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Abstract

Inspired by human visual attention, we propose a novel
inverse reinforcement learning formulation using Maximum
Entropy Deep Inverse Reinforcement Learning (MEDIRL)
for predicting the visual attention of drivers in accident-
prone situations. MEDIRL predicts fixation locations that
lead to maximal rewards by learning a task-sensitive re-
ward function from eye fixation patterns recorded from at-
tentive drivers. Additionally, we introduce EyeCar, a new
driver attention dataset in accident-prone situations. We
conduct comprehensive experiments to evaluate our pro-
posed model on three common benchmarks: (DR(eye)VE,
BDD-A, DADA-2000), and our EyeCar dataset. Results in-
dicate that MEDIRL outperforms existing models for pre-
dicting attention and achieves state-of-the-art performance.
We present extensive ablation studies to provide more in-
sights into different features of our proposed model.!

1. Introduction

Autonomous vehicles have witnessed significant ad-
vances in recent years. These vehicles promise better safety
and freedom from the prolonged and monotonous task of
driving. However, one of the remaining safety challenges
of vision-based models integrated into these vehicles is
how to quickly identify important visual cues and under-
stand risks involved in traffic environments at a time of
urgency [51]. Humans have an incredible visual attention
ability to quickly detect the most relevant stimuli, to direct
attention to potential hazards in complex situations [43],
and to select only a relevant fraction of perceived informa-
tion for more in-depth processing [53]. Humans are able to
guide their attention by a combination of bottom-up (stimuli
driven, e.g., color and intensity) and top-down (fask driven,
e.g., current goals or intention) mechanisms [13, 27].

'The code and dataset are provided for reproducibility in https://
github.com/soniabaee/MEDIRL-EyeCar.
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Figure 1: Given a driving video and corresponding eye fixa-
tions as inputs, MEDIRL learns to model the fixation selec-
tion as a sequence of states and actions (S, A;). MEDIRL
then predicts a maximally-rewarding fixation location by
perceptually parsing a scene to extract rich visual informa-
tion (environment) and accumulating a sequence of visual
cues through fixations (state).

During task-specific activities, the goal-directed behav-
ior of humans along with their underlying farget-based se-
lective attention, enables drivers to ignore objects and un-
necessary details in their field of view that are irrelevant
to their decisions [7, 8]. For example, at one moment, a
driver’s goal might be to initiate an overtaking maneuver,
thus a nearby vehicle becomes the target object. Later,
the driver may need to stop abruptly to avoid an accident,
thereby the brake light of the car in front becomes the target
object. Despite recent progress in computer vision models
for autonomous systems [28, 63], they are still behind the
foveal vision ability of humans [42, 61, 69].

Inverse reinforcement learning (IRL) algorithms are ca-
pable to address this problem by learning to imitate the ef-
ficient attention allocation produced by an expert, i.e. an
attentive driver [41]. It is important that autonomous ve-
hicles leverage human visual attention mechanisms to im-
prove their performance, especially for better safety in crit-
ical situations where rare events can be encountered. In this
paper, we introduce Maximum Entropy Deep Inverse Rein-
forcement Learning (MEDIRL) to learn fask-specific visual
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attention policies to reliably predict attention in imminent
rear-end collisions.

Prior efforts in bottom-up saliency models commonly
prioritize pixel location (e.g., free-viewing fixation) [31, 44,
49]. These models do not fully capture driver attention in
goal-directed behavior [15, 61, 61, 32]. Moreover, video-
based saliency models usually aggregate spatial features
guided by saliency maps in each frame [57, 26, 25, 64].
However, most of these fixation prediction models utilized
a particular source of information [61, 45, 17], and did not
consider to jointly process spatial and temporal informa-
tion [57, 25]. In this work, we aim to predict eye fixation
patterns made prior to critical situations, where these pat-
terns can be either spatial (fixation map) or spatiotempo-
ral (fixation sequences) features.

Inverse reinforcement learning (IRL) is an advanced
form of imitation learning [74, 60] that enables a learn-
ing agent to acquire skills from expert demonstrations [52].
Our proposed MEDIRL model learns a sequence of eye fix-
ations by considering each fixation as a potential source
of reward [65]. We leverage collective visual information
that has been deemed relevant for video saliency in prior
works [39, 44, 9]. For example, if an autonomous system
tries to locate the salient regions of a driving scene before an
imminent rear-end collision, the desired visual behavior can
be demonstrated by studying the attention of a driver who
effectively detects brake lights. In this way, the learning
agent can infer a reward function explaining experts’ be-
havior and optimize its own behavior accordingly. To this
end, our proposed model predicts driver attention where a
fixation pattern is represented as state-action pairs. Given a
video frame input paired with eye fixations, MEDIRL pre-
dicts a maximally-rewarding fixation location (action) by
perceptually parsing a scene to extract rich visual informa-
tion (environment), and accumulating a sequence of visual
cues through fixations (state) (see Figure 1).

Additionally, we introduce EyeCar, a new driver atten-
tion dataset in accident-prone situations. EyeCar is es-
sential for training goal-directed attention models as it is
the only dataset capturing attention before accidents in an
environment with high traffic density. We exhaustively
evaluate our proposed model on three common bench-
marks (DR(eye)VE [45], BDD-A [62], DADA-2000 [17])
as well as our own EyeCar dataset. The experimental results
show that MEDIRL outperforms state-of-the-art models on
driver attention prediction. We also conduct extensive abla-
tion studies to determine which input features are most im-
portant for driver attention prediction in critical situations.

Our contributions can be summarized as follows:

* We propose MEDIRL, a novel IRL formulation for
predicting driver visual attention in accident-prone sit-
uations. MEDIRL uses maximum entropy deep in-
verse reinforcement learning to predict maximally-

rewarding fixation locations.

* We introduce EyeCar, a new driver attention dataset
comprised of rear-end collisions videos for the goal-
directed attention problem in critical driving situations.

» Extensive experimental evaluation on three driver at-
tention benchmark datasets: DR(eye)VE [45], BDD-
A [62], DADA-2000 [17], and EyeCar. Results show
that MEDIRL outperforms existing models for atten-
tion prediction and achieves state-of-the-art perfor-
mance. Besides, we present ablation studies showing
target (brake light), non-target (context), and driving
tasks are important for predicting driver attention.

2. Related Work

Our work is broadly related to prior efforts on models for
fixation prediction, using inverse reinforcement learning for
visual tasks, and prior datasets for driving tasks.

Fixation Prediction. With increased access to large-scale
annotated attention datasets and advanced data-driven ma-
chine learning techniques, prediction of human saliency
has received significant interest in computer vision [59,
56, 31, 73, 11, 39]. A large number of previous stud-
ies explored bottom-up saliency models and visual search
strategies over static stimuli [16, 34, 22, 18, 4, 67], and
video [73, 58, 38, 39, 68, 9]. Generally, the output of
these models is an attention map showing the probability
of eye fixation distribution. In contrast to this approach,
fewer works explored top-down attention models for ex-
plaining sequences of eye movements [48, 5, 3]. More re-
cently, some works explored visual attention models in the
context of driving [23, 61, 19]. Because task-specific in-
structions may change gaze distributions [47], some models
commonly detect salient regions of images or videos in a
free-viewing task. Prior research also studied the pattern
of eye movements associated with the task-specific activi-
ties [38, 1]. Some of these works rely on the direct ties be-
tween eye movement and the demands of a task [65, 50, 48].
These previously proposed attention models are trained
mostly on static image-viewing scenarios while human at-
tention typically gets information in a sequential fashion.
Further, recent video-saliency works have proposed joint
bottom-up and top-down mechanisms for attention predic-
tion using deep learning [45, 62, 17, 29, 44]. However, they
did not consider to jointly process spatial and temporal in-
formation. We are interested in detecting the salient regions
of a scene in a task-specific driving activity in which esti-
mating where the drivers are dynamically looking at, and
reliably detecting the task-related objects (target objects).

Inverse Reinforcement learning. Our approach builds on
works on modeling human visual attention with their fixa-
tion being a sequential decision process of the agent to de-
tect salient regions [37, 70, 35]. The recently proposed work
by Yang et al. [65] is the closest to our work as it proposes
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‘ Dataset H collision ‘ collision-POV ‘ speed ‘ GPS ‘ #vehicles ‘ #frames ‘ #gaze ‘

DR(eye)Ve X X v v 1.0 555k 8
BDD-A X X v X 4.4 318k 45
DADA-2000 4 X X X 2.1 658k 20
EyeCar v v v v 4.6 315k 20

Table 1: Compared to prior datasets, EyeCar is the only
dataset that captured collisions from a point-of-view (POV)
perspective and the host vehicle is involved in the collision.
Previous datasets either did not capture attention from a col-
lision point of view or had a less crowded scene. Note that
#vehicles refer to the average number of vehicles per frame.

a model of visual attention in a visual search task of static
images. We go further by addressing video saliency predic-
tions in a dynamic and complex driving environment. Our
model also does not require to predefine a set of targets but
instead parses each driving video frame to extract rich scene
context and candidate target objects. Next, it integrates vi-
sual cues with driver’s eye fixations. It then recovers the in-
trinsic task-specific reward functions [72] induced by visual
attention allocation policies recorded from drivers in a driv-
ing environment. To do that, we propose to use maximum
entropy deep IRL [74] which can handle raw image inputs
and enables the model to handle the often sub-optimal and
seemingly stochastic behaviors of drivers [60].

Driving Attention Datasets. Several driving behavior
datasets have been proposed [10, 63, 46]. However,
only a few large-scale, publicly available, real-world video
datasets with annotated visual attention exist in a driving
context. DR(eye)VE [45] and BDD-A [62] are the most
well-known large-scale annotated datasets in naturalistic
and in-lab driving settings, respectively. Importantly, the
recently-released annotated driving attention dataset with
in-lab settings, DADA-2000 [17], is the only available
dataset capturing scenes of collisions. This is because it
is nearly impossible to collect enough driver attention data
for collision or near-collision events. EyeCar further con-
tributes to this area by having a more diverse array of driv-
ing events, beyond looking forward and lane-keeping. Un-
like DADA-2000, EyeCar captures collisions from a col-
lision point-of-view (POV) perspective (egocentric) where
the ego-vehicle is involved in the accident. Table 1 com-
pares EyeCar with similar datasets (more details in Sec. 4).

3. Method

We propose MEDIRL for predicting drivers’ visual at-
tention in accident prone situations from driving videos
paired with their eye fixations. MEDIRL learns a visual
attention policy from demonstrated attention behavior. We
formulate the problem as the learning of a policy function
that models the eye fixations as a sequence of decisions
made by an agent. Each fixation pattern is predicted given
the present agent state and the current observed world con-
figuration (i.e., a scene context).

Target and non-
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Figure 2: Overview of our state-representation. To simulate
human fovea, the agent receives high-resolution informa-
tion surrounding the attended location, and low-resolution
information outside of this simulated fovea. At each fixa-
tion point, a new state is generated by applying Eq. 3.2.

3.1. Overview and Preliminaries

In this section, we introduce our notation and describe
the features used in our proposed model.
Visual Information. During attention allocation in a dy-
namic and complex scene, relevant anchor objects—those
with a spatial relationship to the target object—can guide at-
tention to a faster reaction time, less scene coverage, and
less time between fixating on the anchor and the target ob-
ject [54, 24, 2]. Therefore, we need to encode each frame of
a given video to extract target and non-target features which
an agent needs in order to effectively select the next fixation
locations. Next, we describe in detail how this encoding is
done (see Figure. 2). An overview of the visual encoder
function is also outlined in Algorithm 1.

Given a family of driving video frame input, I =

{I ¢ }tT:r where T is the number of frames. We extract vi-
sual information in a discriminative way while keeping the
relevant spatial information. Each frame has several fixa-
tion locations that are processed sequentially. At each step,
we extracts visual features from the current input frame. To
well represent a given video frame input to an agent, we
consider both pixel- and instance-level representation (see
Figure 1). The pixel-level representation determines the
overall scene category by putting emphasis on understand-
ing its global properties. The instance-level representation
identifies the individual constituent parts of a whole scene
as well as their interrelations on a more local instance-level.

For pixel-level representations, we extract features X,
from a given video frame (e.g., cars, trees). The feature
extractor output is a tensor X; € R"*%*< where h, w, and
d are the height, width, and channel, respectively. At the
instance-level, we represent the bounding box or instance-
mask to reason explicitly over instances (e.g., lead-vehicle)
rather than reasoning over all objects representation. We
utilize a position-sensitive ROI average pooling layer [64]
to extract region features Y; for each box.

To extract features relevant to a driving task, we also con-
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sider the road lanes along with the lead vehicle features in
our visual representation. The road lanes (G;) are critical
for the task-related visual attention of drivers since they are
an important indicator of the type of maneuver [14]. To
amplify the predicted attention for pixels of the target ob-
jects, we detect the lead vehicle (M) which is important in
rear-end collisions [36]. The lead vehicle is a critical anchor
object that can direct the driver attention to the target object,
i.e. brake lights. We discretize each frame into an n X m
grid where each patch matches the smallest (furthest) size of
the lead vehicle bounding box (see Figure. 2). In addition,
we extract pixel locations of the brake lights by first con-
verting each frame to the HSV color space, and then using a
position-sensitive ROI max-pooling layer to extract region
features for the lead vehicle box (U;). The boxes and their
respective features are treated as a set of objects.

Relative Distance. Drivers pay more attention to the objects
which are relatively closer as opposed to those at a distance,
since the chance of collision is significantly higher for the
former case. Thus, relative distance between objects and
the ego-vehicle is crucial for making optimal driving deci-
sions [44]. To amplify nearby regions of a driving scene, we
use dense depth map (D;) and combine it with the general
visual features (Y};) by using the following formula:

where )\ is an amplification factor

Driving Tasks. To discover which features of an observed
environment are the most driving task related, we need to
determine the types ((Q);) of driving task. We observed
three driving tasks ending to rear-end collisions across all
videos: lane-keeping, merging-in, and braking. We use
function fi4s) to define these driving tasks by two criteria:
1) ego-vehicle makes lane changing decision ¢ and 2) the
existence of a traffic signal I,;4n4; in a given driving video.

lane-keeping, ifc =0, Isgna =0

driving task = < merging-in, ifc=1, Iyjgna =0orl

braking, ifc=0, Iygna =1
Vehicle State. We optionally concatenate the speed of the
ego-vehicle v;, which can influence the fixation selec-
tion [66, 45, 44], with the extracted visual representation,
relative distance, and driving tasks.

3.2. MEDIRL

Attentive drivers predominantly attend to the task-related
regions of the scene to filter out irrelevant information and
ultimately make the optimal decisions. MEDIRL attempts
to imitate this behavior by using the collective non-target
and target features —extracted through parsing the driving
scene— in the state representation. Subsequently, it inte-
grates changes in the state representation with alterations in

eye fixation point, to predict fixation. Therefore, the state
of an agent is determined by a sequence of visual informa-
tion that accumulates through fixations towards the target
object (i.e., a brake light) which we call it a foveated frame,
Figure 1 shows an example of a foveated frame. The ac-
tion of an agent, the next fixation location, depends on the
state at that time. The goal of an agent is to maximize inter-
nal reward by encapsulating the intended behavior of atten-
tive drivers (experts) through changes in fixation locations.
MEDIRL employs IRL to recover this reward function (R)
from the set of demonstrations.

State Representation: MEDIRL considers the following
components in the state representations: simulating the hu-
man visual system, collecting a context of spatial cues, and
modeling state dynamics. See Algorithm 1 for describing
the overview of the state representation.

Human visual system (fovea): Human visual system ac-
cumulates information by attending to a specific location
within the field of view. Consequently, humans selectively
fixate on new locations to make optimal decisions. It means
high-resolution visual information is available only at a cen-
tral fixated location and the visual input outside of the attend
location becomes progressively more blurred with distance
away from the currently fixated location [69]. We simu-
late human fovea by capturing high-resolution information
about the current fixation location and a surrounding patch
with a size 12 x 17 (about 1° visual angle), as well as low-
resolution information outside of the simulated fovea [69].
To effectively formulate this system, MEDIRL uses a lo-
cal patch from the original frames of the video as the high-
resolution foveal input and a blurred version of the frame
to approximate low-resolution input L from peripheral vi-
sion [71]. We obtain the blurred frames by applying a Gaus-
sian smoothing with standard deviation 0 = 2 x d, which d
is equal to Euclidean distance between the current fixation
point py ¢, where k = 0,...,KC, and the size of the frame.
Note that the number of fixations K varies from frame to
frame.

Spatial cues: A driving task and the driving-relevant (an-
chor) objects of the scene can potentially direct drivers’ at-
tention to the primary target object. For example, drivers
consider the distance to the lead vehicle when they brake.
To approximate this guided selection of fixations, MEDIRL
includes visual information in the state representation. This
state representation collects the non-target and target fea-
tures can create a context of spatial and temporal cues that
might affect the selection of drivers’ fixations.

Dynamics of state: To model the altering of the state
representation followed by each fixation, we propose a dy-
namic state model. To begin with, the state is a low-
resolution frame corresponding to peripheral visual input.
After each fixation made by a driver, we update the state
by replacing the portion of the low-resolution features with
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Algorithm 1 MEDIRL State Representation

1: function VISUAL ENCODER(a video frame I)
: X := HRnet(1)

3 O := mask-renn(l)

4 Y := ROI-average(O, X)

5: G, ¢ := VPG-net(l)

6: M, Isignat = mask-renn(Y)

7.

8

9

> global feature

> list of detected object
> extract region features
> detect road lanes and lane changes
> detect lead-vehicle and traffic signal
> detect brake lights

> compute relative distance
> amplify close objects

> compute driving task

U := ROI-max(HSV-color(1),M)
D := MonoDepth2(I)
: Z:=Y®D
10: Q= ftask (¢, Isignal)

11: visual-cues = concatenate(G, M, U, Z) > a context of spatial cues
12: v := ego-vehicle speed > vehicle state
13: return visual-cues, v, Q > return all extracted features

14: function BLUR(frame I, fixation k)

15: d = Euclidean(k,size(1))

16: I' = GaussianBlur(I,c),0 =2 X d > apply a Gaussian smoothing
17: return I’ > return the low-resolution frame
18: procedure STATE DYNAMICS(frame I, fixations K)

19: for k € K do do

20: # collect context of spatial cues based on a simulated fovea movements
21: H; := VisualEncoder(1;)

22: Ly, := VisualEncoder(blur(I k))

23: # update the state that occurs following each fixation

24: Op,1 = Lo,1 > initialize frame corresponding to peripheral vision
25: # B, ¢ is the circular mask generated from the k-th fixation

26: Okt1,t =Ert ©H + (1 — Er¢) © Okt

the corresponding high-resolution portion obtained at each
new fixation location (see Figure. 2). At a given time step
t, feature maps H for the original frame (high-resolution)
and feature maps L for the blurred frame (low-resolution)
are combined as follows:

Oo,1 = Lo,1,0p41,t = By © He 4+ (1 = Ei ) © Opy,

where © is an element-wise product. Oy ; is a context of
spatial cues after k fixations. Ey, ; is the circular mask gen-
erated from the k" fixation (i.e., it is a binary map with 1
at current fixation location and O elsewhere in a discretize
frame). To jointly aggregate all the temporal information,
we update the next frame by considering all context of spa-
tial cues in the previous frame as follows:

Okp1 = Epi41 © Hipy + (1 — Egy41) © Ok,
where Ox is visual information after all fixations K of
time step t(previous frame).

Drivers have various visual behaviors while performing
a driving tasks and many factors (e.g. speed) may affect the
chosen fixation strategy [66, 45, 44]. To efficiently predict
fixations for all drivers, we augment the state by aggregat-
ing it with a high-dimensional latent space that encodes the
driving task ;. We then add another fully-connected layer
to encode the current speed of the ego-vehicle v; and con-
catenate the state with the speed vector. With the visual
information and ego-vehicle state at each time step, we fuse
all into a single state. The state of the agent is then com-
plete in the sense that it contains all bottom-up, top-down,
and historical information (more detail of these components
can be found in the supplementary material).

Action Space: Herein we aim to predict the next eye fix-
ation location of a driver. Therefore, the policy selects one
out of n * m patches in a given discretize frame. The center

of the selected patch in the frame is a new fixation. Fi-
nally, the changes (A, A,) of the current fixation and the
selected fixation define the action space A;: {left, right, up,
down, focus-inward, focus-outward, stay}, as shown in Fig-
ure 1 which has three degrees of freedom (vertical, horizon-
tal, diagonal).

Reward and Policy: To learn the reward function and
policies of driver visual attention in rear-end collisions, we
use a maximum entropy deep inverse reinforcement learn-
ing [60]. MEDIRL assumes the reward is a function of the
state and the action, and this reward function can be jointly
learned using the imitation policy.

The main goal of IRL is to recover the unknown re-

—_

ward function R from the set of demonstrations = =
{&, &2, ..., &g}, where & = {(s1,a1), ..., (S, a7)}. We use
maximum entropy deep IRL, which models trajectories as
being distributed proportional to their exponentiated return:

p(§) = (1/z)exp(R(€)),

where Z is the partition function, Z = | ¢ exp(R(§))dE. To
approximate the reward function, we assume it can be rep-
resented as R = w’ ¢, where w is a weight vector and ¢ is a
feature vector. Such representation is constrained to be lin-
ear with respect to the input features ¢. In order to learn a
reward function with fewer constraints, we use deep learn-
ing techniques to determine ®(¢, ), a potentially higher di-
mensional feature space, and approximate the reward func-
tion as R = w! ®(¢, 0)(s, a). Note that the weight vectors
of w and the parameter vector 6 are both associated with the
network which is fine-tuned by jointly training the different
category of driving tasks.

Loss Function: To learn the attention policies, MEDIRL
maximizes the joint posterior distribution of fixation selec-
tion demonstrations =, under a given reward structure and
of the model parameter, 6. For a single frame and a given
fixation sequence ¢ with a length of | 7|, the likelihood is:

Lo = (/=) Y logP(¢',0),
gies
where P(£%,6) is the probability of the trajectory &¢ in
demonstration =.

The algorithm tries to select a reward function that in-
duces an attention policy with a maximum entropy distribu-
tion over all state-action trajectories and minimum empiri-
cal Kullback-Leibler divergence (KLD) from drivers state-
action pairs. In each iteration (q) of maximum entropy deep
IRL algorithm, we first evaluate the reward value based on
the state features and the current reward network parame-
ters (64). Then, we determine the current policy (7,) based
on the current approximation of reward ([2;), and transition
matrix 7 (i.e., the outcome state-space of a taken action).
We benefit from the maximum entropy paradigm, which en-
ables the model to handle sub-optimal and stochastic visual
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g Task Merging-in Lane-keeping Braking
A | Method CCt [ s-AUCT | KLD| [ CCt [ s-AUCt [ KLD] | CCt [ s-AUCT | KLD]
= | Multi-branch [45] 0.48 - 280 | 0.55 - 1.87 | 0.71 - 2.20
| HWS [62] 0.51 - 2.12 | 0.75 - 1.72 | 0.74 - 1.99
L; SAM-ResNet [11] || 0.78 - 2.01 | 0.80 - 1.80 | 0.79 - 1.89
2| SAM-VGG [11] 0.78 - 205 | 0.82 - 1.84 | 0.80 - 1.81
é"/ TASED-NET [39] || 0.68 - 1.89 | 0.73 - 1.71 | 0.70 - 1.89
A | MEDIRL (ours) 0.78 - 0.88 | 0.89 - 0.75 | 0.85 - 0.82
Multi-branch [45] 0.58 0.51 2.08 | 0.75 0.72 2.00 | 0.69 0.77 2.04
@ HWS [62] 0.53 0.59 1.95 | 0.67 0.89 1.52 | 0.69 0.81 1.59
z SAM-ResNet [11] || 0.74 0.61 2.00 | 0.89 0.79 1.83 | 0.85 0.88 1.89
A | SAM-VGG [11] 0.76 0.62 1.79 | 0.89 0.82 1.64 | 0.86 0.87 1.85
% TASED-NET [39] || 0.73 0.68 1.83 | 0.81 0.66 1.17 | 0.87 0.88 1.12
MEDIRL (ours) 0.82 0.79 091 | 0.94 0.91 0.85 | 0.93 0.92 0.89
& | Multi-branch [45] 0.44 0.53 3.65 | 0.69 0.54 285 | 0.67 0.64 291
= | HWS[62] 0.49 0.59 3.02 | 0.72 0.53 2.65 | 0.69 0.77 2.80
S | SAM-ResNet [11] || 0.65 0.61 239 | 0.78 0.64 232 | 0.75 0.81 2.34
: SAM-VGG [11] 0.68 0.60 241 | 0.76 0.62 224 | 0.75 0.80 2.35
A | TASED-NET [39] || 0.69 0.66 1.98 | 0.78 0.69 1.87 | 0.80 0.81 1.45
E MEDIRL (ours) 0.70 0.68 1.31 | 0.89 0.71 0.92 | 0.81 0.88 0.99

Table 2: Performance comparison of driver attention prediction on benchmarks. Models trained on the BDD-A [62] train set
and tested on Dr(eye)VE [45], BDD-A [62], and DADA-2000 [17] test sets.

behavior of drivers, by operating on the distribution over
possible trajectories [74, 60].

4. The EyeCar Dataset

Attentional lapses in normal situations (e.g., lane-
following, empty road) do not cost the same as accident-
prone situations (e.g., rear-end collision) where the cost of
making an error is high. Nevertheless, collecting enough
eye movements from drivers in accident-prone situations
is nearly impossible because they are rather uncommon.
In addition, driver attention data collected in-car has two
main drawbacks [62, 61]: 1) missing covert attention: eye-
trackers can only record a single focus of drivers while a
driver may be attending to multiple important objects, and
2) false positive gaze: drivers can be distracted to potential
disturbances (e.g., side road advertisement) that are not rel-
evant to the driving. Prior works [62, 61] addressed these
issues with in-lab data collection, collecting drivers’ eye
movements while performing simulated driving tasks.

Although in-lab driver attention collection is inevitably
different from in-car driver attention, BDD-A in-lab exper-
imental protocol showed that in-lab visual attention data
reliably reveal where a driver should look at and identify
the potential risks. Therefore, we follow their established
and standardized experimental design protocol for collect-
ing in-lab driver attention and create the EyeCar dataset
exclusively for rear-end collisions. In order to incentivize
users to pay attention and play the fall-back ready role in
autonomous vehicles, we further modified the experimental
design by sitting them in a low-fidelity driving simulator.
The simulator consisting of a Logitech G29 steering wheel,
accelerator, brake pedal, and eye-tracker (see supplemen-

tary materials for more details).

We recruited 20 participants (5 female and 15 male,
ages 22-39) with at least three years of driving experience
(Mean=9.7, SD=5.8). Participants watched all 21 selected
dash-cam videos (each lasted approximately 30sec) to iden-
tify hazardous cues in rear-end collisions. The EyeCar
dataset contains 3.5 hours of gaze behavior (aggregated and
raw) captured from more than 315,000 rear-end collisions
video frames. Each frame comprises 4.6 vehicles on aver-
age which makes EyeCar driving scenes more complex than
other visual attention datasets (see Table 1). The extracted
speed from each frame shows that 38% of vehicles were
driving high (65 < v), 39% normal (35 < v < 65), and
23% low (35 > v). EyeCar also provides a rich set of anno-
tations(e.g., scene tagging, object bounding, lane marking,
etc.; more details in supplementary materials).

5. Experiments

Training details. Driver attention is often strongly biased
towards the vanishing point of the road and does not regu-
larly change in a normal driving situation [62, 44]. How-
ever, attentive drivers regularly shift their attention from the
center of the road to capture important cues in accident-
prone situations. MEDIRL aims to predict driver attention
in critical situations. Thus, to learn driving task-specific fix-
ations and to avoid a strong center bias in our model two cri-
teria were imposed when sampling training frames: 1) train
on important frames, 2) exclude driving-irrelevant objects
fixation sequence. Since a driver has to attend (fixate) to
important visual cues which usually appear in critical situ-
ations, the important frames are defined as frames wherein
the attention map greatly deviates from the average atten-
tion map. We use KLD to measure the difference between
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g Task Merging-in Lane-keeping Braking
A | Method CCT [s-AUCT [ KLD] [ CCt [ s-AUCT [ KLD| | CCt [ s-AUCT | KLD]
='| Multi-branch [45] || 0.36 0.37 6.46 | 0.51 0.49 4.80 | 0.69 0.49 3.38
| HWS [62] 0.38 0.34 438 | 0.71 0.51 444 1072 0.61 3.30
E SAM-ResNet [11] || 0.49 0.48 429 |0.73 0.55 390 | 0.74 0.66 3.27
Q SAM-VGG [11] 0.50 0.47 431 | 0.74 0.53 395 | 0.75 0.64 3.29
?:)Z TASED-NET [39] || 0.48 0.46 395 | 0.74 0.55 3.81 | 0.76 0.65 3.23
A | MEDIRL (ours) 0.51 0.51 232 | 0.76 0.57 311 | 0.79 0.69 3.07
Multi-branch [45] || 0.46 0.48 442 | 0.51 0.61 3.57 | 0.61 0.64 3.08
@ HWS [62] 0.41 0.47 436 | 0.69 0.81 3.55 | 0.67 0.68 2.86
z SAM-ResNet [11] || 0.55 0.48 3.85 | 0.85 0.72 329 | 0.79 0.74 2.46
A | SAM-VGG [11] 0.53 0.49 392 | 0.84 0.70 322 | 0.77 0.70 2.49
g TASED-NET [39] || 0.55 0.49 3.78 | 0.84 0.71 312 | 0.77 0.76 2.47
MEDIRL (ours) 0.58 0.49 2.81 | 0.86 0.73 243 | 0.79 0.81 2.30
©'| Multi-branch [45] || 0.21 0.38 6.46 | 0.45 0.44 4.67 | 0.54 0.59 3.12
=| HWS [62] 0.31 0.35 6.12 | 0.51 0.47 454 | 0.67 0.71 3.10
S| SAM-ResNet [11] || 0.33 0.38 528 | 0.65 0.56 442 | 0.77 0.71 3.07
2 SAM-VGG [11] 0.30 0.39 535 | 0.69 0.57 431 | 0.74 0.69 3.10
A | TASED-NET [39] || 0.32 0.38 476 | 0.68 0.57 399 | 0.73 0.74 3.01
g MEDIRL (ours) 0.41 0.45 3.79 | 0.73 0.60 251 | 0.75 0.79 2.51

Table 3: Performance comparison of driver attention prediction on EyeCar. The models trained on Dr(eye)VE [45], BDD-

A [62], and DADA-2000 [17] train sets and tested on EyeCar.

the attention over each video frame and the average atten-
tion map of the entire video. The average attention map of
each frame is calculated by aggregating and smoothing the
gaze patterns of all independent observers [12]. We then
sample continuous sequences of six frames as the training
frames where their KLD is at least 0.89. We also exclude
fixation sequences with more than 40% focus on the irrele-
vant objects (e.g., trees, advertisement).

Datasets. We evaluate our model on three driver atten-
tion benchmark datasets: DR(eye)VE [45], BDD-A [62],
DADA-2000 [17] and EyeCar. To predict driver attention
related to rear-end collisions, we extract the full stopping
events (resembling near-collisions) from DR(eye)VE and
BDD-A, and rear-end collision events from DADA-200.
After applying the exclusion standard, we were left with
400, 1350, and 534 events in DR(eye)VE, BDD-A, and
DADA-200, respectively. Finally, within each type of driv-
ing task, we randomly split each of them into three sets of:
70% training, 10% validation, and 20% test.

5.1. Implementation Details

We resize each video frame input to 144 x 256. Then
we normalize each frame by subtracting the global mean
from the raw pixels and dividing by the global standard de-
viation. To encode visual information (see Sec. 3), we use
several backbones: HRNetV2 [55]—pre-trained on Mapil-
lary Vistas street-view scene [40], MaskTrack-RCNN [64]-
pre-trained on youtube-VIS, Monodepth2 [21]—pre-trained
on KITTI 2015 [20], and VPGNet [33]-pre-trained on
VPGNet dataset.

MEDIRL consists of four hidden convolutional layers
with 52, 34, 20, and 20 ReLu units, respectively; followed
by seven softmax units to output a final probability map. We

f

o o
HWS[62]

Multi-Branch[45]

SAM-VGG[11] D|R|.

Figure 3: Predicted driver attention in a braking task for
each compared model and MEDIRL. They all trained on
BDD-A. MEDIRL can learn to detect most task-related
salient stimuli (e.g., traffic light, brake light). Redder color
indicates the expectation of higher reward for fixation loca-
tion. More examples in supplementary materials.

use batch normalization after ReLu activation and set the re-
ward discount factor to 0.98. We also set the initial learning
rate to 1.5 x 104, and during the first 10 epochs, we lin-
early increase the learning rate to 5 x 10~%. After epoch 11,
we apply a learning rate decay strategy that multiplies the
learning rate by 0.25 every three epochs. For training, we
use Adam optimizer [30] (61 = .9, 82 = .99) and weight
decay = 0. Overall, MEDIRL is trained on 36 epochs with
a batch size of 20 sequences, and each sequence had six
frames. The training time of MEDIRL is approximately 1.5
hours on a single NVIDIA Tesla V100 GPU and it takes
about 0.08 seconds to process each frame.

Evaluation Metrics. To evaluate attention prediction, we
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‘ ‘ Ablated versions of MEDIRL

Dataset || EyeCar BDD-A [62]
| CCT [KLD] [ Fs T | CCT [ KLD] [ F5 1 |

1 | global image + IRL 0.18 | 4.21 0.10 | 022 | 438 | 0.12
2 | non target + IRL 019 | 415 | 0.12 | 020 | 429 | 0.12
3 | target+non target + IRL 029 | 3.51 0.18 | 036 | 3.85 | 0.25
4 | target+non target+distance + IRL 0.30 | 3.62 0.19 | 0.38 3.77 0.27
5 | lead vehicle+lane + IRL 030 | 3.57 | 023 | 029 | 3.51 0.28
6 | target+non target + lane+lead vehicle + IRL 0.36 | 3.53 0.21 | 041 347 0.32
7 | target+non target+distance + lane+lead vehicle + IRL 0.33 343 0.26 | 0.35 3.07 0.34
8 | target+non target+distance + lane+driving task + IRL 0.51 | 3.41 031 | 057 | 2.18 | 0.59
9 | target+non target+distance + lead vehicle+driving task + IRL 0.66 | 291 049 | 0.73 1.07 0.66
10 | target+non target+distance+lane+lead vehicle+driving task + IRL 070 | 2.78 | 0.60 | 0.87 | 0.87 | 0.75
11 | MEDIRL: target+non target+distance+lane+lead vehicle+driving task + speed + IRL 0.74 | 2.51 0.61 | 0.89 | 0.88 0.78

Table 4: Quantitative evaluation of the ablated versions of MEDIRL and full MEDIRL. All models trained on BDD-A train
set and tested on EyeCar and BDD-A test sets. We mask out one part by setting the map(s) to zeros at each time.

use location-based and distribution-based saliency metrics:
KLD, shuffled Area under the ROC curve (s-AUC), and
Correlation Coefficient (CC) [6]. We report s-AUC since
it penalizes models with more central prediction [5, 6, 19].

6. Results

Table 2 provides the quantitative evaluation results of
MEDIRL and five baseline attention prediction models in-
cluding Multi-branch [45], HWS [62], SAM-ResNet [11],
SAM-VGG [11], TASED-NET [39]. For fair comparisons,
we directly report available results released by the authors
or reproduce experimental results via publicly available
source codes. In this evaluation, we trained models on
BDD-A and tested on each benchmark. The results high-
light that MEDIRL surpasses almost all models under all
evaluation metric. Most significantly, our approach can ef-
fectively predict driver attention while performing various
driving tasks. Although we are unable to calculate s-AUC
for Dr(eye)VE as the original fixation were not reported, the
results in Table 2 also indicates that the MEDIRL’s superi-
ority is not limited to a dataset.

Further, we evaluate MEDIRL along with other at-
tention models on EyeCar dataset, reported in Table 3.
In this experiment, we trained models on each bench-
mark (i.e., BDD-A, DR(eye)VE, DADA) and tested on
EyeCar. MEDIRL performs favorably against other coun-
terparts. However, there is a big performance gap be-
tween Table 2 and 3, which may indicate EyeCar has dif-
ferent distributions. To investigate this matter, we trained
models on EyeCar and tested on each benchmark. We
obtained the following results; (CC : 0.89, KLD : 0.80), (CC
:0.94, s-AUC : 0.91, KLD : 0.85), (CC : 0.85, s-AUC : 0.77,
KLD : 0.99) on DR(eye)VE, BDD-A, and DADA-2000, re-
spectively, that are average values for all types of driving
tasks. These results show the effectiveness of EyeCar on
representing salient regions in critical situations and also
show that EyeCar attention distribution prior to accident-
prone situations is more informative than benchmarks.

Figure 3 shows qualitative comparison of MEDIRL
against other models. MEDIRL can reliably capture the im-
portant visual cues in a braking task in the case of a complex

frame. In contrast, nearly all other models partially cap-
ture the spatial cues and predict attention mainly towards
the center of the frame, thereby ignoring the target and non-
target objects (i.e., spatial cues). Please refer to the supple-
mentary material for more examples.

6.1. Ablations Studies

To investigate how different features in our model affect
its performance, we compare several ablated versions of our
model against two testing sets (i.e., EyeCar and BDD-A),
using Fjg (B2 =1[44]), CC, and KLD. All ablated versions
of our model are trained on BDD-A.

The results show that crucial features in the model in-
clude the context of spatial cues related to target and non-
target (L3), driving-specific objects (Line 8, 10), followed
by driving task (L9) features. MEDIRL without target (L2)
and non-target (LS) shows a significant performance drop.
From the results in Table 4, we can observe that compared
with the ablated versions, our full model achieves better per-
formance, which demonstrates the necessity of each feature
in our proposed model.

7. Conclusion

We proposed MEDIRL, a novel inverse reinforcement
learning formulation for predicting driver attention in
accident-prone situations. MEDIRL effectively learns to
model the fixation selection as a sequence of states and ac-
tions. MEDIRL predicts a maximally-rewarding fixation lo-
cation by perceptually parsing a scene and accumulating a
sequence of visual cues through fixations. To facilitate our
study, we provide a new driver attention dataset comprised
of rear-end collision videos with richly annotated eye infor-
mation. We investigate the effectiveness of attention predic-
tion model by experimental evaluation on three benchmarks
and EyeCar. Results show that MEDIRL outperforms ex-
isting models for attention prediction and achieves state-of-
the-art performance.
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