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CONNECTING ARROW’S THEOREM, VOTING THEORY, AND THE
TRAVELING SALESPERSON PROBLEM

DONALD G. SAARI

ABSTRACT. Problems with majority voting over pairs as represented by Arrow’s Theorem
and those of finding the lengths of closed paths as captured by the Traveling Salesperson
Problem (TSP) appear to have nothing in common. In fact, they are connected. As
shown, pairwise voting and a version of the TSP share the same domain where each sys-
tem can be simplified by restricting it to complementary regions to eliminate extraneous
terms. Central for doing so is the Borda Count, where it is shown that its outcome most
accurately reflects the voter preferences.

1. INTRODUCTION

Among the many challenges posed by discrete mathematics and the Social Sciences are
aspects of voting theory as characterized by Arrow’s Theorem and the properties of closed
paths on a graph as typified by the Traveling Salesperson Problem (TSP). Surprisingly,
both topics can be analyzed with essentially the same approach. After introducing the com-
monality with examples, it is shown how each situation can be simplified by emphasizing
different regions of the associated geometry.

1.1. Voting theory and Arrow’s Theorem. Central to Arrow’s Theorem [I] is his ITA
condition, which requires a profile’s conclusion to be completely determined by the rankings
of its associated paired comparisonsﬂ A N = 70 person majority vote example over the
n = 3 alternatives {A; };’:1 is where

(1) 25 prefer A1 = Ao = Ag, 23 prefer Ay = Az = Aq, 22 prefer A3 = A1 = As.
This leads to the cyclic pairwise majority vote outcomes of
(2) Ay = Ay by 47:23, Ay = Ag by 48:22, and Ag = Ay by 45:25,

which violate Arrow’s objective of obtaining a transitive conclusion. This difficulty reflects
the long-standing objective in voting theory, which is to replace cyclic outcomes with

This paper is a written version of my 4/8/2022 JMM presentation; these results provide applications
of conclusions in [12, [13]. My thanks to George Hazelrigg for our several discussions of these topics. This
work is part of a National Science Foundation project under NSF Award Number CMMI-1923164.

Even stronger, a decision method satisfies “Independence of irrelevant alternatives,” ITA, iff it can be
expressed in terms of independent paired comparison methods [I0, [T1]. This means it is not a negative
feature if a decision method, such as the plurality vote, fails to satisfy IIA; it only means that the method
cannot be so expressed. Conversely, any method that cannot be expressed in this manner does not satisfy
ITA. Thus, Arrow’s Theorem is a result about the problems that accompany paired comparisons.

1


http://arxiv.org/abs/2204.13230v1

2 D. SAARI

appropriate transitive rankings, or at least with outcomes that identify a “best choice.”
Prominent approaches were developed by the mathematicians Dodgson [2] in 1876 and
Kemeny [3] in 1959.

A way to compare how an alternative fares in a paired comparison is to compute how
its tally differs from the average score of w = % (In what follows, N is the
number of voters, n is the number of alternatives.) So

1 N
(3) dij = 5[142"8 tally — A;’s tally] = A;’s tally — 5 = —d; ;.
For the Eq. 2] values, where N = 70 and n = 3,
(4) d1,2 =47 — 7—20 =12 = —d271, d273 =13 = —d372, and d1,3 =—-10= —d371.

1.2. TSP. To introduce the notation for the TSP system discussed here, it takes 30 min-
utes to walk from home, H, to campus, C, while returning uphill takes 40. As the average

is 35 minutes, returning home requires 5 minutes above the average denoted by C' Ny ;

traveling in the opposite direction takes 5 fewer minutes or H % €. More generally, if
d; ; represents the “difference from the average” cost of going from A; to A;, then

dij —di g .
5 A; =5 A and A; —% A; are equivalent,
J J
or, as true with Eq. Bl
dij = —dj;.

Figure 1. gg

Figure 1 is a typical TSP example, where the graph catalogues all “differences from
averages” information about the alternatives {Aj}?zl and its (g) = 15 pairs. (Subscripts
“A” and ‘S” refer, respectively, to whether the graph has an asymmetric or a symmetric
structure.) Only positive cost directions are displayed because (Egs. [l []) traveling counter
to an arrow is a negative, or below average cost. A standard TSP objective is to discover the
longest and shortest Hamiltonian circuits. To appreciate what will be developed, before
reading more, let me ask the reader to find the longest such path in Fig. 1. Recall, a
Hamiltonian circuit is a closed path that starts and ends at a selected vertex A; and passes
through each of the other vertices once. To illustrate, the Fig. 1 Hamiltonian path

-3 11 -1 3 —14 2
A1 —)A2—>A4—>A6—>A3—>A5—>A1
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has length —2, and its reversal has length 2. In fact, thanks to Eqgs. [l [6] the tasks of finding
the longest and shortest Hamiltonian paths coincide; the reversal of one is the other.

1.3. A common space. The voting and TSP questions involve the ( ) pairs defined by
n alternatives where costs/differences between vertices of a {i,j} pair are measured by

dij = —dj; valuesE Thus, both settings share the R( ) domain, where d’ ( ) has the
form
(7) d = (di2,d13,... dipnides, ... .dapid3s...;dn_1p); dij = —dj;.

Semicolons indicate changes in the first subindex. The R1(42) structure is developed next.
To start, recall that if a triplet {4;, Aj, Ay} defines a transitive ranking, it can be
expressed with these d, values; e.g., should d;; > 0 and d;; > 0, then transitivity
requires that d; > 0. These inequalities are borrowed from the structure of points on a
line where p; > p; and p; > pj require p; > pr. But these points also satisfy the stronger

algebraic relationship (p; — pj) + (p; — pr) = (pi — pr). The following mimics this equality.

Definition 1. [12] Vector d’j € RI(f) is strongly transitive iff each triplet {i,j, k} satisfies
(8) dij+djp = dig.

This condition was introduced for profiles in [9]; the decision theory version used here
comes from [12]. The subspace of strongly transitive vectors, ST, is described next.

Theorem 1. [12] The set of strongly transitive dj € Rgf), denoted by S’]I'"E isa(n—1)-
dimensional linear subspace of Rj(f).

While details are in [12], proving that ST’ is a linear subspace is a standard exercise.
The assertion about its dimension follows from the fact that any d;j can be expressed as
djr = dj1 + di (Eq. B), so all d; values for dj € ST"} can be determined from the
(n—1) terms {d; s}7—y. O

The dimensions of ]R/(f) and ST"; dictate that C7, the orthogonal complement of ST,
has dimension ("51) To motivate the form of these orthogonal vectors, expressing Eq. 8 as
x+y = z,or x+y—z = 0, identifies (1,1, —1) as a normal vector. Thusthex =y =—2z=1
values define a normal vector d; ; = d;; = di; = 1, which is represented by the cyclic
A; = Aj, Aj = Ag, Ay = A; where the differences between values is the same constant.

Theorem 2. [12] The (”51) dimensional linear subspace C'y consists of cycles where one
basis, which consists of three-cycles, is {d’1‘7j’k}1<]~<k5n. The only non-zero terms of d?’ﬂf
are dl,j = dj7k = dk71 =1.

2Rather than “difference from average,” d; ; can be anything; e.g., a natural choice is the difference
between A; and A; values.
3In [0l [14], ST is called the “transitivity plane.”
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According to these theorems, Rl(f) nicely separates into linear subspaces of strongly
transitive vectors, ST", and cyclic vectors, C'}, where C’; has a basis consisting of a special
(3)

type of three-cycles. This means that d’j € R}’ has a unique decomposition

(9) Z = Z,st + dz,cyclic
where dZ’ o and dz’ cyelic A€, respectively, the orthogonal projection of d’j to ST" and C7}.

An immediate consequence of Eq. [9] is that a transitive vector, which is not strongly
transitive, is a hybrid.

Corollary 1. For n > 3, if d’} is transitive but not strongly transitive, then there are

unique non-zero vectors d’y o, € ST and d’y . ;. € C) so that Ay = dY o + A7 . e

What limits the use of transitive vectors is that they fail to define a linear subspace. For
instance, di2 = d23 =2, d13 =1 and d’1‘72 = d’2‘73 = -1, d’1‘73 = —2 are transitive triplets,
but their sums (e.g., d; ; +di ;= d;':j) define the cyclic dfg = d;ﬁ =1, dfg = —1. According
to Cor. [I] it is reasonable to treat a transitive vector as a strongly transitive choice that is
lightly contaminated with cyclic terms. The following theorem partly explains the “lightly
contaminated” modifier by showing that rankings of transitive d’j and its strongly transitive
component d’; ., can differ, but not radically. This holds even for a non-transitive d; that
has, at least, a Condorcet winner and loser. (A Condorcet winner is a candidate who beats
each of the other candidates in majority vote comparisons. A Condorcet loser loses all
pairwise majority votes. They can exist even without transitivity; e.g., for n =5, A1 could
be the Condorcet winner, A5 the Condorcet loser, and As, Az, A4 define a cycle.)

Theorem 3. If d’} has a unique Condorcet winner Ay and a unique Condorcet loser Ay,
then Aj is strictly ranked above A, in dﬁﬁt.

The converse is to determine what happens by adding cyclic terms to a d7 . If the
resulting d’; is wildly cyclic, not much can be stated. But if A; and A,, are, respectively,
the top and bottom ranked candidates of the d7; ., and if d} remains transitive, the question
is whether A; must be ranked above A,, in d} = d?&,st + dz,cyclic‘ Proofs of this kind of
results can be messy. But to illustrate Thm. [2, the basic idea is developed in Sect. [l for
n = 3,4. The details of these proofs are similar to earlier relationships that were developed
about the Kemeny and paired voting rankings relative to the Borda ranking [9, [14].

2. VOTING THEORY

As a central objective in voting and decision theory is to obtain transitive outcomes, the
cyclic components of d’j introduce problems. A resolution is obvious; drop the troubling
d’; cyelic cyclic term and retain only d’ ;. Dodgson’s method partly does so by replacing

"W with a vector that may have cyclic terms, but at least it has a Condorcet winner.
(A; is a Condorcet winner iff d;, > 0 for all £ # j. That is, A; is “better than” all other

alternatives in paired comparisons.) Dodgson’s method [2], then, projects d”j € R(f) to the

(3)

nearest R* subset where all vectors have a Condorcet winner. For n > 4, these regions
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have cyclic components; e.g., for n = 4, the dimension of S’]I‘i is only three, while the
Condorcet subset has the full (g) = 6 dimension. For instance, A; is the Condorcet winner
in the eight Rg orthants where dy 2 > 0,d; 3 > 0,d; 4 > 0. Without imposing restrictions
on the signs of da 3,d2 4, ds3 4, cyclic behavior is allowed among {Ag, A3, Ay}.

Kemeny adopted the more ambitious goal [3] of replacing d’j with a transitive outcome.
Similar to Dodgson, he created a projection mapping that sends d’; into the nearest R1(42)
subset consisting of transitive outcomes.

Both methods provide electoral relief at a first level, but a deeper investigation reveals
a host of other subtle difficulties that cast doubt on the reliability of these approaches.
Important results in this direction were found in a series of papers by Ratliff [4] 5] [6].
For instance, the above “projection” descriptions makes it reasonable to expect that the
Dodgson and Kemeny outcomes are related; perhaps the Dodgson winner always is the
top-ranked Kemeny candidate. But Ratliff proved that, in general, such assertions are
false. A small sample of his findings follows.

Theorem 4. [4, 5, 6] For n > 4 candidates, select an integer k, where 1 < k < n. There
exist paired comparison examples where the Dodgson winner is the k'™ ranked Kemeny
winner.

Dodgson’s method can be generalized to select a committee of k > 2 candidates by using
Dodgson’s projection method to a subset of ]Rl(f) where all vectors have k candidates where
each is ranked above the (n — k) remaining candidates. For integers k and s satisfying
1 <s<n—k, k+#s, there exist examples where with the Dodgson’s generalized approach,
no candidate in the Dodgson committee of s is in the Dodgson committee of k candidates.

As Ratliff proved, rather than being top-ranked, the Dodgson winner can end up being
anywhere in a Kemeny outcome; it can even be bottom-ranked. Moreover, the Dodgson
winner need not be in a Dodgson-Ratliff committee of two or three. These unexpected
conclusions are consequences of the cyclic terms that remain even after the Dodgson and
Kemeny projections. For instance, unless Kemeny’s outcome is strongly transitive, it
contains cyclic components (Cor. [I) that can create other difficulties.

Stated differently, the Dodgson and Kemeny procedures remove only as many of the dy
cyclic components as needed to attain their objectives. Without a thorough cleansing, it
is reasonable to expect other mysterious properties: this happens. This also holds for Ar-
row’s Theorem; its negative conclusion is strictly a consequence of the dZL cyetic COMPpoONEnt.
Completely removing dz,cyclic converts Arrow’s assertion into a positive result [10] [11].
Indeed, the ultimate goal for decision and voting problems should be to eliminate all cyclic
components of a given d’j. Doing so is a common mathematical computation.

2.1. Orthogonal Projection. The standard way to eliminate the unwanted cyclic terms
from a given d’} is with the orthogonal projection

(10) PR 817,
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The computations require finding a basis for ST’} (using Eq. ) and carrying out the
associated vector analysis. The resulting approach follows; see [12] for details and examples.

Definition 2. For alternative A;, the weighted sum is
n
(11) Sa(4)) :Zdj’k; j=1,...,n.
k=1

With Eq. @ values,
(12)  Sa(A) =12—10=2, So(As) = —12+ 13 =1, Sx(A3) = —13+ 10 = —3.

Theorem 5. [12] For d’ € ]Rj(f), the d; ; value in dlj o is
1
(13) dij = —[Sa(4i) — Sa(4;)]

Of surprise, this projection is equivalent to the well known Borda Count. This Borda
procedure tallies a n-candidate ballot by assigning n — j points to the j* ranked candidate.
A candidate’s Borda tally, B(A;), is the sum of points assigned to A; over all N ballots.
Using the Eq. [l example, B(A;) = 25(3 — 1) +23(3 — 3) + 22(3 — 2) = 72, B(As) =
25(3—2)+23(3—1)4+22(3—3) =71, and B(A3) = 25(3—3) +23(3—2)+22(3—1) = 67.

Theorem 6. [12] For any n > 3, the Eq. orthogonal projection of d’j € ]Rj(f) to ST,
which is dx o 18 equivalent to the Borda Count. More precisely,

(14) B(A]):(n—l)%+SA(A])7]:1,,n
and
(15) B(A;j) = B(Ax) = Sa(4;) — Sa(Ar) = ndj.

Proof: As known (e.g., [8,[9, 10]), a way to compute B(A;) is to sum A;’s tallies over each
of its (n — 1) majority vote paired comparisons. (As an example, using the Eq. [ tallies,
in the {A1, A2} and {A;, A3} elections, A; receives, respectively, 47 and 25 votes; this
47 + 25 = 72 value agrees with A;’s above computed B(A;) = 72.) According to Eq. Bl
n
(16) BA) = 3 [t o] =(n—1)7 +Sa(4).
k=1,k+#£j

Thus, for voting theory, Sa(A;) — Sa(Ax) = B(A;) — B(A4). O

Theorem [6] has an interesting consequence. To set the stage, consider all of those voting
methods where the outcome is determined by assigning a score to each candidate; e.g., this
includes almost all standard methods such as all positional methods, cumulative voting,
Approval Voting, etc. As these scores satisfy strong transitivity, the outcome is in ST.
A natural objective is to have an outcome that most accurately reflects the views (i.e.,
preferences) of the voters. That is, find the ST’} outcome that is closest to the data, which
is the orthogonal projection of d’j. This is equivalent to the Borda Count (Thm. []).
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Combining comments from the above provide new explanations for earlier results. For
instance, the following, which has the spirit of Thm. Bl was proved by using these tools.

Theorem 7. [9, 14] For n > 3, Kemeny’s method ranks a Borda winner over the Borda
loser. Conversely, the Borda Count ranks a Kemeny winner over the Kemeny bottom
ranked candidate.

For paired comparison majority votes, the Borda outcome ranks the Condorcet winner
over the Condorcet bottom ranked candidate. Conversely, is the paired comparisons define
a transitive ranking, the Borda winner is ranked over the Borda bottom ranked candidate.

The Kemeny outcome is a transitive vector, while the strongly transitive Borda ranking
comes from the orthogonal projection of d’j to ST’. As Cor.[Iasserts, a transitive ranking
is a strongly transitive ranking clouded by cyclic terms, which captures the flavor of the
Kemeny outcome.

Theorem [0] provides an explanation why the Borda Count has so many positive proper-
ties; examples with decision methods are in [I2]. The following completes the introductory
comments about Arrow’s Theorem.

Theorem 8. [8, 9] If d’j € ST, then the Borda Count and majority vote paired compar-
isons both satisfy Arrow’s Theorem. The Borda Count is the only positional voting method
that satisfies Arrow’s conditions.

The last assertion holds because the Borda Count is the only positional method where
its outcomes are determined by the outcomes of majority votes over pairs. The outcome for
all other positional methods need not be related, in any manner, to the paired comparison
outcomes [7].

3. TURNING TO THE TSP

According to Eq.[@, d7} € R(3) can be uniquely expressed as d”; = A, St+dz’ cyelic: where
df}hst € ST} and dz’ eyclic € C'y. As described above, voting and decision theories seek
transitive outcomes, which means that the cyclic dZL cyetic COMponent imposes obstacles.
The natural resolution is to eliminate dZ’ cyelic and retain dZ’ < by projecting d’ into ST'}.

In contrast, TSP and other closed path concerns involve cycles, so the linear behavior
now is what creates barriers. This change in the objective converts the strongly transitive
d’; ., from being the desired component into a troublemaker. Thus, to analyze TSP issues,
mimic what was done for voting by orthogonally projecting d’j into C’j to eliminate the
d’ st term and retain d} eyclic:

What simplifies ﬁndlng d% " cyelic 18 that dff" cyelic = d’j —dj o, and dj ;, which is equiv-
alent to the Borda Count (Thm. [0)), is easily computed (Thm. [Bl). The decomposition of
the Fig. 1 graph is in Fig. 2 where the gicpi and QEL cyelic €Ntries represent, respectively,
d164 ,st and dGA ,cyclic:

The computation of G4 cpi follows from Def. Rland Thm.[Bl For instance, S A(Al) =[-3

3+2—-2+3] = 3 while S4(Ag) = [3+840+11411] = 33,80 d1 2 = £[Sa(A1)—Sa(A2)]
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is the d% ,; entry, which is the length of the A; — As leg in G .. The cpi subscript of gg, epi?
which means “closed path independent,
As 9 Ay

cpi®

7 is described next.

6 g6 6 ~ d6
b. gA,cpi ~ dA,st C. gA,cyclic ~ dA,cyclic‘
Figure 2. Decomposition of a gfg;

Thanks to the linearity of the decomposition, the length of any closed path (not just
Hamiltonian circuits) in gg equals the sum of the path’s lengths in QEL cpi and gg, cyelic: As
an example, the —4 length of the gg closed path A; =3 As LN Ag 2, As — Asg 2, Aq
equals the sum of its path’s lengths of Ay 5, As LN Ag LN Asg - Ag LI A7 in ngi
and A; 2, Ao BN Ag LN As =3, As =3 Aj in Qg’cydic. As this path’s length in ngi
is zero, its —4 length in QEL cyelic equals the gg path length. That this closed path in QEL epi
has length zero is not a lucky coincidence. Instead, all closed paths in Qz’cpi have length
zero, so these paths are “closed path independent” when computing gg path lengths.

Theorem 9. For n > 3, a closed path in chpi has length zero. The length of a closed
path in G equals its length in QZ’CZ/CHC.

The length of any Gy path starting at V; and ending at V; equals its length in Qz’cyclic
plus the V; — V; length in gg,cm"

The proof of the first assertion follows immediately from the strong transitivity of the
gg, cpi components. To check that gg, cpi has this property, select any triplet from Fig. 2b—
perhaps {A;, As, A3}; the goal is to show that dy 5 + ds 3 = d; 3. Fom ggvcm., this requires
dyi 5+ ds3 = —5+ 11 to equal d; 3 = 6, which it does.

Next, a standard induction exercise shows that if d’; ., is strongly transitive, then any
path from A; to Aj has the same length as the direct A; — Aj path. Reversing this last
arc creates a closed path with length zero. The rest of the theorem follows immediately.

The last assertion of Thm. [9 requires the “-1” length of gg path,

A =54, 2 A5 A5 8 4, D 4,
which skips Ag but visits As twice, to equal this path’s length in QEL cyelic plus —5. The —5
comes from the A; =5 As arc in Qg’cpi (Fig. 2b). This path’s length in Qgﬁydic is

A A A S a5 A,

or 4, and, as Thm. [Q promises, —1 =4 — 5.
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3.1. Finding the longest and shortest Hamiltonian circuits. According to Thm. Q]
the longest/shortest Hamiltonian path in G4 (Fig. 2a) can be found by ignoring G9 and,

instead, analyzing the reduced QEL cyclic with its two three-cycles (Fig. 3) A; N As 3,
As 3, Ay and A 2, Ay 2, Ay 2, Aq. The obvious strategy is to use these cycles as

fully as possible. To avoid premature closure by returning to a previously visited vertex,
use at most two arcs of each three-cycle.

Figure 3. Finding Qg’s longest Hamiltonian circuit via Qg, cyclic®

Consequently, starting at A;, use only the edges A; 3, As 3, As from the first three-
cycle; this is why As 3, Aj arc is crossed out in Fig. 3. As only one arc can leave Aq,
this eliminates the crossed-out A; 2, Ao arc. Thus, the Hamiltonian circuit depends
upon the four bold gg, cyetic arcs in Fig. 3. Finding the longest Hamiltonian circuit now is

immediate—use zero-length arcs to ensure all vertices are visited and to connect the two
basic ones. An answer is the Hamiltonian path

(A1 25 Ay 5 43) 5 450 (4 2 4, 2 4))

of length 10. The reversal of this closed path has length —10. It is clear from the graph’s
structure that these are the longest and shortest QEL eyelic Hamiltonian circuits, so (Thm. 3)
they define the longest and shortest Qg Hamiltonian circuits with the same lengths.

To appreciate what is going on, notice that what complicates computing the Fig. 2a path
length As 14, As =3, Aq -2 As of 14 — 3 — 2 = 9 are the subtractions/cancelations. To
see what they are, let u, v, and w be the canceled terms, respectively, for arcs A/5A\3, A/gA\l,
and A/1A\5 That is, after cancellations, the path length computation would be (14 — u) +
(=3 —v) 4+ (=2 —w) = 9 where u + v + w = 0, which satisfies cpi from Eq. 8 That is,
the cancelations in computing closed path lengths are linear expressions that define a ST’}
graph. The optimal choice of cancelations for a G’ is the ST’j graph that most closely
approximates G'j, which is its orthogonal projection into ST, or Qﬁ’cpi. Indeed, with
Fig. 2b, the optimal cancelation is from gg, epi Where u+v+w =11—-6—5 = 0. Removing

these cancelations leaves gg,cydic with the path length As 3, As 3, Aq 3, As of length
9 where no modifications are needed in the computations.

3.2. The symmetric case. For the standard symmetric TSP, the distance between ver-
tices is the same in each direction. Thus the d; ; = —d;; asymmetric condition is replaced
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with the d; ; = d;; requirement. This requires a different decomposition of the new R(SZ)
where, with the orthogonal projection, leads to a different type of inherent symmetries.
Otherwise, everything remains much the same. Of importance, the decomposition pro-
vides a best possible simplification for closed paths. Details for the general symmetric and
asymmetric cases are given elsewhere [13], but a flavor of what happens is described next.

A n = 6 example is given in Fig. 4; recall, the S subscript in gg refers to “symmetric.”
While a typical goal is to find the shortest Hamiltonian circuit, everything extends to the
analysis of any path, whether closed or not.

As 1 Ay

A 1 Ay
Figure 4. A symmetric gg € Gg

Central to the discussion is the average Hamiltonian path length in G§ denoted by T'(G%).

Definition 3. For a graph Gg, let Ss(A;) be the sum of arc lengths attached to vertex Aj,
j=1,...,n. Let T(G2) = 715 X7, Ss(4;).

So Ss(A;) (Def. B) and Sa(A4;) (Eq. Q) are the same. That T'(G¢) is the average Hamil-
tonian path length follows from the fact that —1-Sg(A;) is the average length of the (n—1)
arcs attached to A;. Illustrating with Fig. 4, Sg(A41) =1+5+3+4+1=14,55(A2) =
22, S5(A3) = 22, S5(Aq) = 20, S5(A5) = 18, Ss(Ag) = 24, s0 T(GS) = 1(120) = 24. When
considering non-Hamiltonian closed paths, restrict the Sg(A;) values and the summation
defining T to the relevant arcs and vertices.

As 1 Ay As 2.5 Ay
I\
Ag A3 %)
AT/
A 1 A
gg,cyclic gg’,cyclic € (Cg'

Figure 5. Decomposition of a Qg € Gg

The scheme replaces entries of Gg with values that, after removing irrelevant terms
(which are similar to G epi)s can be viewed as differences from the average arc length, as
in Fig. 5. Thus negative values represent “smaller than average” costs. The theorem is that
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the length of a Hamiltonian circuit in G¢ is the length of its path in ggvcycle plus T(G3).
Standard modifications handle paths that are not closed and/or incomplete graphs.

Each gg’, cyetic Vertex has an arc with negative (i.e., below average) length; this assertion
holds more generally for any Gg cyetic- BY observation and using arcs with negative values

as often as possible, an Hamiltonian path in Qg cyelic with shortest length of -11 is

(17) Ay 28 A 722 A3 722 A, 22 A5 =h Ay =3 A
This defines the shortest Hamiltonian path in Qg with length 24 — 11 = 13.

In general, the shortest G& Hamiltonian path is bounded below by T'(G¢) plus the sum of
the n smallest ggcycm arc lengths. With gg, thisis 244+ (—2.5—-2.5—-25-2—-1.5-1) = 12.
This shortest Hamiltonian path length is larger than, but close to, its lower bound.

Although the gg entries can be random numbers, the advantage of the gg cyetic €ntries
is that each entry has a meaning with respect to a path’s length. Thus, a way to find
the shortest Hamiltonian path is to rank the arcs according to length, where “smaller is
better.” Start with the first n arcs to determine whether they form a path. If not, then
iteratively add arcs to see whether it creates a Hamiltonian path. To illustrate, the gg cyelic
arcs with negative values are

Length| Arc Arc Arc | Length| Arc Arc

(18) 95 | AAg, AzAs, A A5 | -2 | A4,
15 | AyAq 1 | AzA,, AyA,
05 | AzAg

This array emphasizes using A/lA\G, A/gA\4, A/4A\5, where A/gA\G forms a transition between
the first and the second arc, and AsAs includes the missing Ay, while A A completes the
journey. This is the Eq. [I7 tour.

C’4: TSP and graphs

gz,cyclic 'deZX c RgQ)

ST7%; Voting
Borda outcome

Figure 6. Resolutions via projections

4. CONCLUSION

Figure 6 summarizes much of what was discussed. Namely, both the voting problem
and TSP can be described in terms of a point d’j € Rgz). This space has an orthogonal
decomposition into the strongly transitive linear subspace ST’j and the linear subspace C’}
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consisting of three-cycles. The d’; ;, component of d’j in the ST’ direction resolves several
concerns from voting theory, but frustrates the analysis of paths in TSP. Conversely, d’j’s
component in the C7 direction, dy cyelic’ determines all closed path properties for the TSP,
but erects barriers and paradoxes for voting theory. A resolution is to project d’j into the
appropriate subspace that has positive properties for the problem being considered.

To introduce the rest of the material in this concluding section, let me brag about my two
granddaughters. Heili has a deep interest in neurobiology and gymnastics, while Tatjana
is heavily involved in the social sciences and ballet. Who is older? It is impossible to tell
from this information; comparing ages requires having relevant inputs. More generally, to
realize any specified objective, for the data to be useful; they must, in some manner, be
directed toward the stated purpose. This truism extends to voting theory and the TSP.

To see this with Arrow’s result, return to the introductory voting example where the
alternatives are three cities. Suppose the 25 voters with the A; = As = A3 ranking judge
cities according the ease of finding parking, the 23 who prefer As > A3 > A; evaluate cities
according to the popularity of local professional basketball teams, and the 22 preferring
A3z = Ay = A, assess them according to available types of craft beer. Thus the A; > Ao
outcome by 47:23 is a conglomeration of attitudes about parking, basketball, and beer.
Of importance, nothing is directed toward Arrow’s explicitly stated objective of having
a transitive ranking. This means (with these apple and orange comparisons) that rather
than a surprise, non-transitive outcomes should be anticipated. Indeed, expect a transitive
outcome only if the inputs contribute toward this transitivity target. This comment leads
to the decomposition (Fig. 6); the dff‘,cydic component of dj that runs counter to the
stated objective is identified and dismissed. This leads to the approach described in the
first paragraph of the proof of Thm. B, which is called the “summation method” in [§].

Another way to handle this problem is to express the inputs, the preferences of voters,
in terms of the transitivity objective. To do so, describe the A; >= Ay > Asz ranking as
(A1 > Ag,1), (A = As,2) and (Ag > A3, 1), which restates this ranking in terms of pairs
that now are in a strongly transitive format. Here d; 2 = 1 captures that A; is ranked one
spot above Ay, while d; 3 = 2 means that A; is ranked two spots above A3. Choosing the
triplet (Aj, A, A3) requires checking whether dj 2 + da3 = 1+ 1 equals dy 3 = 2, which it
does. By using this strongly transitive approach, which is called “Intensity of IIA” or IITA
(introduced in [§]), the profile information for {A;, As} has 25 voters with (A; > As,2),
23 with (A; > Az, —1) and 22 with (A; > Az, —1), The IIIA tally for {A4;, A3} sums the
products of the number of voters with each ranking times its intensity. Here the tally
is 25(2) + 23(—1) + 22(—1) = 5 leading to A; > As, rather than the above Az > A;
(Eq. 2) that forced a cycle. Even stronger, the ITTA tallies over the three pairs not only
are transitive, they are strongly transitive.

With any number of alternatives, the IIIA outcome for the majority vote always is
strongly transitive. It must be because ST’; is a linear subspace, and the outcome is a
summation of strongly transitive profiles. This IITA method is equivalent to the Borda
Count [8]; a conclusion that should be anticipated (particularly with Thm. ). As shown
in [8], by replacing ITA with ITTA, Arrow’s Theorem now has a positive conclusion. That is,
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by using data that is consistent with the objective of transitivity, the problems of Arrow’s
Theorem disappear.

Similarly with TSP, each difference from the average cost between two vertices, as cat-
alogued with G4 (Fig. 1), could be based on different attributes; e.g., the dj o difference
between A; and A might reflect the topography while ds 3 between Ay and A3z could be
caused by traffic restrictions. As the objective concerns path lengths of closed curves, the
goal must be to use inputs that contribute to the specified goal. Here the strongly transi-
tive component df& cpi pushes the outcome in a linear fashion that conflicts with the goal
of having circular paths. Dismissing this A.epi term (as indicated in Fig. 6) leaves dff" cyclic
data, which are consistent with the global objective of finding closed path properties.

5. PROOFS

Beyond proving Thm. 3, an intent of this section is to demonstrate the above tools.

Proof of Thm. 8. Assume that the paired rankings defined by d™ have A; and A,, re-
spectively, the unique Condorcet winner and loser. As A; is the unique Condorcet winner,
the associated dj must have dy, > 0 for £ = 2,...,n. Similarly, as A, is the unique
Condorcet loser, it must be that d,, , < 0 for all k =1,...,n — 1. From Eq. 2, this means
that S4(A;) > 0 and S4(A4;,) < 0. According to Eq.[I5 A; is Borda ranked above A,,. As
the Borda ranking is the dz’st, ranking, this proves the theorem. Notice, the Condorcet
uniqueness conditions are unnecessary conveniences. [

It remains to show for n = 3,4 that if A; and A,, are, respectively, the top and bottom
ranked alternative for d’ o, and ifd% = st T Al cyclic 1S transitive, then Ay > A,. The
approach uses the fact, which follows from strong transitivity, that d; ,, for d’j , is an upper
bound for all other ds, values. This size of d; , requires the cyclic perturbations to affect
and reverse smaller d, ; values, which violates transitivity before they can impact on the
dy n, term to reverse A; > A,. Assume the d?&,st ranking is Ay = Ag = --- = A1 = A,.

The proof is immediate for n = 3. All cyclic n = 3 vectors are a multiples of (1, —1;1),
o) df’4 = dist + dicyclic = (di2+ a,di 3 — a;da 3+ «). If @ > 0, then the A4; >~ Ay and
Ay > As rankings remain unchanged. The A; > As ranking persists as long as dj 3 —a > 0.
As soon as a > dj 3, the Ay > Ajs ranking reverses to become Az > A;, which converts the
set of pairwise rankings from transitive to cyclic.

For all o < 0 values, A; = A3z. But the system becomes cyclic as soon as —a equals
the second largest of {d;2,d23}. For instance, suppose dj2 < dg3. For o = —dj 2, the
rankings are Ay = As, Ay = As, and Ay ~ A; defining the transitive A; ~ Ay = As. But
once & = —dy 3, the rankings are the non-transitive A; > As, A3 ~ A, Ay > A;. Stated
differently, if di has a transitive ranking, then Ay > As, which proves the assertion.

The theme of the proof for n > 4 is that, because of strong transitivity, di , from d’i o
is so large that before the cyclic components can reverse the A; = A, ranking, they change
enough rankings of other pairs to define a cyclic outcome that violates the transitivity of
d’i. One approach follows:
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(1) Assume that the cyclic terms force A, > A;. It must be shown that the pairs do
not define a transitive outcome.

(2) The size of the perturbations of cyclic terms that accompany the A,, > A; assump-
tion requires some other alternative, say Ay, to satisfy Ay > A,. If d’} is transitive,
as assumed, then A, = A, = A1, and A > A;.

(3) The size of the cyclic perturbations that cause Ay = A; forces some other alterna-
tive, A;, to satisfy A; >~ Ay. This requires A; ~ Ay > A, = Ay, or A; = Ay.

(4) The next step is to show that this A; > A; ranking drives the size of certain cyclic
terms to be large enough so that A, > A;

(5) Step 4 is the sought contradiction. The A; > A, ranking follows from the assump-
tion of the tranmsitivity of d’j, and the conflicting A, > A; is a direct result of
computations based on the impacts of the cyclic terms. Thus the assumption that

"\ is tramnsitive is false, which proves the conclusion.

To illustrate this program with n = 4, all of the following d; ; values come from dfjl’ st-
Assume that dj is transitive. Using the Thm. 2 basis for (szl, where o, is the coefficient
for d‘i j k> @ representation for d = dj’ o T dj
(19)

d)y = (di2 + a2 + ao4,diz — 23+ gy, dig — agg — asaidas + a3, day + a4, dsg + a34).

,cyclic 18

According to Eq. 09 if Ay > Ay, then dig — g4 — 34 <0, 0r 0 < dj 4 < g4+ 34.
This forces one or both of a3 4, az4 to be positive.

Step 2. Start with the assumption that ag4 > 0, which requires from Eq. that
Az > A4. From the transitivity of dj, this requires Az > A, or di3 — g3 + az4 < 0,
which leads to the inequality

(20) 0<dig+azs<ags.

Step 3. Combining a3 > 0 (Eq. BO) with d’s transitivity (and Eq. [9), requires
Ay > A3 > Ay > Ay. The Ay > A; ranking forces (Eq.[19) ag3 + ag4 < —di 2 < 0, which,
with Eq. 20, becomes

(21) agg4 < —d172 — g3 < —d172 — d173 —aa34q < 0.
Step 4. As ag 4 < 0 (Step 3), it follows from A4 > A; and dj 4 — a4 — a3 4 < 0 that
(22) Q3.4 > d174 > deg.

The last inequality follows because d; 4 is the largest d; value (strong transitivity).

Step 5. By using Eq. 21} the computation for the { Ay, A4} ranking depends on the sign
of doy + gy < —di2 —di 3+ [—az s+ da4]. Because —az 4+ dayg < 0 (Eq. 22), it follows
that do 4 + a4 < 0, which is A4 > As and the desired contradiction.

The remaining case of ag4 > 0,a34 < 0 is simpler because from Ay > A; (Eq. [19)
(23) Qg4 > d174 > deg.

Step 2. According to Eq.[I9 the a4 > 0 inequality and the transitivity of d* mandates
Ay > Ay > Ay, or from As = A; that d1,2 +ag3+ag4 <0.or that a3 < —d172 —ag 4 < 0.
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Step 3. Using this inequality and Eq. 23] the {A3, A3} ranking equation is determined

d273 + a3 < —d172 + [dg,g - a2,4] <0,o0r Ag > Ay > Ay > A;.

Step 4. According to the A3z > A; ranking, di3— a3+ a3 < 0or (Step 2) diz3+az4 <
ag7
Step 5. The {A3, A4} ranking depends on the sign of d3 4+ a3 4 < —d12—di1 3+ [—24+

3 < —di2 — agy < 0. What follows uses the inequality a3 4 < —di13 — di12 — a24.

d3a] < 0. As the term in the brackets is negative, the value is negative, leading to the
Ay > Ag contradiction. This completes the proof for n = 4.
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