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ABSTRACT

Complex real-world applications of cyber-physical systems give
rise to the need for multi-objective controller synthesis, which con-
cerns the problem of computing an optimal controller subject to
multiple (possibly conflicting) criteria. The relative importance of
objectives is often specified by human decision-makers. However,
there is inherent uncertainty in human preferences (e.g., due to
artifacts resulting from different preference elicitation methods). In
this paper, we formalize the notion of uncertain human preferences,
and present a novel approach that accounts for this uncertainty
in the context of multi-objective controller synthesis for Markov
decision processes (MDPs). Our approach is based on mixed-integer
linear programming and synthesizes an optimally permissive multi-
strategy that satisfies uncertain human preferences with respect
to a multi-objective property. Experimental results on a range of
large case studies show that the proposed approach is feasible and
scalable across varying MDP model sizes and uncertainty levels of
human preferences. Evaluation via an online user study also demon-
strates the quality and benefits of the synthesized controllers.
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1 INTRODUCTION

Controller synthesis—which offers automated techniques to syn-
thesize controllers that satisfy certain properties— has been increas-
ingly used in the design of cyber-physical systems (CPS), including
applications such as semi-autonomous driving [33], robotic plan-
ning [22], and human-in-the-loop CPS control [14]. Many complex
real-world CPS applications give rise to the need for multi-objective
controller synthesis, which computes an optimal controller subject
to multiple (possibly conflicting) criteria. Examples are synthesiz-
ing an optimal controller to maximize safety while minimizing fuel
consumption for an automotive vehicle, or synthesizing an optimal
robotic controller to minimize the mission completion time while
minimizing the risk in disaster search and rescue. An optimal so-
lution to multi-objective controller synthesis should account for
the trade-off between multiple objective properties. There may not
exist a single global solution that optimizes each individual objec-
tive property simultaneously. Instead, a set of Pareto optimal points

“Equal contribution. This research was conducted when Shenghui Chen was a student
at the University of Virginia.

Kayla Boggess®
University of Virginia, USA
kjb5we@virginia.edu

Lu Feng
University of Virginia, USA
lufeng@virginia.edu

can be computed: those for which no objective can be optimized
further without worsening some other objectives.

For many applications that involve human decision-makers, they
can be presented with these Pareto optimal solutions to decide
which one to choose. Alternatively, humans can specify a priori
their preferences about the relative importance of objectives, which
are then used as weights in the multi-objective controller synthesis
to compute an optimal solution based on the weighted sum of ob-
jectives. We can ask humans to assign objective weights directly;
however, sometimes it can be difficult for them to come up with
these values. As surveyed in [26], there exist many different ap-
proaches for eliciting human preferences, such as ranking, rating,
and pairwise comparison. Various preference elicitation methods
can yield different weight values as artifacts. Moreover, human
preferences can evolve over time and vary across multiple users.
Thus, there is inherent uncertainty in human preferences.

In this work, we study the problem of multi-objective controller
synthesis with uncertain human preferences. To the best of our
knowledge, this is the first work that takes into account the uncer-
tainty of human preferences in multi-objective controller synthesis.
We address the following research challenges: How to mathemat-
ically represent the uncertainty in human preferences? How to
account for uncertain human preferences in multi-objective con-
troller synthesis? How to generate a succinct representation of the
synthesis results? And how to evaluate the synthesized controllers?

Specifically, we focus on the modeling formalism of Markov de-
cision processes (MDPs), which have been popularly applied for
the controller synthesis of CPS that exhibit stochastic and nonde-
terministic behavior (e.g., robots [22], human-in-the-loop CPS [14]).
In recent years, theories and algorithms have been developed for
the formal verification and controller synthesis of MDPs subject
to multi-objective properties [4, 8, 11, 15, 16, 20]. However, none
of the existing work takes into account the uncertainty in human
preferences.

We formalize the notion of uncertain human preferences as an
interval weight vector that comprises a convex set of weight vectors
over objectives. Since each weight vector corresponds to some con-
troller that optimizes the weighted sum of objectives, an interval
weight vector would yield a set of controllers (i.e., MDP strategies).
We adopt the notion of multi-strategy [10] to succinctly represent a
set of MDP strategies. A (deterministic, memoryless) multi-strategy
specifies multiple possible actions in each MDP state. Thus, a multi-
strategy represents a set of compliant MDP strategies, each of which
chooses an action that is allowed by the multi-strategy in each MDP



state. We define the soundness of a multi-strategy with respect to a
multi-objective property, and an interval weight vector represent-
ing uncertain human preferences. We also quantify the permissiv-
ity of a multi-strategy by measuring the degree to which actions
are allowed in (reachable) MDP states. A sound, permissive multi-
strategy can enable more flexibility in CPS design and execution.
For example, if an action in an MDP state becomes infeasible during
the system execution (e.g., some robotic action cannot be executed
due to an evolving and uncertain environment), then alternative
actions allowed by the multi-strategy can be executed instead, still
guaranteeing satisfaction of the human preferences.

We develop a mixed-integer linear programming (MILP) based
approach to synthesize a sound, optimally permissive multi-strategy
with respect to a multi-objective MDP property and uncertain hu-
man preferences. Our approach is inspired by [10], which presents
an MILP-based method for synthesizing permissive strategies in
stochastic games (of which MDPs are a special case). However,
there are several key differences in our encodings. First, we solve
multi-objective optimization problems, while [10] is for a single
objective. Second, we have a different soundness definition for the
multi-strategy and need to track the values of both lower and upper
bounds of each objective, while [10] only considers one direction.
Lastly, we have a different definition of permissivity which only
considers reachable states under a multi-strategy.

We evaluate the proposed approach on a range of large case stud-
ies. The experimental results show that our MILP-based approach is
scalable to synthesize sound, optimally permissive multi-strategies
for large models with more than 10® MDP states. Moreover, the
results show that increasing the uncertainty of human preferences
yields more permissive multi-strategies.

In addition, we evaluate the quality of synthesized controllers
via an online user study with 100 participants using Amazon Me-
chanical Turk. The study results show that strategies synthesized
based on human preferences are more favorable, perceived as more
accurate, and lead to better user satisfaction, compared to arbi-
trary strategies. In addition, multi-strategies are perceived as more
informative and satisfying than less permissive (single) strategies.

Contributions. We summarize the major contributions of this
work as follows.

o We formalized the notion of uncertain human preferences,
and developed an MILP-based approach to synthesize a
sound, optimally permissive multi-strategy for a given multi-
objective MDP property and uncertain human preferences.

e We implemented the proposed approach and evaluated it on
a range of large case studies to demonstrate its feasibility
and scalability.

e We designed and conducted an online user study to evaluate
the quality and benefits of the synthesized controllers.

Paper Organization. In the rest of the paper, we introduce some
background about MDPs and multi-objective properties in Section 2,
formalize uncertain human preferences in Section 3, develop the
controller synthesis approach in Section 4, present experimental
results in Section 5, describe the user study in Section 6, survey
related work in Section 7, and draw conclusions in Section 8.

2 BACKGROUND

In this section, we introduce the necessary background about MDPs
and multi-objective properties.

A Markov decision process (MDP) is a tuple M = (S, 0,4, 9),
where S is a finite set of states, sy € S is an initial state, A is a set
of actions, and § : S X A — Dist(S) is a probabilistic transition
function with Dist(S) denoting the set of probability distributions
over S. Each state s € S has a set of enabled actions, given by
als) & {a € A|é(s, a) is defined}. A path through M is a sequence
T = spapsiai ... where a; € a(s;) and 6(s;, a;)(si+1) > 0 for all
i > 0. We say that a state s is reachable if there exists a finite path
starting from sg and ending in s as the last state. Let FPaths (IPaths)
denote the set of finite (infinite) paths through M.

A strategy (also called a policy) is a function o : FPaths —
Dist(A) that resolves the nondeterministic choice of actions in each
state based on the execution history. A strategy o is deterministic
if o(7) is a point distribution for all s, and randomized otherwise.
A strategy o is memoryless if the action choice o () depends only
on the last state of x. In this work, we focus on deterministic,
memoryless strategies.! Thus, we can simplify the definition of
strategy to a function o : S — A. Let X 5( denote the set of all
(deterministic, memoryless) strategies for M. A strategy o € X 54
induces a probability measure over IPaths, denoted by Pr‘/’w in the
standard fashion [21].

A reward function of M takes the form r : S X A — R. The total

reward along an infinite path 7 = spapsia; ... is given by r () o

Z;’io r(st, ar). The expected total reward for M under a strategy o is

denoted by El/TV( (r) < /” r() dPr‘/’W We say that M under strategy
o satisfies a reward predicate [r].j, where ~ € {>, <} is a relational
operator and b is a rational reward bound, denoted M, o = [r]p,
if the expected total reward E‘jw (r) ~ b. A reward predicate [r].p
is satisfiable in MDP M if there exists a strategy o € X 5 such that

M, o [ [r].p. If b is unspecified, we can ask numerical queries,

denoted [7]min « inf{x € R | [r] <x is satisfiable} and [r]max «

sup{x € R | [r] >x is satisfiable}.

A multi-objective property ¢ = ([r1]oe;, - .., [n]s<,), Where
>; € {min, max}, aims to minimize and/or maximize n objectives
of expected total rewards simultaneously. For the rest of the pa-
per, we assume that the multi-objective property is of the form
¢ = ([r1]mins - - -» ["n)min)- A maximizing objective [r;]max can be
converted to a minimizing objective by negating rewards. Checking
¢ on MDP M yields a set of Pareto optimal points that lie on the
boundary of the set of achievable values:

X={x=(x1,....,xn) €R"|([r1] <xy---> [rn] <x,,) is satisfiable}.

We say that a point x* = (x],...,x;) € X is Pareto optimal if
there does not exist another point x = (x1,...,x,) € X such that
xj < x} foralliand x; # x;f for some j. A multi-objective reward
predicate ([r1]<x,,- .-, [rn] <x,) is satisfiable in MDP M if there
exists a strategy o € Xy such that M, o | [r;i] <, for all i. The
set of achievable values X for ¢ is convex [16].

Given a multi-objective property ¢ = ([r1]min, - - - ["n]min) and
a weight vector w € R", the expected total weighted reward sum is

!For the types of MDP properties considered in this work, there always exists a
deterministic, memoryless strategy in the solution set [15, 16, 29].



Figure 1: An example map for robotic planning in urban
search and rescue missions. The robot aims to navigate to
the victim (star) location with the shortest distance while
minimizing the risk of bypassing (red) fire zones.
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Figure 2: Pareto curve for multi-objective robotic planning.
Purple, blue, and green routes in Figure 1 correspond to
Pareto optimal points A, B and C, respectively.

def

EQ(w-r) = p wiES (r;) for any strategy o € X (. We say that
a strategy o* is optimal with respect to ¢ and w, if E%:( w-r) =
inf {E‘/TM (w-r) | o € Zpq}. The strategy o™ also corresponds to a
Pareto optimal point for ¢ [16].

For simplicity, in this paper, we make the assumption that an
MDP has a set of end states, which are reached with probability 1 un-
der any strategy, and have zero reward and no outgoing transitions
to other states. This simplifies our analysis by ensuring that the
expected total reward is always finite. A variety of useful objectives
for real-world applications can be encoded under these restrictions,
for example, minimizing the distance, time, or incurred risk to com-
plete a navigation task for robotic planning, or maximizing the
safety and driver trust to complete a trip for autonomous driving.

Example 2.1. Figure 1 shows a map for urban search and res-
cue missions taken from the RoboCup Rescue Simulation Com-
petition [1]. Consider a scenario where the robot aims to find an
optimal route satisfying two objectives: (1) minimizing the travel
distance to reach the rescue location, and (2) minimizing the risk

of bypassing fire zones. We model the problem as an MDP where
each road junction in the map is represented by an MDP state. In
each state, the robot can move along the road with probability 0.9
and stay put with probability 0.1 due to noisy sensors. We define
two reward functions dist and risk to measure the distance (i.e.,
the number of road blocks navigated) and the risk (i.e., the number
of fire zones bypassed), respectively. Figure 2 shows the Pareto
curve for the multi-objective property ¢ = ([dist]min, [risk]min)-
The convex set of achievable values for ¢ includes any point on the
Pareto curve and in the area above. There are three Pareto optimal
points (A, B, C) corresponding to three deterministic, memoryless
MDP strategies illustrated as purple, blue, and green routes in Fig-
ure 1, respectively. The rest of the Pareto curve (e.g., any point on
the solid line between A and B, or the solid line between B and C)
is achievable only if the robot takes randomized strategies.

3 UNCERTAIN HUMAN PREFERENCES
3.1 Formalization of Preferences

Preferences are often represented as weights reflecting humans’
opinions about the relative importance of different criteria in multi-
objective optimization [26]. Following this convention, we denote a
preference over n objectives as a weight vectorw = (wy,...,wy) €
R™ where w; > 0for1 <i <nand Z?=1 w; = 1.

Such weight vectors can be obtained by eliciting human pref-
erences in different ways. A naive approach is to ask for direct
human input of weight values for objectives; however, it may be
difficult for humans to come up with these values in practice. A
popular preference elicitation method is pairwise comparison [34],
in which humans answer queries such as: “Do you prefer objective
i or objective j?” for each pair of objectives. We can then derive
weights (e.g., via finding eigenvalues of pairwise comparison ma-
trices) as described in [3, 9]. There are many other methods (e.g.,
Likert scaling, rating, ranking) for eliciting preferences weights, as
surveyed in [26]. Eliciting preferences from the same person using
various methods can yield different weight vectors as artifacts. In
addition, if the controller synthesis needs to account for multiple
human decision-makers’ opinions, then a range of weight vectors
can be resulted from eliciting multiple humans’ preferences.

In order to capture the inherent uncertainty of human prefer-
ences, we define uncertain human preferences as an interval weight
vector w = ([wy, w1, , [w,, Wn]), where w; (w;) is the lower
(upper) weight bound for objective i, and 0 < w; < w; < 1. We
say that a weight vector w belongs to an interval weight vector w,
denoted w € w, if w; < w; < w; for all i. An interval weight vector
comprises a convex set of weight vectors, providing a compact
representation of uncertain human preferences.

Example 3.1. Suppose w = ([0.2,0.7], [0.5,0.9]). Figure 3 shows
a geometrical interpretation of uncertain human preferences repre-
sented by w. We intersect each dashed line representing the lower or
upper objective bounds with the solid line representing wi +wsy = 1,
and obtain a pair of weight vectors (0.2,0.8) and (0.5,0.5) corre-
sponding to the extreme points of the feasible solution set. We
highlight in red the range of all possible weight vectors that belong
to w, representing uncertain human preferences.
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Figure 3: Geometrical interpretation of an interval weight
vector w = ([0.2,0.7],[0.5,0.9]) representing uncertain hu-
man preferences.

3.2 Multi-Strategy for MDPs

Recall from Section 2 that an optimal MDP strategy o™ with respect
to a multi-objective property ¢ and a weight vector w corresponds
to a Pareto optimal point that optimizes the weighted sum of ob-
jectives. Thus, an interval weight vector w representing uncertain
human preferences yields a set of Pareto optimal points and corre-
sponding MDP strategies. We will use the notion of multi-strategy
from permissive controller synthesis [10] to succinctly represent a
set of strategies as follows.

A (deterministic, memoryless) multi-strategy for MDP M is a
function 0 : § — 24, defining a set of allowed actions 6(s) C a(s)
in each state s € S. Let © 5 denote the set of all multi-strategies for
M. We say that a (deterministic, memoryless) strategy o complies
with multi-strategy 6, denoted o < 0, if o(s) € 0(s) for all states
s € S. We require that 0(s) # 0 for any state s that is reachable
under some strategy that complies with 0.

Given a reward predicate [r].p, we say that multi-strategy 6 is
sound with respect to [r].p if M, o | [r].p for every strategy o
that complies with 0. We then say that a multi-strategy is sound for
an uncertain set of human preferences if it is sound with respect
to upper and lower bounds on each objective induced by a set of
weight intervals. More precisely, given a multi-objective property
¢ = ([r1]mins - - - » [Tn]min) and an interval weight vector w, we say
that multi-strategy 6 is sound with respect to ¢,w if it is sound
with respect to [r;] >b, and [r;] 5, for all i, where b; = inf{x;|x =

(x1,...,%xn) € X5}, bi = sup{xij|x = (x1,...,xp) € X;,}, and X,
denotes the set of Pareto optimal points corresponding to w. The
intuition is that, due to convexity, any weight vector w € w must
correspond to a Pareto optimal point within a space bounded by
extreme points of X;,. Later we develop Algorithm 1 in Section 4
to compute values of b; and b;.

We quantify the permissivity of multi-strategy 6 by measuring
the degree of actions allowed in (reachable) MDP states. Let A(0) “
iseso (|a(s)| = 10(s)]) be a penalty function where s? ¢ Sis the
set of reachable states under 0. We say that a sound multi-strategy
0* for M is optimally permissive if A(0*) = inf{A(0) | 0 € O p( is
sound with respect to ¢ and w}.

4 CONTROLLER SYNTHESIS APPROACH

4.1 Problem Statement

Given an MDP M = (S, so, A, §), a multi-objective property ¢ =
([71]mins - - - [7n] min), and an interval weight vector w representing
uncertain human preferences, how can we synthesize an optimally
permissive multi-strategy 6 € ©  that is sound with respect to ¢
and w?

4.2 MILP-based Solution

We present a mixed-integer linear programming (MILP) based
approach to solve the above problem. We use binary variables
Ns,a € {0,1} to encode whether a multi-strategy 6 allows action
a € a(s) in state s € S of MDP M. We use real-valued variables
tis and v s to represent the minimal and maximal expected total
reward for the ith objective from state s, under any strategy com-
plying with 6. We set y; s = v; s = 0 for any end states in the MDP.
The MILP encoding is:

minimize c- Z Z (1-17s,a)
N5,a€{0,1}pis R, v s €R

seSaea(s)

D isy —pis) (1)
i=1

subject to
VseS: Z Ns,a < C+ Z Nt.a (1b)
aca(s) (t,a)ep(s)
VseS:c- Z Ns,a = Z Nta (1c)
aca(s) (t,a)ep(s)

Vi<i<nVseSVaceal(s):

His < ) 8(5,@) (1) - g +ri(s.@) +e- (1=n5a) (1)
teS
Vi<i<nVseSVaca(s):

vis 2 ) 8(s,a)(t) - vig+ri(s,0) —c- (1-nsa)  (1e)
tes

Vi<i<n:ps, (1f)

(1g)

where c is a large scaling constant? and we let p(s) E {(t,a) |
d(t,a)(s) > 0 and t # s} denote the set of incoming transitions to
astate s € S.

The objective function (1a) minimizes the total number of disal-
lowed actions in all states plus the sum of expected total rewards
over all objectives in the initial state. The latter serves as a tie-
breaker between solutions with the same permissivity, favoring
tighter reward bounds.

Constraints (1b) and (1c) enforce that no action is allowed for s if
it is unreachable from any other state under the multi-strategy, and
at least one action should be allowed otherwise. For the initial state
so, we assume that there is always an allowed incoming transition,
and X (;,a)ep(sy) Mt,a = 1. Constraints (1d) and (1e) encode the recur-
sion for expected rewards in each step, which are trivially satisfied

> b;
Vi<i<n:vig <b;

2Constant c is chosen to be larger than the expected total reward for any objective,
from any state and under any objective.



Algorithm 1 Precomputing objective bounds

Input: An MDP M, a multi-objective property ¢, and an interval
weight vector w for uncertain human preferences
Output: An interval vector b = ([21,51], s [bys En]) for ex-
pected total reward bounds over n objectives
1. Initialize b; = co and bj=-cofori<i<n
2 W « Find the set of extreme points of w
s for all weight vectorw € W do
& x = (x1,...,xp) < Find a Pareto optimal point for ¢ that
corresponds to w
s forl1<i<ndo

o if b; > x; then
7 Qi = Xi

8: end if

9 if Ei < x; then
10: Ei = Xi

11: end if

12 end for

13 end for

1. return b

when 55, = 0, that is, action a is disallowed in state s. Constraints
(1f) and (1g) guarantee that, for each objective i, the expected total
reward in the initial state under the multi-strategy satisfies the
lower and upper bounds b; and b;, which are precomputed using
Algorithm 1.

Given an interval weight vector w representing uncertain human
preferences, Algorithm 1 (line 2) first finds the set of extreme points
inw, denoted W. This can be done by applying standard methods for
finding extreme points in a convex set [35]. Next, for each weight
vector w € W, Algorithm 1 (line 4) finds a Pareto optimal point
x = (x1,...,xp) for ¢, which yields the minimal expected total
weighted reward sum under any strategy of the MDP M. Here, we
apply the value iteration-based method in [16] for the computation
of Pareto optimal points. Finally, Algorithm 1 (line 3-13) loops
through all weight vectors in W to determine the smallest lower
bound b; and the greatest upper bound b; of the expected total
reward for each objective i.

Example 4.1. We apply the proposed approach to synthesize
an optimally permissive multi-strategy for MDP M modeled in
Example 2.1 that is sound with respect to ¢ = ([dist]min, [risk]min)
and w = ([0.2,0.7], [0.5,0.9]). Following Example 3.1, w gives a
convex set of weight vectors with two extreme points (0.5,0.5)
and (0.2,0.8). We also find out that weight vectors (0.5,0.5) and
(0.2,0.8) correspond to Pareto optimal points B and C in Figure 2,
respectively. Thus, applying Algorithm 1 yields an interval vector
b = ([6.66,8.89], [0,1.12]) for the expected total reward bounds
over ¢.

The MILP encoding minimizes ¢ - Yses Yaea(s) (1 — fs,a) +
Z?:l(vi,so — lis,). We can select ¢ = 1000 as the scaling factor
constant in this example.

Constraints (1b) and (1c) are instantiated, for example, for the
initial state sg as:

Nso,south T Msg,west < €

c- (”so,south + Uso,west) >1

Figure 4: The synthesized multi-strategy in Example 4.1.

Constraints (1d) and (1e) are instantiated, for example, for the
first objective [dist]min, state so, and action west as:

H,sg £ 0.9 p15 +0.1- 5o +1+c- (1- Uso,west)

Visy = 0.9-vys +0.1-vygp+1—c- (1- r]so)west)

Constraints (1f) and (1g) are instantiated, for example, for the
first objective [dist]min as: pi1,5, > 6.66 and v 5, < 8.89.

The MILP encoding uses 15 binary variables to encode 7 q, 44
real-valued variables to encode y; s and v; 5, and a total number of
90 constraints. It takes less than 1 second to solve the MILP problem
using the Gurobi optimization toolbox [18]. The solution yields a
multi-strategy as illustrated by the orange lines in Figure 4. The
synthesized multi-strategy is sound with respect to ¢ and w. There
are two strategies complying with the multi-strategy, corresponding
to Pareto optimal points B and C in Figure 2. The multi-strategy is
also optimally permissive. Such a permissive multi-strategy could
be useful in assisting humans’ decision-making, by informing them
about multiple allowable action choices in states. In addition, it
offers flexibility for the system execution. If the robot finds that
certain action cannot be executed due to the evolving environment
(e.g., fire spreading), it may execute an alternative actions allowed
by the multi-strategy while still guaranteeing soundness.

4.3 Correctness

The correctness of our proposed approach, with respect to the
problem statement in Section 4.1, is stated below and the proof is
given in the appendix.

THEOREM 4.1. Let M be an MDP, ¢ = ([r1]min,---> ["n]min)
be a multi-objective property and w be an interval weight vector
representing uncertain human preferences. There is a sound, opti-
mally permissive multi-strategy 0 in M with respect to ¢ and w
whose permissive penalty is A(0), if and only if there is an opti-
mal assignment to the MILP instance from (1a)-(1g) which satisfies
A0) = Yses ZaEQ(S)(l — s,a)-



Case Study MDP Size MILP Size MILP Solution
Name Parameters Preferences #States #Trans #Binary #Real #Constraints Time (s) #Permissive States
5 ([?[(1)’10’32 {8)80’2]3]) 28,401 40,373 29,897 113,604 176,394 3: 1,4:96
uav 10 ([(()[(1)’10)?}: {8)80’2]3]) 56,901 80,873 59,897 227,604 353,394 250'%2 2,9196
20 ([?f(l)i 10?} {88()2]?]) 113901 161873 119897 455,604 707,394 o . 00
30 E{g?: H: {g: gg}; 21,046 43,257 29,813 84,184 161,348 245.61 ;:;?5)
taskgraph 40 2{8?: H: {g: gg}; 36,866 75,677 52,153 147,464 282,348 2411; 145’?28875
50 E{g?: H: {8: gg}; 57,086 117,097 80,693 228,344 436,948 11342‘.65 27?;,963095
2 E{g’s(;;}z {8’1(??}; 1,847 2,288 2,191 7,388 12,462 ;g 1:2
teamform 3 EB;S&;}: Egi 10?}; 12475 15228 14935 49,900 84,694 Eﬁ:gﬁ: )

Table 1: Experimental results illustrating performance of the proposed approach

4.4 Complexity Analysis

The size of an MILP problem is measured by the number of decision
variables and the number of constraints. In the proposed MILP
encoding, the number of binary variables is bounded by O(|S| - |A]),
the number of real-valued variables is bounded by O(n - |S]), and
the number of constraints is bounded by O(n - |S| - |A]). MILP
solvers work incrementally to synthesize a series of sound multi-
strategies that are increasingly permissive. Therefore, we may stop
early to accept a sound (but not necessarily optimally permissive)
multi-strategy if computational resources are limited.

Prior to the MILP solution, we need to execute Algorithm 1, the
most costly step of which is the computation of a Pareto optimal
point in line 4. This is performed |W| times, where |W| is exponen-
tial in the number of objectives n. For each point, we compute a
minimal weighted sum of expected total rewards for a given weight
vector. This is done using the value iteration-based method of [16].
Value iteration does not have a meaningful time complexity, but is
faster and more scalable than linear programming-based techniques
in practice.

5 EXPERIMENTAL RESULTS

We have built a prototype implementation of the proposed ap-
proach, which uses the PRISM model checker [23] for computing
Pareto optimal results of multi-objective synthesis in MDPs, and
the Gurobi optimization toolbox [18] for solving MILP problems.
The experiments were run on a laptop with a 2.8 GHz Quad-Core
Intel Core i7 CPU and 16 GB RAM.

5.1 Case Studies

We applied our approach to three large case studies. 3. For each case
study, we used two interval weight vectors representing preferences
with different uncertainty levels.

The first case study is adapted from [14], which considers the
control of an unmanned aerial vehicle (UAV) that interacts with
a human operator for road network surveillance, with a varying
model parameter to count the operator’s workload and fatigue level
that may lead to degraded mission performance. The controller
synthesis aims to balance two objectives of mission completion
time and risk, based on the specified uncertain human preferences.

The second case study considers a task-graph scheduling prob-
lem inspired by [28]. The controller synthesis aims to compute
an optimal schedule for a set of dependent tasks based on human
preferences of different processors, with a varying model parameter
of the digital clock counter.

The third case study models a team formation protocol [5] where
a varying number of sensing agents cooperate to achieve certain
tasks. The controller synthesis seeks to find an optimal schedule
for these agents to meet the objectives of completing different tasks
based on human preferences.

5.2 Results Analysis

Table 1 shows experimental results for these case studies. For each
case study, we report the size of the MDP models in terms of the
number of states and transitions, the size of the resulting MILP
problems in terms of the number of decision variables (binary and
real-valued) and constraints, the runtime for solving the MILP, and

3Files are available from: https://www.prismmodelchecker.org/files/iccps22



the number of permissive states (i.e., those with more than one
allowed actions) in the synthesized controllers. We set a time-out
of one hour for solving the MILP.

Unsurprisingly, the size of MILP problems increases with larger
MDP models. But the results demonstrate that our approach can
scale to large case studies. For example, it takes less than one
minute to solve the resulting MILP problem of “uav 20” model
with 113,901 MDP states, which includes 119,897 binary variables,
455,604 real-valued variables, and 707,394 constraints in the MILP.
In most cases of “uav” and “taskgraph”, a sound, optimally permis-
sive multi-strategy is synthesized within one minute. However, the
MILP solver failed to produce a feasible solution before time-out
for some “teamform” cases, despite smaller MDP models than “vav”
and “taskgraph”. In addition, we observed that increasing the uncer-
tainty level of preferences (i.e., larger intervals) leads to synthesized
controllers with larger numbers of permissive states.

6 USER STUDY

We designed and conducted an online user study * to evaluate the
synthesized controllers. We describe the study design in Section 6.1
and analyze the results in Section 6.2.

6.1 Study Design

Participants. We recruited 100 individuals with a categorical age
distribution of 6 (18-24); 58 (25-34); 28 (35-49); 6 (50-64); and 1 (65+)
using Amazon Mechanical Turk (AMT). To ensure data quality,
our study recruitment criteria required that participants must be
able to read English fluently and had performed at least 50 tasks
previously with an above 90% approval rate on AMT. In addition,
we injected attention check questions periodically during the study
and rejected any response that failed attention checks.
Procedure. For each participant, we described the study purposes
and asked them to consent to the study. After we asked about basic
demographic information (e.g., age), the rest of the study consists
of two phases: (i) eliciting human preferences, and (ii) evaluating
the synthesized controllers.

First, we presented to each participant a grid map shown in
Figure 5 and asked them to consider the planning problem for a
robot to navigate from the start grid to the destination with three
objectives: (1) minimizing the travel distance, (2) minimizing the
risk encountered on route, and (3) maximizing the number of pack-
ages collected along the way. We used four different methods to
elicit each participant’s preferences over these objectives, including
direct input of weight values (as illustrated in Figure 6a), Likert
scaling (Figure 6b), pairwise comparison of objective names (Fig-
ure 6¢), and pairwise comparison of optimal routes for individual
objectives (Figure 6d). As described in Section 3, we can derive a
weight vector over objectives from the results of each preference
elicitation method. Thus, by aggregating these four weight vectors
resulting from different elicitation methods, we obtained an interval
weight vector to represent each participant’s preferences.

Next, based on the elicited human preferences, we applied the
proposed approach to synthesize optimal robotic controllers for
three different grid maps (including Figure 5 and two other similar
maps). We randomized the order of maps for different particiants

4This user study has obtained the Institutional Review Board (IRB) approval.
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Figure 5: A grid map presented in the user study.

Input how important each factor should be to the robot using the provided boxes
on a scale of 0% to 100%. All three values should add up to 100%.

Distance: 1 %
Risk: 1 %
Package Collection: |1 |%

(a) Direct input of weight values.

1. How important should distance (how long the robot's route is) be to the robot?
Os (Very Important) 04030201 (Not Important)

2. How important should risk (how safe the robot is) be to the robot?
Os (Very Important) 04030201 (Not Important)

3. How important should package collection (number of packages collected) be to
the robot?

Os (Very Important) O 4 Q 3 Q 2 O 1 (Not Important)
(b) Likert scaling.

1. Which is more important for the robot to consider?

O Distance ‘/\D Risk

2.7Which is more important for the robot to consider?
() Distance () Package Collection

3. Which is more important for the robot to consider?
O Risk O Package Collection

(c) Pairwise comparison of objective names.

Choose which route is better for the robot to take. A solid red line indicates the
robot's route through the maze.

; SHTl:Tl : Ta .14. -
] et T

- e o) e
J R
O Route 1 O Route 2

(d) Pairwise comparison of routes that optimize individual objec-
tives (e.g., route 1 for distance and route 2 for risk).

Figure 6: Four different methods for eliciting preferences.

to counterbalance the ordering confound effect. For each map, we
asked participants a set of questions to evaluate the synthesized con-
trollers. We describe the evaluation design, including manipulated
factors, dependent measures, and hypotheses as follows.



Manipulated factors and dependent measures. We performed
a within-subject experiment in which all participants were exposed
to all evaluation conditions. We manipulated two independent fac-
tors: preferences and permissivity for the controller synthesis. For
each map, we first presented a pair of MDP strategies (visualized as
plans in the grid map) side by side: one is a sound strategy synthe-
sized based on the elicited preferences, and the other is an arbitrary
strategy unsound for preferences. Figure 7 shows the list of eval-
uation questions. We asked participants about their satisfaction
and perceived accuracy of each plan. We also asked them to choose
which plan they preferred.

Then, we presented side by side a strategy (visualized as a single
route plan) and a multi-strategy (visualized as a possible multi-
ple route plan), which are both synthesized based on the elicited
preferences but with different degrees of permissivity. We asked
participants to compare the synthesized strategy and multi-strategy
in terms of favor (“Which route do you like better?”), informativ-
ity (“Which route provides more information?”), and satisfaction
(“Which route are you more satisfied with?”). The exact question-
naire can be found in Figure 8.

Hypotheses. We made the following hypotheses based on the two
manipulated factors.

Comparing strategies synthesized based on the elicited prefer-
ences and arbitrary strategies:

e H1: Preference-based strategies are more favorable than
unsound arbitrary strategies.

e H2: Preference-based strategies are perceived as more accu-
rate than unsound arbitrary strategies.

e H3: Preference-based strategies yield better satisfaction than
unsound arbitrary strategies.

Comparing strategies and multi-strategies synthesized based on
the elicited preferences:

o H4: Multi-strategies are more favorable than strategies.

e H5: Multi-strategies are perceived as more informative than
strategies.

e H6: Multi-strategies yield better satisfaction than strategies.

6.2 Results Analysis

Comparing preference-based and arbitrary strategies. To eval-
uate hypothesis H1, we utilize a chi-squared test [32] to prove the

statistical significance in the frequency of strategy selection, assum-
ing an expected frequency of 50/50 to represent a random selection

of strategies by users. We use an alpha value of 0.05 and thus retain

a confidence level of 95% for our hypotheses. We assume a null

hypothesis that the user selection of strategies will be random. We

find that users favor preference-based strategies about 63% of the

time overall (y%:a= 0.05, y? = 21.33, CritVal = 3.84, p<0.00001, Sig-
nificant.); they choose preference-based strategies over arbitrary

strategies more often for all three maps (71%, 59%, 60%). Thus, the

data supports HI.

To evaluate hypotheses H2 and H3, shown in Figure 9 we employ
one-way repeated measures ANOVA tests [32] to prove the statisti-
cal significance of the mean of all responses between preference-
based strategies and arbitrary strategies. We use an alpha value of

Plan 1 Plan 2

e
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1. How satisfied are you with plan 1?
I 7 N\ M
O 5 (Very satisfied) O 4 O 3 O 2 O 1 (Not Satisfied)

2. How satisfied are you with plan 2?

O 5 (very satistied) O 4 O 3 O 2 O 1 (Not satisfied)
3. How accurate is plan 1 to your preferepces?

O 5 (Very Accurate) O 4 O 3 O 2 O1 (Not Accurate)
4. How accurate is plan 2 to your preferences?

) Y aYa) )

) 5 (Very Accurate) \_J 4 () 3 (2 O 1 (Not Accurate)

5. Which plan do you prefer overall?
C) Plan1 O Plan 2

Figure 7: Evaluation of a synthesized strategy compared to
an arbitrary strategy. Users were told these were possible
robotic plans generated based on their input preferences,
but not which plan was actually arbitrary.
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1. Which plan provides more information?
O pant O Plan2

2. Which plan more accurately reflects your preferences?

O plan1 O Plan2

3. Which plan are you more satisfied with?

O plan1 O Plan2

4. Which plan do you like better?

O plan1 O Plan2

Figure 8: Evaluation comparison of a synthesized multi-
strategy (plan 1) and a synthesized strategy (plan 2). Users
were told these were possible robotic plans generated based
on their input preferences. Stars indicate permissive states
with multiple allowed actions.

0.05 and assume a null hypothesis that users will perceive prefer-
ence accuracy and be satisfied with both strategies at a similar rate.
We find that users rated preference-based strategies as significantly
more accurate to their objective preferences (rANOVA:a= 0.05,
F(1,598) = 74.71, p<0.00001, Significant.). Figure 9 also shows that
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Figure 9: Mean and standard deviation of 5-point Likert rat-
ings about perceived preference accuracy and user satisfac-
tion for preference-based and arbitrary strategies.
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Figure 10: Pairwise comparison of the synthesized strategies
and multi-strategies regarding overall favor, informativity,
and satisfaction.

users were significantly more satisfied with preference-based strate-
gies than another arbitrary strategy through the plan (rANOVA:a=
0.05, F(1,598) = 105.28, p<0.00001, Significant.). Thus, the data sup-
ports H2 and H3.

Comparing strategies and multi-strategies. We use chi-squared
tests with an expected frequency of 50/50 and an alpha value of
0.05 to evaluate hypotheses H4, H5, and H6 with the study results
shown in Figure 10.

Column 1 (Overall Favor) of Figure 10 shows that users do not
significantly favor multi-strategies over less permissive strategies
()(2:0(: 0.05, )(2 =0.12, CritVal = 3.84, p<0.729, Not Significant.), only
slightly favoring multi-strategies to a single strategy counterpart.
Thus, the data rejects H4.

Column 2 (Informativity) of Figure 10 shows users agreed about
71% of the time that multi-strategies provided them more informa-
tion (y%:a= 0.05, y? = 54.61, CritVal = 3.84, p<0.00001, Significant.).
Thus, the data supports H5.

Column 3 (Satisfaction) of Figure 10 shows users were more
satisfied with multi-strategies 56% of the time (y%:a= 0.05, y* =
4.32, CritVal = 3.84, p<0.038, Significant.). Thus, the data supports
He.

Summary. We accept all hypotheses except H4 based on the sta-
tistical analysis. The user study results show that it is beneficial

to synthesize strategies that account for human preferences. In
addition, multi-strategies are more informative and yield better
user satisfaction. However, sometimes less is more, participants do
not always favor multi-strategies over strategies that are simpler
to understand.

7 RELATED WORK

Human preferences. Mathematical models of human preferences
have been studied broadly in the field of social choice theory [2].
There are many different representations of human preferences,
for example, encoded as reward functions for robot trajectory plan-
ning [31] and deep reinforcement learning [6], or specified using
temporal logics [25, 27]. In the context of multi-objective optimiza-
tion [26], preferences are represented as weights indicating the
relative importance of objectives. Optimization methods can vary
depending on when and how humans articulate their preferences.
Humans can indicate their preferences a priori before running the
optimization algorithm, they can progressively provide input during
the optimization process, or they can select a posteriori a solution
point from a set of Pareto optimal results. Our work considers a
priori elicitation of human preferences represented as weights for
multiple objectives.

Multi-objective controller synthesis for MDPs. Multi-objective
optimization has been well-studied in operation research and en-
gineering [26, 30]. In recent years, multi-objective optimization
for MDPs has been considered from a formal methods perspec-
tive [4, 8, 11, 15, 16, 20], which presents theories and algorithms
for verifying multi-objective properties, synthesizing strategies,
and approximating Pareto curves. More recently, such techniques
have been applied to multi-objective robot path planning [24] and
multi-objective controller synthesis for autonomous systems that
account for human operators’ workload and fatigue levels [14].
However, existing work does not account for the uncertainty of
human preferences in the relative importance of objectives.

There is a line of work (e.g., [7, 19, 37]) considering uncertain
MDPs where transition probabilities and rewards are represented
as an uncertain set of parameters or intervals. Our work is different
in the sense that we consider the uncertainty in human preferences
of different objectives.

Our proposed approach is based on mixed-integer linear pro-
gramming (MILP). There exist several MILP-based solutions to
compute counterexamples and witnesses for MDPs [12, 13, 17, 36].
However, these methods are not directly applicable for controller
synthesis which is a different problem. The most relevant work
is [10] that presents an MILP-based method for permissive con-
troller synthesis of probabilistic systems. As discussed in Section 1,
our approach is inspired by [10] but has several key differences
(e.g., [10] does not consider the controller soundness with respect
to multi-objective properties and human preferences).

8 CONCLUSION

In this paper, we developed a novel approach that accounts for
uncertain human preferences in the multi-objective controller syn-
thesis for MDPs. The proposed MILP-based approach synthesizes a
sound, optimally permissive multi-strategy with respect to a multi-
objective property and an uncertain set of human preferences. We



implemented and evaluated the proposed approach on three large
case studies. Experimental results show that our approach can
be successfully applied to synthesize sound, optimally permissive
multi-strategies with varying MDP model size and uncertainty level
of human preferences. In addition, we designed and conducted an
online user study with 100 participants using Amazon Mechani-
cal Turk, which shows statistically significant results about user
satisfaction of the synthesized controllers.

There are several directions to explore for possible future work.
First, we will extend our approach for a richer set of multi-objective
properties beyond expected total rewards, such as the temporal
logic-based multi-objective properties considered in [15]. Second,
we will extend our approach for a variety of probabilistic models
beyond MDPs, such as stochastic games and POMDPs. Last but not
least, we will apply our approach to a wider range of real-world
CPS applications (e.g., autonomous driving, smart cities).
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A PROOFS

Here, we prove the correctness of our MILP encoding, as stated
in Theorem 4.1. This result adapts and extends the proof for the
MILP encoding given in [10] (specifically the case for what are
called static penalty schemes and deterministic multi-strategies).
We require the following auxiliary lemma, where E%’S(r,-) denotes
the expected total reward for reward structure r; under strategy o
of MDP M, from a particular starting state s.

LEMMA A.1. Let M = (S,s0,A,8) be an MDP, ¢ = ([r1]min,
-« s [rn]min) be a multi-objective property, and 0 be a multi-strategy.
Consider the inequalities fors € S,1 < i < n:

is < i 6(s,a)(t) - pis +ri(s,
Bis mg;l); (s,a)(t) - i +ri(s,a)

is > 8(s,a)(t) - pir +ri(s,
Vis a’?&’;; (s,a)(1) - pie +ri(s,a)

Then values fl;5,7;s € R, fors € S and1 < i < n, are a solution
to the above inequalities if an only if jli s = inf 49 E%’S(ri) and

Vis = SUP4qg E;T\/(,s(ri)'

Proor. The above follows from standard results on the solution
of MDPs [29], noting that there is a separate set of inequalities for
each y; and v; and 1 < i < n. This also relies on our assumption
(see Section 4.1) that a designated set of zero-reward end states
is always reached with probability 1, ensuring that expected total
rewards are finite and removing the need to deal with zero-reward
loops (whereas [10] deals with the latter through additional MILP
variables and constraints). O

THEOREM 4.1. Let M be an MDP, ¢ = ([r1]mins---> [7n]min)
be a multi-objective property and w be an interval weight vector
representing uncertain human preferences. There is a sound, opti-
mally permissive multi-strategy 6 in M with respect to ¢ and w
whose permissive penalty is A(0), if and only if there is an opti-
mal assignment to the MILP instance from (1a)-(1g) which satisfies
A(0) = Xses Zaea(s) (1-1sa)-

Proor. We prove that: (1) every multi-strategy 6 induces a sat-
isfying assignment to the MILP such that the permissive penalty
A0) = 2ses Zaea(s) (1= 1s,q), and (2) vice versa.

Direction (1). We start by proving that, given a sound multi-
strategy 6, we can construct a satisfying assignment

{fis,a> fli,s» Vi,s }seS,aeA1<i<n to the MILP constraints. For s € S and
a € a(s), we set fl5,q = 11if s is a reachable state under 6 and
a € 6(s); otherwise, we set fjs 4 = 0.

Thus, the permissive penalty A(6) that counts the total num-
ber of disallowed actions in reachable states under 6 equals to
2ses Daea(s) (1 — fis,a). Constraints (1b) and (1c) are satisfied for
all unreachable states, because both sides of the inequalities are
zero. For reachable states, constraint (1b) is trivially satisfied if the
scaling factor c is large enough; constraint (1c) is also satisfied,
because a reachable state under strategy 0 should have at least one
allowed action.

We set fi; s=inf ;49 E%’s(ri) and 7 s=sup, 49 E(/TV(
(1d) and (1e) are satisfied for a € 0(s) thanks to Lemma A.1. If
a & 0(s), then (1d) and (1le) are also trivially satisfied because

s (r;). Constraints

fisa = 0. By the soundness definition, we have fi;5, > b; and
Visy < b;. This gives the satisfaction of constraints (1f) and (1g).
Direction (2). Given a satisfying MILP assignment

{fis,a> fli.s, Vi,s YseS,acA1<i<n, We construct § for M by putting (s) =
{a € a(s)| fis,a = 1} for all s € S. Thanks to constraints (1d)
and (le), and Lemma A.1, we have that jJ; s=inf, 9 E‘/’M,S(rl-) and
Vi,s=Sup, 49 E%’S(f’i) for each 1 < i < n. Using also constraints (1f)
and (1g), we have that, for any strategy o <6, Ej/l,s[) (ri) = flis, 2 b;
and E%/(,so (ri) < Vi < b;; thus the multi-strategy 0 is sound with
respect to ¢ and w. As in the reverse direction above, the permis-

siveness of 0 is A(0) = Yses Zaca(s)(1 — fs,a), taken from the
objective function of the MILP. O



