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Abstract

Temporal-difference learning with gradient correction (TDC) is a two time-scale
algorithm for policy evaluation in reinforcement learning. This algorithm was
initially proposed with linear function approximation, and was later extended to the
one with general smooth function approximation. The asymptotic convergence for
the on-policy setting with general smooth function approximation was established
in [Bhatnagar et al., 2009], however, the non-asymptotic convergence analysis
remains unsolved due to challenges in the non-linear and two-time-scale update
structure, non-convex objective function and the projection onto a time-varying
tangent plane. In this paper, we develop novel techniques to address the above chal-
lenges and explicitly characterize the non-asymptotic error bound for the general
off-policy setting with i.i.d. or Markovian samples, and show that it converges as
fast as O(1/+/T) (up to a factor of O(log T')). Our approach can be applied to a
wide range of value-based reinforcement learning algorithms with general smooth
function approximation.

1 Introduction

In reinforcement learning (RL), an agent interacts with a stochastic environment in order to maximize
the total reward [Sutton and Barto, 2018]. Towards this goal, it is often needed to evaluate how good a
policy performs, and more specifically, to learn its value function. Temporal difference (TD) learning
algorithm is one of the most popular policy evaluation approaches. However, when applied with
function approximation approach and/or under the off-policy setting, the TD learning algorithm may
diverge [Baird, 1995, Tsitsiklis and Van Roy, 1997]. To address this issue, a family of gradient-based
TD (GTD) algorithms, e.g., GTD, GTD2, temporal-difference learning with gradient correction
(TDC) and Greedy-GQ, were developed for the case with linear function approximation [Maei, 2011,
Sutton et al., 2009b, Maei et al., 2010, Sutton et al., 2009a,b]. These algorithms were later extended
to the case with general smooth function approximation in [Bhatnagar et al., 2009], where asymptotic
convergence guarantee was established for the on-policy setting with i.i.d. samples.

Despite the success of the GTD methods in practice, previous theoretical studies only showed that
these algorithms converge asymptotically, and did not suggest how fast these algorithms converge
and how the accuracy of the solution depends on various parameters of the algorithms. Not until
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recently have the non-asymptotic error bounds for these algorithms been investigated, e.g., [Dalal
et al., 2020, Karmakar and Bhatnagar, 2018, Wang and Zou, 2020, Xu et al., 2019, Kaledin et al.,
2020, Dalal et al., 2018, Wang et al., 2017], which mainly focus on the case with linear function
approximation. These results thus cannot be directly applied to more practical applications with
general smooth function approximation, e.g., neural networks, which have greater representation
power, do not need to construct feature mapping, and are widely used in practice.

In this paper, we develop a non-asymptotic analysis for the TDC algorithm with general smooth
function approximation (which we refer to as non-linear TDC) for both i.i.d. and Markovian samples.
Technically, the analysis in this paper is not a straightforward extension of previous studies on those
GTD algorithms with linear function approximation. First of all, different from existing studies with
linear function approximation whose objective functions are convex and the updates are linear, the
objective function of the non-linear TDC algorithm is non-convex, and the two time-scale updates
are non-linear functions of the parameters. Second, the objective function of the non-linear TDC
algorithm, the mean-square projected Bellman error (MSPBE), involves a projection onto a time-
varying tangent plane which depends on the sample trajectory, whereas for GTD algorithms with
linear function approximation, this projection is time-invariant. Third, due to the two time-scale
structure of the algorithm and the Markovian noise, novel techniques to deal with the stochastic bias
and the tracking error need to be developed.

1.1 Challenges and Contributions

In this section, we summarize the technical challenges and our contributions.

Analysis for two time-scale non-linear updates and non-convex objective. Unlike many existing
results on two time-scale stochastic approximation, e.g., [Konda et al., 2004, Gupta et al., 2019,
Kaledin et al., 2020] and the studies of linear GTD algorithms in [Xu et al., 2019, Ma et al., 2020,
Wang et al., 2017, Dalal et al., 2020], the objective function of the non-linear TDC is non-convex,
and its two time-scale updates are non-linear. Therefore, existing studies on linear two time-scale
algorithms cannot be directly applied. Moreover, the convergence to global optimum cannot be
guaranteed for the non-linear TDC algorithm, and therefore, we study the convergence to stationary
points. In this paper, we develop a novel non-asymptotic analysis of the non-linear TDC algorithm,
which solves RL problems from a non-convex optimization perspective. We note that our analysis is
not a straightforward extension of analyses of non-convex optimization, as the update rule here is two
time-scale and the noise is Markovian. The framework we develop in this paper can be applied to
analyze a wide range of value-based RL algorithms with general smooth function approximation.

Time-varying projection. For the MSPBE, a projection of the Bellman error onto the parameterized
function class is involved. However, unlike linear function approximation, the projection onto a
general smooth class of functions usually does not have a closed-form solution. Thus, a projection
onto the tangent plane at the current parameter is used instead, which incurs a time-varying projection
that depends on the current parameter and thus the sample trajectory. This brings in additional
challenges in the bias and variance analysis due to such dependency. We develop a novel approach to
decouple such a dependency and characterize the bias by exploiting the uniform ergodicity of the
underlying MDP and the smoothness of the parameterized function. The new challenges posed by the
time-varying projection and the dependence between the projection and the sample trajectory are not
special to the non-linear TDC investigated in this paper, and they exist in a wide range of value-based
algorithms with general smooth function approximation, where our techniques can be applied.

A tight tracking error analysis. Due to the two time-scale structure of the update rule, the tracking
error, which measures how fast the fast time-scale tracks its own limit, needs to be explicitly bounded.
Unlike the studies on two time-scale linear stochastic approximation [Dalal et al., 2020, Kaledin et al.,
2020, Konda et al., 2004], where a linear transformation can asymptotically decouple the dependence
between the fast and slow time-scale updates, it is non-trivial to construct such a transformation for
non-linear updates. To develop a tight bound on the tracking error, we develop a novel technique that
bounds the tracking error as a function of the gradient of the MSPBE. This leads to a tighter bound
on the tracking error compared to many existing works on two time-scale analysis, e.g., [Wu et al.,
2020, Hong et al., 2020]. Although we do not decouple the fast and slow time-scale updates, we
still obtain a desired convergence rate of O(1/+/T') (up to a factor of log T'), which matches with the
complexity of stochastic gradient descent for non-convex problems [Ghadimi and Lan, 2013].



1.2 Related Work

TD, Q-learning and SARSA. The asymptotic convergence of TD with linear function approximation
was shown in [Tsitsiklis and Van Roy, 1997], and the non-asymptotic analysis of TD was developed
in [Srikant and Ying, 2019, Lakshminarayanan and Szepesvari, 2018, Bhandari et al., 2018, Dalal
et al., 2018, Sun et al., 2020]. Moreover, [Cai et al., 2019] further studied the non-asymptotic error
bound of TD learning with neural function approximation. Q-learning and SARSA are usually used
for solving the optimal control problem and were shown to converge asymptotically under some
conditions in [Melo et al., 2008, Perkins and Precup, 2003]. Their non-asymptotic error bounds
were also studied in [Zou et al., 2019]. The non-asymptotic analysis of Q-learning under the neural
function approximation was developed in [Cai et al., 2019, Xu and Gu, 2020]. Note that all these
algorithms are one time-scale, while the TDC algorithm we study is a two time-scale algorithm.

GTD methods with linear function approximation. A class of GTD algorithms were proposed
to address the divergence issue for off-policy training [Baird, 1995] and arbitrary smooth function
approximation [Tsitsiklis and Van Roy, 1997], e.g., GTD, GTD2 and TDC [Maei, 2011, Sutton et al.,
2009b, Maei et al., 2010, Sutton et al., 2009a,b]. Recent studies established their non-asymptotic
convergence rate, e.g., [Dalal et al., 2018, Wang et al., 2017, Liu et al., 2015, Gupta et al., 2019,
Xu et al., 2019, Dalal et al., 2020, Kaledin et al., 2020, Ma et al., 2020, Wang and Zou, 2020,
Ma et al., 2021] under i.i.d. and Markovian settings. These studies focus on the case with linear
function approximation, and thus the objective functions are convex, and the updates are linear. In
this paper, we focus on the non-linear TDC algorithm with general smooth function approximation,
where the two time-scale update rule is non-linear, the objective is non-convex, and the projection is
time-varying, and thus new techniques are required to develop the non-asymptotic analysis.

Non-linear two time-scale stochastic approximation. There are also studies on asymptotic con-
vergence rate and non-asymptotic analysis for non-linear two time-scale stochastic approximation,
e.g., [Mokkadem et al., 2006, Doan, 2021]. Although the non-linear update rule is investigated,
it is assumed that the algorithm converges to the global optimum. In this paper, we do not make
such an assumption on the global convergence, which may not necessarily hold for the non-linear
TDC algorithm, and instead, we study the convergence to stationary points, which is a widely used
convergence criterion for non-convex optimization problems. We also note that there is a resent work
studying the batch-based non-linear TDC in [Xu and Liang, 2021], where at each update, a batch of
samples is used. To achieve a sample complexity of O(e~2), a batch size of O(e~1) is required in [Xu
and Liang, 2021] to control the bias and variance. We note that by setting the batch size being one
in [Xu and Liang, 2021], the desired sample complexity cannot be obtained, and their error bound
will be a constant. In this paper, we focus on the non-linear TDC algorithm without using the batch
method, where the parameters update in an online and incremental fashion and at each update only
one sample is used. Our error analysis is novel and more refined as it does not require a large batch
size of O(e~1) while still achieving the same sample complexity.

2 Preliminaries

2.1 Markov Decision Process

A Markov decision process (MDP) is a tuple (8, A, P, r,v), where $ and A are the state and action
spaces, P = P(s'|s, a) is the transition kernel, 7 : § x A x 8§ — R is the reward function bounded
by 7max, and v € [0, 1] is the discount factor. A stationary policy 7 maps a state s € § to a probability
distribution 7(+|s) over the action space A. At each time-step ¢, suppose the process is at some state
s¢ € 8, and an action a; € A is taken. Then the system transits to the next state s;, 1 following the
transition kernel P(+|s¢, a;), and the agent receives a reward 7 (s, as, St+1).

For a given policy 7 and any initial state s € 8, we define its value function as V7 (s) =
E >0 7' r(St, A, Si41)|So = s, m]. The goal of policy evaluation is to use the samples gen-
erated from the MDP to estimate the value function. The value function satisfies the Bellman
equation: V™ (s) = T™V™(s) for any s € 8, where the Bellman operator 7™ is defined as

T"V(s)= Y P(|s,a)m(als)r(s,a,s) +v Y P(|s,a)m(als)V(s). (D)
s’'€8,aeA s'€8,aeA

Hence the value function V'™ is the fixed point of the Bellman operator T'™ [Bertsekas, 2011].



2.2 Function Approximation

In practice, the state space S usually contains a large number of states or is even continuous, which
will induce a heavy computational overhead. A popular approach is to approximate the value
function using a parameterized class of functions. Consider a parameterized family of functions
{Vg :8 — R|§ € RY }, e.g., neural networks. The goal is to find a Vjy with a compact representation
in 6 to approximate the value function V™. In this paper, we focus on a general family of smooth
functions, which may not be linear in 6.

3 TDC with Non-Linear Function Approximation

In this section, we introduce the TDC algorithm with general smooth function approximation in
[Bhatnagar et al., 2009] for the off-policy setting with both i.i.d. samples and Markovian samples,
and further characterize the non-asymptotic error bounds.

Consider the the following mean-square projected Bellman error (MSPBE):
J(0) = Eur [[Va(s) =TT Va(s)|1*] @

where 1™ is the stationary distribution induced by the policy 7, and Iy is the orthogonal projection
onto the tangent plane of Vj at 6: {VC(S)K € RY and V;(s) = ¢9(5)TC} and ¢y(s) = VVs(s).

Note that the projection is onto the tangent plane instead of {Vg 10 e RN } since the projection onto
the latter one may not be computationally tractable if Vj is non-linear.

In [Bhatnagar et al., 2009], the authors proposed a two time-scale TDC algorithm to minimize the
MSPBE J(#). Specifically, a stochastic gradient descent approach is used with the weight doubling
trick (for the double sampling problem) [Sutton et al., 2009a], which yield a two time-scale update
rule. We note that the algorithm developed in [Bhatnagar et al., 2009] was for the on-policy setting
with i.i.d. samples from the stationary distribution, and the asymptotic convergence of the algorithm
to stationary points was established.

In the off-policy setting, the goal is to estimate the value function V™ of the target policy 7 using the
samples from a different behavior policy 7. In this case, the MSPBE can be written as

J(0) =y [[|Va(s) — LT Va(s)]], ©)

and we use the approach of importance sampling. Following steps similar to those in [Maei, 2011],
J () can be further written as

J(6) = Eum [p(S, A)ds,4,5(0)0(S)] T Ay 'Epums [0(S, A)ds,a,50(8)da ()], )
where 5 4 5 (0) = r(s,a,s") +~vVa(s") — Vo(s) is the TD error, ¢g(s) = VVy(s) is the character
vector, p(s,a) = :b((czlll‘?) is the importance sampling ratio for a given sample O = (s, a,r, s’) and

Ag = Eym [96(S)d0(S) T]-

To compute V.J(#), we consider its i-th entry, i.e., the partial derivative w.r.t. the i-th entry of 6:

19.J(0)
2 96
o T o
By | (059)] A By 9501+ (45 By [p961) By | 5:(697)| (45 B, (530

(a) (b)
(%)

where to simplify notations, we omit the dependence on 6, .S, A and S’. To get an unbiased estimate
of the terms in (5), several independent samples are needed, but this is not applicable when there is
only one sample trajectory. Hence we employ the weight doubling trick [Sutton et al., 2009a]. Define
w(0) = Ay 'Eym [p(S, A)ds,a,50(0)de(S)] , then term (a) can be written as follows:

) T
*]Euf‘b [(w(p&b)] AO_ E,ﬂb [p(5¢]



= By [p(1(00(S")i = (00(9))) @0 (S)] " w(6) = Byms [p6(V2V)i] "
and term (b) can be written as follows:
(47 B [p961) Bus | (60T (47 Bu 156 = 28, [ 6700

Hence the gradient can be re-written as

VJ(6
~TTO) g [0(S. 405,05 (0)00(S)] — H(0.10(6)) — 1B (5. A)io(S')60(S) ] w(6).
3
where h(0,w) = E, = [(p(S, A)ds,4,5(0) — ¢o(S) "w) V2Vy(S)w]. Thus with this weight doubling
trick [Sutton et al., 2009a], a two time-scale stochastic gradient descent algorithm can be constructed.

In Algorithm 1, we present the algorithm for the Markovian setting. The algorithm under the i.i.d.
setting is slightly different, hence we refer the readers to Algorithm 2 in Appendix B.

w(0); (6)

0
00

¢ Nw(®)|. ()

Algorithm 1 Non-Linear Off-Policy TDC under the Markovian Setting
Input: 7, a, 8, 7, 7, {V}g\@ € ]RN}
Initialization: 6,,w,
1: Choose W ~ Uniform(0,1,...,7 — 1)
2: fort=0,1,....,W —1do
3:  Sample O = (8¢, at, T, St+1) following
6t(0r) = r(st, at, Se41) + Vo, (st41) — Vo, (st)

_ m(aelse)
Pt = olarls:)

he(0,wi) = (pe6:(6:) — oo, (s¢) Twi) V2V, (s1)wy
wiy1 = Mg, (we + B(— do, (5¢)d0, (s¢) "wi + pede(0¢) e, (s1)))

8: Orp1 = 0; + a(/?t(st(et)¢0,,(5t) = Ypidbe, (3t+1)¢9t (St)TWt - ht(0t7wt))
9: end for

Output: Oy

AR A

In Algorithm 1, ITx,, (v) = arg min|,|<g, ||v — w|| denotes the projection operator, where R, =
p“‘f\i"q’(rmax + (1 4+ v)C,) (the constants are defined in Section 3.1). As we will show in (44) in

the appendix that for any § € RY, w(#) is always upper bounded by R, i.e., |w(#)| < R.. The
projection step in the algorithm is introduced mainly for the convenience of the analysis. Motivated
by the randomized stochastic gradient method in [Ghadimi and Lan, 2013], which is designed to
analyze non-convex optimization problems, in this paper, we also consider a randomized version of
the non-linear TDC algorithm. Specifically, let W' be an independent random variable with a uniform
distribution over {0, 1, ..., 7 — 1}. We then run the non-linear TDC algorithm for W steps and output
Ow.

3.1 Non-asymptotic Error Bounds

In this section, we present our main results of the non-asymptotic error bounds on the convergence of
the off-policy non-linear TDC algorithm. Our results will be based on the following assumptions.

Assumption 1 (Boundedness and Smoothness). For any s € 8 and any 6,6’ € RYN,
Vo(s)| < Co, [da(s)ll < Co,
IV2Ve(s)l < D, IV2Ve(s) — V2V (s)l| < Lv[|6 - '],

where Cy, C, D, and Ly, are some positive constants.

From Assumption 1, it follows that for any 6,60 € RY, |Vp(s) — Vir(s)| < Cyl|0 — ¢'||, and
lldo(s) — b (s)|| < Dy||0 — 6'||. We note that these assumptions are equivalent to the assumptions
adopted in the original non-linear TDC asymptotic convergence analysis in [Bhatnagar et al., 2009],
and can be easily satisfied by appropriately choosing the function class {Ve 10 e RN } For example,
in neural networks, these assumptions can be satisfied if the activation function is Lipschitz and
smooth [Du et al., 2019, Neyshabur, 2017, Miyato et al., 2018].



Assumption 2 (Non-singularity). For any 6§ € RN, A\, (Ag) > N\, > 0, where A1, (A) denotes the
minimal eigenvalue of the matrix A and )\, is a positive constant.

Assumption 3 (Bounded Importance Sampling Ratio). For any (s,a) € 8 x A, p(s,a) = =k <

™ (als)

Pmax, fOr some positive constant ppax.

The following assumption is only needed for the analysis under the Markovian setting, and is widely
used for analyzing the Markovian noise, e.g., [Wang and Zou, 2020, Kaledin et al., 2020, Xu and
Liang, 2021, Zou et al., 2019, Srikant and Ying, 2019, Bhandari et al., 2018].

Assumption 4 (Geometric uniform ergodicity). There exist some constants m > 0 and x € (0,1)
such that sup g dry (P(s; = -|sg = s,m),u™) < mxl, for any t > 0, where dryv denotes the
total-variation distance between the probability measures.

We then present the bounds on the convergence of the TDC algorithm with general smooth function
approximation in the following theorem.

Theorem 1. Consider the following step-sizes: a = O (%)’ and =0 (%), where
and 0 < b < a. Then, (1) under the i.i.d. setting,

VIOw)II? = O (pi=s + 75 + =) ; and (2)
VIOw)I* = 0 (4 s + 5T

under the Markovian setting,

Here we only assume the order of the step-sizes in terms of 1" for simplicity, their exact assumptions
on them can be found in Section B.3 and Section C.3. Similarly, we only provide the order of the
bounds here, and the explicit bounds can be found in (86) and (133) in the appendix. It can be seen
that the rate under the Markovian setting is slower than the one under the i.i.d. setting by a factor of
log T', which is essentially the mixing time introduced by the dependence of samples.

Theorem 1 characterizes the dependence between convergence rate and the step-sizes o and 5. We
also optimize over the step-sizes in the following corollary.

Corollary 1. Leta = b= 1, i, o, 3 = O(1/VT), then (1) under the i.i.d. setting,
O(1/V/T); and (2) under the Markovian setting, ||V J (0w )||?> = O(log T/V/T).

VJ(0w)|? =

Remark 1. Our result matches with the sample complexity for the batch-based algorithm in [Xu and
Liang, 2021]. But their work requires a large batch size of O(¢~!) to control the bias and variance,
while ours only needs one sample in each step to update 6 and w and can still obtain the same
convergence rate. We note that by setting the batch size being one in [Xu and Liang, 2021], their
desired sample complexity cannot be obtained, and their error bound will be a constant. To obtain
our non-asymptotic bound and sample complexity for the non-linear TDC algorithm, we develop a
novel and more refined analysis on the tracking error, which will be discussed in the next section.
Moreover, our result matches with the convergence rate of solving general non-convex optimization
problems using stochastic gradient descent in [Ghadimi and Lan, 2013]. Compared to their work,
our analysis is more challenging due to the two time-scale structure and the gradient bias from the
Markovian noise and the tracking error.

Remark 2. Some analyses on two time-scale stochastic approximation bound the tracking error in
terms of % and require % — 0 in order to drive the tracking error to zero resulting in a convergence

rate of O (B + %) [Borkar, 2009]. In this paper, we develop a much tighter bound on the tracking

error in terms of the slow time-scale parameter V.J(6). Therefore, the tracking error in our analysis is
driven to zero by V.J() — 0 not % — 0. Similar results that do not need % — 0 can also be found,
e.g., in [Konda et al., 2004, Kaledin et al., 2020]. We would like to point out that the techniques in
[Konda et al., 2004, Kaledin et al., 2020] cannot be applied in our analysis due to the non-linear two
time-scale updates in this paper.

4 Proof Sketch

In this section, we provide an outline of the proof of Theorem 1 under the Markovian setting, and
highlight our major technical contributions. For the complete proof of Theorem 1, we refer the
readers to Appendices B.2 and C.2.



Let O, = (8¢, aq, 1, Se+1) be the sample observed at time ¢. Denote the tracking error by z; =
wt — w(B:), which characterizes the error between the fast time-scale update and its limit if the
slow time-scale update 0; is kept fixed and only the fast time-scale is being updated. Denote by
Giy1(0,w) = pi6,(0)do(st) — Yprdo(ses1)de(st) Twi — hi(0,w). Denote by 75 the mixing time of
the MDP, i.e., 73 £ min {t : mx* < B}.

Step 1. In this step, we decompose the error of gradient norm into two parts: the stochastic bias and
the tracking error. We first show in Appendix A that J(#) is L -smooth: for any 6,6 € RY,

IVJ(0r) = VI (02)] < Lsl|6r — 02]|- ©)

We note that the smoothness of J(6) is also used in [Xu and Liang, 2021], which, however, is assumed
instead of being proved as in this paper. It then follows that

%||VJ(9t)H2§J(9t) — J(O41) + (VI (0r), =Gr1(04,w0(0:)) + Gep1(0r, w01))
(a)
L
+ Gt+1(9t7w(9t))> +?Ja2”Gt+1(9t7Wt)H2' (10

+a <VJ(t9t), V‘;(at)

(v)

This implies that the error bound on the gradient norm is controlled by the tracking error (a) which
is introduced by the two time-scale update rule, and the stochastic bias (b) which is due to the
time-varying projection and the Markovian sampling.

Step 2. We first bound the tracking error. Re-write the update of w; in terms of z;: 2441
2+ B (=g, (s1)2¢ +bi(01)) +w(0:) — w(0r+1), where A, (5:) = o, (s¢)¢o, (5:) " and by (6;)
—Ag, (st)w(0:) + pr0(0:)de, (si). From the Lipschitz continuity of w(6), it follows that

241l < (1+ ﬁCi)Hzt” + B(bmax + Lwcg)v
241 — 2¢ell < BCE|l2¢l + B(bmax + LuCy), (11)

which further implies
E [llze+1]* — ll/1?]
< E[2z] (2641 — 2t + BAg, 2)] +O (ﬂZE[HthQ} + /32) + BE [22] (—Ag,)2],  (12)
()
where the last term in (12) can be further upper bounded by —23\,E[| 2 |?].

One challenging part in our analysis is to bound term (c¢). Equivalently, we decompose the following
term into three parts:

E [z: <A0tzt - %ml - ))]
T w(0) — w(lrr1)

= BT (Ao + Ao ()] - BT 0(00] - | 20
(d) (e)
€))
Consider term (d) in (13). Unlike the case with linear function approximation, where the character
function VVp(s) = ¢(s) is independent with 6, here the character function ¢y (s) depends on 6. We
use the geometric uniform ergodicity property of the MDP and the Lipschitz continuity of Ay and

Ap(s) to decouple the dependence. More specifically, for any fixed 6, E[Ag(s;)] converges to Ay as
t increases. Let ¢t = 73, then we have that

E [Jﬁ (= Ao, + Ag,, (51, ))z,ﬁ}
= E [0 (—Agy + Aoy (5,))20] + B [2] (Ao, + Ao, (55,) + Ao, — Aay(57,)))20)]

+E [(2r, = 20) (= Ao, + Ag., (57,)) (2, = 20)| +2E (25, = 20) (= Ao,, + Ag., (51,))z0]
(14)

(13)




which can be further bounded using the mixing time 73 and the Lipschitz property of Ag and Ag(s-, ).
We note that from the update of z;, we can bound ||z,
(14) can be bounded in terms of ||z, ||.

Similarly, note that E[b;(6)] converges to 0 as t — oo, then we can also bound term (e) in (13):
E[zv—;bm(g‘rﬁ)l :E[(Zm - ZO)TbTﬁ(eTﬁ)] +]E[ZO Tﬁ(go)] +E[ZO ] Q‘Fﬁ) Tﬁ(eo))L (15)
which can be similarly bounded in terms of ||z, ||.

The challenge of bounding the third term () in (13) lies in bounding the difference between w(6;)
and w(6f¢41). One simple approach is to use the Lipschitz continuity of w(#) and bound ||6; — ;11|
by a constant of order O(«), but this will lead to a loose bound because the update G (6, wy) is
actually an estimator of the gradient, which will also converge to zero. The key idea in our analysis
is to bound term (f) in terms of the gradient of the objective function V.J(#). Specifically, we
first rewrite term (¢, w(0;) — w(0r41)) = —(z¢, Vw(0r) (Oe41 — 01)) = —(Vw(0y) Grp1 (01, wi)),
where 8, = c0; + (1 — ¢)0;41 for some ¢ € [0, 1]. It can be shown that

E [ZT w(fr,) — w(%ﬁl)} _ —gE[Z;;VW(éTﬁ)(GTEH(GmMTﬁ) — Gryi1 (8-, 0(0:,)))]

s 3 B

The first term in (16) can be bounded in terms of ||z, || using the Lipschitz property of G,11(6,w)
in w. The second term can be bounded using the uniform ergodicity of the MDP and the Lipschitz

V(e
property of 2] Vw(6) (GTﬁH(G,w(H)) + #
||z, ||* and ||V (6, )||*. Combining all bounds together, we have the bound on term (f) in (13):

‘E [ZTTJ w(fr;) —BW(GTBH)} ‘

a
<0 <B> E (|12, ] + 0 (@7) E [z, ] + O (ams) + 0 (8/3> E[Ivae,))7]. a7
We combine all the bounds on terms (d), () and (f) and hence get the error bound on (13):

B | (~ Aoz = g = 20)| < 0 () Bl + 0(m) + 0 (5 ) BNV
(18)

) in 6. The third term can be bounded in terms of

Plugging the above bound in (12), we have the following recursive bound on the tracking error:
E [|lze+1]%] < 01 = B)E [[|z/*] + O(@)E [V I (8)]?] + O(575). (19)

Then by recursively applying the inequality in (19) and summing up w.r.t. £ from 0 to T — 1, we
obtain the bound on the tracking error ZtT;Ol E[||2|%]/T:

o Ellzl?] _ ( Lo X EIVIOIP] | ﬁm> |

T T8 T3 T

Step 3. In this step we bound the stochastic bias term E KVJ(Qt) VJ(M + G416, w (Ht))ﬂ
Similarly, we add and subtract V.J(6y) and G, 11 (6o, w(6p)), and obtain that

<VJ(9773)5 w + GT[3+1(9757“J(97B))>

VJ(6)
2

VJ(6,,)
2

_ <w<90>, + Grﬁ+1(90>w(90))> + ( <w<07,3>, + Gmlwmw(em))>



_ <VJ(90), WQ(GO) Gy (60, w(90))> ) , 20)

which again can be bounded using the geometry uniform ergodicity of the MDP and the Lipschitz
continuity of <VJ(0), VIO 1 G, (6, w(@))>.

Step 4. Plugging in the bounds on the tracking error and the stochastic bias and rearranging the

T—1 2 T—1
terms, then it follows that w < Uy/ w + V, where U and V' are

some constants depending on the step sizes, and the explicit definitions can be found in (132). By

' E[[VI(0:)]%]
T

T
solving the inequality of 2i=o , we obtain that

O E[IVI6)]?)
T

1 1
< —_— — .
—O</BTB+T5+QTB+T0¢>

5 Conclusion

In this paper, we extend the on-policy non-linear TDC algorithm to the off-policy setting, and
characterize its non-asymptotic error bounds under both the i.i.d. and the Markovian settings. We
show that the non-linear TDC algorithm converges as fast as O(1/ V'T) (up to a factor of log T'). The
techniques and tools developed in this paper can be used to analyze a wide range of value-based RL
algorithms with general smooth function approximation.

Limitations: It is not clear yet whether the stationary points that the TDC converges to are second-
order stationary or potentially saddle points.

Negative social impacts: This work is a theoretical investigation of some fundamental RL algorithms,
and therefore, the authors do not foresee any negative societal impact.
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We first introduce some notations. In the following proofs, ||a|| denotes the /5 norm if a is a vector;
and || A|| denotes the operator norm if A is a matrix.

In Appendix A, we prove the Lipschitz continuity of some important functions, including w(6), Vw(0)
and the gradient V.J(0) of objective function. In Appendix B, we present the non-asymptotic analysis
for the i.i.d. setting. In Appendix C, we present the non-asymptotic analysis for the Markovian
setting. In appendix D, we present some numerical experiments.

A Useful Lemmas

A.1 Lipschitz Continuity of w(0)
In this section, we show that w(#) is Lipschitz in 6.
Lemma 1. For any 0,60’ € RY, we have that
lw(@) —w(@)]| < La |16 — 0], 21
2C7 D,

where L, = % ((1 + 'y)Cq% + (rmax + (1 + ’y)C’v)Dv) + = (Tmax + (1 +7)Cy).

Proof. Recall that
w(B) = Epm [09(S)d0(S) ] Epums [p(S, A)ds, 4,50 (0)da(S)]
= Ay "By [p(S, A)ds a5 (8) 0 ()], (22)

hence we can show the conclusion by showing that A, and E =, [p(S, A)ds 4 s/ (0)¢e(S)] are both
Lipschitz and bounded.

From Assumption 2, we know that

IAZ M| < (23)

S
X
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We also show that
145" = AgHl
= (145 A0 At — AT A0 AG |
= [|45 (A — Ag) A

2C D,
<=5z, (24)
which is from the fact that |49 — Ag/|| = [|[Eum [¢6(S)da(S) "] — Epum [0 (S) e (S)T]|| <

20,D, 10 — 0']].

By Assumption 1 and the boundedness of the reward function, it can be shown that for any § € RV
and any (s,a,s’) € 8 x A x 8,

[0s.0.57(0)] = |r(s,a,s) +Va(s") — Vo(s)| < rmax + (1 +7)Cy. (25)
We then show that & o & (0) is Lipschitz, i.e., for any 6,6’ € RY and any (s,a,s’) € § x A x §,
|5S,a,8’(9) - 5S,a,5’(9/)|
= [WVa(s') = Va(s) =WV (s) = Vi ()]
< (v+1)Cyll0 — 0. (26)
Hence, the function ||E,=, [p(S, A)ds 4,5/ (0)da(S)]|| is Lipschitz:
IE,m [p(S, A)ds 4,50 (0)$0(S)] — Epms [p(S, A)ds,a,5(8")per ()]
= |[Eyum [p(S, A)ds,a,50(0)pa(S)] — Eu”b [p(S, A)ds,a,5:(0") e (S)]
+Epum [p(S, A)ds,4,5 (9/)¢9(5)] —Eumo [p(S, A)ds,a,5(0") por (S)]|
< NEum [p(S; A)ds,a,50(0)po(S)] — Epums [p(S; A)ds,a,50(0) e (S)]
+ 1By [p(S, A)ds,a,s (9')¢9(5)] —Eum [p(S, A)ds, 4,50 (0") o (S)] |
< Eum [p(S, A)]0s,4,50(0) — 05,4,5 (0]l Pa(S)]]]
+ Epum [p(S, A)|05,4,5(0")] |00 (S) — ¢or (S)]]]

(a)
< (1 1)C20 = 0| + (s + (1 +7)Co) D]} — )
— (14 7)C2 + (s + (L +7)C)Dy) 10— 0], @7)

where (a) is from (26) and the fact that E =, [p(S, A)] = 1. Also ||E = [p(S, A)ds, 4,5/ (0) e (S)]]|
can be upper bounded as follows:

[Epm [p(S, A)ds 4,5 (0) D0 (S]] < Co(rmax + (1+7)Co). (28)
Combining (23), (24), (28) and (27), we show that w(-) is Lipschitz in 6:
[w(8) —w(®)]|
1 : 22, ,
< [ (0O + (o + (4D + ™ (e + (142 ) 10 ]
éLwng_eI”a (29)
where L, = % ((1 + 7)C¢2> + (Pmax + (1 + ’Y)CU)DU) + 2C)q\ﬁ%(rma.x + (1 +7)Cy). 0

A.2 Lipschitz Continuity of Vw(6)

In this section, we show that Vw(6) is Lipschitz.
Lemma 2. For any 6,6’ € RY, it follows that

IVw(8) — Vw(0')[] < Doll6 — 0], (30)

14



where

CyL, +2D?+ D,C, 8C3D;
Dw:<(¢ +A2v+ o) | fs Cp(Tmax + Cy +7Cy)

4C, D,
)(\ﬁQ (C£(1+7) +Du(7"max+(1+'y)0v))

L 3CsDo(1+7) + Ly (rmax + (1 +9)C)
Ao '

€1V

Proof. Recall the definition of w(0) = A, 'E,~ [p(S, A)ds. 4,5 (0)¢e(S)], hence we have
Vw(8) = —Ay ' (VAg) Ay 'Epm [p(S, A)ds 4,50 (0) o (S)]
+ Ay " Eum [V (S, A)ds, 4,50 (0)da(S)), (32)

where the tensor V Ay can be equivalently viewed as an operator: RY — RVXN je VAy(w) =
V(Agw) for any w € RV,
We show that the operator norm of V Ay is bounded as follows:
VAl = Sup IV Ag(w)]]
w|=1
= S IV(Agw)|
w|=1

= sup ||[VE,m (06 (S)¢e(S) "w]||

flwll=1

= sup |Eum [(6(S)"w) Vo (S)] + Eum [06(S)(Vee(S) w) ]|

flwll=1

< sup 20D, w]

flwll=1

=2C,D,. (33)

The Lipschitz continuous of V Ay can be shown as follows:
IVAg — VAy|
= sup [[V(4ew) — V(Agw)|

llwll=1

= ||sup B, [V o (S) (¢ (S) Tw) + (Vo (S) Tw)de(S)T — Vo (S) (e (S) " w)

wl
— (Voo () "w)eer (S) ]

< Sup (CyLy + 2D + DyCy)]|0 — 0| [|w]
wl|=1

= (CyLy +2D2 + D,Cy)||0 — | (34)

Then we conclude that the operator norm of —A, 1(VA9) is upper bounded by QCd’D“

+DuCe) 4 40/{” *. It can be further seen that — A, (VAg)A‘;1

§ 2 8C32 D2
, and Lipschitz with constant (CoLy +2D +DuCo) e

, and is

2
Lipschitz with constant (Coly +2f

is upper bounded by 2C¢D

Recall that we have shown in (28) that

Eyim [p(S, A)bs, 4,5 (6) b0 (S)] = Epum [p(S, A)bs, 4,50 (6")dor (S]]

< ((L+7)CF + (rmax + (L+7)Co)Dy) (16 — 6], (35)
and it is upper bounded by Cy(rmax + (1 + 7v)Cv). Hence we have that
—Ay I(VAQ) A 'E, = [p(S, A)ds,.a.5/(0)¢e(S)] can be upper bounded by (rmax + (1 +

)Cv) , and it is Lipschitz with constant ((C¢L1’+25“+D“C“’) + 80 D ) Cy(rmax + Cy +
vCy) + 2C¢ ((1 + 'Y)O¢ (Tmax + (1 + 7>CU)DU) =La.

v
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For the second term of (32), we also show it is Lipschitz as follows. First
note that Vs, o (0)de(s) = Visas(0)de(s)T + 050 (0)Vee(s), hence we know
E,m [Vp(S, A)ds 4,5 (8)de(S)] can be upper bounded by CZ(1 + ) + Dy (rmax + (1 +7)C),
and is Lipschitz with constant 3CyD,(1 + ) + Ly(rmax + (1 + v)Cy). Finally we con-

clude that the second term in (32) A, 'E,= [Vp(S, A)ds 4.5/ (6)de(S)] is Lipschitz with constant

2P (B4 7) 4 Dol + (14 7)C,)) + 20PN s 0C) 2

Av

Hence Vw(0) is Lipschitz with constant L4 + L', £ D,,, where

2 8C2D2
b — ((C’¢LU +2D3 + D,Cy) | 8C5D%

/\2 )\3 ) qu(Tmax + Cv + ,YCU)

404D,
+ ;’2 (C3(1+7) + Dy(rmax + (1 +7)C))
i 30¢Dv(1 + 'Y) + L;\)(Tmax + (1 + V)Cv). (36)
O

A.3 Smoothness of J(0)

In the following lemma, we show that the objective function J(6) is L j-smooth. We note that the
smoothness of J(#) is assumed in [Xu and Liang, 2021] instead of being proved as in this paper.
Lemma 3. J(0) is Lj-smooth, i.e., for any 0,0' € RY,

IVJ(0) = VJ(O)]| < Lyl1o — 6", (37
where

2

C
L;=2(147)C} + (rmax + (1 +7)Co)Dy) + 2 (CﬁLw + 2D07¢(rmax + 1+ v)@))

+ 2<(DURW +CyL, + (1+ ’Y)C¢) D,R,,

+ (RwLV + Dva) ((Tmax + (1 + ’Y)C'U) + C¢Rw)> . (38)

Proof. Before we prove the main statement, we first drive some boundedness and Lipschitz properties.
Recall that

0
=YL By (5, s (0)00(5) = 7005, 4)00(5 ()T 0)
o (9)
w(0) = Epumo [¢0(S)96(S) 1™ By [0(S, A)ds,4,5 (0) ()], (40)
hs a5 (8,0(6)) = (p(5,0)8s,a,5 () — do(s) " w(8)) V2 V(s)w(6). 41
We have shown in Lemma 1 that for any § € RY and any (s,a,s’) € § x A x §,
05,05 (0)] = |7 (5, 0, 8") + YV (s") = Vo(s)| < rmax + (1 +7)Co; 42)

and that

IE,ims [p(S, A)ds 4,50 (0)dp(S)] — Epume [p(S; A)ds,a,5:(8")per (S)]]]
< ((14+79)C3 + (rmax + (1 +7)Co)Dy) |0 — 6']]. (43)

Also it is easy to see from the definition that

C
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Hence the Lipschitz continuity of E,~, [p(.S, A)¢g(S")¢e(S) T w(f) can be shown as follows

[Bpums [p(S, A) o (5 )0 (S) TNw(B) — Byms [0(S, A)dar (") (S) Tew(8") |
< || By [ SA)¢9(S’)¢9(S) Jw(B) — By [p(S, A) o (S") o (S) Tw (@) |
+||E = [p(S, A) o (S")d0(S) TNw(8) — Epums [p(S, A) g (S")bor (S) T (8')|

g C3L, |0 — 0'|| + 2C4 Dy Ry, |6 — 6|
2

CL QDC
[ + Ao

2 (rmax + (1+7)Co )) 16— &I, (45)

where (a) is due to the fact that w(6) is Lipschitz in (21) and the fact that

[ Epum [p(S, A) b0 (S")06(S) "] — Epum [p(S, A)dor (S")der (S)T]|| < 205D, (|6 — ') (46)

We then show that the function % 4 o (6, w(6)) is Lipschitz in 0 as follows. We first note that for any
se8andh, 8 RV,

Ipa(s) T w(8) — ¢or(s) " w(@)]
< lIgo(5)Tw(8) — o (s) "w (@) + lIo:(5) Tw(B) — por () w(8")]
< (DR + CoL) [0 0']. 7)
This implies that for any (s,a,s’) € 8 x A x S and 0,60 € R,
lp(s,@)ds.a,50(8) — do(s) " w(B) = p(5,0)ds,0,5(8") + bor (5) ()]
< (DyRuy + CyLy + (1 +7)Cgp(s,a)) [0 — 0" (48)
We also show the following function is Lipschitz:
IV2 Ve (s)w(8) — V2V (5)w(9) |
< [VVa(8)w(B) = V2V (s)w(0) || + IV Ve (5)w(8) — V2V (5)w (8|
S RuLv |0 —0'|| + DoLul0 — 0|
= (RuLy + D,L,) |0 — ¢']. (49)
Combining (48) and (49), it can be shown that &, , o (¢, w(6)) is Lipschitz in 6 as follows
15,5 (0, 0(0)) = s a5 (6, w(8))|
= || (p(s: @) 5,0, (8) = Po(s) T w(B)) V2Vy(s)w(6)
— (p(8,)35,0,5(8") = Gar (s) Tw(8")) V2V (s)w (@)
< (DyRu + Cy L + (1+7)Copls,a) DuR.) 6 — 0|
+ (RwLy + DyLy,) (p(s,a)(Tmax + (1 +7)Cy) + CsRy,) |16 — 0']]. (50)
From the results in (43), (45) and (50), it follows that
V() = V(@)
< 2|Eum [p(S, A)ds,a,5(0)de(S) — p(S, A)ds,a,s:(0") e (S)]|
+29|[Eum [p(S, A)do(S )0 (S) Tw(0) — p(S, A)dor () e (S) Tw (8] ||
+ 2By [hs a,50(0,w(0)) = hs,a,s (0, w(0))]]
<2 ((L+7)C3 + (rmax + (L +7)Cy)Dy) 0 = 6|

2 C(% /
+27 | OgLo + 2Dy = (rmax + (1 +7)C0) | 10 = ¢']

+ 2E,m [((Dy Ry + Cy Loy + (14 7)Cyp(S, A)) Dy R,)]||6 — &'
+ 2E,m [(RwLv + Dy Ly) (p(S, A) (rmax + (1 +7)Cy) + C4R,)][10 — 6|
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(a)
< 2((1+7)C2 + (rmax + (1 +7)C)D,) |0 — 0|
2 C; /
+2y (%Lw + 2D, 5% (o + (1 + wcv)) [l

+2((DyRy + CyLy + (14 79)Cy) Dy R,
+ (RwLy + Dy Ly) ((Tmax +(1+ 'Y)Ov) + C¢Rw)) ||9 - 9/”
= Lyllo— o', (5D
where (a) is due to the fact that E,=, [p(S, A)] = 1, and
2
Ly=2((1+ w)C’ﬁ + (Pmax + (1 +7)Cy)Dy) + 27 (CiLw + 2D1,)\—Z>(rInaX +(1+ 'y)O,U)>
+2((DyRy + CyLy + (14 7)Cy) Dy R,
+ (RuwLv + DyLu) ((rmax + (1 +7)C) + CyRu)). (52)

This completes the proof. O

B Non-asymptotic Analysis under the i.i.d. Setting

First we introduce the off-policy TDC learning with non-linear function approximation algorithm
under the i.i.d. setting in Algorithm 2. We then bound the tracking error in Appendix B.1, and prove
the Theorem 1 under the i.i.d. setting in Appendix B.2.

Algorithm 2 Non-Linear Off-Policy TDC under the i.i.d. Setting

Input: T, o, 3, 7, mp, {Vy|0 € RN }
Initialization: 6,,wq

1: Choose W ~ Uniform(0,1,...,7 — 1)

2: fort =0,1,....,W — 1 do

3:  Sample O; = (s, at, 4, s}) according to p™

_ m(a¢lse)
Pt = ﬂb(at\st)

4
S: 515(91‘) = T(Sta At S;‘) + 7‘/91 (Si/t) - Vet (St)

6:  he(Op,wp) = (ptfst(et) — e, (St)—rwt) V2V, (s¢)wt
7.

8

9:

w1 = g, (wt +8 (—¢9, (st)o, (5¢) " wy + ,otét(é’t)dmt(st)))

O = 0+ a0 () o, (51) — Ve o, () Do, (s¢) Twi — he(Be, wy))
end for

Output: Oy

We note that under the i.i.d. setting, it is assumed that at each time step ¢, a sample O; = (s, az, 74, S})
is available, where s; ~ p™(+), a; ~ m(-|s¢) and s} ~ P(:|s¢, ar).

B.1 Tracking Error Analysis under the i.i.d. Setting

Denote the tracking error by z: = wy — w(6:). Then by the update of w;, the update of z; can be
written as

Zt41 = Wi41 — w(9t+1)
=w + 0 (*Qbot (St)¢0t(3t)-rwt + Pt5t(9t)¢0t(8t)) —w(f41)
= 2+ w(0:) — w(Org1) + B (—do, ()0, (1) T (20 + w(00)) + pe6: (1) o, (51))
=2t +w(0) —w(O11) + B (—Ae,(s¢) 2t — Ap, (s0)w(0:) + p0:(0r) e, (1)), (53)

where Ay, (5;) = g, (5¢)¢s, (s¢) . It then follows that

||Zt+1||2
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= |zt + w(B) = w(Br41) + B (= Ap, (50) 2 — A, (s1)w(0:) + pedi(61) b, (50))|°
= [l2e1* + [[w(8:) = w(Brs1) + B (=Ag, (s6)2 — Ag, (56)w(8:) + pe3e(8:) o, (50)) |12

+ 2(2t,w(0) — w(Or+1)) — 28(2, Ag, (st)2t) + 28(2t, — Ao, (st)w(0t) + pee(0r) do, (5t))
<lzel? + 28| (= Ao, (s1)2 — Ag, (50)w(0:) + pi6:(0r) o, (s0)) |12

(a)
+2[|w(Br) = WO )II? + 2(z1,w(0:) — w(Br41)) —28(z1, Ao, (51)21)
(b) () (d)
+2B(zt, — Ao, (st)w(0t) + pede(01) o, (5t))- (54)

We then provide the bounds of the terms in (54) one by one. Their proofs can be found in Appen-
dices B.1.1 to B.1.4.

Term () can be bounded as follows:

267 (= A, (st)ze — Ao, (s)w(0r) + pe6e(0¢)bo, (50)) || < 4B°CE|lzl|* +45°Cor, (59)

where Cy; = (i—f’(rmax + (1 +9)C) + pmaxCs(Tmax + (1 + ’Y)Cv))Q-
Term (b) can be bounded as follows:

2||lw(6:) — w(0t+1)\|2 < 4a2LiL3||zt||2 + 4a2092Li, (56)
where Cy = prmaxCs (rmax+ (14+7)Co) +¥Pmax R C3 + Dy R (RO + pmax (Mmax+ Co +7Cy)).
Term (c) can be bounded as follows:

2(zt, w(0:) — w(Op41))
1 OéLw OLZCBDw
<2(aL,L,+ 5aLw +40CyLyDy,)| 2|1 + THVJ(&t)HQ + —2= 1 2an(6;, 2, Oy),

Ly
(57)
whete 1 (01,21, 0p) = — (20, Veo00) (Gira (01, 0(01)) + T2 ),
Term (d) can be bounded as follows:
—28(z1, Ag, (50)2t) < —2BNo|2e]|? + 2821, (Ao, — A, (50))21), (58)

where Ag = B, [¢9(S5)¢e(S) "] is the expectation of Ag(S).
By plugging all the bounds from (55), (56), (57) and (58) in (54), it follows that

||Zt+1||2
< (1448%C + 40° L2 L} + 20Lyy Ly + oLy, + 80°CyLg D,y — 28X, || 24>
1 a?C3D,,
+ ZCYLwHVJ(@t)H2 +4B8°Cy1 +40*CL L2 + Lig + 2anc(0:, 2, Oy)
g
+20(zt, (Ao, — Ao, (5¢))2e) + 26(zt, — Ao, (5t)w(0r) + pede(01) o, (5¢))
al, a?C3D,,

2 (1—q)l|lz® + THVJ(Qt)HQ +4B%Cy1 + 407CLLE + Lif; + 2amq (04, 2, Oy)

+28(z21, (Ap, — Ao, (5¢))2e) + 28(z1, —Ap, (5)w(0:) + pi6:(01) P, (51)), (59)

where ¢ = 28\, — 4BQC§ — 402 L2 L2 — 2aLy Ly — Ly — 802CyLyD,,. Note that ¢ = O( —
B? — a — a?) = O(B), hence we can choose o and 3 such that g > 0.
Note that under the i.i.d. setting,

E [nG(0t, 21, O1)] = E[E [ng(6t, 21, Or)|F+]]

=E

2 Ji

- <Zt, Vw(@t)E

(Gtﬂ(gt’w(et)) + VJ(@))

;
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=0, (60)

which is due to the fact that E =, [G111(0,w(8))] = —%M) when 0 is fixed, and J; is the o-field
generated by the randomness until §; and w;. Similarly, it can also be shown that
E[(zt, (Ao, — Ao, (s1))2t)] =0 (61)
E[(z¢, —Ap, (st)w(0:) + p6:(6:) e, (st))] = 0. (62)
Hence the tracking error in (59) can be further bounded as
OéLw 04203Dw
Ellees1]?) < (1= @ [I2]2] + “72E [IVI(0) %] + 48°Coa + 40> C2L2 + 2.
g
(63)

Recursively applying the inequality in (63), it follows that

al, <

E[l2el’] < (1= ) lz0]> + 222 S2(1 - a) B [197(6) ]
i=0
1 o?2C3D,,
+ - [48°Co1 +402CI L. + —F— |, (64)
q Ly
and summing up w.r.t. ¢ from 0 to 7" — 1, it follows that
T—1 T-1 T
—o Efll2el?] _ Yimo 1 —9)f
t=0 t=0 2 )i
R e T S (- @) RV
t=0 i=0
1 a?C3D,,
+ (452@1 +4a°CL2 + L")
g

T-1
@ lzol® | alv 3o E [IVI(©)1I°]

- Tq 4q T
2C3D,,
41 4B%Cy1 + 40*CLLE + Sl el
q Ly
a i E[IVI(6:)]]
=0 <Tﬁ ﬁ T +81, (65)

where (a) is due to the double-sum trick, i.e., for any z; > 0, ZT:_Ol 22:0(1 —q) i < ZtT:_Ol (1—
q) tT:_Ol xp < % tT 01 x¢, and the last step is because ¢ = O().

B.1.1 Bound on Term (a)

In this section we provide the detailed proof of the bound on term (a) in (55).

It can be shown that

| (—Ag, (st)ze — A, (51)w(0:) + pi6e(0:) o, (s1)) |17
< 2|l = Ag, (s)z|” + 2| — Ao, (s0)w () + pe0¢(61) e, (50) I
3

(a) ) c3
< 2C¢||zt\| +2 N

2
~2 (Pmax + (1 +7)Co) + PraaxCis(Tmax + (1 +7)C, )) ;. (66)
where (a) is from the fact that [ Ag(s)|| = [[¢a(s)¢o(s) " || < C3 and the bounds in (42) and (44).

B.1.2 Bound on Term (b)

In this section we provide the detailed proof of the bound on term (b) in (56).
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We first show that Gy 1 (0, w) is Lipschitz in w for any fixed 6. Specifically, for any 6, w;,ws € RY,
it follows that

Gi41(0,w1) — Gry1(6,w2) |l

= ||p6:(0)pa(st) — vpedo(sy)Bo(se) Twi — he(6,w1) — pe6e(0)do(se) + vprda(s,)do(se) T wo
+ he (0, w2) |

<N he(8,w1) = he(0,w2) || + [vpedo(si)bo(se) Twi — vpedo(s;)da(se) " wall

(a)

< (C¢>Dva + Dv(O¢Rw + pmax(rmax +Cy+ ’YCU)) + ’Ypmaxci) le - WQH

2 Lyllwr — wall, (67)

where Ly = Dy(2C4 Ry + pmax(Tmax + Cv +7Cy)) + 'ypmaxCi, and (a) is from the Lipschitz
continuous of h(6,-), i.e.,

[1124(0, 1) = he (6, w2)

| S pmax(rmax + (]- + ’Y)CU)Dv”wl - w2|| + 2C¢Dva”w1 - UJ2||~
(68)

We note that to show (67), we use the bound on w;, which is guaranteed by the projection step. And
this is the only step in our proof where the projection is used.

Then it follows that
0141 = Ocl] = l|Gri1(Or, wt) |
< a|Gey1 (O, wi) — G (0, w(0r)) + Grgr (0, w(6:))]]
< aLgllzt| + af[Geya (0, w(0:)) |l
< aLg|z + aCy, (69)
where Cg = pmaxC¢(Tmax+(1+’Y)Cv)+rypmawaC¢27+Dva (Rqub +pmax(rmax+cv +,—YC’U))?
and the last step in (69) can be shown as follows
[Grs1(0r, w(01)) ||
= [|pe6:(0) o (5¢) — Yprdbo(s7) o (se) " w(B) — he(6,w(0))|
S pmaxcqﬁ(rmax + (1 + ’Y)Cv) + ’YPmawaci + Dva (RUJC(j) + pmax(rmax + Cv + ’YC’U))

(70)
Using (21) and (69), it follows that
lw(0r) = w(Or+1)l| < Lol|Or1 — Osl] < @l Lgll2e]| + aCy Lo, (71)
and
lw(8e) — w(@e1)|I” < 20°L2L2| 21> + 20°CL L, (72)

This completes the proof for term (b).

B.1.3 Bound on Term (c)

In this section we provide the detailed proof of the bound on term (c) in (57).

Consider the inner product (z¢, w(6;) — w(6¢41)). By the Mean-Value Theorem, it follows that
(20,w(00)) = (20, (0141)) = (21,0 (61) = w(Orr1)) = (20, Vw(00) (6 — O141)),  (73)
where 0; = cf; 4+ (1 — ¢)0;41 for some ¢ € [0, 1]. Thus, it follows that
(2, w(0r) — w(O11))
= (21, Vw(0,) (0 — 0i11))

= —a(z, Vw(0,) Gig1 (0, wy))

VJ(6:)

= —a <zt,w(ét) (Gm(owt) = Gra1 (01,0(0,)) + Gria (01, w(6,)) + —5— >>
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+a <zt,w(ét)v‘]2(9t)>

—a <zt, Ve (0,) (Gepr (B, i) — Gt+1(0t,w(9t)))> <zt, V(b))

Ca < Veo(fy) <Gt+l<9t’”<9f” * ww)»

2
‘V‘]Q(at) ‘ Ca <zt, Vw(0)) <Gt+1(0t,w(9t)) + V‘];gt)»

+a <zt, (Vw(6y) — Vw(br)) (Gt+1(9t,w(9t)) n VJ(Ot)>>

VJ(Gt)>

(a)
< aLy Lyl z|* + aLy| 2|

2

2 1 2, Ly 2
< aLoLgllze]l” + Salollzll” + == VI (@)l + anc (8¢, 2, Or)
VJ(6:) ‘

2
() 5 1 5 aLy, 5 A
< oLy Lgllze||” + iaLsztH + YHW(&)II + ang (0, 2, Or) + 2aCy Dy || 2|10 — O]

T ozl Vw(8:) — Vu@))] HGm(et,w(em n

(c) 1 al,

< aLy,Lgz® + 50‘Lw||zt\|2 + ?ij(et)HQ + ang (0, zt, Or)
+2aCy Dy || 2|10 — Or41]]

(d) 2 1 2

< aLyLgllz|” + QaLsztH +
+2aCyD,, ||zt||(ozL |z:]| + aC )

(Ht)”z +ang (0, 2, Oy)

(e)
< aLuLglz|® + 3 LaL, =) + HVJ(Gt)HQ+0“7G(9ta2’ta0t)
2 2, G5
9
+20°CyD,, | 2Lg ||| +4Lg
1 2 2 OLLW 2 203 w
< (aLlyLg + 50Llw +4da CyLgDo)|[2|” + THVJ(@)H Tt + ang (0, zt, Ot),
9
(74)
_ V.J(0:) . N
where ng(0;, 2.,0;) = — <zt, Vw(8:) (Gtﬂ(ﬁt,w(@t)) + T>>’ (a) is from the Lipschitz

continuity of Gy11(0,-) proved in (67), (b) is from the Lipschitz continuity of Vw(#), which is
shown in (30), (c) is from the fact that ||, — 64| = (1 — ¢)||0; — Ops1|| < |6 — 9t+1|| (d) is from

the bound of ||6; — 6;1]| in (69), and (e) is from the fact that Cy||2;|| < L] 2¢]|* +

4L
This completes the proof.
B.1.4 Bound on Term (d)
In this section we provide the detailed proof of the bound on term (d) in (58).
It can be shown that
—20(zt, Ap, (st)2e) = —28(z1, Ao, 2t) + 28(z1, (A, — Ao, (51))2t)
=260 [lze|1* + 28zt (Ao, — Ap, (51))22), (75)

where the inequality is due to the fact that (z;, Ag, 2:) = 2 Ag, 2t > Az (Ag, )| 2¢]|% > Ao |l2e]|%

B.2 Proof under the i.i.d. Setting

In this section we provide the proof of Theorem 1 under the i.i.d. setting.
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From Lemma 3, we know that the objective function J(6) is L j-smooth, hence it follows that
L
J(Or1) < J(01) +(VJ(01), 041 — 01) + 7]||9t+1 — 0:)?

L
= J(0:) + a(VJ(6), Giy1 (0, w0)) + 7J02||Gt+1(9tawt)||2
VJ(6:)
2

— J6)—a <w<et>, G (o) G (00, w(6) Gt+1<9t,w<9t>>>

Ly
= SIVIO)I? + 5 0 G (6r,0)
=J(0) —a(VJI(0), —Gip1(0s, wi) + Gepr (0, w(6:)))

VJ(0 Ly
+a <VJ(9t) 2( 2 + Gt+1(9t,w(9t))> - %HVJ(@)H2 + *OPHGtH(Qt»%)H

VJ(6:)
2

(a
2 J00) + aLy| V10 |(8,) — +a<w<9t>, n Gt+1(et,w<et>>>

« Ly
- §HVJ(9t)H2 + 7a2||Gt+1(9t,wt)||2

V.J(6:)
2

(b)
€ 70 + oL, IV Iz +a<w<et>, +Gt+1<9t,wwt>>>

o LJ
= SIVI@)P + Za® (L5 =] +2C7) (76)
where () is from (67) and (b) is because ||0;+1 — 0¢|| = || G101, wi)|| < aLy||ze]| +aCy, whose

detailed proof is provided in (69). Thus by re-arranging the terms, taking expectation and summing
up w.r.t. t from 0 to T' — 1, it follows that

e
52 [11V.7(6.)1%)
t=0

t=0 t=0 t=0

T-1 T-1
—E[J(67)] +J(90)+aLg\J ZIE V. (6,)]2] J E[l|z:]|?] + ®LsL2 > | Ef||2|°]

+a?CoLyT, (77)

which is due to the fact that under the i.i.d. setting,

E [<w(et), VI Gm(et,w(et))ﬂ

VJ(6
=E [<VJ(9t),E[ 2( 2 +Gt+1(9t7w(9t))‘3rt] >} =0, (78)
and the Cauchy’s inequality
T-1 T—1
E[|VJ(0)|l]|2¢]]] < ZE IV.7(6,)]12] E[||2¢12]. (79)
t=0 t=0
Thus dividing both sides by % it follows that
o E[IVI(00)])
T
200 =) \/z BV 01 F E[ )]
+2aLJL§—Zt=0 [l +2aC2Ly, (80)

T
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where J* = ming J(6).
Recall the tracking error in (65):

O E [l1z1?)

T
20l | oLo i E[IVI@IIP] 1, o 20 CaDy
< + 4B2Cpr +402C2LE + —2— | . (81)
Tq 4q T q g L,
We then plug in the tracking error and obtain that
o E[IVJ (6]
T
2(J(6p) — J* T LR[||VJ(6,)]2
< W) >+2a0§LJ+2Lg\/zto 1701
I20]2 130 EIVI@IIZ < a?C3D,,
+aL,—=1= B2C,1 +4a2C2L2 + —2—
Tq 4q T T 7 Ly
2 1Y E[IVI0)7]
20L L2 ||ZO|| Lw*
+ 2aly g< Tq +a 1q T
1 2 2r2r2 | @CoDy
g (45 Cy1 + 4o C-"L“JFTZ
T-1 2
_ E[|V.J(0
< 2(J (90) )+2aC’2LJ+L aLy Y -0 [2 (60)117]
2 QCng
+2L ¢Z Hv'] (60)I1 \/”ZOH BZC +4a202L3+7a Lg )
g
2 [ lz0l? 1 {wat)n]
+2aLJLg< Tq +al, 4q T
1 o?C3D,,
+5 (452@1 +40’CZLE + Lg> ) (82)
g

where the last step is from the fact that /= +y < \/x + \/y for any x,y > 0. Re-arranging the
terms, it follows that

oL, o’LyLyLy\ S E[IVI(6)]]
1 Lg .

2q T
. 208D,
< (J(OO) J*) +2a02 4+ 2aL,L2 ||ZO|| 452014-4042021—43-"& g
9\ Tq g L,
(6,)]2 2 2C3D,,
+2L, ¢Z ”W 2l ]\/”z‘)” ﬁ20 + 4020218 + 2 ) (83)
g

Note that (Lg “ 4 M) =0 (\/7 + < ) hence we can choose « and /3 such that

(1 - L, a{;“ %) > 5. Thus (83) implies that

o E[IVI(0)]2)
T
4(J(0) — J*) 2 2 ||ZO||2 2 2272 O‘ZCSDW
< - J
< T + 4anLJ + 4aLJLg Tq q 48 C + 4o Cng + Lg
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2 QC3DW
L F BT 6 \/nzOn +1 120, + sz + O ) o)
g

23
Denote U = 2C00=I") 4 4qC2L; 4 40l L2 (”ZO” +1 (4920 +402Con2 + ),

and V = 4Lg\/ lzol® 41 (452091 +402C212 + “iiD“) Then it follows that
(6,) 0
B 601" <V¢z VIO .
which further implies that
-1
—o E[IVI(8)I°]
T
<Vi42U
208D 8(J(0y) — J*)
162 [1zol 2 1020212 4 L e 0
6g<Tq qﬁc+a09“+ I, T T
2 2 ||ZO|| 2 2272 azc«ng
+8aC2L; + 8aL,L 4B%Cy) + 402C2L2 + — 9%
g g Tq g Lg
1602 +saL,22) [0 L (4o 4 an2cer o*CyDs
= (16L; +8aLLy) T4 qﬂ 1+4a”Co L, + L,
8(J(6o) — J*) 2
+ =+ 8aC] Ly
1
(759 1a)
1 1 1
:O<T1a+Tb+T1 b). (86)

This completes the proof.

B.3 Choice of Step-sizes

As the proof is complicated and we have made several assumptions on the step-sizes, in this section
we summarize all the assumptions we made on the step-sizes. This would help the readers to have a
more clear understanding of the choice of « and S3.
In the proof under the i.i.d. setting, we made two assumptions on step-sizes. In (59), we assume

q =28\ —4B°CL — 40’ LL L. — 20Ly Ly — aLy — 80*CyLy D,y > 0; (87)
And in (83), we moreover assume

21,,L2L,
|- Ly, 0L RIS
q 2q

(88)

N | —

Ay
Note that the first one can be satisfied if 5 < min {1, 402 } and % < ITZL2T30, Ty i w80, L, D5

As for assumption (88), we only need to find o and 3 such that
oL,
q
a?L JLng
2q
Note that these two conditions are satisfied if condition (87) is satisfied.

L

IN

g

IN
[ N

Hence to meet all the requirements on the step-sizes, we can set 5 < min {1, rﬁ} and & <
¢

. Ay
un {1’ AL2L242L Ly +Ly18C,L,D, }
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C Non-asymptotic Analysis under the Markovian Setting

In this section we provide the proof of Theorem 1 under that Markovian setting. In Appendix C.1 we
develop the finite-time analysis of the tracking error and in Appendix C.2 we prove Theorem 1.

C.1 Tracking Error Analysis under the Markovian Setting

We first define the mixing time 75 = inf {¢ : mx' < 8} (Assumption 4). It can be shown that for
any bounded function || f(Oy)|| < Cy, for any t > 73, |[E[f(O¢)] — Eo~p= [f(O)]|| < C¢B and
78 = O(—log ). We note that 73 — 0 as 5 — 0, and we assume that BTBCi < i.

From (53), the update of the tracking error z; can be written as
Zepr = 20 + B(—Ag, (51) 2t + by(0)) + w(0;) — w(biy1), (90)

where Agt (St) = ¢9t (St)gbgt (St)T and bt(gt) = *Agt (St)(/J(et) + pt(5t(9t)qz$.9t (St). Note that for
any § € RY and any sample O; = (s;,a4,7¢,5:11) € 8 x A X R x 8, [|b:(0y)] < C(?)Rw +

PmaxCo(Tmax + Co + 7Cu) 2 bimax.
Then it can be shown that
E [llze+1]* = ll21%]
=E [22] (2041 — 20) + [|ze41 — 2]
=F [Qz;r(zt_,_l — 2+ ﬁAgtzt)] +E [||zt+1 — zt||2] + PE [22:(—A9t)zt]
<E [[lze41 — 2|*] + E [22, (2041 — 2z + BAg, 2)| —2BXE [[|2e]1?] 91
(a) (b)

where the last inequality is due to the fact that A1, (Ag,) > A,. We first provide the bounds on terms
(a) and (b) as follows, and their detailed proof can be found in Appendices C.1.1 and C.1.2.

Term (a) can be bounded as follows:

For any ¢ > 0, we have that
lze41 = zel1? < 28°Cllze)1? + 28% (bmax + L Cy)*. 92)

Term (b) can be bounded as follows:

For any t > 73, we have that

el (o)

< (Bi+ Ry + P+ Po+ POE ||| + (Qu+ Qe + Qs + P+ P2+ )

« 2
+ g5 LB [IVI@I°] ©3)

where the definition of P;, Q; and R;, i = 1,2, 3, can be found in (114), (117) and (120).
From (91), it can be shown that for any ¢ > 75,
E [lze41]* = [l2¢]1?]
<28(Ry+ Rz + P+ P+ P)E {H%HQ} +26(Q1+ Q2+ Q3+ P+ P2+ P3)
+ %LwE [HVJ(&)IIQ} +282C3E [|20]12] + 26 (bimax + LuCy)® — 2BAE [[[2e]|7] . (94)
Thus by re-arranging the terms we obtain that

E [|\Zt+1||2]

< (1= 28X, +28(By + Ry + P + Py + Po) + 28°C)E [||1]?] + T LLE [V (6)]
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+2B8(Q1 + Q2 + Q3 + Py + Pa + P3) + 287 (bmax + LuCy)?
£ (1= q)E [ll2/"] + TLE [IVI@)IP] +p. 95)
where ¢ = 28\, — 28(R1 + R3 + Py + P, + P3) — 232C% = O(B) and p = 26(Q1 + Q2 + Q3 +

Py + Py+ P3) 4+ 232 (bmax + LCy)? = O(B275). Then by recursively using the previous inequality,
it follows that for any ¢ > 73,

2 t—T 2 oLy, )i
Elllz)?) < (1= ¢~ [|l2r. "] + TZ EIVIE)IP T 8
and hence
T
Zt 7 Elllz]1*] i o Eflz?]
T T
(R
Izl ] 5 @lzoll + 2875 (e + LuCa)? | oL ZIL ENVI@IA | p
- Tq T 4q T q
17 oLy Yo E[IVIE)?] | p
<(2 2675 (bmnax + LuCy))* | 7 + 2 b
< (200l + 267 (b + L) (Tq )+ ARLO LIRS
@Y [IlVJ(9t)H2}
=0 (Tﬂ + - 5 T ) 97)
where the last step is because ¢ = O(3) and p = O(8%73).
C.1.1 Bound on Term (a)
In this section we provide the detailed proof of the bound on term (a) in (91).
We first note that from the update of z; in (90), term ||z;41 — 2;|| can be bounded as follows
[ze41 = 2| < 18(=Ao, (st)z¢ + bt(0:))]| + [|w(6r) — w(Br41) |
< BCZ|1zt || + Bbmax + Lo |0 — 14|
(a)
S 5C<;25||Zt|| + 5bmax + OéLng

where (a) is due to the fact [|Gy11(6;,w;)|| < Cy forany ¢ > 0, and where the last inequality is from
the fact that o« < (3. Hence term (a) can be bounded as follows

241 — 2e)1* < 28°Cgl2e]1> + 28 (bmax + LwCy)*. (99)
This completes the proof.
C.1.2 Bound on Term (b)

In this section we provide the detailed proof of the bound on term (b) in (91).
From (98), it follows that
241l < (1 + BCH) | 2ell + Bbmax + L Cy
< (1+ Bzl + Blbmas + LuCy)- (100)

By applying (100) recursively, it follows that

(1+p8C3) -1

lzell < (1 + BCE) N 20]l + Bbmax + LuCly) .
BCy

27



(14 8C2) -1
= (1 DO 20l + (s + Lo Cy) =3

We first show the following lemma which bounds the update ||z — z;—r, || by ||z]|.
Lemma 4. Foranyt > 15 andt > j >t — 73, we have that

”ZJ” < QHZt—T/a || + 267-,3(bmax + Lng)§
12t = 21y || < 287502 |, || + 2675 (Bunas + LsC),
20 = 2e—rs|l < 4B75C3 || 24]l + 4875 (bmax + Lo Cy)-

Proof. From (100), it follows that
[zt ]l < (1 + 5035)”215” + B(bmax + LwCy).

First note that ﬂCzTg < 1 and hence ﬂCﬁ < ﬁ < igg_ 21 This implies that

(1+BC3)™ <1+ 2738C3,
which is because (1 + x)¥ < 1 + 2kx for z < %.

Applying inequality (105) recursively, it follows that

23l < (14 BCEY ™7 Nzt | + (bmax + LuCy) 5
¢
T (1 + ﬁCQ)Tﬂ -1

e R e

(a)
< (1+273B8C3) |2t —rs | + 2875 (bmax + LuCy)

(®)

< 2l|zt—r, | + 2875 (bmax + Lo Cly),
where (a) is from (106), and (b) is from the fact that 373C7 <
To prove (103) and (104), first note that

1
i

t—1

llzt — zt—rg|l < Z 2j+1 — 2l
Jj=t—Tp

(@ =1

< Z 6Ci||zj||+67ﬁ(bmax+Lng)
Jj=t—7p
t—1

()
< D BCIze—ryll + 2675 (bimax + LuwCy)) + B75(bmax + LuCy)

Jj=t—7s

<BTaCE (2l 2t || + 2875 (bmax + LuwCo)) + BT (bmax + LuCy)

= 25750£Hzt,w I+ (25275205) + 678) (bmax + LuCy)

(c)
< QﬁT/BC(i”Zt*Tﬁ H + QﬁTB(bmax + Lng)y

(1+6C3)™ — 1

(101)

(102)
(103)
(104)

(105)

(106)

(107)

(108)

where (a) is from (98), () is from (107) and (c) is due to the fact that S75C% < 1 . Moreover, it

can be further shown that

||Zt — Rt—1g H < 26760§(||ZtH + [zt — Rt—7g ||) + QﬁTﬂ(bmax + Lng)

1
< 25750§“2t” + §||Zt - ztf‘rﬁH + 267ﬁ(bmax + Lng)>

where the last step is because BT[;’C; < i. Hence

2 = 21ny | < 4BrsC22e ]l + 4875 (Bimax + LuCy).
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The bound on term (b) in (91) is straightforward from the following lemma.
Lemma 5. For anyt > 7, it follows that

o[ ()]

S(Rl+R3+P1+P2+P3)E[Hzt”2}+(Q1+Q2+Q3+P1+P2+P3>

« 2
+ g5 LB [IVI@I°] a1

where the definition of P;, QQ; and R;, i = 1,2, 3, can be found in (114), (117) and (120).

Proof. We only prove the case ¢ = 73 here. The proof for the general case with ¢ > 75 is similar,
and thus is omitted here. First note that

1
E [ZTTH <_A07'/3 “rg T B (ZT/H—l - ZT/%))}

=E {ZTTB (—Ae,ﬁ +4o,, (375)) ZTB} -E |:Z7—'|;3b‘f'5i| _E |7 Y (6ry) —w (0ry+1)

2 5 ] . (112)

We then bound the terms in (112) one by one. First, it can be shown that
‘E [zjﬁ‘ <_A9*ﬂ + 4., (ST‘?)) ZT‘*”
< ‘]E {Z(—)r (_ABTB + AGTﬁ (sm)) 20” + ‘]E {(ZTB — ZQ)T (_A«%ﬁ + A@T/3 (sTﬁ)) (Zna — zo)} ‘
+2 ‘E [(zm — )" (_AQTﬁ + Ao, (sm)) zo} ’
< 12012 HIE [fA% + Ao, (875)} H +2C2E [||27, — 20]12] + 4]|20[|C2E [+, — 2o]

+ || 202 H]E (=40, (57) + Ag, (55,)] H + 2C2E [|120, — 20l|2] + 4|20/ C2E [ 22, — 20]]

< ol [ [, + Ao, (522 + ol [ [0, + 4.,

(a)
< (BC3 +4CyDyCyats) ||zoll* + 2C3E [||z-, — 20ll*] + 4ll20|CZE [|l27, — 20ll] » (113)

where (a) is due to the facts that | E [~ Ag, + Ag, (s5,)]]| < C3 3 from the uniform ergodicity of the

MDP, both Ag and Ag(s,) are Lipschitz with constant 2Cy D, and ||6y — 0., < Z;‘;gl 1041 —
GJH S CYTBCg.

We then plug in the results from Lemma 4, and hence we have that
B[], (<40, + 4o,, (57)) 2|
< (BCE +4CyDyCyars) |[20]|* + 2C3E [||2r, — 20l|*] + 4120 CZE [l 27, — 20ll]
o (BC2 +4C,4 D, Cyary) (2(1 +4B75C2)°E {Hzm HQ} + 328273 (bmax + Lwcg)2)
+2C3 (828°73CHE [|[20. °] + 328273 (bmax + LuCy)?)
+4C3 (4875C3(1 + 4875C2)E [[|27. %] + 4873 (bmax + LuCy) (1 + 8875C2E [|21.])
+ 64C3 8775 (bmax + LuCy)?
& RE [||z, ||| + PE |20, [] + @1, (114)
where (a) is from (104) and the fact that

20l < [|2rs — 20|| + [|275 || < (14 4B75C2) || 275 || + 4878 (bmax + L Cy); (115)
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and Ry = 2(1 + 4875C3)? (BC3 + 4Cy D,Cyay ) + 648> r3CS + 168m3CA(1 + 475C3) =
O(Brg), P = 160C3B73(bmax + LuCy)(1 + 8B73C3) = O(Brp) and Q1 =
(505 + 4C¢D1,Cga75) 328272 (bmax + L Cy) 2 +64C3 272 (bmax + Lo Cy )2 +64C2 B272 (bax +
L,C,y)? = 0(8%72).

Similarly, the second term in (112) can be bounded as follows

& [20,7, (6] < [E [(zr, — 20) 00, (01,)]] + [E [2] b, (60)]
+||IE [2¢ (bry (87,) — bry (60))] |l
S bmaxE I:HZT[; - ZO”] + 5bmax”20” + OéTﬁCng”Z()”, (116)

where L, = 2C3D, R, + LUJC’f5 + pmax((1 + fy)C; + Dy(rmax + (1 +7)C,)) is the Lipschitz
constant of b; (). Again applying Lemma 4 implies that

e[2.00.)
< bmaxE |:||Z7'ﬁ - ZOM + Bbmax||20ll + a73Cq Ly || 20|
< bmax (4875 C3E [[| 27, |] + 4875 (bmax + L Cy))
+ (Bbmax + a7Cy Ly) (1 + 4B73C3) E [|| 27, ||] + 4875 (bmax + L Cy))
& PE o, ] + @2 )

where Py = 457 5bmaxC2+ (Bbmax +a75C, Ly) (1 + 4/87[305)) = O(Brs) and Q2 = 4875 (bmax +
Lng)(bmax + Bbmax + OLTBCng) = O(BTB).
We then bound the last term in (112) as follows
‘E [ZT w(eT/s) - w(975+1):| ‘
Tﬁ ﬁ
1

LB V0 0rs 1 — 0]

e ~
= ‘ﬂE[zTTBVw(OTB)GTBH(HTB,wTB)]‘

(a)

« ~
= ‘ﬂIE z;; Vw(b,,) (GTﬁH(@Twaﬁ) — Gryq1(07,,w0(07,)) + Gryq1(07,,w0(07,))
N V()  VI(,)
2 2
le% ~
— EE z;vw(em)(aml(em,wm)—Gml(em,w(em)))]‘

[ 5 (0tct+7)]
I

gt (752 |

< SLLE [l ] + 5L [l ] + g5 LB [I9 7601

5 26 i
+ % E [z:ﬁw(%) (Gm“(em’w(em)) * V‘]ffﬁ)” ’
+ 5 B (#0902 = 90 (Grra O w0y + T
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< GLoLyB (|20, *] + 55 LuB 20 7] + g5 LeB [1V56-)]7]
+ |:Z(—)rvw(07'5) <G7—5+1(97ﬁ’w(0m)) + VJ(;W))} ’

E%%mfwww(@ﬁmww%»+m?wﬂ’

+

Q\Q Q\Q

CngE [HZTﬁH ||97l3 - 9%“”]
@ LuLoE [[ ] + ﬁLEM%ﬁ} LE[||VI6,,)]]

sty et )

E|zg (w(em) (Gml(eww(em)) + W(Q Tﬁ))

Q

+
«Q
=3
+

+

@™ wIe

— Vw(fo) <G‘rﬁ+1(9070~)(90)) + VJQ(QO)) )

+ % E [(zn, ) TVW(0,,) (Grﬁl(gmw(%) N vj(;w)ﬂ ‘
*ﬂ%&EWNWmem

< GLLeE [[en[I*] + G5B (976

*llt- B [Gfﬁ+1<9w<eo>> + ] H

+ g5 L [lonll’] + S0l LB [6-, — 6] + 2 e —

2
+ FCngE [HZTﬁH He‘fﬁ - Tﬁ+1H]

(0 « 2 «o 2 o’
< GLoLE [z "] + 55 E [l20:17] + g5 LeB (I166.,)[°] + 30l 20y
2 2 2 2
+ G 7Lkl201C + 5 LuCoE (|25, = 20]]] + 5~ C3 D [z,

— (§LuLat 551 )M%M+ﬂcmﬁww1ﬁLMWmmM
2
+ (aL Cy+ 5 — 1L Cy ) Ilzo]] —|— 5 L C,E [Hzm zOH] , (118)

where (a) is from the Mean-Value theorem andé = b, + (1 — ¢)0r,41 for some c € [0,1], (b)
[@H%7wm T || < €y for any
t > 75 and ||6,, — 6o|| < atgCy, and L = 2C,D,, + (LJ + ) L, is the Lipschitz constant of
Vw() (Gt+1(0, w(0)) + %@) ,and L is the Lipschitz constant of G'¢y1(6,w(0)).

is from Lemmas 1 and 2, (c) i

Our next step is to rewrite the bound in (118) using ||z, ||. Note that from Lemma 4, we have that

20l < [|2rs — 20|| + [|275 || < (1 4 4B75C3) || 215 || + 4878 (bmax + L Cy)- (119)
Plugging in (118), it follows that

Fwﬂ%wﬁ%m”
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< (Srar,+ 5 )Ummy+5@DEwau LB 196

o2
<aL Cy+ 3 —T13L;Cy ) Ilzo0]] —|— L C,E H|Z7—ﬁ on]

B
2
< (St + L0V E fonl] + 2 C2DLE [fory ] + S5 L [|9500,,) ]
2
(aL Cy+ SmLiC, ) ((1+ 4875C2)E [[| 20, ] + 4875 (bunax + LuCy))
4 %‘“Lwcg (E [4875C2 |22, ][] + 4875 (bumax + LuCy))

= (et g5t )2 fleo ]

2&2 2
+ | =C?D, + (aL C,+
( g Y B

« 2
+ ggleE [[19766:.)11°] + <aL Cy+ 5
+ 8073 Ly, Cy(bmax + L Cy)

mLﬂ7)ﬂ+@%ﬂﬁ)HMMLJ%C@EWWmm

5 TBLkC > (4ﬂ7’@(bmax + Lng))

2 Ry [[[or, ||*] + PE [l 2r, 1] + @5 + %m [HW(WHQ} : (120)
where Ry = (§Luly+g5Ls) = 0(3), = (Z’gﬂchw +
(aLwC’g + %;TngC’ ) (1 + 4875C3) + 8arsL,C,yC. ) O(atg) and Q3 =

(@LuCy + G T5LkCy ) (4B73(bmax + LuCy)) + 8075 LuCybmax + LuCy) = O(aTs).
Then we combine all three bounds in (114), (117) and (120), and it follows that

N E——

< (Ry + R)E [[J20,[*] + (Pr + o+ Po)E [[J27, ][] + (@1 + Q2 + @)

«
+ gl 1970, 12

Finally due to the fact that z < 22 + 1, Vx € R, it follows that

1[5 ()]

S(Ri+R3+ P+ P+ B)E [HZT[;H } (Q1+ Q2+ Q3+ P+ P+ P)

+ @LWE w7607 - (122)

This completes the proof. O

C.2 Proof under the Markovian Setting

In this section, we prove Theorem 1 under the Markovian setting.

From the L ;-smoothness of J(6), it follows that
L
J(Or1) < J(0r) + (VI (6r), Or 1 — 02) + %||9t+1 —0,I?

L
= J(0:) + a(VJ(0:), Gry1(0,we)) + 7‘]042||Gt+1(9t7wt)||2
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VJ(6:)
2

=J(0:) —a <VJ(9,5), =G (O, wi) — + Gig1 (01, w(6:)) — Gt+1(9t7w(9t))>

= 2V IOI? + ZL0?Grra (61, w0)
= J(Gt) — <VJ(9t), —Gt+1(9t,wt) + Gt+1(9t,w(9t))>
+a <VJ(9t), Wz(e*)

L
+Grna(,6(60) ) = SITTO + 5 eGrinGr) P

VJ(6:)
2

<T(80) + ALy [T B [(8:) — will + a <w<et>, n Gt+1<et7w<et>>>

o L
= S IVIO)IP + = 0?[Gria (61, 00|

(a) VJ(6
< 700 +aLy 900l + a (vat0), VL%

n Gt+1<et,w<9t>>>
o o, Ly 9
= 5 IVJO)I" + —-a”Cy, (123)

where (a) is from the fact that ||6;41 — 6,
and summing up w.r.t. ¢ from 0 to T' — 1, it follows that

, taking expectation

gz 197011
t=0
T-1 T—1
~E[J(67)] + J(60) + aLy ZE IV7(00)]2) Z (12el1%] + ) aE[Cs (61, 0))
t=0
+ L;o*TC?, (124)

where (g (0:,0;) = <VJ(0t), %(0") + Gt+1(9t,w(6t))>. We then bound (¢ in the following
lemma.

Lemma 6. Foranyt > 1,

E[¢a (6, 01)] < 2C2B + 2a73LcCly. (125)

Proof. We only need to consider the case ¢t = 73, the proof for general case of ¢ > 73 is similar, and
thus is omitted here. We first have that

C6(621:0) = (V6. Y1) | Grot1(0ry(67,) )

VJ(6o)
2

— <VJ(90)7 + G7ﬁ+1(907w(90))>

+ <w(aw), w + G7ﬁ+1(9Tﬁ,w(67ﬁ))>

- <VJ(€0)7 VJ2(90) + Gm+1(907w(90))>
VJ(6h)
2
VJ(QO)

< <VJ(90)7 ; waw%)» L 2L]0r, — 0o

< < J(6o),

where L¢ = 2C, (L, + 3L1) is the Lipschitz constant of (g (6, Oy).
Then it follows that

]E[CG(GTB ) 07'5 )]

+G73+1(007W(00))> +20£T5L<Cg, (126)

33



) KVJ(GO), VJQ(OO)

+ Grpaallo,(00) )| + 201G
< 2028 + 2a75LCy,

(127)
where the last step follows from the uniform ergodicity of the MDP (Assumption 4) U
Plugging the bound in (124), it follows that
T-1
o
S ENVI@)IP)
t=0
T—1 T—1
J(00) = J* + aLgy| D ENVI@)2,| D Elll=/]
t=0 t=0
+a?CZLyT + o (T(2C; B + 2073 LcCy) + 475CF) | (128)
and thus
T—1
> E[IVI@)I]
t=0
T—1
2(J(0p) — J*
< M Z]E[HVJ(@ 2] E[l|z)1?] + 22C5 L, T
@ t=0 t=0
+2(T(2C5B + 2a75LcCy) + 475C7) . (129)
This further implies that
S ElIVI(60:)]12)
T
2 * (6y)
WO \/ T 61 \/ SR | o
2 2B
+2 ((20g5+2mﬁL<Cg) +4Cg?). (130)

We plug in the tracking error (97), and it follows that
S EIVI(9,)]%]
T
2(J(6o) — J*) (90) J*)

+2aC2L; +2 ((20% +2a75LcCy) + 402%5)
. \/z B 60

17 aL, 31—y ElIVJ(6)]1)
. 2 2 max Lw ol = ﬁ e =0

\/< ol + 2873 b + LG (52 + 2 ) + 25 V6O,
2(J(6o) — J") 2 2 278

T + QCKCHLJ + 2 ((2096 + 2C¥7‘ﬁL<Cg) + 409?)

oz, [2Ls S EIV @01

or \/Z S V(zm #2075 0+ 2O (1, + )+ 20 a3

T
Note that 2L, = (\/7 ) hence we can choose o and 3 such that 2L, “4Lq“ < % Hence
it follows that
-1
E[IVI(0))?] _ 4(J(6) — J*) 8
7 < S 1+ 4aCELy +4 (2028 + 20m5LeCy) +4CE T )
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+M;¢z: B 601

1 7
'\/QHZOHHBM( max + LuCy))? (Tq+;> +P

AU¢Z EITI6P, 132

where U = 4Lg\/(2||zo|| + 2875 (bnax + L Cy))? ( =t ?) +2=0 (,/Bm + T%) and V =

p

q
HONZTD) 4 4aC2Ly + 4 ((2C26 + 2a75LCy) +4C2 %) = O (LA + ars + B). Thus it can
be shown that

SENVI@)) (U VTP T 4V> ’

T 2
<U*+2V
1 T
= 1613 <(2|20 + 2875 (bmax + Lo Cy))? ( + Tﬁ) . P)

Tq q
8(J(0o) — J*)
+ oT

—O<ﬂ773+

2 2 278
+8aC2Ly +8 (2028 + 2073LcCy) + 4CEE)

To

1
T5+a75+>. (133)

This completes the proof.

C.3 Choice of Step-sizes

In the proof under the Markovian setting, we first assume 573 Ci < i. The last assumption on the

step-sizes is & < 1037 Where ¢ = 28X\, — 2B8(Ry + Rs + Py + P> + P3) — 23%C = O(3). Note
2L

that this assumption can be satisfied by controlling % similar to Section B.3, which we omit here.

Hence we set 8 < min{l7 ﬁ} and% < {1, ﬁ}
¢ g

D Experiments

In this section, we provide some numerical experiments on two RL examples: the Garnet problem
[Archibald et al., 1995] and the “spiral” counter example in [Tsitsiklis and Van Roy, 1997].

D.1 Garnet Problem

The first experiment is on the Garnet problem [Archibald et al., 1995], which can be characterized by
S(|8|, |A|, b, N). Here b is a branching parameter specifying how many next states are possible for
each state-action pair, and these b states are chosen uniformly at random. The transition probabilities
are generated by sampling uniformly and randomly between 0 and 1. The parameter N is the
dimension of # to be updated. In our experiments, we generate a reward matrix uniformly and
randomly between 0 and 1. For every state s we randomly generate one feature function k(s) € [0, 1]
using as the input. In both experiments, we use a five-layer neural network with (1,2,2,3,1) neurons in
each layer as the function approximator. And for the activation function, we use the Sigmoid function,
ie., f(z) = H% We set all the weights and bias of the neurons as the parameter 6 € R?3.

We consider two sets of parameters: §(5,2,5,23) and §(3, 2, 3, 23). We set the step-size o = 0.01
and 3 = 0.05, and also the discount factor v = 0.95. In Figures 1 and 2, we plot the squared gradient
norm v.s. the number of samples using 40 Garnet MDP trajectories, i.e., at each time ¢, we plot
|VJ(6,;)||?. The upper and lower envelopes of the curves correspond to the 95 and 5 percentiles of
the 40 curves, respectively. We also plot the estimated variance of the stochastic update along the
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iterations in Figures 1(b) and 2(b). Specifically, we first run the algorithm to get a sequence of ¢; and
wy. Then we generate 500 different trajectories O* = (0%, O3, ..., O}, ...) where i = 1, ..., 500, and

i i ) 2 S22 1G4 (0r,w0) =V I (80)|
use them to estimate the variance |G ,; (6, w;) — V.J(6;)]|* and plot ==t 2L at

each time ¢.

It can be seen from the figures that both gradient norm ||V.J(6;)|| and the estimated variance converge
to zero.
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estimated gradient variance

0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000

number of samples number of samples
@) |[VJ(0)]>. (b) Estimated variance.

Figure 1: Garnet problem 1: §(5, 2, 5, 23).

D.2 Spiral Counter Example

In our second experiment, we consider the spiral counter example proposed in [Tsitsiklis and
Van Roy, 1997], which is often used to show the TD algorithm may diverge with nonlinear function
approximation. The problem setting is given in Figure 3. There are three states and each state can
transit to the next one with probability % or stay at the current state with probability % The reward is
always zero with the discount factor v = 0.9. Similar to [Bhatnagar et al., 2009], we consider the
value function approximation:

Vo(s) = (a(s) cos(k@) + b(s) sin(k@))e, (134)

where in Figure 4, a = [0.94, —0.43,0.18] and b = [0.21, —0.52,0.76]; and in Figure 5, a =
[0.21,—0.33,0.29] and b = [0.68,0.41,0.82]. We let k = 0.866 and ¢ = 0.1. The step-size are
chosen as « = 0.01 and 5 = 0.05. In Figures 4(a) and 5(a), we plot the squared gradient norm v.s.
the number of samples using 40 MDP trajectories. The upper and lower envelopes of the curves
correspond to the 95 and 5 percentiles of the 40 curves. Similarly, we also plot the estimated variance
|Gis1(0r,wi) — V. J(6;)]|? of the stochastic update along the iterations using 50 samples at each time
step. More specifically, we first run the algorithm to get a sequence of 6; and w;. Then we generate
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@) |[VJ(6)]>. (b) Estimated variance.

Figure 2: Garnet problem 2: (3,2, 3,23).
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50 different trajectories O = (0%, 0%, ..., 0%, ...) where i = 1, ..., 50, and use them to estimate the

. 50 i wi)— NE .
variance ||G}, 1 (0, wi) — V.J(6;)]|* and plot iz ”Gt“(gg(’) J=VIOII 4t each time .

It can be seen that in both experiments, the gradient norm |V .J(6;)|| converges to 0, i.e., the algorithm
converges to a stationary point. The estimated variance also decreases to zero.

2 ) 2
Figure 3: Spiral counter example.
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Figure 4: Spiral counter example 1:
a = [0.94,-0.43,0.18],b = [0.21, —0.52,0.76].
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Figure 5: Spiral counter example 2:
a =[0.21,-0.33,0.29], b = [0.68,0.41, 0.82].
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