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Abstract—In this paper, the robust hypothesis testing problem
is investigated, where under the null and the alternative hypothe-
ses, the distributions are assumed to be in some uncertainty
sets. The uncertainty sets are constructed in a data-driven
manner, i.e., they are centered around empirical distributions.
The distance between kernel mean embeddings of distributions
in the reproducing kernel Hilbert space is used as the distance
metric of uncertainty sets. The Bayesian setting is studied, where
the goal is to minimize the worst-case error probability. An
optimal test is firstly obtained for the case with a finite alphabet.
For the case with an infinite alphabet, a tractable approximation
is proposed to quantify the worst-case error probability, and
a kernel smoothing method is further applied to design test
that generalizes to unseen samples. A heuristic robust kernel
test is also proposed and proved to be exponentially consistent.
Numerical results are provided to demonstrate the performance
of the proposed tests.

Index Terms—Bayesian setting, kernel smoothing, worst-case
error quantification, kernel robust test

I. INTRODUCTION

Hypothesis testing problem has been widely studied where
the goal is to distinguish among different hypotheses with
a small probability of error [1]–[3]. For simple hypothesis
testing problems where samples under each hypothesis follow
a fixed and known distribution, the likelihood ratio test is op-
timal under various settings, e.g., the Neyman-Pearson setting
and the Bayesian setting. However, the likelihood ratio test
requires exact knowledge of the data-generating distributions.
When the distributions in the likelihood ratio test deviate
from the true data-generating distributions, the performance
may degrade significantly. To address this problem, robust
hypothesis testing is studied, e.g., [4]–[18], where the true
distributions belong to some uncertainty sets of distributions,
which are centered around nominal distributions based on
some distance measure. The goal is to design a test that
performs well under the worst-case distributions over the
uncertainty sets.

One of the earliest work on robust hypothesis testing
dates back to Huber [4], where a censored version of the
nominal likelihood ratio test was proposed for ε-contamination
uncertainty sets and the total-variation uncertainty sets. A
work by Levy [5] considered the uncertainty sets defined
via Kullback-Leibler (KL) divergence, and proposed the like-
lihood ratio test based on the least-favorable distributions
(LFDs). In [7], the robust hypothesis testing problem under the

Bernoulli distribution was investigated. In [8], the uncertainty
sets were constructed via distortion constraints. These works
mainly focus on the 1-dimensional setting, where nominal
distributions can be estimated from samples. However, when
it comes to the high-dimensional setting, estimating distribu-
tions accurately from historical data is difficult, and hence
the existing approaches may not be applicable anymore. In
this paper, we propose a data-driven approach to construct
the nominal distributions. We use the empirical distributions
of samples from the null and alternative hypotheses as the
nominal distributions directly. We note that in this case, the
uncertainty sets defined via KL divergence is not applicable
since such uncertainty sets only contain distributions supported
on the training samples, which may be problematic if the
alphabet is actually infinite.

The data-driven approach has been studied in [17], [18],
where uncertainty sets are centered around empirical distribu-
tions via the Wasserstein distance. A nearly-optimal detector
and an optimal test were derived in [17] and [18], respectively.
However, Wasserstein distance based approach has certain
drawbacks. Firstly, the Wasserstein distance between the em-
pirical distribution with m samples and its data-generating
distribution is bounded by O(m−1/d) [19], which depends
on the dimension d of the data. Therefore, when used to
choose radii of uncertainty sets to guarantee that the data-
generating distributions lie in the uncertainty sets with high
probability, it might be too pessimistic when d is large.
Moreover, coefficients in such a concentration bound depend
on the true distribution [18] which is unknown, thus this makes
it difficult to use in practice. Secondly, Wasserstein distance is
computationally expensive, especially in the high-dimensional
setting.

Moment information such as mean and variance is usually
used to measure the difference between distributions. In [20],
the uncertainty sets are constructed using moment classes,
where a finite alphabet was considered and an asymptotically
optimal test was designed. The moment uncertainty sets in
[20] are defined as {P : EP [f ] ≤ θ} where f is a real-
valued function, EP [f ] denotes the expectation of f under P ,
and θ is a constant. In this paper, we generalize the moment
classes to the reproducing kernel Hilbert space (RKHS) [21]–
[23] and construct uncertainty sets using the maximum mean
discrepancy (MMD). Specifically, let f = g−EP̂ [g], where P̂



is the empirical distribution of samples from P , and we further
take the supremum of g over an RKHS to account for the worst
case. Then this leads to uncertainty sets centered at P̂ and
defined by MMD. Compared with the Wasserstein distance,
the kernel MMD between the empirical distribution with m
samples and the population distribution can be bounded by
O(1/

√
m), which is dimension-free and also does not de-

pend on the data-generating distribution. Moreover, the kernel
MMD is computationally efficient to evaluate.

In this paper, we focus on the Bayesian setting where the
goal is to minimize the worst-case error probability, which
is different from the Neyman-Pearson setting considered in
[24]. Moreover, this paper focuses on the probability of error
using approaches based on LFDs, which is different from the
asymptotic approach in [24] that analyzes the error exponent.
We first study the case with a finite alphabet and obtain the op-
timal test via the strong duality of kernel robust optimization.
For the case with an infinite alphabet, we propose a tractable
approximation to quantify the worst-case error probability, and
then apply the kernel smoothing method to design a robust test
that generalizes to unseen data. We also propose a heuristic
robust kernel test and show that it is exponentially consistent.

II. PRELIMINARIES: MAXIMUM MEAN DISCREPANCY

We first give a brief introduction to idea of kernel mean
embedding and the MMD [21], [22]. Let H denote the
RKHS associated with a kernel k(·, ·) : X × X → R.
There exists a feature map k(x, ·) : X → H such that
k(x, y) = 〈k(x, ·), k(y, ·)〉H defines an inner product on H.
The RKHS H is equipped with a reproducing property such
that f(x) = 〈f, k(x, ·)〉H for any f ∈ H, x ∈ X . The MMD
between two distributions P0 and P1 is defined as

dMMD(P0, P1) = sup
f∈H:‖f‖H≤1

EP0
[f(x)]− EP1

[f(x)]. (1)

The kernel mean embedding of a distribution P is defined as
µP =

∫
k(x, ·)dP . With the reproducing property of H, we

have that EP [f ] = 〈f, µP 〉H. The MMD between P0 and P1

can be equivalently written as the distance between µP0
and

µP1
in the RKHS [23]:

dMMD(P0, P1) =
∥∥µP0

− µP1

∥∥
H, (2)

where ‖ · ‖H denotes the norm on H. If a kernel k is
characteristic [25], dMMD(·, ·) is a metric on P [23], [26]. In
this paper, we consider kernels such that the weak convergence
on P can be metrized by MMD [27], [28], e.g., Gaussian
kernels and Laplacian kernels.

III. PROBLEM FORMULATION

Let X ⊂ Rd be a compact set where samples are taken from.
Denote by P the set of all probability measures supported on
X . For a simple hypothesis testing problem, the goal is to
distinguish between the null hypothesis that the sample x is
generated from P0 ∈ P and the alternative hypothesis that
the sample x is generated from P1 ∈ P . For a randomized
test φ : X → [0, 1], it accepts the null hypothesis H0 with

probability 1−φ(x) and accepts the alternative hypothesis H1

with probability φ(x). The error probability in the Bayesian
setting with equal prior is given by

PE(φ) , 1

2
EP0

[
φ(x)

]
+

1

2
EP1

[
1− φ(x)

]
. (3)

In this paper, we consider a data-driven setting where
P0, P1 are unknown, and only training samples from them are
available. Suppose we have two sequences of training samples:
x̂m0 = (x̂0,1, x̂0,2, · · · , x̂0,m) and x̂m1 = (x̂1,1, x̂1,2, · · · , x̂1,m)
generated from P0, P1, respectively, where m is the train-
ing sample size. Let Q̂lm = 1

m

∑m
i=1 δx̂l,i

be the empirical
distributions of x̂ml for l = 0, 1, where δx̂l,i

denotes the
Dirac measure on x̂l,i. To model the uncertainty of P0, P1,
we define two uncertainty sets centered around the empirical
distributions Q̂lm, l = 0, 1, respectively. Specifically, we define
the uncertainty sets via the MMD:

Pl =
{
P ∈ P : dMMD(P, Q̂lm) ≤ θ

}
, l = 0, 1, (4)

where θ is the pre-specified radius of the uncertainty sets. It
is usually chosen to guarantee that population distributions
fall into the uncertainty sets with high probability. It is

assumed that P0,P1 do not overlap, i.e., θ <

∥∥µQ̂1
m
−µQ̂0

m

∥∥
H

2 .
Otherwise, the problem is trivial.

In [20], the moment class is defined as {P : EP [f ] ≤
θ}, where f is a real-valued function on X . In the definition
of moment class, if we let f = g − EQ̂l

m
[g] and take the

supremum of g such that ‖g‖H ≤ 1 over the RKHS, it is
then the MMD between P and Q̂lm. Therefore, the MMD
uncertainty sets can be viewed as a generalization of moment
classes to the RKHS.

For the Bayesian robust hypothesis testing, the goal is to
solve the following problem:

inf
φ

sup
P0∈P0,P1∈P1

PE(φ). (5)

IV. FINITE-ALPHABET ROBUST HYPOTHESIS TESTING

In this section, we focus on the case with a finite alphabet,
i.e., |X | < ∞. A finite-dimensional version of (5) is consid-
ered, and a minimax optimal test is derived. The results in this
finite alphabet setting will be useful for the infinite alphabet
setting in the next section.

Let X = {z1, z2, · · · , zN}, N = |X | and x̂l,j (l = 0, 1) ∈
{zi}Ni=1 for j = 1, · · · ,m. In this case, PE(φ) = 1

2

∑N
i=1(1−

φN (zi))P
N
1 (zi) + φN (zi)P

N
0 (zi), where we introduce the

superscript N on P0 and P1 to emphasize its dependence on
N , and therefore, (5) can be written as

1

2
min
φN

sup
PN

0 ∈P0,PN
1 ∈P1

N∑

i=1

(1− φN (zi))P
N
1 (zi) + φN (zi)P

N
0 (zi). (6)

Since (6) is a minimax problem and thus cannot be solved
directly. We reformulate it equivalently as a finite-dimensional
convex optimization problem in the following Theorem.



Theorem 1. The minimax problem in (6) is equivalent to

1

2
min

φN ,f0,g0∈R
f1,g1∈H

f0 + g0 +
1

m

m∑

i=1

f1(x̂1,i) +
1

m

m∑

i=1

g1(x̂0,i)

+θ‖f1‖H + θ‖g1‖H
subject to 1− φN (zi) ≤ f0 + f1(zi) for i = 1, · · · , N

φN (zi) ≤ g0 + g1(zi) for i = 1, · · · , N
0 ≤ φN (zi) ≤ 1 for i = 1, · · · , N, (7)

which is a finite-dimensional convex optimization problem.

Proof. From the strong duality of kernel robust optimiza-
tion [29], we have that (7) is equivalent to (6). From the
robust representer theorem [29], the functions f1, g1 admit
the finite expansions f1(·) =

∑N
i=1 αik(zi, ·) and g1(·) =∑N

i=1 βik(zi, ·). Therefore, the optimization problem in (6)
can be reformulated as a finite-dimensional convex optimiza-
tion problem thus is tractable in practice.

By solving (7), we obtain the optimal robust test φ∗N and
can also find the optimal solutions P ∗,N0 , P ∗,N1 for the inner
problem in (6) by plugging φ∗N back to (6).

V. INFINITE-ALPHABET ROBUST HYPOTHESIS TESTING

In this section, we consider the case where X is infinite. We
first propose a tractable approximation to quantify the worst-
case error probability of (5). This tractable approximation
builds a connection between the finite-alphabet case and the
infinite-alphabet case. We then design a robust test for (5) by
extending the optimal test of the case with a finite alphabet
to the case with an infinite alphabet via the kernel smoothing
method. Finally, we propose another heuristic robust kernel
test which is further shown to be exponentially consistent
under the Bayesian setting.

A. Worst-Case Error Probability Quantification

For the infinite-alphabet case, (7) is infinite-dimensional,
thus is intractable. To simplify the analysis of (5), we first
interchange the sup and inf operators in (5) based on the
following proposition. Since the likelihood ratio test is optimal
for the binary hypothesis testing problem, the inner problem
can be solved by applying the likelihood ratio test. The
original problem is then converted to solving the maximization
problem. In the following, we use capital letter P to denote
a distribution and lower case letter p to denote its probability
density (mass) function.

Proposition 1. The minimax problem in (5) has the following
reformulation:

inf
φ

sup
P0∈P0,P1∈P1

PE(φ) = sup
P0∈P0,P1∈P1

inf
φ
PE(φ)

=
1

2
sup

P0∈P0,P1∈P1

∫
min

{
p0(x), p1(x)

}
dx. (8)

Proof. The error probability PE(φ) is continuous, real-valued
and linear in φ, P0 and P1. For any distributions Q1, Q2 ∈
Pl, l ∈ {0, 1}, from the triangle inequality of MMD [23], the

convex combination λQ1 + (1− λ)Q2, 0 < λ < 1, lies in Pl.
Therefore, the uncertainty sets P0 and P1 are convex sets and
P0×P1 is also convex. Denote by Φ the collection of all φ. We
have that Φ is the product of uncountably many compact set
of [0, 1]. Since X is compact, from the Tychonoff’s theorem
[30], [31], Φ is compact with respect to the product topology.
Moreover, for any φ1, φ2 ∈ Φ, the convex combination λφ1 +
(1−λ)φ2, 0 < λ < 1 lies in Φ. Therefore, Φ is convex. From
the Sion’s minimax theorem [32], we have that

inf
φ

sup
P0∈P0,P1∈P1

PE(φ) = sup
P0∈P0,P1∈P1

inf
φ
PE(φ)

= sup
P0∈P0,P1∈P1

1

2

∫
I{ p1(x)

p0(x)
≥1
}p0(x)dx

+
1

2

∫
I{ p1(x)

p0(x)
<1
}p1(x)dx

=
1

2
sup

P0∈P0,P1∈P1

∫
min

{
p0(x), p1(x)

}
dx, (9)

where I denote the indicator function and the second equality
is due to the fact that the likelihood ratio test is optimal for
the binary hypothesis testing problem.

Observe that the problem in (8) is an infinite-dimensional
optimization problem and the closed-form optimal solutions
P ∗0 , P

∗
1 are difficult to derive. In the following, we propose a

tractable approximation for (8). With this tractable approxima-
tion, the worst-case error probability in (8) can be quantified.
The optimal solutions of this tractable approximation can be
further used to design a robust test that generalizes to unseen
samples.

Let P be a distribution supported on the whole space X
and {zi}Ni=1 be N samples generated from P . We propose the
following approximation of (8)

1

2
sup

PN
0 ∈PN

0 ,P
N
1 ∈PN

1

N∑

i=1

min
{
pN0 (zi), p

N
1 (zi)

}
, (10)

where PNl (l = 0, 1) denotes the collection of distributions that
are supported on {zi}Ni=1 and satisfy

∥∥µPN
l
− µQ̂l

m

∥∥
H ≤ θ.

We note that (10) is a finite-dimensional convex optimization
problem which can be solved by standard optimization tools.
Let f(P0,P1) = 1

2 supP0∈P0,P1∈P1

∫
min

{
p0(x), p1(x)

}
dx

and f(PN0 ,PN1 ) = 1
2 supPN

0 ∈PN
0 ,P

N
1 ∈PN

1

∑N
i=1 min

{
pN0 (zi),

pN1 (zi)
}

. The following theorem demonstrates the relationship
between the problem (8) and its tractable approximation (10).

Theorem 2. As N →∞, f(PN0 ,PN1 ) converges to f(P0,P1)
almost surely.

To prove Theorem 2, we show that
∫

min
{
p0(x), p1(x)

}
dx

is upper semi-continuous in P0, P1 with respect to the weak
convergence in the following lemma.

Lemma 1.
∫

min
{
p0(x), p1(x)

}
dx is upper semi-continuous

in P0, P1 with respect to the weak convergence.

Proof sketch. To prove Lemma 1, we first show that∫
min

{
p0(x), p1(x)

}
dx is concave with respect to P0, P1.



Let B be the σ-field on X . Let A = {A1,A2, · · · ,A|A|}
be the finite partition of X which divides X into a finite
number of sets and |A| denotes the number of partitions in
A. Denote by Π the collection of all finite B-measurable
partitions. Let PAi

0 = P0(Ai) and PAi
1 = P1(Ai) for i =

1, 2, · · · , |A|. We can prove that
∫

min
{
p0(x), p1(x)

}
dx =

infA∈Π

∑|A|
i=1 min

{
PAi

0 , PAi
1

}
and then the upper semi-

continuity follows.

Though the optimal solutions P ∗0 , P
∗
1 cannot be derived

from (8), (10) provides a lower bound on the worst-case error
probability, and is asymptotically accurate as N →∞.

B. Robust Test via Kernel Smoothing

The optimal solution P ∗0 , P
∗
1 of (8) are difficult to derive

thus the likelihood ratio test between P ∗0 and P ∗1 is not
applicable for our problem. Since (P ∗,N0 , P ∗,N1 , φ∗N ) is an
optimal solution to (6), P ∗,N0 , P ∗,N1 are optimal solutions to
(10). In this section, we propose a kernel smoothing method
to design a robust test that generalizes to the entire alphabet
based on the following proposition.

Proposition 2. There exists a subsequence of
{P ∗,N0 , P ∗,N1 }∞N=1 that converges weakly to an optimal
solution of (8).

Proof. Observe that for any N , {P ∗,N0 , P ∗,N1 } lies in the
compact set P0 × P1. Therefore, there exists a subsequence
of {P ∗,N0 , P ∗,N1 }∞N=1 that converges and the limit lies in
P0 × P1. Denote the sequence by {P ∗,Nt

0 , P ∗,Nt

1 }∞t=1. Sup-
pose {P ∗,Nt

0 , P ∗,Nt

1 }∞t=1 converges weakly to {P ′0, P ′1}. Since
P ∗,N0 , P ∗,N1 are optimal solutions to (10), we have that
∫

min{p∗0(x), p∗1(x)}dx = lim
t→∞

∫
min{p∗,Nt

0 , p∗,Nt

1 }dx

≤
∫

min{p′0(x), p′1(x)}dx, (11)

where the inequality is due to the upper semi-continuity of∫
min{p0(x), p1(x)}dx. Since P ∗0 , P

∗
1 are optimal solutions

of (8) and P ′0 ∈ P0, P
′
1 ∈ P1, from (11), P ′0, P

′
1 are optimal

solutions of (8). This completes the proof.

Note that P ∗,N0 , P ∗,N1 are convex combinations of Dirac
measures, from Proposition 2, we can extend them to the
whole space via kernel smoothing to approximate P ∗0 , P

∗
1 , i.e.,

P̃ ∗0 (x) =

N∑

i=1

P ∗,N0 (zi)k(x, zi),

P̃ ∗1 (x) =
N∑

i=1

P ∗,N1 (zi)k(x, zi). (12)

The kernel functions have various choices. For example, the
Gaussian kernel with bandwidth parameter σ: k(x, y) =

1√
2πσ

exp
(
− ‖x−y‖

2

2σ2

)
. After kernel smoothing, we define the

likelihood ratio test φ̃ between P̃ ∗1 (x) and P̃ ∗0 (x) over the
whole space X to approximate the optimal test. The numerical
results in Section VI show that φ̃ performs well in practice.

C. A Heuristic Robust Kernel Test

In this section, we consider the problem of testing a batch of
samples xn where n is the sample size. We propose a heuristic
robust kernel test and further show that it is exponentially
consistent as n→∞ under the Bayesian setting.

Motivated by the fact that MMD can be used to measure
the distance between distributions when the kernel k is char-
acteristic, we propose the following test:

φB(xn) =

{
1, if S(xn) ≥ γ
0, if S(xn) < γ,

(13)

where S(xn) = infP∈P0

∥∥µP̂n
− µP

∥∥
H − infP∈P1

∥∥µP̂n
−

µP
∥∥
H and γ is a pre-specified threshold. The motivation for

this test is as follows. We use “inf” to tackle the uncertainty
of distributions and compare the closest distance between the
empirical distribution of samples and two uncertainty sets. In
the following theorem, we show that with the proper choice
of γ, φB is exponentially consistent and can be implemented
efficiently with a computational complexity of O

(
m2 + n2

)
.

Theorem 3. If γ ∈
(
−
∥∥µQ̂0

m
− µQ̂1

m

∥∥
H + 2θ,

∥∥µQ̂0
m
−

µQ̂1
m

∥∥
H − 2θ

)
, φB is exponentially consistent, i.e.,

lim
n→∞

− 1

n
logP0

{
xn : φB(xn) = 1

}
≥ inf
P ′∈Γ0

D(P ′‖P0) > 0,

lim
n→∞

− 1

n
logP1

{
xn : φB(xn) = 0

}
≥ inf
P ′∈Γ1

D(P ′‖P1) > 0.

where Γ0 =
{
P ′ : infP∈P0

∥∥µP ′ − µP
∥∥
H − infP∈P1

∥∥µP ′ −
µP
∥∥
H ≥ γ

}
and Γ1 = Γc0.

Moreover, φB can be equivalently written as

φ′B(xn) =

{
1, if

∥∥µP̂n
− µQ̂0

m

∥∥
H −

∥∥µP̂n
− µQ̂1

m

∥∥
H ≥ γ

0, if
∥∥µP̂n

− µQ̂0
m

∥∥
H −

∥∥µP̂n
− µQ̂1

m

∥∥
H < γ,

and can be implemented with a complexity of O
(
m2 + n2

)
.

The exponential consistency of φB implies that the error
probabilities decay exponentially fast with the sample size n.
In practice, we can choose a proper threshold to balance the
trade-off between the two types of errors. The error exponent
in Theorem 3 is in the form of an optimization problem and do
not have a closed-form solution. In the following proposition,
we consider a special case with γ = 0 and derive the closed-
form upper bound of the worst-case error probabilities.

Proposition 3. For the heuristic robust kernel test in (13),
when γ = 0, we have that for l = 0, 1,

sup
Pl∈Pl

Pl
{
xn : φB(xn) = 1− l

}

≤ exp

(
−
n
(∥∥µQ̂1

m
− µQ̂0

m

∥∥2

H − 2θ
∥∥µQ̂1

m
− µQ̂0

m

∥∥
H

)2

8K2

)
.

In Proposition 3, we provide an upper bound on the worst-
case error probability of φB when γ = 0. It can be seen
that the error probabilities decay exponentially fast with rate



(∥∥µQ̂1
m
− µQ̂0

m

∥∥2

H − 2θ
∥∥µQ̂1

m
− µQ̂0

m

∥∥
H

)2

/8K2, which val-
idates the fact that φB is exponentially consistent. Moreover,
the decay rate is a function of the radius θ and the MMD
distance between centers of two uncertainty sets. When the
centers of two uncertainty sets are fixed, the upper bound of
error probabilities will increase with radius θ. Proposition 3
provides a closed-form upper bound of the worst-case error
probability in the non-asymptotic regime. In practice, this
upper bound can be used to evaluate the worst-case risk
of implementing φB . Moreover, combining Theorem 2 and
Theorem 3, the performance gap between φB and the optimal
test can be approximated.

VI. SIMULATION RESULTS

In this section, we provide some numerical results to
demonstrate the performance of our proposed tests.

We compare the performance of our kernel smoothing
robust test φ̃ and the heuristic robust kernel test φB . We first
compare their performance under the multi-variate Gaussian
distributions. We use 50 samples from N (0, I) and 50 samples
from N (0.22e, I) to construct the uncertainty sets under H0

and H1 respectively, where e is a vector with all entries equal
to 1. The data dimension is 20. The radii are chosen such that
the uncertainty sets do not overlap. For the kernel smoothing
robust test, we use training samples as the support of the finite-
dimensional robust optimization problem in (6). We then use
the data-generating distributions to evaluate the performance
of the two tests. We plot the log of the error probability under
the Bayesian setting as a function of testing sample size n.
It can be seen from Fig. 1 that our kernel smoothing robust
test has a better performance than the heuristic robust kernel
test. Moreover, with the increasing of sample size n, the error
probabilities of the heuristic robust kernel test and the kernel
smoothing robust test decay exponentially fast, which validates
the theoretical result that the heuristic robust kernel test is
exponentially consistent.

Fig. 1. Comparison of Two Tests

We then compare the performance of the two tests on a
real data set. The dataset was released by the Wireless Sensor
Data Mining (WISDM) Lab in October 2013, which was
collected with the Actitracker system [33]–[35]. Users carried

smartphone and were asked to do different activities. For each
person, the dataset records the user’s name, activities and the
acceleration of the user in three directions. We use the jogging
data from the person indexed by 685 and the walking data from
the person indexed by 669 to form H0 and H1 respectively. A
small portion of the data is used to construct the uncertainty
sets. The radius θ of the uncertainty sets is chosen to be 0.03.
We plot the log scale error probability as a function of testing
sample size n. In Fig. 2, we have that the performance of
the kernel smoothing robust test is better than the heuristic
robust kernel test. Moreover, from Fig. 2, it can be seen that
the error probabilities of the kernel smoothing robust test and
the heuristic robust kernel test decay exponentially fast with
sample size n, which validates our theoretical results.

Fig. 2. Comparison of Two Tests in Real Data

VII. CONCLUSION

In this paper, we studied the robust hypothesis testing
problem. We proposed a data-driven approach to construct the
uncertainty sets using distance between kernel mean embed-
dings of distributions. We investigated the Bayesian setting
where the goal is to minimize the worst-case error probability.
We developed an approach to find the optimal test for the case
with a finite alphabet. For the case with an infinite alphabet, we
proposed a tractable approximation to quantify the worst-case
error probability, and we developed a kernel smoothing method
to generalize to unseen data in the alphabet. We also developed
a heuristic robust kernel test which was further shown to be
exponentially consistent. The exact optimal solution for the
infinite-alphabet case is challenging, and is of future interest.
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