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Application programs that exhibit strong locality of reference lead to minimized cache misses and better

performance in different architectures. However, to maximize the performance of multithreaded applications

running on emerging manycore systems, data movement in on-chip network should also be minimized.

Unfortunately, the way many multithreaded programs are written does not lend itself well to minimal data

movement.

Motivated by this observation, in this paper, we target task-based programs (which cover a large set

of available multithreaded programs), and propose a novel compiler-based approach that consists of four

complementary steps. First, we partition the original tasks in the target application into sub-tasks and build a

data reuse graph at a sub-task granularity. Second, based on the intensity of temporal and spatial data reuses

among sub-tasks, we generate new tasks where each such (new) task includes a set of sub-tasks that exhibit

high data reuse among them. Third, we assign the newly-generated tasks to cores in an architecture-aware

fashion with the knowledge of data location. Finally, we re-schedule the execution order of sub-tasks within

new tasks such that sub-tasks that belong to different tasks but share data among them are executed in close

proximity in time.

The detailed experiments show that, when targeting a state of the art manycore system, our proposed

compiler-based approach improves the performance of 10 multithreaded programs by 23.4% on average,

and it also outperforms two state-of-the-art data access optimizations for all the benchmarks tested. Our

results also show that the proposed approach i) improves the performance of multiprogrammed workloads,

and ii) generates results that are close to maximum savings that could be achieved with perfect profiling

information. Overall, our experimental results emphasize the importance of dividing an original set of tasks of

an application into sub-tasks and constructing new tasks from the resulting sub-tasks in a data movement-

and locality-aware fashion.
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1 INTRODUCTION
Data access performance plays an important role in shaping the overall performance of applications

running on multicore and manycore systems. One of the important factors that affect data access

performance is the “amount of data movement” involved in serving the data from the location

where they reside to the node where they are requested. While modern manycores generally employ

scalable on-chip networks (e.g., two-dimensional mesh) to reduce design complexity, such type

of network topology increases the data accesses latencies as well as the latency variability. In

particular, if there is a long distance between the requesting node and data location, the access will

experience more time due to i) more on-chip network links to traverse and ii) increased network

contention.

There exists a substantial body of prior research efforts including data locality-oriented cache

optimizations [6, 11, 22, 33, 53, 57, 61], data layout transformations [23, 35, 37, 39, 48, 59], and near-

data computing (NDC) techniques [7, 9, 19, 21, 24, 29, 50], aiming to reduce the cost of data accesses

in single-core and manycore systems. Among them, NDC is one popular execution paradigm that

offloads computations to execute near data, instead of the traditional approaches that fetch data to

computation. While NDC effectively reduces data movements and improve application performance,

most NDC approaches require hardware modifications such as extra compute units [21, 25, 42] and

those near memory computing units usually have limited computing capabilities and can only

process simple operations (e.g., addition and transpose). Compared to NDC, a more recent approach,

called computing with near data (CND) [2, 5, 49], re-generates the requested costlier (remote) data

using less-costlier (nearby) data to avoid high data movement cost. However, CND is not free either;

in particular, it requires heavy program analysis and annotations to guarantee correctness and

effectiveness, which makes it difficult to employ for complex application programs.

In this paper, we propose another strategy for optimizing data accesses without the need of

any hardware modification (consequently, it can be used in any existing manycore architecture).

Our approach, focusing on applications whose parallelism can be expressed using a “static task

graph”, is built upon the intuition that, computation among tasks with inherent data sharing

should be clustered and scheduled to execute considering data reuse opportunities from both

“spatial” dimension and “temporal” dimension. To be more concrete, for the “spatial” dimension,

computations with inherent data sharing should be executed on nearby cores in an on-chip network

based manycore system such that the requested data can be supplied from nearby locations without

going to far away locations. On the other hand, from the perspective of “temporal” dimension,

computations with data sharing among them should execute in close proximity in time so that

the requested data can be found in nearby cores’ caches. Since original tasks are typically heavy

and consist of many operations and data accesses, it is difficult to effectively capture and exploit

data reuse opportunities from both the “spatial” dimension and “temporal” dimension at a task

granularity. To this end, we first partition the tasks in a given parallel application into finer-granular

units, called sub-tasks, and cluster sub-tasks into new tasks such that the sub-tasks with inherent

data reuse among them i) are clustered into new tasks which are assigned to nearby cores, and ii)

are executed in an order to capture temporal data reuse. Meanwhile, load-balance across cores are

maintained without compromising the degree of parallelism. In fact, one additional benefit from our

approach is that the degree of parallelism in the application can increase, in most cases, compared

to original task-level parallelism. The main contributions of this paper are as follows:

• We observe that there exist two major performance deficiencies in current task-centric

parallelism. First, tasks consist of heavy computation that generates a large memory footprint.

Second, current task scheduling mechanisms are agnostic to the underlying architecture

organization, and fail to leverage the data reuse opportunities originating from neighboring
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nodes. Consequently, it leads to massive on-chip network data movement that degrades the

data access performance and also diminishes the degree of parallelism.

• We propose a novel compiler-based approach with the goal of reducing the on-chip data

movements for task-parallel applications on manycore systems. Our approach consists of

four complementary steps. First, we partition the original tasks of the target application

into sub-tasks, and build a data reuse graph at a sub-task granularity. Second, based on the

intensity of the inherent data reuse, our approach forms new tasks where each such (new)

task includes a set of sub-tasks (coming from the original tasks) that exhibit data reuse among

them. Third, we assign the newly-formed tasks to cores in an architecture-aware fashion with

the knowledge of data location. Finally, we re-schedule the execution order of the sub-tasks

within new tasks such that the sub-tasks that share data among them execute closer in time.

As a result, since each newly-formed task exhibits good locality, on-chip cache performance

is improved, and both frequency and volume of the message traffic on the on-chip network

are reduced.

• We conduct a detailed experimental evaluation using a state-of-the-art manycore platform and

three different benchmark suites. Our experimental evaluations with one of these benchmark

suites reveal that the proposed optimization strategy i) improves the performance of all 10

multithreaded programs tested (23.4% on average), ii) outperforms two previously-proposed

state-of-the-art data accesses optimization strategies (one compiler and one hardware based)

in all benchmarks tested, iii) is effective with multiprogrammed workloads as well, and iv)

generates results that are close to maximum savings that could be achieved with perfect

profile information. Furthermore, our evaluations with the other two benchmark suites

indicate 23.3% and 19.3% average performance improvements brought by our approach,

due to improved data locality and reduced data movement. Our results emphasize that, for

minimum amount of data movement on the on-chip network and maximum data locality

enhancement, both sub-task relocation and sub-task rescheduling need to be performed.

The rest of this paper is organized as follows. The next section describes themanycore architecture

targeted by this work, and Section 3 explains the baseline task model. A high-level view of our

approach is presented in Section 4, and its technical details are given in Section 5. Section 6 gives

an experimental evaluation of the proposed optimization strategy, and Section 7discusses related

work. Finally, the paper is concluded in Section 8 with a summary of our major contributions.

2 TARGET ARCHITECTURE
In this paper, we target on-chip network (NoC) connected manycore systems. Figure 1 shows

the high-level NoC topology of one such system – Intel’s Knights Landing (KNL) [45]. While our

approach discussed in this paper focuses on 2D mesh-based architectures, it is applicable to any

type of NoC, as long as it is exposed to the compiler. KNL has 36 tiles connected through a mesh

network. Inside each tile, there are two cores and each core features two 512-bit AVX vector units

(VUs) as well as a per-core private L1 cache. A directory-based cache coherence is maintained

among L2 caches across tiles. KNL is also equipped with a 16 GB multi-channel dynamic random

access memory (MCDRAM) split into 8 channels and connected to the four corners of the mesh. At

boot time, this MCDRAM can be configured in one of three modes: cache mode, flat mode, and

hybrid mode. Specifically, the MCDRAM is configured as a conventional last-level cache (LLC) in

cache mode, whereas in flat mode the MCDRAM is configured as an addressable memory extension.

In hybrid mode, one can configure 25% (50%) of the MCDRAM capacity to LLC and the remaining

capacity to addressable memory. KNL also employs three different cluster modes which divide the

mesh into different virtual regions to keep the on-chip network data movement as local as possible.
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Fig. 1. High level architecture of Intel Knight’s Landing (KNL) processor.
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Fig. 2. (a) An example of static task graph where dependencies are labeled with arrows. (b) Concurrent
execution across tasks when data dependencies are resolved.

In the “all-to-all” mode, the addresses are uniformly spread over the caches and memory controllers.

In the “quadrant” mode, memory accesses only travel within the same virtual region, and finally, in

the “SNC-4” mode, the mesh is split into 4 non-uniform memory access (NUMA) clusters.

Figure 1 also depicts a typical “data access path” with L2 cache coherence. Specifically, if a data

access misses in L2 cache of local tile, the request is forwarded to the corresponding cache directory

node ( 1 ). If it hits in another tile’s L2 cache, the requested data is forwarded from that tile and the

corresponding entry in the directory is updated. Otherwise, if the request misses in L2 caches, a

memory access request is generated and forwarded to the corresponding memory controller ( 2 ).

Finally, the requested data is fetched from the memory and sent to the requested tile. The data

movement involved in this data fetch comes from two scenarios. First, if the requested data reside

in another tile’s L2 cache, it will be forwarded to the requesting tile. Given the mesh connection, if

there are many network links (hops) between these two tiles, the corresponding data movement

will span a long distance. Second, if the request misses from L2 caches, the requested data will be

supplied by corresponding memory controller. Clearly, the shorter distance between the memory

controller and the requesting tile, the less data movement. In this paper, we target both the scenarios

and our proposed approach reduces data movements in both the cases.
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F (type &a, type &b, type &c)
type d, e, f;
…
f = a * 5;
d = c – 6;
…

e = b + c;
…

endTask

G (type &a, type &b)
type f, g, h;
…
f = b * 5;
g = f – b;
…

h = a / 5;
…

endTask

F-1

F-2

G-1

G-2

(a) Code example

F G

Assume a, b, c are 4 bytes 
each. The total data 
movement = 4bytes * 
29hops = 116

a, b
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(b) Default scenario
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(c) Clustering
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c

a
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c
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(d) Scheduling

Fig. 3. An example illustrating how our proposed approach reduces data movements.

3 TASK GRAPH
In this paper, we focus on “task-centric” parallelism in the broadest sense of the term. In this context,

the focus is on distributing tasks, which can be concurrently performed by threads, across available

cores. A task can be a function, a series of functions, a loop nest, or a subset of iterations of a loop

nest. For example, in an OpenMP [40] application, each iteration of a parallel loop can be considered

as a task; or, if desired, a set of neighboring iterations of a parallel loop can be considered as a

task. As such, our task concept is quite general and in fact many existing multi-threaded programs

written in different languages/libraries can be cast as task-centric (not only pThreads or OpenMP

based ones but also, for example, TBB [56] and CilkPlus [43] based ones as well).

Figure 2(a) shows an example with six tasks. Each node in the graph represents a task and the

edges capture the data and control dependencies among the tasks.
1
“Synchronization primitives”

are used to guarantee that a task starts only when certain conditions are satisfied. For instance, in

Figure 2, tasksT 1 andT 2 can execute in parallel, whereasT 4 needs to wait for bothT 1 andT 2, due
to data or control dependencies. It is important to emphasize however that, in this task graph-based

execution, portions from two tasks can execute concurrently in some cases even if there exist data

dependencies among them. For example, Figure 2(b) shows one possible execution timeline of tasks

T1, T2, and T4. As shown in the figure, there exists data dependency between {T1, T2} and T4 in
Figure 2(a). However, T4 can start its execution without waiting T1 or T2 to finish as long as its

input data have already been generated by T 1 and T 2. In other words, T 4 can execute concurrently

with T1 and T2 after the data dependency has been resolved. Similar situation exists between T2
and T 4. As a result, all three tasks have overlapped execution in timeline as shown in Figure 2(b).

Note that, such execution paradigm is adopted in various modern task-based parallelization models

as well, e.g., “depend clause” in OpenMP task primitives [40].

4 HIGH LEVEL VIEW OF OUR APPROACH
Targeting the static task graph-based executions, we ask a fundamental question when these

tasks are executed by different threads on multiple different cores: can we execute them in a “data
reuse-aware” fashion? To this end, our goal in this paper is to organize computation in task-centric

programs such that i) the amount of data movement is reduced, and ii) the data locality is improved.

Let us consider the example shown in Figure 3. Figure 3a gives the code of two functions, F () and
G(). Let us consider F and G as two independent “tasks” that are to be executed by two different

cores, and they share data structures a and b. In the default execution scenario, shown in Figure 3b,

1
Note that, conceptually, any two code portions within two different tasks can execute in parallel if they do not depend on

each other.
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even if cache coherence is provided (discussed in Section 2), since F fetches a at the beginning of its

execution and b towards the end of its execution, and G fetches b at the beginning and a towards

the end, it is quite likely that a would be evicted from F ’s cache by the time G tries to fetch it. A

similar situation happens for the shared data structure b as well. As a result, both these tasks, F and

G, would fetch a and b from off-chip memory, resulting in a total amount of 116 data movements

for fetching a, b, and c (the calculation is given in Figure 3b).

A major problem in this default execution is that, it fails to leverage the “spatial” data reuse

opportunities. To be more specific, the inherent data reuse in this example is separated into two
different tasks which are scheduled to execute on two different cores. To exploit the spatial data

reuse opportunities, our approach splits tasks into finer granular units, referred to as sub-tasks in
this paper, and clusters the resultant sub-tasks into new tasks such that the sub-tasks with intensive

data reuse among them are co-located and scheduled in the same core for execution. Figure 3c

shows the execution after our clustering. In particular, F − 1 and G − 2 sharing a are co-located in

the same core, and similarly, F − 2 andG − 1 sharing b are co-located together. As a result, the total

number of data movements needed for fetching a, b, and c is reduced to 96.

One potential problem brought by sub-task clustering in this particular example is that it

introduces extra data movements for c . In the default/baseline execution, c is only fetched by F .
However, with our sub-task clustering, c is fetched twice by F − 1 and F − 2 which execute on two

different cores. Even with cache coherence in place, c is unlikely to be found in the cache of the

node where F − 1 executes. This is because F − 2 executes afterG − 1 finishes, and by the time F − 2
fetches c , it may have already been evicted from the cache of the node where F − 1 executes. In
other words, although sub-task clustering reduces the total data movement and benefits a and b, it
does not capture the “temporal” data reuse opportunity of c . To address this problem, we re-schedule
the sub-tasks within a newly-generated task. Figure 3d illustrates the result after re-scheduling.

Specifically, we switch the execution orders of F −1 andG −2 such that F −1 and F −2, which share

c , will execute in close proximity in time. As a result, the resulting code has a higher probability that

c would be forwarded from one node’s cache based on the underlying coherence protocol. After

this re-scheduling, the total data movement is further reduced to 76. This example demonstrates

that, for minimum amount of data movement on the on-chip network and maximum data locality,
both sub-task relocation and sub-task rescheduling have to be performed.
More generally, our proposed approach forms new tasks from original tasks, by dividing the

original tasks into sub-tasks and putting the sub-tasks that exhibit intensive data reuse among

them into a same new task. Since each newly-formed task will eventually be mapped to a single

node for execution, the reuse among its sub-tasks will be captured by the local caches in that

node, that is, the data reuse among those sub-tasks will be converted into data locality. Figure 4(a)
shows an example with four original tasks (Task − 1, Task − 2, Task − 3, and Task − 4). Each

original task consists of several sub-tasks (denoted using cycles). For example, Task − 1 has five
sub-tasks labeled from T 11 to T 15. The data sharing (data reuse) among sub-tasks are labeled with

solid lines in the figure. Note that, the solid lines in the figure only capture data reuses, not data
dependencies. At a high level, our approach leverages data reuse to cluster sub-tasks and generates

new tasks. It is to be noted that, after clustering, the execution order of sub-tasks is subject to data
dependencies, which are captured using a data dependency graph. We provide a detailed discussion

of data dependencies in Section 5. Figure 4(b) illustrates the newly-generated tasks based on the

data reuse among sub-tasks. For example, the new Task − 1 now consists of T11, T21, T22, and
T 23, as these four sub-tasks have data reuse among them as shown in Figure 4(a). Similarly, other

sub-tasks are clustered and new tasks are generated based on the data reuse information. As a result,

these newly-generated tasks will be scheduled to different cores such that sub-tasks with data reuse

among them will be executed on a single core to take advantage of the local cache hierarchy. Note
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Fig. 4. Data reuse-aware new task generation (i.e., sub-task clustering). (a) Original task parallelization where
each cycle represents a sub-task and the data reuses are labeled with solid lines. (b) Newly-formed tasks
where sub-tasks with inherent data sharing are clustered together.

that, the number of newly generated tasks is not necessarily identical to the original number of

tasks.

Thus, our approach is based on creating new tasks from old tasks in the program, by i) breaking

the old tasks into sub-tasks, ii) re-grouping these sub-tasks, and iii) re-ordering them within their

new groups.

There are two important points we want to emphasize. First, the number of newly-generated

tasks is not necessarily identical to the number of original tasks (though they are the same in

this specific example). In our approach, the number of newly-generated tasks is decided by the

number of threads specified in the program (i.e., programmer indicates the number of new tasks).

Second, when forming the new tasks, our approach also considers “load balancing” across tasks.

For instance, in Figure 4(a), there is a group of six sub-tasks (T33, T34, T35, T42, T43, and T44)
sharing data and another group of three sub-tasks (T31, T32, and T41) sharing data. To ensure

proper load balancing, T 42 is clustered with T 31, T 32, and T 41 in the new task, instead of having

it clustered with the original five sub-tasks which it shares data. Second, for sub-tasks within

an original task, it is possible that there is no dependencies between two sub-tasks. As a result,

those sub-tasks without dependencies can execute in parallel. However, if there is a data flow

between two sub-tasks across the original task boundary, synchronization is required to ensure

execution correctness. In our approach, we re-generate the tasks with the goal of reducing the

cumulative data movement. Specifically, in the example shown in Figure 4, sub-tasks with data

flow are re-organized into new tasks. It is to be emphasized that two-fold benefits are achieved by

regenerating the tasks. First, the sub-tasks with intensive data reuse are coalesced into a single task

and executed within a particular core to benefit from the local cache hierarchy. Second, the total

number of synchronization primitives across tasks is reduced as dependent sub-tasks are grouped

within the same new task. That is, while our approach in this paper mainly targets reducing data

movement and enhancing data locality, it is also expected to improve the degree of parallelism

because we split tasks into smaller granularity (i.e., sub-tasks) and the degree of parallelism across

sub-tasks is in general higher than the degree of parallelism across original tasks.
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Fig. 5. Compiler steps to form new tasks in our approach.

5 DETAILS OF OUR APPROACH
Our approach consists of four complementary steps: i) constructing a sub-task graph, ii) sub-task

clustering, iii) sub-task to core assignment, and iv) sub-task scheduling. Figure 5 depicts the details

of the compiler pass that generates the output code with optimized sub-task assignment and

scheduling. Starting with the original input task-parallel code and the user-specified sub-task

granularity, we first perform an initial code analysis to construct a sub-task dependency graph and

sub-task reuse graph (Section 5.1), two data structures internal to the compiler. Based on this reuse

and dependency information, next we perform sub-task clustering such that the sub-tasks with

data reuse among them are clustered into the same new task (Section 5.2). Finally, we perform sub-

task assignment and scheduling using the data location information (Section 5.3 and Section 5.4).

The final output code also considers load balance across different cores. Algorithm 1 shows the

pseudo-code of the compiler algorithm. It takes the number of threads, number of tasks, on-chip

network topology, and the user-defined sub-task granularity as inputs, and generates the “sub-task

to core assignment and task scheduling” with the goal of maximizing data locality and minimizing

data movement on the on-chip network. The complexity of the algorithm is O(loд(N ) × n2loд(n)),
where N is the number of threads specified in the program and n is the total number of vertices

(sub-tasks) in the sub-task graph.

We want to emphasize that, this approach is flexible enough in that it can work with any sub-task

granularity. For example, a sub-task can be a single program statement, or a consecutive set of

program statements, or a few iterations of a parallel loop, or an entire loop nest. In this paper, given

an input application code, we focus on its affine portions where the data access patterns can be

determined ahead of execution. For non-affine program portions (e.g., loop nest with indirect data

accesses), we do not apply our optimization.

The following subsections discuss the details of our approach.

5.1 Constructing Sub-task Graph
Our approach takes a task graph as input. In the task graph, each node represents a task and an

edge between two nodes represents a (control or data) dependency between the corresponding two

tasks. The first step in Algorithm 1 is to generate the sub-task graph (line 30). More specifically,

given a task graph TG(V , E), where V represents the number of tasks in TG and E represents the

number of edges in TG , function Construct_sub-task_graph generates two graphs: i) a sub-task

data reuse graph G, and ii) a sub-task dependency graph D. In the sub-task data reuse graph, each

node represents a sub-task in the granularity of S operations (S being the sub-task size), each edge

represents the data reuse between two sub-tasks, and an edge weight captures the “intensity” of

data reuse between the sub-tasks. Currently, we rely on the programmer to specify S . We also

report sensitivity study results with different sub-task sizes later in our experimental analysis.

It is important to emphasize that the sub-task size S affects the data locality and the degree of

parallelism of the newly-generated tasks in our approach. Specifically, a large S indicates that more
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Algorithm 1 Sub-task clustering, placement, and scheduling

INPUT: Number of threads (N); Number of Tasks (T); Sub-task granularity (S); Task graph TG
OUTPUT: Sub-tasks to core scheduling.

1: //generate sub-task graph and sub-task dependence graph

2: function Construct_sub-task_graph(Task TG(V,E))

3: for each task do
4: partition each task into sub-task S1, s2 · sk with size of S statements

5: if si has data sharing with sj then
6: add edge from si to sj in sub-task graph G
7: set the edge weight in G as the intensity of data sharing

8: if si has data dependence with sj then
9: add arrow from si to sj in sub-task dependence graph D

10: return (G,D)
11: //Kernighan-Lin algorithm

12: function Graph_partition(sub-task graph G(V,E))

13: //randomly partition sub-task graph into Ga and Gb where size(Ga ) = size(Gb )

14: дmax = 0

15: while дmax > 0 do
16: for each sub-task si in Ga and sj in Gb do
17: Let WI and WE denote the internal cost and external cost of weighted edges,

respectively.

18: Di =WEi -WIi and D j =WEj -WIj

19: G1, G2, and Gm ← ∅
20: for i from 1 to V/2 do
21: find si in Ga and sj in Gb such that д = Di + D j -2*c(si ,sj ) is max.

22: add si to G1, sj to G2, and д to Gtemp
23: remove si from Ga and sj from Gb
24: update theWE andWI for the remaining vertices in Ga and Gb

25: // select k д from Gtemp such that the sum of k д 9s maximized

26: if sum(д1 · дk ) > 0 then
27: exchange s1, s2 · sk from G1 with s1, s2 · sk from G2

28: return (G1,G2)

29: //Step 1: constructing sub-task graph

30: (G, D) = Construct_sub-task_graph(Task TG)
31: //Step 2: clustering sub-tasks (Kernighan-Lin algorithm)

32: count = 1

33: while count <= N do
34: (Ga , Gb ) = Graph_partition(sub-task graph G(V,E))

35: count ← 2 ∗ count
36: recursively call Graph_partition(Ga ) and Graph_partition(Gb )

37: //Step 3: sub-task group placement

38: construct reuse graph among sub-task groups

39: Calculate weights of the group reuse graph

40: Place high-reuse groups to neighboring cores.
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41: //Step 4: sub-task scheduling

42: for each core ci do
43: for each sub-task si j assigned to ci do
44: for the two neighboring cores cr and cb (right and bottom) of ci do
45: Choose the sub-tasks sir and sib for cr and cb such that they have highest reuse

with si j .

data locality can be captured within a sub-task. However, a large S diminishes the effectiveness of

sub-task clustering (due to dependencies) and may also lead to imbalanced execution among cores.

In contrast, a small S allows more effective sub-task clustering to maximize the parallelism but

may distort data locality if the reuses are separated in different sub-tasks. Note that the data reuse

captured in the data reuse graph is “dependency-free”. In other words, data reuse graph does not
capture the data dependencies between sub-tasks, meaning that any subset of sub-tasks from the

data reuse graph can potentially execute in parallel. Instead, the dependency information among

sub-tasks is captured separately in the sub-task dependency graph D, the second data structure our

compiler employs. We want to emphasize two important points regarding the sub-task dependency

graph. First, the sub-task dependency graph is different from the original task-level dependency

graph. To further explain this point, let us consider an example of two dependent tasks T1 and
T2 (T1→ T2) in the original task graph. For explanation purposes, let us further assume that T1
is partitioned into two sub-tasks T11 and T12, and T2 is also partitioned into two sub-tasks T21
and T22. Supposing that the data dependency in the original task graph (T1→ T2) is between
two statements S1 and S2, and after task partitioning, S1 resides in T11 whereas S2 resides in

T22, then the dependency is captured by an edge from T11 to T22 (T11→ T22). As a result, one
potential benefit of our approach is that task partitioning can possibly generate “more parallelism”

compared to the original task graph, i.e., the degree of parallelism can increase. Specifically, in the

aforementioned example, T21 can execute in parallel with T11 and T12 as it does not depend on

T 11 and T 12. The second important point regarding the sub-task graph is that, we need to capture

the “newly-generated” dependencies. For example, if T 12 consumes the data generated by T 11, an
edge from T 11 to T 12 (T 11→ T 12) is inserted in the sub-task dependency graph.

5.2 Sub-task Clustering
The next step is to generate “new tasks” that are eventually mapped to cores. The number of

new tasks is determined by the number of threads specified in the program (N ).
2
Our goal is to

partition the sub-task graph into N groups (new tasks), and assign these new tasks to different

cores, such that the data reuse within a new task is maximized and data reuse across tasks is

minimized. To this end, we recursively apply the Kernighan-Lin algorithm [18] (lines 32 to 36) to

the sub-task reuse graph. Specifically, Kernighan-Lin algorithm partitions the sub-task graph G
into two sub-graphsG1 and G2 with equal sizes (i.e.,the same number of sub-tasks). It guarantees

that the cumulative weights of the edges that cross the G1-G2 boundary is minimized. We then

apply the same process to G1 and G2 separately, until the number of sub-graphs is equal to the

number of threads specified in the program. In a sense, these sub-graphs are the new tasks. Note

that load balancing is automatically taken care of, as the algorithm partitions the sub-task graph

into same-sized sub-graphs (i.e., new tasks).

After generating new tasks, we insert synchronization primitives to ensure execution correctness.

Specifically, if two dependent sub-tasks (observed from the sub-task dependency graph) reside in

two different newly-generated tasks, we insert synchronization before the dependent sub-task.

2
As stated earlier, this can be set to the number of cores or any other value.
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This is because, different tasks are assigned to different cores and they can execute in parallel. Note

that, if the two dependent sub-tasks reside in the same task, we do not need any synchronization as

they execute sequentially on the same core.

5.3 Sub-task Placement
The next step is to assign the newly-generated tasks to cores. Recall from the discussion in Section 2

that, multiple cores are connected through a 2D mesh-based on-chip network in our targeted

manycore architecture. Therefore, if the requested data can be found in the local cache hierarchy or

can be supplied from the nearby cores, the incurred data access latency would be lower, compared

to the case where the requested data is supplied from the remote nodes or fetched from the off-chip

memory. In this paper, we leverage this observation, by generating a reuse graph among all newly-

generated tasks (lines 38 to 40). The weights on the edges capture the “intensity” of data reuse

among new tasks. Note that, although most of the inherent data sharing is wrapped within new

tasks through our sub-task clustering, there will still exist data sharing among newly-generated

tasks. Our task-level reuse graph captures such opportunities and exploits them in assigning the

new tasks to cores. More specifically, every time we assign a task to core, we choose the one that

has most data reuse (i.e., larger weights on the edges) with other tasks that have already been

assigned to the nearby cores. That is, the goal is to have the new tasks with intense data sharing

getting assigned to nearby cores such that the total amount of data movement on the on-chip

network is minimized as much as possible.

5.4 Sub-task Scheduling
The last step in our approach is to reorder/schedule the sub-tasks within new tasks such that the

sub-tasks with inherent data sharing across tasks/cores execute in parallel or closer in time (lines

42 to 45). For instance, recall our example in Figure 3c where, after sub-task clustering, sub-task

F − 1 accesses data structure c at the beginning of the new task (i.e., the new task includes F − 1
and G − 2), whereas sub-task F − 2 accesses c towards the end of the new task (i.e., the new task

includes G − 1 and F − 2). The problem is that, by the time F − 2 requests c , it is likely that c is no
longer in the cache of the node where F − 1 executes. In other words, the reuse of data structure c
between F − 1 and F − 2 would not be converted into data locality due to the fact that there is a

large time interval between the executions of F − 1 and F − 2. Our sub-task scheduling fixes this

problem by shuffling the execution order of sub-tasks within each newly-formed task. Note that

our scheduling algorithm is essentially a greedy heuristic, in that we first choose one task and then

shuffle the sub-tasks in other tasks based on the reuse information from the sub-task reuse graph.

Further, sub-task reordering should not violate the dependencies among sub-tasks. We check the

sub-task dependency graph before each reordering to ensure the correctness of execution.

5.5 Example
To help better explain the operations of our approach, let us consider the example shown in Figure 6.

Figure 6a shows an example program fragment with three tasks: F (),G(), andH (). Each task consists
of eight statements, and we assume a sub-task granularity of four statements. Regarding the data

structures, each task has some local/private data structures (e.g., from f 1 to f 8) as well as some

shared data structures (e.g., a and b). Since the granularity of sub-tasks is four statements, each

of the original tasks is divided into two sub-tasks. For example, F () is divided into two sub-tasks

labeled with F1 and F2. Figure 6b shows the data reuse graph built from these sub-tasks, and

Figure 6e depicts the sub-task dependency graph after executing the first step of Algorithm 1. Note

that the data reuse graph is a complete graph with edge weights representing the intensity of data

sharing among sub-tasks. Let us further assume that the number of new tasks formed is three.
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F()
type f1…f8
f1 = a * 5;
f2 = b – c;
f3 = d + f2;
f4 = f / e;
f5 = f2 * f3;
f6 = f – g;
f7 = k / f5;
f8 = l / h; 

endTask

G()
type g1…g8
g1 = a * 4;
g2 = b – c;
g3 = c + g1;
g4 = g3 / g;
g5 = a * 5;
g6 = b – d;
g7 = c + g5;
g8 = sum(e,f,g,h); 

endTask

H()
type h1…h8
h1 = k * 5;
h2 = l - a;
h3 = f * g;
h4 = sum(h3,h1,b);
h5 = a * 5;
h6 = b – c;
h7 = g + a;
h8 = h7 / g; 

endTask

F1

F2

G1

G2

H1

H2

(a) A sample code segment.
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(d) Sub-task placement.

G1

G2F2

F1 H1

H2

Dependency

(e) Dependency graph of
sub-tasks.

G1
G2 F2
F1 H1

H2

G1G2
F2F1
H1

H2

G1G2

F2F1

H1

H2
wait for F1 
to finish.

(f) Sub-task scheduling.

Fig. 6. An example to explain the steps of our proposed approach.

Figure 6c shows the generated new tasks after the second step of Algorithm 1. Specifically, sub-tasks

F1 and G2 are clustered into a new task. Similarly, (G1 and H2) and (H1 and F2) are clustered into

another two separate new tasks. Finally, these three newly-generated tasks are assigned to three

different cores for execution based on the data location (i.e., distance to the memory controllers) of

their requested data (Figure 6d). It is important to emphasize that, since there is a data dependency

from F1 to F2 (Figure 6e), a synchronization primitive is inserted before the execution of F2 to
ensure that F2 is executed after F1 finishes execution in a different core (Figure 6f). Figure 6f also

shows sub-task scheduling within a newly-generated task, which is the last step of our algorithm.

The execution orders of F1 and G2 are switched because G2 has data reuse with H1. After the

scheduling,G2 andH1 are executed in parallel (or close in time) so that the reused data has a higher

chance of residing in the on-chip cache at the time of reuse (i.e., higher chance of getting converted

into data locality). The final output of our algorithm is shown in the bottom of Figure 6f.

6 EXPERIMENTAL EVALUATION
In this section, we first describe our experimental framework and benchmark programs, and

then present our detailed experimental evaluation. In our evaluations, we compare our proposed

approach against a baseline as well as two recently-published approaches (one compiler-based and

one hardware-driven).

6.1 Experimental Setup
Target Architecture. As stated earlier, we used an Intel Xeon Phi based architecture (Knight’s

Landing – KNL) to test the effectiveness of our proposed optimization approach. Most of our

experiments have been performed when the architecture is configured in the cache mode with the
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Table 1. Compile-time statistics.

Benchmark Number of Number of Task
Name of Tasks Sub-tasks Diversity
barnes 12 8,184 6.5

fmm 18 10,052 11.2

radiosity 24 12,392 14.1

raytrace 8 9,973 5.5

volrend 12 14,833 7.8

water 20 6,891 8.3

cholesky 10 7,152 6.1

fft 16 16,927 10.4

lu 8 8,244 5.8

radix 16 8,707 11.0

sub-NUMA cluster mode, as the baseline version (explained shortly) generated the best results with

this setup. This is because in the sub-NUMA cluster mode, both the L2 data accesses and memory

accesses are limited within a sub-NUMA region, and as a result, the worst-case data fetching path

is shorter compared to other two modes. However, later we also present results with cache mode +

quadrant mode.

Compiler Infrastructure and Runtime Environment. We used LLVM version 8.0 [31], to

implement our proposed optimization as a “compiler pass”. In the resulting compiler, which provides

a state-of-the-art, SSA-based compilation strategy, our pass is invoked (to partition computations

across cores) before data locality optimizations, vector parallelism optimizations, and low-level

(core-level) optimizations have been performed. We noticed that our added compiler pass increased

average compilation time by 36%, resulting in a maximum compilation time of 13.1 seconds (across

all benchmark programs tested). In our experiments, the machine was running Linux Kernel 4.14.

Versions. In this work, we have used four different versions explained below. All versions take

the original code as input but they differ how computations are assigned to cores.

• Baseline: This is the default version, which uses/obeys original (pThreads/OpenMP based)

parallelization directives. In this case, each core performs a separate task by working on a

completely different function (task parallelism), or by executing a subset of the iterations

of a parallel loop nest (data parallelism). Dependencies among tasks are followed per our

discussion in Section 3. Unless otherwise stated, the results with the remaining versions

are normalized with respect to this version. Note that this version already uses all the

optimizations the Intel compiler (icc) offers.
• M&M: This represents the optimization strategy (mix-and-match) presented in this paper.

As already discussed in detail, it is based on re-shuffling the placement and scheduling of

computations (sub-tasks) across cores.

• Alt-1 [26]: This is a recently-published compiler-based optimization strategy, which takes

into account the relative positions of cores, last-level caches (LLCs), and memory controllers

in the target architecture, and generates a mapping of loop iterations to cores, with the goal

of minimizing the on-chip network traffic.

• Alt-2 [16]: This is a hardware-driven application-to-core mapping strategy that targets mul-

tiprogrammed workloads and reduces inter-application interference in the on-chip network

and memory controllers. Specifically, it i) maps latency sensitive applications to separate

parts of the network from bandwidth intensive applications to reduce interference, and ii)

maps those applications that benefit more from being closer to the memory controllers close

to these resources.
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Fig. 7. Execution time results.

We want to mention that, while Alt-1 targets multithreaded workloads, Alt-2 targets multipro-
grammed workloads. Therefore, when we execute a single multithreaded application program, we

compare our approach against Alt-1, whereas when we execute multiple (multithreaded) applica-

tions, we compare our approach against Alt-2. Note that, our approach is not simply a “superset”

of Alt-1 and Alt-2. Rather, it is a general framework that works for both multi-threaded and multi-

programmed execution scenarios. Specifically, unlike Alt-1 which focuses on loops and employs

loop iteration as the granularity of computation scheduling, our approach focuses on tasks that

have a larger granularity that provides the compiler with the capability to re-organize, re-order,

and re-map tasks for both parallelism and data locality purposes. On the other hand, our approach

is different from Alt-2 as well, which focuses on row-buffer hits and off-chip memory locality.

Moreover, our approach does not require any hardware modifications. Also, except for the multipro-

grammed workload experiments presented later, in all experiments, we execute one multithreaded

application at a time, and the application is parallelized over 36 (6 × 6) threads. In each node (tile) in

our architecture, we use only one of the threads. Later, we also report experimental results collected

by assuming different number of threads per node.

Benchmark Programs. We performed experiments using applications from three different

benchmark suites: Splash-2 [58], SPECOMP [8], and Mantevo [1]. For now, we present the detailed

results for only Splash-2 suite; the results for the other two benchmarks are summarized towards

the end of this section. We used 10 Splash-2 applications [58] as our benchmark programs, to test

the impact of our proposed optimization approach.
3
In an attempt to increase pressure on the

cache/memory sub-system, we increased the input sizes of Splash-2 benchmarks, and the resulting

input sizes varied between 33.1 MB and 1.4 GB, and the corresponding LLC (L2) cache miss rates

ranged between 18.1% and 38.4%, when using the baseline versions. Unless otherwise stated, we

use a default sub-task granularity of 1 program statement.

6.2 Results
Compile-Time Statistics. We start by presenting, in Table 1, some statistics (for Splash-2

benchmarks) that demonstrate the working of the compiler. The second and third columns in this

table give, respectively, for each benchmark program tested, the total number of tasks and the total

number of sub-tasks. The fourth column on the other hand gives, for a newly-formed task, the

number of different (original, old) tasks that supplied a sub-task. That is, task diversity is calculated

using the number of different original tasks whose sub-tasks are used in forming the newly-formed

task. The number in the Table is an average value across all newly-formed tasks. We see that, on

average, each new task has received sub-tasks (after our optimization) from 8.6 different (original)

tasks, indicating that our approach moves/reshuffles sub-tasks across tasks quite aggressively.

3
The only remaining application in the Splash-2 suite, ocean, could not be compiled in our target platform, due to some

incompatibility issue between the compiler and the OS.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 20. Publication date: June 2021.



Mix and Match: Reorganizing Tasks for Enhancing Data Locality 20:15

0
20
40
60
80

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
C

yc
le

s

sub-task clustering sub-task clustering + sub-task placement M&M

Fig. 8. Incremental evaluation of various steps in M&M.
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Fig. 9. CDF of Manhattan distances.

Execution Time Results. The graph in Figure 7 gives the execution cycles when using two

different schemes (our proposed scheme and Alt-1
4
). All results are normalized to the baseline

version. We see from these results that our approach improves the performance of all benchmark

programs, and the average performance improvement brought by our approach over the baseline

version is about 23.4%. It can also be seen that Alt-1 brings an average improvement of 11.7% over

the baseline. The main reason why our approach generates higher savings than Alt-1 is because,

unlike Alt-1 which is essentially a loop nest-centric optimization strategy, our approach is more

general, i.e., it is applicable to any code fragment that can be partitioned into sub-tasks.

Recall that our approach has four steps, namely, sub-task graph formation, sub-task clustering,

sub-task placement, and sub-task scheduling. We now quantify the importance of these individual

steps. For each benchmark program, the first bar in Figure 8 shows the results (normalized execution

times) when only the sub-task graph formation and sub-task clustering steps are used, and remaining

two steps (sub-task placement, and sub-task scheduling) are as in the baseline case. The second bar

on the other hand represents the results when the sub-task graph formation, sub-task clustering,

and sub-task placement of our approach are activated, and the last step is implemented as in

the baseline. Finally, the third bar reproduces the results from Figure 7. It can be observed from

these results that, each of the sub-task clustering, sub-task placement, and sub-task scheduling

steps is crucial for the success of our approach, and that the incremental savings (execution time

improvements) brought by them are 10.1%, 6.9% and 6.2%, in that order.

To explain the difference the second and third bars in Figure 8, we also report the Manhattan

Distances (MD) of data reuses. The MD of a data reuse is the physical distance (in terms of the

number of links) in the on-chip network between the requesting core and the location of the

requested data. Figure 9 gives the CDF of MDs, for these two versions. In this graph, a point (x,y%)

4
Comparison results against Alt-2 will be given later with multiprogrammed workloads (of multithreaded applications).
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indicates that y% of the data accesses traverse x or fewer communication links on the on-chip

network. It can be observed from these results that activating the sub-task placement step reduces

distance-to-data significantly.

0.0
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20.0
30.0
40.0
50.0

%

L2 miss rate reduction row-buffer miss rate reduction

Fig. 10. Reductions in L2 misses and row-buffer misses compared to the baseline.

In addition to this reduction in the on-chip message traffic, our approach also improves on-chip

cache performance as well as row-buffer hit rates, primarily due to the improved task locality

(i.e., each newly-formed task includes sub-tasks that exhibit "high data reuse" among themselves).

In DRAM, memory elements are laid out in arrays of rows and columns, and an access to the

memory array occurs at the granularity of a row. The accessed memory row is brought into a

buffer, called row-buffer, and successive accesses to the same row can be satisfied from the row-

buffer, instead of accessing the memory array. Such memory accesses are called row-buffer hits

(as opposed to row-buffer misses/conflicts which occur when the accessed memory row does not

currently reside in the row-buffer), and a high row-buffer hit rate is usually correlated with high

memory performance. Figure 10 presents the improvements (reductions) in the L2 cache misses

and row-buffer misses, with respect to the baseline, when our approach is used.
5
It can be observed

from the results presented in Figure 10 that the geometric means for cache (L2) miss reduction and

row-buffer miss reduction are, respectively, 29.2% and 13.8%.
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Fig. 11. Normalized execution times of different threads of two of our application programs.

Behavior of Load Balancing. Before we start the discussion of comparison of our approach

against optimal (explained shortly), we want to present results that explain the load balance behavior

of our approach. As discussed earlier, our approach tries to achieve load balance across tasks, in

terms of the sub-tasks they contain. That is, it assigns more or less the same number of sub-tasks

to each and every (newly-formed) task. However, the question is whether this sub-task level load

balancing also leads to execution time balancing across the different tasks of a given application.

We present in Figure 11 the execution times of all 36 threads of two of our benchmark programs,

5
Since the row-buffer statistics are not possible to collect directly from the system, we estimated them by instrumenting the

source code and recording accesses to different memory rows.
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water and fft (other benchmarks also exhibit similar behavior). It can be seen that the execution

times of different tasks are quite balanced, and the difference between the minimum and maximum

execution time of any thread pair is 3% for water and 3.8% for fft.
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Fig. 12. Comparison against optimal scheme.

Comparison against Optimal. Next, we compare our approach to an optimal scheme. In this

context, what we mean by being “optimal” is that the application code is first profiled and our

compiler pass is fed with accurate edge weights
6
in the data reuse graph. In other words, the optimal

in this case is a version of our proposed approach that operates with accurate edge weight stats.

The results plotted in Figure 12 reveal that the average difference between our scheme and optimal

is about 8.9%, meaning that a more accurate compiler analysis has scope to further increase the

effectiveness of our approach. It can also be noticed that the performance gap between our approach

and optimal is larger in graphics programs such as volrend, radiosity and raytrace, primarily because

these benchmarks employ mostly unstructured data access patterns.
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Fig. 13. Results with different sub-task sizes.

Sensitivity to the Sub-task Size. Recall that so far in our experiments we used a sub-task size

of 1 program statement. In this part of our evaluation, we vary the sub-task size and measure the

sensitivity of our results to it. In Figure 13, a point a% on the x-axis indicates a sub-task size which

corresponds a% of the average task size. Consequently, as we go on the x-axis from left to right, we

increase the sub-task granularity. It can be observed from these results that, as long as we work

with a sub-task granularity that falls between 1 statement and 15% of the average task size, the

resulting performance improvements are consistent. Beyond 15%, the locality starts to get hurt,

and we see in some benchmarks significant drop in our savings.

6
Due to data reuses that cannot be caught by the compiler, e.g., reuses originating from indirect array accesses and pointers.
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Fig. 14. Results with different dataset sizes.

Results with Increased Dataset Sizes. Next, we study the sensitivity of our savings to the

dataset sizes. For this set of experiments, we focus on two of our benchmark programs (fmm and

radix) and increase their dataset sizes from their default values we have been using so far to 2x,

4x and 8x of the default values, and present execution time improvements. The results plotted

in Figure 14 indicate that the percentage improvements brought by our approach increase as we

increase dataset sizes. This is primarily because a larger input data puts more pressure on cache,

memory and on-chip network resources, rendering data access optimization even more critical.
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Fig. 15. Sensitivity to the number of threads per node.

Results with Varying Number of Threads Per Node. Recall that so far in our experiments

we used 1 thread per node (tile). In this part of our evaluation, we test the effectiveness of our

approach with different thread counts per node. The results plotted in Figure 15 indicate that, the

percentage improvements brought by our approach increases as the number of threads per node

increases. This is primarily because a large number of threads running in parallel put more pressure

on caches, on-chip network, and row-buffers. Consequently, improving data locality and reducing

on-chip data movement can have a larger impact on performance. On average, we observe 27.1%,

29.7%, 32% and 34.9% performance improvements, with 2, 3, 4 and 5 threads per node, respectively.

Results with Quadrant Cluster Mode. Recall that the results presented so far have been

collected under the cache mode with sub-NUMA cluster mode. In this part of our evaluation, we

present execution time improvements with the cache mode + quadrant cluster mode. The results

plotted in Figure 16
7
clearly show that the relative performances of M&M and Alt-1 are similar to

those obtained when using the cache mode + sub-NUMA node.

Results with Multiprogrammed Workloads of Multithreaded Applications. Now, we
evaluate the performance of our approach in a multiprogrammed environment and compare

7
The bars are normalized to the baseline when using cache mode + quadrant mode.
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Fig. 16. Results with cache memory mode and quadrant cluster computing mode.
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Fig. 18. Normalized execution times with benchmark programs from SPECOMP and Mantevo.

it against an alternate approach (Alt-2). As discussed earlier, Alt-2 is a hardware-driven application-

to-core mapping strategy that targets multiprogrammed workloads and reduces inter-application

interference in the on-chip network and memory controllers. In Figure 17, we compare our approach

and Alt-2 in three different configurations. In Config-A, in each experiment, we run two copies of

the application being tested; each of the copies is parallelized over 36 threads. As a result, one of

the cores in each node runs one thread from one of the application copies, whereas the other core

in the same node runs one thread from the other copy. In Config-B, each application is parallelized

over 36 threads (as in Config-A) but this time, all threads of one application copy runs on the left

half of the architecture and all threads of the other copy runs on the right half. Consequently, in a

given node, both the cores run threads from the same copy. Finally, in Config-C, we run four copies

of an application, each parallelized over 18 threads which are assigned to a 3x3 sub-grid of the

architecture. The results plotted in Figure 17 reveal that i) our approach brings improvements in

all three configurations tested, ii) its savings are higher with Config-A, as chances for contention

are higher in the baseline execution under Config-A due to more intense interleaving of the data

accesses from different application copies, and iii) our approach generates better results than Alt-2

in all configurations and in all benchmarks. This is due to the fact that a) Alt-2 is mostly optimized

for multiprogrammed workloads of single-threaded applications, and b) it primarily targets memory

locality (row-buffer hit rate), not cache performance.
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Results with Other Benchmark Suites. Finally, we present the results collected using the

application programs from the SPECOMP and Mantevo benchmark suites. Due to space concerns,

only execution time results are presented, but (though not presented here) the sensitivity results

with SPECOMP and Mantevo exhibit similar trends to the sensitivity results with Splash-2. For

these experiments, sub-NUMA mode of KNL is used. It can be observed from Figure 18 that, our

approach brings an average execution time reduction of 23.3% with SPECOMP benchmarks and

19.3% with Mantevo benchmarks, and the corresponding performance improvements with Alt-1

are 12.7% and 16.3%, respectively. Furthermore, our approach outperforms Alt-1 in all benchmark

programs tested.

Discussion: We want to discuss several aspects of our approach. First, the current implementa-

tion relies on programmers to provide the sub-task granularity. This introduces the programmers’

burden and may shift the benefits one can obtain from our approach due to an improper sub-task

size. Second, the sub-task size is fixed, and as a result, certain parallelism or data locality may be

sacrificed due to the fixed size. We will explore compiler dynamic sub-task size determination in

our future work. Finally, our scheduling policy is a greedy-based algorithm. As a result, it may not

achieve optimal scheduling, and consequently there can be opportunities missed by our approach.

7 RELATEDWORK
In this section, we discuss prior efforts related to our work from three aspects: i) conventional data

locality optimizations, ii) near-data computing, and iii) recomputation with near data.

Conventional data locality optimizations: Conventional data locality optimizations strive

to improve hit rate in cache hierarchy and reduce the amount of data requests reaching lower level

caches and memory system [6, 14, 17, 20, 23, 27, 30, 32, 34, 46, 47, 51, 52, 54, 55]. Sundararajah et

al. [48] targeted nested recursions in programs, and proposed a set of scheduling transformations

to automatically improves locality at all levels of memory hierarchy. Focusing on GPUs, Li et

al. [33] characterized the data locality opportunities in GPUs and proposed thread block scheduling

policies which are data locality aware. Chen et al. [13] introduced an approach of locality analysis

based on static parallel sampling. Specifically, a compiler analysis pass generates sampler codes to

measure the locality, and then, the precise locality is inferred from the execution of sampler code.

Our approach introduced in this paper can be considered as complementary to most of these prior

efforts on cache miss minimization. Targeting task-parallel applications, our idea is to organize and

schedule tasks that are data locality aware. Therefore, the conventional optimizations (e.g., loop

transformation) can be applied to computations within tasks to further improve the data access

performance.

Near-data computing: One popular execution paradigmwhich targets reducing the cost of data

movement is near-data computing (NDC) or near-data processing (NDP). Instead of fetching data

to computation, NDC offloads computation to near data and performs computation in places where

the requested data are nearby. Prior works explored the opportunities of employing the concept

of NDC from different aspects including compiler optimizations, operating systems support, and

architectural optimizations [3, 4, 9, 10, 12, 21, 28, 36, 38, 44, 60]. Ahn et al. [3] proposed a processing-

in-memory (PIM) architecture together with PIM instructions and dynamically scheduled the PIM

instructions on processor or in-memory based on data locality. Chu et al. [15] developed high-level

programming extensions to support PIM-aware programming. Their approach allows programmers

to control the applications running on PIM architectures. Pattnaik et al. [41] proposed learning-

based mechanisms to schedule computations in NDC-based GPU architectures. Hsieh et al. [21]

implemented schemes that offload selected code segments to execute in memory without any need
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of program modification. Compared to all these prior NDC-centric works, our approach not only

schedules computations (i.e., sub-tasks) to cores in a data reuse-aware fashion, but also changes the

computation execution order such that the intrinsic data reuses across different computations are

captured by on-chip caches. Unlike the NDC-based approaches, instead of scheduling computations

near data for execution, we reorganize computations to have them executed when the required data

are nearby. Consequently, unlike the NDC approaches, our strategy does not require any special

architectural support, and consequently, it can be used with any manycore architecture.

Recomputation with near data: There are several prior research efforts focusing on recom-

puting the requested data using nearby data to reduce the on-chip network data movement. Tang

et al. [49] proposed a software approach where a costly data access in a program slice is replaced

by a few less costly data accesses plus some extra computations if this replacement reduces the

total cost. Their approach requires heavy program analysis to guarantee the correctness and

efficiency of generated program with recomputation. Akturk and Karpuzcu [5] proposed an energy-

efficient architecture-based recomputation strategy to reduce the pressure on memory hierarchy

and communication bandwidth. Their approach requires additional hardware to hold and schedule

recomputation slices (Rslice in their paper). Adams et al. [2] focused on cloud computing and

proposed a cost model to analyze the trade-offs between storing the provenance data or recom-

puting the data. Compared to all these prior efforts, our approach does not use recomputation to

reduce data movement. Instead, we focus on task graph-based applications, and we divide tasks

into sub-tasks and schedule sub-tasks into nearby locations to reduce data movement. Specifically,

the advantage of our approach is four-fold. First, it effectively reduces the total data movement

over the on-chip network without any need of hardware modification and extensive program code

analysis. Second, it introduces additional parallelism compared to original task execution. Third, it

improves data locality and cache performance through sub-task scheduling. And finally, unlike

recomputation, our approach is applicable to a broader set of application programs.

8 CONCLUDING REMARKS AND FUTURE WORK
The main contribution of this paper is a new compiler algorithm that minimizes data movement on

the on-chip network of manycore systems. An important characteristic of this algorithm is that it can

optimize any application program that can be represented by a task graph. As such, it is more general

than many previously-proposed data locality optimization strategies. We implemented this compiler

algorithm in LLVM and performed experiments using different multithreaded benchmark programs

on a state-of-the-art manycore system. Our experimental evaluations indicate that the proposed

compiler algorithm i) improves the performance of 10 multithreaded programs tested (23.4% on

average), ii) outperforms two previously-proposed state-of-the-art data accesses optimization

strategies (one compiler and one hardware based), iii) is effective with multiprogrammed workloads

as well, and iv) generates results that are close to the maximum savings that could be achieved

with perfect profile information.

Our current work includes testing this data movement minimization algorithm on cloud work-

loads and other types of manycore architectures. In parallel, we also explore how to integrate our

approach with conventional loop parallelization techniques, and whether it can be made to be part

of a runtime system that employs dynamic compilation.
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