
Semantic Robustness of Models of Source Code
Jordan Henkel⇤†, Goutham Ramakrishnan⇤‡, Zi Wang†, Aws Albarghouthi†, Somesh Jha†, and Thomas Reps†

†University of Wisconsin–Madison, Madison, WI, USA
{jjhenkel,zw,aws,jha,reps}@cs.wisc.edu

‡Health at Scale Corporation, San Jose, CA, USA
goutham7r@gmail.com

Abstract—Deep neural networks are vulnerable to adversarial

examples—small input perturbations that result in incorrect

predictions. We study this problem for models of source code,

where we want the neural network to be robust to source-code

modifications that preserve code functionality. To facilitate train-

ing robust models, we define a powerful and generic adversary

that can employ sequences of parametric, semantics-preserving

program transformations. We then explore how, with such an

adversary, one can train models that are robust to adversarial

program transformations.

We conduct a thorough evaluation of our approach and find

several surprising facts: we find robust training to beat dataset

augmentation in every evaluation we performed; we find that

a state-of-the-art architecture (code2seq) for models of code is

harder to make robust than a simpler baseline; additionally,

we find code2seq to have surprising weaknesses not present in

our simpler baseline model; finally, we find that robust models

perform better against unseen data from different sources (as

one might hope)—however, we also find that robust models are

not clearly better in the cross-language transfer task. To the best

of our knowledge, we are the first to study the interplay between

robustness of models of code and the domain-adaptation and

cross-language-transfer tasks.

I. INTRODUCTION

While deep neural networks have been widely adopted
in many areas of computing, it has been repeatedly shown
that they are vulnerable to adversarial examples [1, 2, 3, 4]:
small, seemingly innocuous perturbations to the input that
lead to incorrect predictions. For instance, making a small
imperceptible modification to pixels of an image may cause a
neural network to change its prediction. Adversarial examples
raise safety and security concerns, for example, in computer-
vision models used in autonomous vehicles [5, 6] or for user
authentication [7]. Significant progress has recently been made
in identifying adversarial examples and training models that are
robust to such examples. However, the majority of the research
has targeted computer-vision tasks [8, 9, 1], a continuous
domain. (See Kolter and Madry [10] for a comprehensive
overview.)

In this paper, we study the problem of robustness to adver-
sarial examples in the discrete domain of deep neural networks
for source code With the growing adoption of neural models
for programming tasks [11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
robustness is becoming an important property. Why do we
want robust models of code? There are many answers, ranging

⇤
Equal contributions. Work completed at the University of Wisconsin–

Madison.

int 2(Object target) {
System.out.println("Begin search");
int i = 0;
for (Object elem: this.elements) {

if (elem.equals(target)) {
System.out.println("Found");
return i;

}
i++;

}
return -1;

}

Fig. 1: code2seq [21] correctly predicts the function name “indexOfTarget.”
After the highlighted logging statements are added, it predicts “search.”

from usability to security. Consider, for instance, a model
that explains in English what a piece of code is doing—
the code-captioning task. A developer using such a model
to navigate a new code base should not receive completely
different explanations for similar pieces of code. For a concrete
example, consider the behavior of the state-of-the-art code2seq
model [21] on the Java code in Fig. 1, where the prediction
changes after logging print statements are added. Such behavior
(changing output based on irrelevant detail) is the result of an
over-sensitive (and under-robust) model.

The Problem. Many machine-learning-on-code models
are not robust. Furthermore, designing robust training
methods, in the space of discrete programs, is a difficult
task—existing continuous methods cannot be directly
applied.

With images, adversarial examples involve small changes that
are imperceptible to a human. With code, there is no analogous
notion of a change imperceptible to a human. Consequently, we
consider attacks based on semantics-preserving transformations.
Because the original program’s semantics is preserved, the
program that results from the attack must have the same
behavior as the original. Using the idea of adversarial examples
generated by semantics-preserving transformations, we set out
to meet the following goal:

Our Goal. Find a way to train robust models of code and,
in doing so, build a framework that enables experimenta-
tion with different program transforms, models, datasets
and programming languages.

Through our efforts to meet our goal of training robust
models, we make the following contributions:



Our Contributions. We provide a novel and generic
adversary, methods for training robust models of source
code, and a framework that has (already) allowed others
to push the boundaries of adversaries in the domain of
models of code. We perform an extensive evaluation
against code-summarization models, but our framework is
generic and capable of supporting any model that receives
source code as input.

A. Our Approach to Semantic Robustness

We present a novel and generic approach for defining
an adversary that manipulates a program to fool a neural
network. In particular, we structure an adversary in terms
of two operations: semantics-preserving transformations and
resolvers. Transformations construct a program sketch [22]—an
incomplete program with holes—and resolvers fill the holes
to produce a program that fools the neural network. This
insight allows us to represent a wide range of adversaries,
including adversaries formulated in concurrent and follow-on
work. Furthermore, our approach to adversaries (and the overall
framework we built) has already enabled others to produce new
state-of-the-art attacks. We take this as strong validation of our
approach, and we hope that others will continue to build on
our work to push the boundaries of adversaries in the domain
of models of code.

We also demonstrate how to train models of source code
that are robust to such adversaries, using robust-optimization
ideas that are prevalent in image recognition [9]. Aside from
contributing a generic adversary and a robust training approach,
we also contribute a framework, AVERLOC, for producing
both the adversaries and the robust-training pipelines required
to carry out extensive evaluations.

B. The AVERLOC Framework

AVERLOC provides all of the components necessary to meet
our goal of training robust models of code and, as we will
describe, the AVERLOC framework is even able to support the
methodology used in recent (and concurrent) work by others
on robust training for models of code. AVERLOC requires
a user to provide data, a model, and a loss function. Given
those components, AVERLOC will produce an adversary, a
data augmentor, and a surrogate to an adversarial-loss function.
Optionally, users can leverage our pre-existing datasets and
(code-summarization) models. Note that, although we evalu-
ate models trained to perform the code-summarization task,
AVERLOC supports any model taking code as input. For more
details on the AVERLOC framework, see Sec. III.

C. Evaluation of Semantic Robustness

Our approach to generic adversaries and our framework
(which embodies this approach) allows us to provide an
extensive evaluation. In our evaluation, we answer the following
five research questions (and provide concrete and actionable
data to inform practitioners in their use of models of code):

(RQ1): How effective are the individual transforms we provide
when used as attacks? One of our key contributions is a generic
adversary for models of code built on a library of semantics-
preserving transforms. We implement eight such transforms,
and, in this research question, measure the strength of each
transform in isolation against two separate model architectures.
(RQ2): How effective is robust training in defending against
our attacks? Are there any simpler baselines that perform
well? After understanding our attacks in isolation, we move to
evaluating several pipelines for defense.
(RQ3): Does training with a weak adversary help with
defending against a strong adversary? Can we train on weaker
adversaries and still retain (some) robustness when we test
against much stronger adversaries?
(RQ4): What is the effect of robust training on the performance
of models for the domain-adaptation task? Domain adaptation
asks if models trained on data from one domain can be applied
to data from another different (yet similar) domain while
retaining (some of) the model’s original performance. To the
best of our knowledge, we are the first to investigate the
interplay between robustness and domain adaptation for models
of code. If robust models perform well on unseen data (taken
from sufficiently different data sources) then robust training
may be desirable not only for defense against attacks, but also
for increased performance in the face of unseen data.
(RQ5): What is the effect of robust training on the performance
of models for the cross-language-transfer task? Again, to the
best of our knowledge, we are the first to provide preliminary
investigations into the effect of robust training on the cross-
language-transfer task. If models can work across languages
(like simple seq2seq models can), then robust training can
increase their cross-language performance.

In our evaluation, we find several surprising facts: although
vanilla code2seq is more robust than a simpler seq2seq baseline
(before applying any kind of robust training—likely due to
code2seq’s use of program structure), it is up to 1.5x more
vulnerable to some of our attacks; furthermore, to our surprise,
we find that it is harder to make code2seq robust, which results
in robustly trained seq2seq models having the best overall
performance; additionally, we find that robust training beats
dataset augmentation in every evaluation we performed; finally,
we find that robust models perform better against unseen data
from different sources (as one might hope)—however, we also
find that robust models are not clearly better in the cross-
language-transfer task. In summary, we train over 32 models,
perform hundreds of individual evaluations, summarize our
data, and answer each of our five research questions. With these
extensive results, we hope that researchers and practitioners
alike can gain a better understanding of robustness in the
space of models on code.

II. SEMANTIC ROBUSTNESS

In this section, we describe (1) our novel adversarial attack
techniques, and (2) how to train semantically robust models
for source-code tasks.



A. Semantic Adversaries
Adversaries by example: Throughout this section, we imagine
a fixed deep neural network N over source code: given a piece
of code P , it returns a prediction y, e.g., a textual description of
what P does. The goal of an adversary is to transform P into
a semantically equivalent P 0 that fools the neural network into
making a wrong prediction. Formally, we denote an adversary
as a function A(N,P ); the adversary attempts to produce a
program P 0 that is equivalent to P and makes N produce a
wrong prediction.

An adversary is equipped with a set of semantics-preserving
transforms, e.g., adding dead code or print statements. Most
transforms are parametric, e.g., if one adds a print statement,
one has to also decide on the text to print. Therefore, we think
of a transform as producing a program sketch [22]—a program
with holes. For example, consider the following program:
public void incrementWeight(double weight) {

this.weight += weight;
}

Applying the insert print statement transform produces the
following sketch, where  1 is a hole that the adversary needs
to fill with text.
public void incrementWeight(double weight) {

this.weight += weight;
System.out.println(" 1");

}

An adversary may decide to apply multiple transforms,
for example, the one we describe above plus a transform
that changes the name of function arguments. Continuing our
example, this compound transform produces the following
sketch with two holes  1 and  2. (There are two occurrences
of hole  2.)
public void incrementWeight(double  2) {

this.weight +=  2;
System.out.println(" 1");

}

After applying a number of transforms, the adversary needs
to fill in the holes of the resulting sketch to produce a
complete program that fools the neural network into changing
its prediction. Our adversaries apply multiple transforms in a
random order. However, it is possible to extend our adversaries
such that transforms are applied according to user-supplied
heuristics.
Adversary spectrum: We now describe how one designs an
adversary algorithmically, assuming a fixed set of transforms
at the adversary’s disposal.

In our illustration above, we notice that an adversary has to
make two choices:

1) Transform: Choose a sequence of transforms to apply to
a program, resulting in a sketch.

2) Resolve: Choose values for the holes in a sketch.
The strength of an adversary depends upon how it makes

these two choices. The weakest possible adversary, and com-
putationally cheapest to implement, is the one that randomly

chooses a sequence of transforms as well as values for sketches.
The strongest possible adversary exhaustively tries all possible
sequences of transforms and values for filling the holes in
sketches, but it is intractable at best.
Our strong adversary: Our strongest adversary randomly
chooses a sequence of transforms of a fixed length and then
uses a gradient-based (i.e., targeted, as opposed to random)
approach to fill the holes with tokens that are most adversarial
to model performance. Specifically, we use an approach inspired
by natural-language-processing techniques [23, 24].

Using a differentiable embedding layer, we take a gradient-
ascent step in the direction that maximizes model loss. In
other words, for each distinct hole in the sketch, we pick
the replacement to be the token with the maximum value (in
the one-hot encoding) after the gradient-ascent step. We also
impose additional semantic constraints, e.g., in sketches with
multiple holes, we enforce that each hole receives distinct token
replacements.

B. Training Semantically Robust Models

Given an adversary, how can we train models robust to
adversarial transformations?

In standard neural-network training, given a dataset of
programs and labels, (P1, y1), . . . , (Pn, yn), one solves an
optimization objective that looks for a neural network that
minimizes average prediction loss on the entire dataset, where
the loss function L(P, y,N) is a numerical measure of how
bad the neural network N ’s prediction is on program P with
label y. Formally, we solve the following problem:

argmin
N

X

i

L(Pi, yi, N) (1)

To train robust networks, we adopt a robust-optimization ob-
jective [9], where we look for a neural network that minimizes
average adversarial loss. For a program Pi, adversarial loss is
the loss with respect to the semantically equivalent program
P 0
i produced by an adversary. In other words, the adversary is

modeled in the optimization objective, forcing us to consider
its behavior: whenever we compute the loss for a program Pi,
we instead compute that of P 0

i . Formally:

argmin
N

X

i

L(P 0
i , yi, N), where P 0

i = A(P,N) (2)

Robust optimization has been shown to work well in image
recognition and natural-language processing, and, as we shall
see, results in semantically robust models for source code.

III. FRAMEWORK

In this section, we explore the AVERLOC framework in
greater detail. We describe (1) the transforms and resolvers
AVERLOC implements, (2) the training strategies it supplies,
and (3) the practical challenges of robust training on source
code. We also discuss related concepts like obfuscation and
non-semantics-preserving transforms (mutations).



A. Adversaries in Detail
The Transforms Library: In our framework, we provide
a library of transforms on which our adversaries are built.
This library consists of eight transforms and two separate
implementations of these eight transforms: one implementation
targeting Java programs, based on Spoon [25], and one
implementation for Python, based on Astor [26]. We will use
the following Java program to demonstrate our transforms:
public int gcd(int a, int b) {

while (b > 0) { int c = a % b; a = b; b = c; }
if (this.log == true) { System.out.println(a,b); }
return a;

}

T1: AddDeadCode: A dead-code statement of the form if (false

) int  1 = 0;, is appended to the beginning or end of the target
program. The insertion location (beginning or end) is chosen
at random. Applying AddDeadCode to our example yields:
public int gcd(int a, int b) {

if (false) { int  1 = 0; }
while (b > 0) { int c = a % b; a = b; b = c; }
if (this.log == true) { System.out.println(a,b); }
return a;

}

T2: RenameLocalVariables: A single, randomly selected, local
variable declared in the target program has its name replaced
by a hole. Applying RenameLocalVariables to our example
yields:
public int gcd(int a, int b) {

while (b > 0) { int  1 = a % b; a = b; b =  1; }
if (this.log == true) { System.out.println(a,b); }
return a;

}

T3: RenameParameters: A single, randomly selected, formal
parameter in the target program has its name replaced by a
hole. Applying RenameParameters to our example yields:
public int gcd(int  1, int b) {

while (b > 0) { int c =  1 % b;  1 = b; b = c; }
if (this.log == true) {

System.out.println( 1,b);
}
return  1;

}

T4: RenameFields: A single, randomly selected, referenced
field (this.field in Java, or self.field in Python) has its
name replaced by a hole. Applying RenameFields to our
example yields:
public int gcd(int a, int b) {

while (b > 0) { int c = a % b; a = b; b = c; }
if (this. 1 == true) { System.out.println(a,b); }
return a;

}

T5: ReplaceTrueFalse: A single, randomly selected, Boolean

literal is replaced by an equivalent expression containing a
single hole. (One example: “( 1 ==  1)” replaces true.)
Applying ReplaceTrueFalse to our example yields:
public int gcd(int a, int b) {

while (b > 0) { int c = a % b; a = b; b = c; }
if (this.log == ( 1 ==  1)) {

System.out.println(a,b);
}
return a;

}

T6: UnrollWhiles: A single, randomly selected, while loop in
the target program has its loop body unrolled exactly one step.
No holes are created by this transform. Applying UnrollWhiles
to our example yields:
public int gcd(int a, int b) {

while (b > 0) {
int c = a % b; a = b; b = c;
while (b > 0) {

int c = a % b; a = b; b = c;
}
break;

}
if (this.log == true) { System.out.println(a,b); }
return a;

}

T7: WrapTryCatch: The target program is wrapped by a sin-
gle try { ... } catch (...) { ... } statement. The catch
statement passes along the caught exception. A hole is used
in the place of the name of the caught exception variable
(e.g., catch (Exception  1)). Applying WrapTryCatch to our
example yields:
public int gcd(int a, int b) {

try {
while (b > 0) { int c = a % b; a = b; b = c; }
if (this.log == true) { System.out.println(a,b); }
return a;
} catch (Exception  1) { }

}

T8: InsertPrintStatements: A single print statement
System.out.println(" 1"), in Java, or print(’ 1’) in
Python, is appended to the beginning or end of the target
program. The insertion location (beginning or end) is chosen
at random. Applying InsertPrintStatements to our example
yields:
public int gcd(int a, int b) {

System.out.println(" 1");
while (b > 0) { int c = a % b; a = b; b = c; }
if (this.log == true) { System.out.println(a,b); }
return a;

}

Resolvers: AVERLOC provides two distinct resolution strate-
gies (resolvers). Recall that a resolver in our framework is a
method that, given a program sketch, resolves the input sketch



into a complete program. For our evaluation, we implemented
two resolution strategies. First, we implemented a random
resolver which, given a program sketch, fills all holes in
the sketch with a random token generated by selecting and
concatenating a random number of sub-tokens from a (provided)
fixed vocabulary. Second, we implemented the gradient-based
search described in Sec. II.

B. (Robust) Optimization Objectives

Our framework enables definition of different optimization
objectives for training. First, our framework can perform normal
training, where the goal is to minimize a standard loss function
(Eq. (1)). Second, our framework allows robust-optimization
objectives (Eq. (2)) to model the adversary within the training
loop.

Additionally, our framework allows for data augmentation,
which is a standard technique where one enriches a dataset
by adding random transformations of the data (e.g., rotating
images using a random angle). In our framework, we can
perform standard training with data augmentation by defining
a completely random adversary (random choice of transforms
and random resolvers) and solving, for example, the following
optimization objective:

argmin
N

X

i

L(Pi, yi, N) + L(P 0
i , yi, N) where P 0

i = AR(P ) (3)

where AR is a random adversary, and therefore does not take
the neural network as an input. Note that the transformed set
{P 0

i} is presampled before training.

Practical Challenges of Robust Optimization: Solving a
robust-optimization objective is particularly challenging in the
realm of source code. Practically, in every epoch of training, for
every program Pi, we need to apply the adversary to compute
a transformed program P 0

i . This approach is wildly inefficient
during training due to the mismatch between program formats
for transformation and for training: a program Pi is an abstract
syntax tree (AST) and the adversary’s transformations are
defined over ASTs, but the neural network expects as input a
different representation—for example, sequences of (sub)tokens,
or as in a recent popular line of work [27, 21], a sampled set
of paths from one leaf of the AST to another.

Therefore, during training, we have to translate back and
forth between ASTs and their neural representation. This
approach is expensive to employ during training: in every
training step, we have to apply transformations using an external
program-analysis tool and convert the transformed AST to its
neural representation.

We address this challenge as follows: To avoid calling
program-analysis tools within the training loop, we pre-generate
all possible program sketches considered by the adversary. That
is, for every program Pi in the training set, before training,
we generate the set of program sketches that can be produced
by applying sequences of transforms of a bounded length.

C. Related Concepts

Obfuscation: One might wonder how source-code obfuscation
is related to our adversaries and transforms. In general, we
view obfuscation techniques as off-the-shelf adversaries that one
could use in our framework. However, for the sake of a precise
evaluation, we wished to build adversaries into our framework
that are tunable, for which we can create a scoring scheme
suitable for use in experiments. For our adversaries, a user can
select both the resolution strategy for filling holes in program
sketches and the number of transforms that may be applied,
in sequence, to attack input programs. Obfuscation techniques
are, in a sense, “maximal” in their efforts to mask code. For
our evaluation and for ease-of-use, we focus on adversaries
that can be “throttled” so that we can compare the robustness
of models trained under various pipelines against progressively
stronger adversaries. In summary, code obfuscators make great
adversaries, and we encourage their use in our framework,
but, for the sake of measured evaluation, we focus not on off-
the-shelf obfuscation, but on a simpler and more configurable
adversary to control for the degree of adversarial effort when
evaluating different training pipelines.
Mutations: Given our focus on transforms that do not change
the meaning of the code they target, it is natural to ask
about mutations or non-semantics-preserving transforms. In
short, mutations are too strong, in some sense—that is, when
using mutations we have no way to control for the degree of
adversarial effort. In fact, mutations may change the underlying
meaning (semantics) of a program and, as such, the use of
mutations calls into question the objective of robustness for
models of code: models given equivalent (but, syntactically
diverse) programs should produce equivalent outputs.

Nonetheless, one could still ask a related question: if we
mutate the code, should models not be expected to change
their outputs? This is an interesting question and one we
hope to explore further in follow-on work. In summary, if
we focus on transforms that change the meaning of code then
we must change our expectations from robustness to something
closer to a “mutation adequacy” score [28] for models of code.
Such issues are interesting, but lie outside the scope of our
investigations on robustness.

IV. EXAMPLES OF EXISTING WORK

In this section, we demonstrate how two recent works on
adversarial robustness over code models, [24] and [29], can be
implemented using AVERLOC.1 Note that these works consider
a subset of the described adversaries in Sec. III-A, but with
more fine-tuned attack and defense methods. AVERLOC’s ad-
versaries are built by combining transformations and resolvers.
Given transformations and resolvers, AVERLOC allows for
the construction of robust training pipelines to provide defense
against adversaries. We show how two recent works fit into
the AVERLOC framework by describing their transformations,
resolvers, and the defenses they provide.

1We also note that a preprint of our work appeared on arXiv earlier than
[24] and [29].



A. DAMP

Yefet et al. [24] present a technique, Discrete Adversarial
Manipulation of Programs (DAMP), to explore the adversarial
robustness of code models. DAMP differs from AVERLOC in
the following ways: (1) For the attack, similar to AVERLOC,
DAMP uses gradient-targeted resolution to resolve program
sketches. Instead of applying greedy search to find a single
resolution, DAMP uses multiple trials to perform a search
for the best sketch resolution. (2) For the defense, besides
adversarial (robust) training, Yefet et al. [24] use outlier
detection, which replaces an outlier variable name with UNK.
Transformation: DAMP uses transforms similar to the Rename-
LocalVariables and AddDeadCode transformations already
provided by AVERLOC.
Resolver: To provide DAMP’s multiple-trial search, after
computing the gradients, instead of returning only one closest
token, one would return the top-k replacement tokens, and
then run the network with each token. Repeating a few such
gradient-and-run steps gives us the same search procedure as
in DAMP.
Defense: Besides the robust training that has already been
provided by AVERLOC, one also needs to support DAMP’s
outlier detector. Outlier detection is an independent feature
that processes and transforms the input source code. One only
needs to write a function that takes in the word embeddings
of the target code-snippet and computes the distances of each
variable, as shown in Eq. (6) in [24]. The most distant variable
would be replaced with UNK if the distance is above some
predefined threshold.

B. Site-Selection-Perturbation (SSP)

A new formulation of an adversarial attack on code models
was proposed by Srikant et al. [29]. In addition to identifying a
replacement token that leads to the adversarial prediction (using
a new resolver), they also consider where in the target program
they should apply their resolver. (This approach is different
from our current library of transforms; our transforms produce
program sketches with mostly arbitrary holes—SSP optimizes
where transforms should produce holes in the resulting program
sketch.) The source code is formulated as a sequence of tokens,
and the attack is formulated as an optimization problem to
select which token is to be replaced/inserted with what new
token. Because of the combinatorial and structural constraints
of the optimization problem, SSP proposes several optimization
techniques to solve the optimization problem. Because SSP
does not consider defense against adversarial attacks, to
implement SSP using AVERLOC, one only needs to work
on the transformation and resolution components.
Transformation: SSP uses transforms similar to the following
transforms from AVERLOC: AddDeadCode, RenameLocalVari-
ables, RenameParameters, RenameFields, ReplaceTrueFalse,
and InsertPrintStatements. However, SSP “upgrades” these
transforms to produce a program sketch that has optimized
holes—that is, SSP optimizes where transforms change the
input program.

Resolver: SSP implements a resolver that is similar to AVER-
LOC’s gradient-targeted resolver. However, SSP performs a
joint (alternating) optimization to find both optimal sites for
applying transforms and optimal resolutions for the sketches
generated by transforms. To phrase this using the terminology
of AVERLOC: SSP iterates their transforms and resolver as
part of an alternating optimization routine.

V. EVALUATION

In this section, we provide answers to five research questions,
with the goal of understanding the adversaries our framework
allows, their attack strength, defenses one can build via our
framework, and downstream consequences for practitioners
(such as performance of both normal and robust models
on the domain-adaptation and cross-language-transfer tasks).
To conduct our experiments, we utilize four datasets in
two different languages (Java and Python): c2s/java-small,
csn/java, csn/python and sri/py150. Each dataset contains
around 0.5M data points (method-body/method-name pairs).
Running extensive experiments across the 4 datasets and 2
(code-summarization) models (seq2seq, code2seq) was com-
putationally intractable, both in terms of time and space.
Thus, we randomly subsample the four datasets to have
train/validation/test sets of sizes 150k/10k/20k each. The
datasets remain large, and we find that subsampling has a
minimal effect on model performance. Furthermore, the reduced
dataset sizes allowed us to perform over 160 evaluations of
over 32 distinct trained models, which, even with subsampled
datasets, required hundreds of hours of GPU compute time
and was expensive to perform. Unless otherwise noted, we
measure (changes) in our models’ F1 scores. F1 is a metric
that computes the harmonic mean of a model’s precision and
recall.

A. RQ1: Attack Strength

AVERLOC’s generic adversary is built on a library of
transformations and resolvers; how effective are individual
transforms under both resolution strategies (random/gradient)?
Rationale: One of the reasons we use a generic adversary based
on a library of transformations and resolvers is to control for the
degree of adversarial effort and, in doing so, allow for precise
experimentation. To do this effectively, we must understand
how each of our eight transforms and two resolution strategies
perform against our models. Furthermore, in this evaluation
we also get our first insights into the effect of having a model
mostly trained on syntax (seq2seq) versus a model trained
primarily on structure (code2seq).
Metrics: We measured the drop in F1 score of each of our
models under each combination of transformation and resolver.
This drop in F1 was computed by assessing the baseline
performance of a given model on its original test set and
then measuring that same model against an attacked version
of its test set. To simplify the presentation, we show data from
both model architectures evaluated on a single dataset.



TABLE I: Decreases in F1 induced by each of our eight semantics-preserving
transformations paired with either random (R) or gradient-based (G) resolution
strategies (measured against a normally trained baseline model on the c2s/java-
small dataset). (Larger numbers indicate stronger attacks.)

Transform
seq2seq code2seq

��F1 (R / G) ��F1 (R / G)

AddDeadCode 4.0 / 7.7 1.4 / 2.9
RenameParameter 0.3 / 3.0 0.3 / 4.7
InsertPrintStatement 2.7 / 6.1 3.8 / 10.2
ReplaceTrueFalse 0.0 / 0.7 0.2 / 0.5
RenameField 2.3 / 5.4 2.0 / 2.0
UnrollWhile 0.0 / 0.0 0.4 / 0.4
RenameLocalVariable 0.3 / 2.2 0.0 / 2.5
WrapTryCatch 2.5 / 9.4 1.4 / 7.8

Results: Table I shows a breakdown of our results. Note
that, across model architectures, the AddDeadCode, Insert-
PrintStatement, and WrapTryCatch transforms are particu-
larly effective. It is also of interest to note that gradient
resolution is strictly better than random resolution (except
for UnrollWhiles, which produces a program sketch with
no holes—thus, resolution has no effect). Finally, note that
code2seq is, in many cases, more robust, but also, in notable
cases, more susceptible to attack. In particular, we find that
the InsertPrintStatement transform (with gradient-based
resolution) is over 1.5 times as effective on code2seq as on
seq2seq.

RQ1 Summary. We find that our individual attacks
are effective and, between random and gradient-based
resolution, find gradient-based resolution to be strictly
better. Furthermore, we find a surprising fact: although
code2seq is a naturally more robust architecture, it has
some surprising weakness—allowing for up to 1.5x more
effective attacks than a simpler seq2seq baseline, in some
cases.

B. RQ2: Robust Training versus Baselines

How effective is robust training in defending against the
(single-step) attacks we just examined? Are there any alternative
approaches (like dataset augmentation) that perform well?
Rationale: Finding ways to train robust models of code is our
primary goal; therefore, in this question, we seek to understand
exactly which pieces of our framework are most useful in our
quest to train robust models. As part of this evaluation, we test
increasingly complex (and costly) training pipelines, with the
hope that more sophisticated instantiations of our framework
create more robust models.
Metrics: We trained models using three different training
pipelines: (1) training with dataset augmentation, (2) robust
training with an adversary configured to use any of our eight
transforms and random resolution, and (3) robust training with
an adversary configured to use any of our eight transforms
and gradient-targeted resolution. We measured the change
in F1 score of each of these models when attacked by an
adversary using any of our eight transforms and gradient-

TABLE II: Raw F1 and change in F1 (in square brackets) for models trained
using three different training pipelines in AVERLOC. The first four rows show
results for seq2seq while the last four rows show results for code2seq. (Larger
numbers are better.)

Training c2s/java-small csn/java csn/python sri/py150

Normal 23.3 17.2 16.2 22.0
Augmented 27.8 [+4.4] 21.4 [+4.3] 20.9 [+4.7] 24.0 [+2.0]
Robust (R) 27.5 [+4.2] 30.1 [+12.9] 29.8 [+13.5] 33.4 [+11.4]
Robust (G) 32.0 [+8.7] 32.8 [+15.6] 32.2 [+16.0] 37.1 [+15.1]

Normal 24.6 19.6 21.0 23.7
Augmented 23.4 [-1.2] 19.7 [+0.1] 20.8 [-0.2] 24.4 [+0.7]
Robust (R) 28.1 [+3.5] 23.5 [+3.9] 22.5 [+1.6] 26.6 [+2.9]
Robust (G) 31.6 [+7.0] 27.5 [+7.9] 23.8 [+2.8] 29.5 [+5.8]

targeted resolution. (This change is relative to a normally-
trained baseline model attacked by the same adversary.)
Results: Table II shows the results. In general, we find that
robust training using an adversary with gradient-targeted reso-
lution is, by far, the best defense we can provide. Furthermore,
we find that dataset augmentation pales in comparison to
true robust training. Of particular interest is the relationship
between seq2seq, code2seq, and robustness. On average,
seq2seq (Normal) fares worse than code2seq (Normal) under
our attack (see the first and fifth rows of Table II). But, this
story changes when robust training is applied: it is harder
to make code2seq robust. After robust training, we find that
“seq2seq (Robust (G))” ends up performing better under our
attack (see the fourth and eighth rows of Table II). This result
was quite surprising and may be worth further study: models
that are better in normal circumstances may (1) have surprising
weaknesses, and (2) be harder to make robust.

RQ2 Summary. We find that either form of robust train-
ing was better than dataset augmentation. Furthermore, in
all tested configurations, across all models and datasets,
robust training with respect to an adversary using gradient-
targeted resolution gave the best defense. Finally, we find
that, to our great surprise, code2seq is harder to make
robust than a seq2seq model.

C. RQ3: Stronger Adversaries
Does training with a “single-step” adversary improve ro-

bustness against stronger adversaries? In particular, if we train
with an adversary that picks just a single (random) transform
and uses gradient-targeted resolution, how well does the model
perform against an adversary that is allowed to apply a sequence
of five random transforms (also using the stronger, gradient-
targeted, resolution)?
Rationale: In this question, we seek to understand if training
with a weak adversary is “good enough”—if this is the case,
then practitioners may save effort by performing robust training
against weaker (and less computationally expensive) adversaries
while still retaining robustness against stronger threats.
Metrics: We compared the decrease in F1 of a normally trained
model and a model trained with robust-training (using an
adversary that may select any single transform from our library
and resolve it via gradient-targeted resolution). Here the drop in
F1 was measured against a sequence of progressively stronger
attacks: Nor (normal: no attack), R1 (“single-step” adversary



10

20

30

40

F1
(s

eq
2s

eq
)

c2s/java-small csn/java csn/python sri/py150

Nor R1 R5 G1 G5

10

20

30

40

F1
(c

od
e2

se
q)

Nor R1 R5 G1 G5 Nor R1 R5 G1 G5 Nor R1 R5 G1 G5

���������

a���
PRUH
UREXVW

����������

a���
PRUH
UREXVW

Fig. 2: A comparison of a normally trained (Normal, ) model and a robustly trained model against a “single-step” gradient-targeted adversary (Robust,
). These plots show F1 scores across each of four datasets and two model architectures (seq2seq and code2seq) under a sequence of progressively stronger

attacks. To the right, average decrease in F1 is shown for both Normal/Robust models in both seq2seq and code2seq architectures. (Higher F1 scores are better.)

with random resolution), R5 (an adversary allowed sequences
of five random transforms, still with random resolution), G1
(“single-step” adversary with gradient-targeted resolution), and
G5 (an adversary allowed sequences of five random transforms
using gradient-targeted resolution). We plotted the raw F1
scores of both our normal and robust models against these
progressively stronger attacks to give a visual depiction of the
robustness of each model.
Results: Figure 2 presents F1 scores from 80 distinct eval-
uations we performed across our four datasets, two model
architectures, two training methods, and four (progressively
stronger) adversaries.

There are several interesting things to learn from Fig. 2; first,
notice that, across models, languages, and training methodology,
stronger attacks induce larger drops in F1; however, as one
might hope, robustly trained models (Robust: square markers)
lose less F1 to a stronger adversary compared with normally
trained models (Normal: circular markers). On the right side
of Fig. 2, we make this explicit by noting that, on average,
the robustly trained models retain more of their original F1
on progressively stronger attacks. Specifically, for seq2seq,
the robustly trained model retains 56% more of its original
performance than the normal model. Similarly, for code2seq,
the robustly trained model retains 31% more of its original
performance. These results are encouraging because we are
attacking with a much stronger adversary than the one we used
as part of robust training. Furthermore, the ability to carry out
these measured evaluations is one of the key contributions of
our framework: we can precisely control for the power of our
adversaries by tuning the transforms, the allowed sequence
length, and the resolution algorithm.

Finally, we note one last surprising result (that echoes what
we observe in RQ2): code2seq is more difficult to make robust.
This phenomenon is clearly visible in the fact that robust
training has less of an effect on code2seq (31% increase in
robustness, on average, under the strongest attack) compared
to seq2seq (56% increase in robustness, on average, under the
strongest attack). This result continues to surprise us, and is an
important takeaway for practitioners of ML-on-code: we still
have much to learn about how increasingly sophisticated models

fare against adversarial attacks and, in our data, we find that
more sophisticated models both have (1) surprising weaknesses
and (2) naturally better robustness but, paradoxically, are less
amenable to techniques for increasing robustness.

We also performed an additional 80 evaluations on models
generated via training with dataset augmentation and robust
training with a (weaker still) single-step adversary using random
resolution (the same training pipelines we evaluated in RQ2).
As one would expect, these sit directly between the normal
model (least robust) and the robustly trained model (most
robust).

RQ3 Summary. We find that training against weaker
attacks is sufficient to provide a defense against increas-
ingly stronger attacks. Furthermore, through a series
of 160 evaluations, we find confirmation of our earlier
results, including the surprising fact that code2seq is less
amenable to robust training than seq2seq model. Finally,
we find confirmation that robust training, aside from the
nuances discussed, is an effective technique across model
architectures, programming languages, and datasets.

D. RQ4: Domain Adaptation
What is the effect of robust training on the performance of

models for the domain-adaptation task? For example, imagine
you train a model on the code of one large company and,
later, you wish to use that same model on code from another
organization—will the model retain its original performance?
What about a robustly trained model, will it perform better or
worse?
Rationale: In this question, we seek to understand how both
normal models of code and robustly-trained models of code
adapt to unseen data. This data is different than simple “test-set”
data because we have gone to great lengths to collect data, in
both Python and Java, from different original sources that used
different collection methodology. Therefore, when we apply a
model trained on one Java dataset to our other Java dataset,
we are getting a glimpse into how that model may perform
on code that is “different” than what it has already seen. We
are not the first to study robustness and domain adaptation



TABLE III: F1 across both normally trained and robustly trained models on
out-of-distribution test sets (sourced from different original data sources using
differing collection methodologies). (Higher F1 scores are better.)

Model Trained On Tested On F1 (seq2seq) F1 (code2seq)

Normal c2s/java-small csn/java 29.35 33.31
Robust c2s/java-small csn/java 33.05 35.76

Normal csn/java c2s/java-small 34.85 39.74
Robust csn/java c2s/java-small 38.40 41.12

Normal sri/py150 csn/python 19.97 34.40
Robust sri/py150 csn/python 31.93 35.00

Normal csn/python sri/py150 25.15 23.31

Robust csn/python sri/py150 27.74 23.20

[30], however, to the best of our knowledge, we are the first
to present such results in the space of models on code.
Metrics: Again, we measured F1 scores for our models. This
time, we compared models trained on one of our datasets using
either normal or robust training and their performance on a
second dataset from a different original source.
Results: Table III presents results for both model architectures
under both normal and robust training pipelines. Each row
shows a single model (trained with either normal or robust
training), the dataset it was trained on, the dataset it was tested
on (originating from a source distinct from the training data),
and the F1 scores produced by both of the seq2seq and code2seq
model architectures. In general, we find confirmation that robust
training improves performance on the domain-adaptation task.
This result is a useful fact for practitioners: not only does robust
training strengthen your model against attack, it also provides
benefits in terms of generalization. Similar to our previous
research questions, we again see that code2seq benefits less
from robust training than seq2seq does.

RQ4 Summary. We find strong evidence across our four
datasets and two model architectures in support of robust
training improving performance on the domain-adaptation
task. To the best of our knowledge, we are the first to
report such an effect in the space of models for code.

E. RQ5: Cross-Language Transfer

What is the effect of robust training on the performance of
models for the cross-language-transfer task? Does robustness
play a role in how models of code may perform on unseen
languages?
Rationale: It seemed natural, after investigating domain
adaptation, to also investigate cross-language transfer. One
may hope that good models of code are naturally able to work
across different programming languages and, therefore, it would
be useful to understand the relationship between robustness
and cross-language transfer.
Metrics: We measured F1 scores, for our seq2seq models,
under both normal and robust training. We trained on data
from one language (either Java or Python) and tested on data
from the opposite language. We focus on seq2seq for this
evaluation because code2seq cannot be trained on one language
and (directly) applied to another. This test data both comes

TABLE IV: F1, for our seq2seq model, across both normally trained and
robustly trained models on the Java to Python cross-language transfer task.
(Higher F1 scores are better.)

Model Trained On Tested On F1 (seq2seq)

Normal c2s/java-small csn/python 19.36
Robust c2s/java-small csn/python 22.21 [+2.86]

Normal csn/java csn/python 22.15

Robust csn/java csn/python 16.38 [-5.78]

Normal c2s/java-small sri/py150 21.94
Robust c2s/java-small sri/py150 22.73 [+0.80]

Normal csn/java sri/py150 23.79

Robust csn/java sri/py150 14.54 [-9.25]

TABLE V: F1, for our seq2seq model, across both normally trained and
robustly trained models on the Python to Java cross-language transfer task.
(Higher F1 scores are better.)

Model Trained On Tested On F1 (seq2seq)

Normal csn/python c2s/java-small 25.23
Robust csn/python c2s/java-small 32.13 [+6.90]

Normal csn/python csn/java 17.39
Robust csn/python csn/java 24.02 [+6.63]

Normal sri/py150 c2s/java-small 24.71
Robust sri/py150 c2s/java-small 26.59 [+1.88]

Normal sri/py150 csn/java 15.06
Robust sri/py150 csn/java 16.80 [+1.74]

from an unseen dataset, and is in a language the model has
never seen.
Results: Tables IV and V show results for both Java-to-Python
and Python-to-Java cross-language transfer. We were surprised
to find that, in the case of transfer performance for models
trained on Java and evaluated on Python, robust training had a
clear negative effect—that is, normally trained models retained
more of their performance on the unseen Python test sets. But,
again to our surprise, we found a stronger positive effect for
robustly trained models trained on Python and evaluated on Java.
This situation is somewhat perplexing: one might hope that
either robust training always improves cross-language transfer,
or never does. In general, the data we collected warrants further
study of the interplay between robustness and a model of code’s
ability to transfer across languages.

RQ5 Summary. We found robust training to have unclear
effects on cross-language model transfer. In the case
of training on Java and applying the learned models to
Python, robust training had a negative effect (dropping F1,
on average, 3 points); but, in the opposite task of training
on Python and evaluating on Java, we found robust
training to have a stronger positive effect (increasing
F1, on average, 4 points).

VI. RELATED WORK

In concurrent work,2 Bielik and Vechev [31] combine
adversarial training with abstention and AST pruning to train
robust models of code. There are a number of key differences
with our work: (1) We consider a richer space of transformations

2A preprint of our work appeared earlier on arXiv than [31].



for the adversary, including inserting parameterized dead-code.
(2) We use a strong gradient-based adversary and program
sketches for completing transformations, while they use a
greedy search through the space of transformations with a small
number of candidates. (3) Our adversarial-training approach
is more efficient, because it does not solve an expensive ILP
problem to prune ASTs or train multiple models, but it is
possible that we can incorporate their AST pruning in our
framework.

A. Adversarial Examples

In test-time attacks, an adversary perturbs an example so
that it is misclassified by a model (untargeted attack) or the
perturbed example is classified as an attacker-specified label
(targeted) [32, 2, 33, 34, 8]. Initially, test-time attacks were
explored in the context of images. Our discrete domain is closer
to test-time attacks in natural language processing (NLP). There
are several test-time attacks in NLP that consider discrete
transformations, such as substituting words or introducing
typos [35, 36, 23, 37, 38]. A key difference between our
domain and NLP is that in the case of programs one has
to worry about semantics—the program has to work even after
transformations.

Recently, more consideration has been given to adversarial
examples in the software-engineering domain. Rabin et al. [39]
consider semantics-preserving transforms and their effects on
various neural program analyzers (including code2seq). Comp-
ton et al. [40] consider adversarial examples based primarily on
variable renaming; they create more robust models via training
with dataset augmentation. As we show experimentally, dataset
augmentation does not result in robust models compared to
training based on gradient-based optimization.

Many ideas from software testing, such as fuzzing and search-
based techniques, have recently been successfully applied to
discovering adversarial examples and other forms of bugs in
neural networks [41, 42, 43, 44]. These approaches can be used
to generate examples for data augmentation; however, they are
generally too heavyweight to incorporate within training.

B. Deep Learning for Source Code

Recent years have seen huge progress in deep learning for
source-code tasks—see Allamanis et al. [45]. In this paper, we
evaluate two popular models for learning from source code:
seq2seq [46] and code2seq [13]. The seq2seq model (sub-
)tokenizes the program, analogous to NLP, and uses a variant
of recurrent neural networks to generate predictions. This idea
has appeared in numerous papers, e.g., the pioneering work
of Raychev et al. [47] for code completion. We also evaluate
code2seq, which uses an AST-paths encoding pioneered by
Alon et al. [27]. Researchers have considered more structured
networks, like graph neural networks [12] and tree-LSTMs [48].
These would be interesting to consider for future experimenta-
tion in the context of adversarial training. The task we evaluated
on, code summarization, was first introduced by Allamanis
et al. [12].

VII. THREATS TO VALIDITY

There are several threats to the validity of our approach.
First, we make use of a limited number of datasets and models.
We attempted to diversify both the datasets we used (by
choosing four sets from three unique sources in two languages)
and the models (by picking two distinct model architectures).
Nonetheless, there remains the possibility that our results
may not generalize (in particular, to tasks outside the code-
summarization task we chose to study). We also made the
choice to subsample our data; although we did not observe a
large impact to trained-model performance, it is still possible
that subsampling had an impact on our results. Additionally, we
make use of a limited set of transformations. We took care to
implement many transformations, and through the sequencing
of many transformations, we attempted to further increase the
power of our adversary. Nevertheless, it is possible that stronger
adversaries exist. Finally, our toolchain is complex and it is
possible that there are bugs in the implementation. To guard
against this, we have manually inspected the data in various
representations, at various points in our pipeline, to spot-check
our framework.

VIII. CONCLUSION

AVERLOC is a generic framework that has (already) allowed
others to push the boundaries of adversarial machine learning
for models of code. Through extensive evaluation, we have
demonstrated the efficacy of our framework and learned
several surprising facts. Namely, we found that a state-of-
the-art architecture (code2seq) is harder to make robust than a
simpler (seq2seq) baseline (Table II); additionally, we found
code2seq to have surprising weaknesses compared to our
simpler baseline model (Table I); finally, we found that robust
models perform better against unseen data—however, robust
models are not clearly better at the cross-language-transfer
task (Tables III, IV and V). To the best of our knowledge,
we present the first results on the interplay between robust
models of code and the domain-adaptation and cross-language-
transfer tasks. Finally, we recommend that those seeking to
build new models of code consider the effects of semantics-
preserving transformations and explore robust training. To this
end we have already made public the code, data, and models
we use in this evaluation; these resources and corresponding
documentation can be viewed here: [49].

ACKNOWLEDGMENTS

Supported, in part, by a gift from Rajiv and Ritu Batra;
by Facebook under a Probability and Programming Research
Award; by NSF grants CCF-{1704117, 1918211, 1652140,
2046710, FMitF-1836978} and SaTC-Frontiers-1804648; by
ARO grant number W911NF-17-1-0405; by DARPA-GARD
problem under agreement number 885000; by ONR under
grants N00014-17-1-2889 and N00014-19-1-2318; and by a
Microsoft Research PhD Fellowship. Any opinions, findings,
and conclusions or recommendations expressed in this publi-
cation are those of the authors, and do not necessarily reflect
the views of the sponsoring entities.



REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus, “Intriguing properties of
neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[2] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić,
P. Laskov, G. Giacinto, and F. Roli, “Evasion attacks
against machine learning at test time,” in Joint European
conference on machine learning and knowledge discovery
in databases. Springer, 2013, pp. 387–402.

[3] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples,” arXiv preprint
arXiv:1412.6572, 2014.

[4] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B.
Celik, and A. Swami, “Practical black-box attacks against
machine learning,” in Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications
Security. ACM, 2017, pp. 506–519.

[5] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,
C. Xiao, A. Prakash, T. Kohno, and D. Song, “Robust
physical-world attacks on deep learning visual classi-
fication,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 1625–
1634.

[6] A. N. Bhagoji, W. He, B. Li, and D. Song, “Practical
black-box attacks on deep neural networks using efficient
query mechanisms,” in European Conference on Computer
Vision. Springer, 2018, pp. 158–174.

[7] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter,
“Accessorize to a crime: Real and stealthy attacks on state-
of-the-art face recognition,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2016, pp. 1528–1540.

[8] N. Carlini and D. Wagner, “Towards evaluating the
robustness of neural networks,” in Security and Privacy
(SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 39–57.

[9] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards deep learning models resistant
to adversarial attacks,” in International Conference on
Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rJzIBfZAb

[10] Z. Kolter and A. Madry, “Ibm/pytorch-seq2seq,” Feb 2020.
[Online]. Available: https://adversarial-ml-tutorial.org

[11] M. Allamanis, E. T. Barr, S. Ducousso, and Z. Gao,
“Typilus: Neural type hints,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2020.
New York, NY, USA: Association for Computing
Machinery, 2020, p. 91–105. [Online]. Available:
https://doi.org/10.1145/3385412.3385997

[12] M. Allamanis, H. Peng, and C. A. Sutton, “A convolu-
tional attention network for extreme summarization of
source code,” CoRR, vol. abs/1602.03001, 2016. [Online].
Available: http://arxiv.org/abs/1602.03001

[13] https://github.com/tech-srl/code2seq.
[14] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis,

“Deep learning type inference,” in Proceedings of the 2018
26th acm joint meeting on european software engineering
conference and symposium on the foundations of software
engineering, 2018, pp. 152–162.

[15] G. Zhao and J. Huang, “Deepsim: deep learning code
functional similarity,” in Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018, 2018, pp. 141–
151.

[16] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi,
“Learning and evaluating contextual embedding of source
code,” 2020.

[17] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, and
R. Singh, “Neural program repair by jointly learning to
localize and repair,” in 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. [Online].
Available: https://openreview.net/forum?id=ByloJ20qtm

[18] M. Pradel, G. Gousios, J. Liu, and S. Chandra, “Type-
writer: Neural type prediction with search-based valida-
tion,” 2020.

[19] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W.
Chang, “A transformer-based approach for source code
summarization,” 2020.

[20] D. DeFreez, A. V. Thakur, and C. Rubio-González, “Path-
based function embedding and its application to error-
handling specification mining,” in Proceedings of the 26th
ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE), FSE 2018, Lake Buena Vista, Florida,
November 4 - 9, 2018, 2018.

[21] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq:
Generating sequences from structured representations of
code,” arXiv preprint arXiv:1808.01400, 2018.

[22] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat, “Combinatorial sketching for finite programs,”
in Proceedings of the 12th international conference on
Architectural support for programming languages and
operating systems, 2006, pp. 404–415.

[23] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “Hotflip:
White-box adversarial examples for text classification,”
2017.

[24] N. Yefet, U. Alon, and E. Yahav, “Adversarial examples
for models of code,” Proc. ACM Program. Lang.,
vol. 4, no. OOPSLA, Nov. 2020. [Online]. Available:
https://doi.org/10.1145/3428230

[25] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera,
and L. Seinturier, “Spoon: A Library for
Implementing Analyses and Transformations of Java
Source Code,” Software: Practice and Experience,
vol. 46, pp. 1155–1179, 2015. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01078532/document

[26] Berkerpeksag, “berkerpeksag/astor,” Jan 2020. [Online].
Available: https://github.com/berkerpeksag/astor

https://openreview.net/forum?id=rJzIBfZAb
https://adversarial-ml-tutorial.org
https://doi.org/10.1145/3385412.3385997
http://arxiv.org/abs/1602.03001
https://github.com/tech-srl/code2seq
https://openreview.net/forum?id=ByloJ20qtm
https://doi.org/10.1145/3428230
https://hal.archives-ouvertes.fr/hal-01078532/document
https://github.com/berkerpeksag/astor


[27] U. Alon, M. Zilberstein, O. Levy, and E. Yahav,
“code2vec: Learning distributed representations of code,”
Proceedings of the ACM on Programming Languages,
vol. 3, no. POPL, pp. 1–29, 2019.

[28] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is
mutation an appropriate tool for testing experiments?”
in Proceedings of the 27th International Conference
on Software Engineering, ser. ICSE ’05. New York,
NY, USA: Association for Computing Machinery, 2005,
p. 402–411. [Online]. Available: https://doi.org/10.1145/
1062455.1062530

[29] S. Srikant, S. Liu, T. Mitrovska, S. Chang, Q. Fan,
G. Zhang, and U.-M. O’Reilly, “Generating adversarial
computer programs using optimized obfuscations,” in
International Conference on Learning Representations,
2021. [Online]. Available: https://openreview.net/forum?
id=PH5PH9ZO_4

[30] R. Volpi, H. Namkoong, O. Sener, J. C. Duchi, V. Murino,
and S. Savarese, “Generalizing to unseen domains via
adversarial data augmentation,” in NeurIPS, 2018.

[31] P. Bielik and M. Vechev, “Adversarial robustness for code,”
2020.

[32] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated
gradients give a false sense of security: Circumvent-
ing defenses to adversarial examples,” arXiv preprint
arXiv:1802.00420, 2018.

[33] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box
adversarial attacks with limited queries and information,”
arXiv preprint arXiv:1804.08598, 2018.

[34] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh,
“Zoo: Zeroth order optimization based black-box attacks to
deep neural networks without training substitute models,”
in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security. ACM, 2017, pp. 15–26.

[35] Q. Lei, L. Wu, P.-Y. Chen, A. G. Dimakis, I. S.
Dhillon, and M. Witbrock, “Discrete adversarial attacks
and submodular optimization with applications to text
classification,” in SysML, 2019.

[36] P. K. Mudrakarta, A. Taly, M. Sundararajan, and
K. Dhamdhere, “Did the model understand the question?”
in ACL, 2018.

[37] W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. LI, “Adver-
sarial attacks on deep learning models in natural language
processing: A survey,” arXiv preprint arXiv:1901.06796,
2019.

[38] S. Garg and G. Ramakrishnan, “Bae: Bert-based adver-
sarial examples for text classification,” 2020.

[39] M. Rabin, R. Islam, N. D. Bui, Y. Yu, L. Jiang, and
M. A. Alipour, “On the generalizability of neural program
analyzers with respect to semantic-preserving program
transformations,” arXiv preprint arXiv:2008.01566, 2020.

[40] R. Compton, E. Frank, P. Patros, and A. Koay, “Em-
bedding java classes with code2vec: Improvements from
variable obfuscation,” 2020.

[41] Y. Tian, Z. Zhong, V. Ordonez, G. Kaiser, and B. Ray,
“Testing dnn image classifiers for confusion & bias errors,”

2020.
[42] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoud-

hury, “Fuzz testing based data augmentation to improve
robustness of deep neural networks,” 2020.

[43] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated
testing of deep-neural-network-driven autonomous cars,”
in Proceedings of the 40th International Conference
on Software Engineering, ser. ICSE ’18. New York,
NY, USA: Association for Computing Machinery, 2018,
p. 303–314. [Online]. Available: https://doi.org/10.1145/
3180155.3180220

[44] F. Zhang, S. P. Chowdhury, and M. Christakis,
“Deepsearch: A simple and effective blackbox attack for
deep neural networks,” 2020.

[45] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A
survey of machine learning for big code and naturalness,”
ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–37,
2018.

[46] IBM, “Ibm/pytorch-seq2seq,” Jan 2020. [Online].
Available: https://github.com/IBM/pytorch-seq2seq

[47] V. Raychev, M. Vechev, and E. Yahav, “Code completion
with statistical language models,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2014, pp. 419–
428.

[48] J. Zhao, A. Albarghouthi, V. Rastogi, S. Jha, and
D. Octeau, “Neural-augmented static analysis of android
communication,” in Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, 2018, pp. 342–353.

[49] FrameworkURL, “Averloc framework for robust training,”
Feb 2020. [Online]. Available: https://github.com/jjhenkel/
averloc

https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1145/1062455.1062530
https://openreview.net/forum?id=PH5PH9ZO_4
https://openreview.net/forum?id=PH5PH9ZO_4
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://github.com/IBM/pytorch-seq2seq
https://github.com/jjhenkel/averloc
https://github.com/jjhenkel/averloc

	Introduction
	Our Approach to Semantic Robustness
	The AVERLOC Framework
	 Evaluation of Semantic Robustness

	Semantic Robustness
	Semantic Adversaries
	Training Semantically Robust Models

	Framework
	Adversaries in Detail
	(Robust) Optimization Objectives
	Related Concepts

	Examples of existing work
	DAMP
	Site-Selection-Perturbation (SSP)

	Evaluation
	RQ1: Attack Strength
	RQ2: Robust Training versus Baselines
	RQ3: Stronger Adversaries
	RQ4: Domain Adaptation
	RQ5: Cross-Language Transfer

	Related Work
	Adversarial Examples
	Deep Learning for Source Code

	Threats to Validity
	Conclusion

