rescue, while
WithRF checks if a contains {UAV rescue,UGV1 rescue} or



Algorithm 2 Generating Query-Based Explanations
Input: policy abstraction (S,A, T ), query “when do agentsGq do actionsAq?”
Output: explanations E
1: G← {}; F ← {};A← [{}]
2: for all agent action ai ∈ Aq do
3: insert all relevant agents of ai toG
4: insert all relevant features of ai to F
5: insert all relevant action sets of ai toA
6: V ← {}; V̄ ← {}
7: for all joint state s ∈ S do
8: for all joint action a enabled in s do
9: if a is compatible withAq [replaceAq withA] then
10: insert s to V
11: else
12: insert s to V̄
13: B1 ← States2Boolean(V );B0 ← States2Boolean(V̄ )
14: φ← Quine-McCluskey(ones=B1, zeros=B0)
15: translate φ to explanations E via language templates
16: return E
17: function STATE2BOOLEAN(W )
18: B ← {}
19: for all s = (s1, . . . , sN ) ∈ W do
20: for 1 ≤ i ≤ N [replace with i ∈ G] do
21: C ← feature predicate valuations of state si
22: for f ∈ F [replace with f ∈ F ] do
23: insert C(f) toB
24: returnB

{UAV rescue,UGV2 rescue}. Since each element of A is a
super-set of Aq , the WithRF check is more restrictive.

If a state s has at least one enabled action a passing the
aforementioned checks, s is inserted to the target states set
V ; and to the non-target states set V̄ otherwise. The intu-
ition is that the generated explanations should describe target
states satisfying the query criteria and exclude conditions of
non-target states. WithRF poses further restrictions that target
states need to satisfy criteria captured by relevant actions A,
such as agent cooperation requirements. Thus, explanations
generated by WithRF can provide information about agent
cooperation, which may be missed by NoRF explanations.

Next, the algorithm converts the states set V (resp. V̄ ) to
a list of Boolean formulas B1 (resp. B0) via the function de-
scribed in line 17-24. Given a joint state s = (s1, . . . , sN ),
NoRF finds valuations of every feature predicates f ∈ F
for all agent state si and insert them to the list B. By
contrast, WithRF only inserts to B the valuations of rel-
evant features f ∈ F in relevant agent states si for all
i ∈ G. Following the previous example, WithRF only con-
siders Boolean formulas related to relevant feature predicates
{victim detect, victim complete}, filtering out features re-
lated to the fire and obstacle.

Lastly, the algorithm supplies Boolean formulas B1 and
B0 to the Quine-McCluskey algorithm [Quine, 1952] and
obtains a minimized Boolean formula, which can be trans-
lated into language explanations following [Hayes and Shah,
2017]. The runtime of Quine-McCluskey grows exponen-
tially with the number of variables. Thus, WithRF is more
efficient than NoRF, due to the decreased number of Boolean
variables. Moreover, filtering out irrelevant agents and fea-
tures helps WithRF to prevent redundant information in the
generated explanations.
Properties. Following the Quine-McCluskey, the complexity
of NoRF is bounded by O

(
3N ·|F|/ ln(N · |F|)

)
. The com-

plexity of WithRF is reduced to O
(
3|G|·|F |/ ln(|G| · |F |)

)
.

Example 3 Table 1 (first row) shows the explanations gener-
ated by NoRF and WithRF for a when query. The NoRF ex-
planation contains redundant information about the fire and
obstacle that are irrelevant to the query. The WithRF expla-
nation completely captures the required agent cooperation
for the query, which is missed by the NoRF explanation.

4.2 Explanations for Why Not Query
The query “Why don’t agents Gq do actions Aq in the joint
State sq?” can be answered by modifying Algorithm 2 as
follows. In line 10, adding s to V̄ instead of V . Remove
line 11-12 and add a new line for inserting the query state sq
to V . The modified algorithm (see Appendix A in [Boggess
et al., 2022]) generates an explanation describing the differ-
ences between the observed behavior in the target query state
sq and the expected behavior of states with actions compati-
ble with the query actions Aq (NoRF) or relevant action sets
A (WithRF). The complexity of the modified algorithm fol-
lows Algorithm 2.

Example 4 Table 1 (second row) shows the explanations
generated by NoRF andWithRF for a why not query about the
behavior of two agents UGV1 and UGV2 in the state shown
in Figure 1(a). The WithRF explanation captures the required
agent cooperation for removing the obstacle, while the NoRF
explanation fails to provide such information.

4.3 Explanations for What Query
To answer the query “What do agents Gq do when satisfying
predicates Fq?”, we first identify all the satisfying joint states
s = (s1, . . . , sN ); that is, for all i ∈ Gq , agent state si satis-
fies predicates Fq . The baseline NoRF method is to generate
a list of all possible enabled actions for agents Gq in these
states. The proposed WithRF method improves the baseline
by filtering agent actions that are relevant to predicates Fq

and finding the most likely relevant agent actions from the
list via frequency counting. Since the proposed methods1 do
not need to call the Quine-McCluskey, the complexity of both
NoRF and WithRF are only bounded by O(|Gq| · |S| · |A|),
depending on the number of query agents, joint state space,
and joint action space of the policy abstraction.

Example 5 Table 1 (third row) shows the explanations gen-
erated by NoRF and WithRF for a what query. The WithRF
explanation is more concise than the NoRF explanation and
only contains relevant action for the query predicate.

5 Computational Experiments
We implemented and applied the proposed methods to three
MARL domains. The first domain is multi-robot search and
rescue (SR) similar to Example 1. The second and third do-
mains are benchmarks taken from [Papoudakis et al., 2021].
Multi-robot warehouse (RWARE) considers multiple robotic
agents cooperatively delivering requested items. Level-based
foraging (LBF) considers a mixed cooperative-competitive
game where agents must navigate a grid world to collect ran-
domly scattered food. Our implementation used the Shared

1See Appendix A in [Boggess et al., 2022] for the pseudos code.



Query Explanations generated by NoRF (baseline) Explanations generated by WithRF (proposed)

When does UAV rescue the
victim?

UAV rescues the victim when UAV detects the victim and UGV1 does not detect
the fire, or UAV detects the victim and UGV1 does not detect the obstacle.

UAV rescues the victim when UAV detects the victim and UGV1 detects the
victim, or UAV detects the victim and UGV2 detects the victim.

Why don’t UGV1 and UGV2
remove the obstacle in this state?

UGV1 and UGV2 don’t remove the obstacle in this state because UGV1 does not
detect the obstacle.

UGV1 and UGV2 don’t remove the obstacle in this state because UGV1
does not detect the obstacle and UGV2 does not detect the obstacle.

What does UAV do when it
detects the victim?

UAV can rescue the victim, move, or wait when it detects the victim. UAV is most likely to rescue the victim when it detects the victim.

Table 1: Examples of query-based explanations

Case Study MMDP Summarization When Query Why Not Query What Query
Path Chart NoRF WithRF NoRF WithRF NoRF WithRF

Domain N |S| |T | |ρ| |Z| |E| Time (ms) |E| Time (ms) |E| Time (ms) |E| Time (ms) |E| Time (ms) |E| Time (ms)

3 63 577 8 3x2 4 72.4 4 1.2 1 86.8 2 0.8 3 1.7 1 1.3
SR 4 732 5,048 23 4x4 - timeout 6 31.4 - timeout 3 14.9 3 15.7 1 14.5

5 839 4,985 24 5x4 - timeout 10 73.6 - timeout 4 23.4 6 24.6 1 19.8

2 8 62 5 2x2 4 2.6 4 2.7 4 2.0 2 0.4 3 0.1 1 0.1
RWARE 4 16 387 5 4x1 12 3,321.0 5 82.7 6 23.0 3 1.3 3 0.1 1 0.1

19 114 1,500 15 19x2 - timeout 7 3,890.6 - timeout 4 56.5 3 21.7 1 20.1

2 5 13 4 2x2 2 0.7 2 0.7 3 0.4 2 0.3 2 0.1 1 0.1
LBF 4 15 355 5 4x1 10 3,598.5 2 1.4 8 3,695.0 2 1.6 3 0.6 1 0.6

9 482 5,841 13 9x2 - timeout 2 200.2 - timeout 2 101.3 2 24.9 1 19.8

Table 2: Experimental results on three MARL domains (timeout set as one hour).

Experience Actor-Critic [Christianos et al., 2020] for MARL
policy training and evaluation. All models were trained and
evaluated to 10,000 steps, or until converging to the expected
reward, whichever occurred first. The experiments were run
on a laptop with a 1.4 GHz Quad-Core Intel i5 processor and
8 GB RAM.

Table 2 shows experimental results. For each domain, we
report the number of agents N and the number of states |S|
and transitions |T | of generated policy abstraction MMDP.
It is unsurprising that the MMDP size grows exponentially
with the number of agents. We report the most probable path
length |ρ| and the chart size |Z| of generated policy summa-
rizations, which are more compact and easier to interpret than
complex MMDP abstractions. All summarizations were gen-
erated within 1 second (thus not shown in the table). Addi-
tionally, we compare NoRF and WithRF methods in terms
of the number of clauses in the generated query-based expla-
nations and runtime. The results show that WithRF is more
succinct in general and has better scalability than NoRF. In
particular, NoRF failed to generate explanations for “when”
and “why not” queries within an hour for large cases with
more than 4 agents, while WithRF generated explanations for
all cases within seconds. Both methods generate explanations
for “what” queries efficiently, thanks to the lower complexity
than other queries (see Section 4).

In summary, experimental results demonstrate that the
proposed methods can generate policy summarizations and
query-based explanations for large MARL domains (e.g.,
RWARE with 19 agents, which is the largest number of pos-
sible agents in the provided environments).

6 User Study
We conducted a user study 2 via Qualtrics to evaluate the
quality of generated explanations. We describe the study de-
sign in Section 6.1 and analyze results in Section 6.2.

2This study was approved by University of Virginia Institutional
Review Boards IRB-SBS #4701. Study details (e.g., questionnaire,
interface) are included in Appendix B of [Boggess et al., 2022].

6.1 Study Design
Participants. We recruited 116 eligible participants (i.e., flu-
ent English speakers over the age of 18) through university
mailing lists. 62.1% of participants self-identified as male,
37.1% as female, and 0.8% preferred not to say. The age
distribution is 76(18-24), 31(25-34), 7(35-49), 2(50-64). Par-
ticipants were instructed to answer multiple-choice questions
about agent behavior for multi-robot search and rescue tasks.
They were incentivized with bonus payments to answer ques-
tions correctly based on the provided explanations. To ensure
data quality, attention checks were injected during the study.
Independent variables. We employed a within-subject study
design with the explanation generation methods as indepen-
dent variables. Participants were asked to complete two trials
for evaluating policy summarizations. They were presented
with charts generated by Algorithm 1 in one trial, and GIF
animations illustrating the most probable sequence of agent
behavior (i.e., visualization of the most probable path in the
policy abstraction) in the other trial. For each trial, there were
two questions about agent behavior in various environments
(i.e., 3×6 and 6×6 grid world). Questions used in the two
trials are different but had similar difficulty. All participants
were presented with the same set of four randomly gener-
ated questions for summarization trials. To counterbalance
the ordering confound effect, they were randomly assigned to
answer the first two questions based on either charts or GIF,
and the other two questions based on the remaining method.
Additionally, participants were asked to complete two trials
for evaluating query-based explanations generated by NoRF
and WithRF methods, with 6 questions (2 environments ×
3 query types) in each trial. Participants answered the same
set of 12 randomly generated questions for query-based trials,
and were randomly assigned to different groups similarly to
summarization trials.
Dependent measures. We measured user performance by
counting the number of correctly answered questions in each
trial. In addition, at the end of each trial, participants were
asked to rate in a 5-point Likert scale (1 - strongly disagree,



Figure 2: Mean and SD of participant ratings about policy summa-
rizations (“*” indicates statistically significant difference).

5 - strongly agree) about explanation goodness metrics (i.e.,
understanding, satisfaction, detail, completeness, actionabil-
ity, reliability, trust) [Hoffman et al., 2018].
Hypotheses. Wemake the following hypotheses in this study.

• H1: Chart-based summarizations lead to better user per-
formance than GIF-based.

• H2: Chart-based summarizations yield higher user rat-
ings on explanation goodness metrics than GIF-based.

• H3: Query-based explanations generated by WithRF
lead to better user performance than those by NoRF.

• H4: Query-based explanations generated by WithRF
yield higher user ratings on explanation goodness met-
rics than those by NoRF.

6.2 Results Analysis
We used a paired t-test to evaluate hypotheses H1 and H3, and
used the Wilcoxon Signed-rank test to evaluate hypotheses
H2 and H4. We set the significant level as α = 0.05.
Evaluating policy summarizations. Participants answered
more questions correctly with chart-based summarizations
(M=1.8 out of 2, SD=0.6) than GIF-based (M=0.9 out of 2,
SD=0.4), with statistical significance (t(462)=-15.8, p ≤0.01,
d=1.5). Thus, the data supports H1.

Figure 2 shows average participant ratings about summa-
rizations. Chart-based summarizations yield higher ratings
on the perceived completeness than GIF-based with statisti-
cal significance (W=371.5, Z=-2.4, p ≤0.02, r=-0.2). But no
significant difference was found regarding the other metrics.
Thus, the data partially supports H2.
Evaluating query-based explanations. Participants an-
swered more questions correctly with explanations generated
by WithRF (M=5.2 out of 6, SD=1.7) than NoRF (M=2.3 out
of 6, SD=1.0), with statistical significance (t(1390)=-21.1,
p ≤0.01,d=2.0). Thus, the data supports H3.

Figure 3 shows that participants gave higher average rat-
ings to WithRF explanations than NoRF explanations. The
Wilcoxon test found significant differences on all metrics: un-
derstanding (W=319.5, Z=-4.9, p ≤0.01, r=-0.3), satisfac-
tion (W=266.0, Z=-7.0, p ≤0.01, r=-0.5), detail (W=484.0,
Z=-3.7, p ≤0.01, r=-0.2), completeness (W=494.5, Z=-6.4,
p ≤0.01, r=-0.4), actionability (W=167.0, Z=-6.9, p ≤0.01,
r=-0.5), reliability (W=382.5, Z=-3.6, p ≤0.01, r=-0.2), and

Figure 3: Mean and SD of participant ratings about query-based
explanations (“*” indicates statistically significant difference).

trust (W=217.0, Z=-3.4, p ≤0.01, r=-0.2). Thus, the data
supports H4.
Discussion. In summary, the data supports all hypotheses,
while H2 is only partially supported because the statistical
test found no significant differences between chart-based and
GIF-based summarizations on most metrics. However, Fig-
ure 2 shows that participants rated chart-based summariza-
tions close to 4 (agree) on all metrics, and above GIF-based
ratings on all metrics except understanding, reliability, and
trust. This may be because users showed a strong prefer-
ence toward the moving nature of GIF animations and the
visualized effects of agents completing tasks. But watching
a GIF can be more time-consuming and less informative than
a quick glance at the chart. This is supported by the results
that participants were able to answer more questions correctly
with chart-based summarizations, and they rated this method
significantly higher on completeness (i.e., providing needed
information). Meanwhile, query-based explanations gener-
ated by the proposed WithRF method led to significantly bet-
ter user performance and higher user ratings on all metrics,
because users prefer succinct WithRF explanations with ade-
quate information about agent behavior and cooperation. By
contrast, NoRF explanations do not necessarily provide es-
sential information about agent cooperation for correctly an-
swering questions, and may contain redundant information
that decreases user satisfaction.

7 Conclusion
In this work, we developed methods to generate policy sum-
marizations and query-based explanations for MARL. Ex-
perimental results on three MARL domains demonstrate the
scalability of our methods. Evaluation via a user study shows
that our generated MARL policy explanations can improve
user understanding about agent behavior and enable them to
answer more questions correctly, while maintaining very pos-
itive ratings on explanation goodness metrics.

The proposed methods are independent from the inner
working of MARL methods, only relying on policy abstrac-
tions that can be built via observing samples during the policy
evaluation. Although we only used one MARL method in our
experiments, the proposed methods can be used to generate
policy explanations for different MARL methods. As part of
the future work, we plan to apply the proposed methods to a
wide range of MARL methods and domains.



Acknowledgments
This work was supported in part by U.S. National Science
Foundation grant CCF-1942836, U.S. Office of Naval Re-
search grant N00014-18-1-2829, Israel Science Foundation
grant 1958/20, EU Project TAILOR grant 992215, and by the
Data Science Institute at Bar-Ilan University. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the grant sponsors.

References
[Amir and Amir, 2018] Dan Amir and Ofra Amir. High-

lights: Summarizing agent behavior to people. In Proceed-
ings of the 17th International Conference on Autonomous
Agents and Multi Agent Systems, pages 1168–1176, 2018.

[Boggess et al., 2022] Kayla Boggess, Sarit Kraus, and
Lu Feng. Toward policy explanations for multi-agent re-
inforcement learning. arXiv preprint arXiv:2204.12568,
2022.

[Chakraborti et al., 2020] Tathagata Chakraborti, Sarath
Sreedharan, and Subbarao Kambhampati. The emerging
landscape of explainable automated planning & decision
making. In IJCAI, pages 4803–4811, 2020.

[Christianos et al., 2020] Filippos Christianos, Lukas
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