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Abstract
Actor-critic (AC) algorithms have been widely used in decentralized multi-agent systems to learn the optimal joint
control policy. However, existing decentralized AC algorithms either need to share agents’ sensitive information or
lack communication-efficiency. In this work, we develop decentralized AC and natural AC (NAC) algorithms that
avoid sharing agents’ local information and are sample and communication-efficient. In both algorithms, agents
share only noisy rewards and use mini-batch local policy gradient updates to improve sample and communication
efficiency. Particularly for decentralized NAC, we develop a decentralized Markovian SGD algorithm with an
adaptive mini-batch size to efficiently compute the natural policy gradient. Under Markovian sampling and
linear function approximation, we prove that the proposed decentralized AC and NAC algorithms achieve the
state-of-the-art sample complexities O(ε−2 ln ε−1) and O(ε−3 ln ε−1), respectively, and achieve an improved
communication complexity O(ε−1 ln ε−1). Numerical experiments demonstrate that the proposed algorithms
achieve lower sample and communication complexities than the existing decentralized AC algorithms.

1. Introduction
Multi-agent reinforcement learning (MARL) has achieved great success in various application domains, including control
[1, 2, 3], robotics [4], wireless sensor networks [5, 6], intelligent systems [7], etc. In MARL, a set of fully decentralized
agents interact with a dynamic environment following their own policies and collect local rewards, and their goal is to
collaboratively learn the optimal joint policy that achieves the maximum expected accumulated reward.

Classical policy optimization algorithms have been well developed and studied, e.g., policy gradient (PG) [8], actor-critic
(AC) [9] and natural actor-critic (NAC) [10, 11]. In particular, AC-type algorithms are more computationally tractable
and efficient as they take advantages of both policy gradient and value-based updates. However, in the multi-agent setting,
decentralized AC is more challenging to design compared with the centralized AC, as the algorithm updates involve sensitive
agent information, e.g., local actions, rewards and policies, which must be kept locally in the decentralized learning process.
In the existing designs of decentralized AC, the agents need to share either their local actions [12, 13, 14, 15, 16, 17, 18,
19, 20] or local rewards [21, 22, 23] with their neighbors, and hence are not desired. This issue is addressed by Algorithm
2 of [12] at the cost of learning a parameterized model to estimate the averaged reward, yet this approach requires extra
learning effort and the reward estimation can be inaccurate. Moreover, existing decentralized AC algorithms are not sample
and communication-efficient, and do not have finite-time convergence guarantee, especially under the practical Markovian
sampling setting. Therefore, we aim to address the following important question.

• Q1: Can we develop a decentralized AC algorithm that is convergent, sample and communication-efficient, and avoids
sharing agents’ local actions and policies?

On the other hand, as an important variant of the decentralized AC, decentralized NAC algorithm has not been formally
developed and rigorously analyzed in the existing literature. In particular, a major challenge is that we need to develop a
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fully decentralized and computationally tractable scheme to compute the inverse of the high dimensional Fisher information
matrix, and this scheme must be both sample and communication efficient. Hence, we want to ask:

• Q2: Can we develop a computationally tractable and communication-efficient decentralized NAC algorithm that has a
low sample and communication complexity?

In this study, we answer these questions by developing fully decentralized AC and NAC algorithms that are sample and
communication-efficient, and do not reveal agents’ local actions and policies. Our contributions are summarized as follows.

Table 1: List of complexities of the existing AC and NAC algorithms for achieving E[‖∇J(ω)‖2] ≤ ε
and E[J(ω∗)− J(ω))] ≤ ε, respectively.

Algorithm Papers Share local Sampling Sample Communication
action/policy scheme complexity complexity

Centralized AC

[24] – i.i.d. Õ(ε−4) –
[25] – i.i.d. O(ε−2.5) –
[26] – Markovian O(ε−2.5 ln3 ε−1) –
[27] – Markovian Õ(ε−2.5) –
[28] – Markovian O(ε−2 ln ε−1) –

Decentralized AC

[12, 13, 21]
[16, 17, 19] × Markovian – –
[12, 29, 22] X Markovian – –
This work X Markovian O(ε−2 ln ε−1) O(ε−1 ln ε−1)

Centralized NAC [26] – Markovian O(ε−4 ln2 ε−1) –
[28] – Markovian O(ε−3 ln ε−1) –

Decentralized NAC This work X Markovian O(ε−3 ln ε−1) O(ε−1 ln ε−1)

1.1. Our Contributions

We develop fully decentralized AC and NAC algorithms and analyze their finite-time sample and communication complexities
under Markovian sampling. Our results and comparisons to existing works are summarized in Table 1. In particular, our
decentralized AC and NAC algorithms adopt the following novel designs to accurately estimate the policy gradient in an
efficient way.

• Noisy Local Rewards: In a decentralized setting, local policy gradients (estimated by the agents) involve the average of all
agents’ local rewards. To help agents estimate this averaged reward without revealing the raw local rewards, we let them
share Gaussian-corrupted local rewards with their neighbor, and the variance of the Gaussian noise can be adjusted by
each agent.

• Mini-batch Updates: We apply mini-batch Markovian sampling to both the decentralized actor and critic updates. This
approach i) helps the agents obtain accurate estimations of the corrupted averaged reward; ii) significantly reduces the
variance of policy gradient caused by Markovian sampling; and iii) significantly reduces the communication frequency
and complexity.

For our decentralized NAC algorithm, we additionally adopt the following design to compute the inverse of the Fisher
information matrix in an efficient and decentralized way.

• Decentralized Natural Policy Gradient: By reformulating the natural policy gradient as the solution of a quadratic program,
we develop a decentralized Markovian SGD that allows the agents to estimate the corresponding local natural gradients by
communicating only scalar variables with their neighbors. In particular, we use an increasing batch size to optimize the
sample complexity of the decentralized Markovian SGD.

Theoretically, we provide finite-time convergence analysis of both algorithms under Markovian sampling. Specifically, we
prove that our decentralized AC and NAC algorithms achieve the sample complexities O(ε−2 ln ε−1) and O(ε−3 ln ε−1),
respectively, both of which match the state-of-the-art complexities of their centralized versions [28]. Moreover, both
algorithms achieve a significantly reduced communication complexity O(ε−1 ln ε−1). In particular, our analysis involves
new technical developments. First, we need to characterize the bias and variance of (natural) policy gradient and stochastic
gradient caused by the noisy rewards and the inexact local averaging steps, and control them with proper choices of batch



sizes and number of local averaging steps. Second, when using decentralized Markovian SGD to compute the inverse Fisher
information matrix, we need to use an exponentially increasing batch size to achieve an optimized sample complexity bound.
Such a Markovian SGD with adaptive batch size has not been studied before and can be of independent interest.

1.2. Related Work

Convergence analysis of AC and NAC. In the centralized setting, the AC algorithm was firstly proposed by [9] and later
developed into the natural actor-critic (NAC) algorithm [10, 11]. Then, [30, 31] and [32, 33, 11] establish the asymptotic
convergence rate of centralized AC and NAC, respectively. Furthermore, [34, 25, 24, 26, 27] and [34] establish the finite-time
convergence rate of centralized AC and NAC, respectively. Moreover, [28] improve the finite-time sample complexities of
the above works to the state-of-the-art result for both centralized AC and NAC by leveraging mini batch sampling, and our
sample complexities match these state-of-the-art results.

In the decentralized setting, a few works have established the almost sure convergence result of AC [21, 17, 29, 22], but they
do not characterize the finite-time convergence rate and the sample complexity.To the best of our knowledge, there is no
formally developed decentralized NAC algorithm.

Decentralized TD-type algorithms. The finite-time convergence of decentralized TD(0) has been obtained using i.i.d
samples [35, 36, 37, 38] and Markovian samples [39, 37], respectively, without revealing the agents’ local actions, policies
and rewards. Decentralized off-policy TD-type algorithms have been studied in [40, 41, 42, 43].

Decentralized AC in other MARL settings. Some works apply decentralized AC to other MARL settings. For example,
[44, 15, 45, 20, 46] studied adversarial game. [47] studied a mixed cooperative-competitive environment where each agent
maximizes its own Q function [47]. [20] proposed Delay-Aware Markov Game which considers delay in Markov game.
[48, 49] studied linear control system and linear quadratic regulators instead of an MDP. [50] studied sequential prisoner’s
dilemmas.

Policy gradient algorithms. Policy gradient (PG) and natural policy gradient (NPG) are popular policy optimization
algorithms. [51] characterizes the iteration complexity of centralized PG and NPG algorithms by assuming access to exact
policy gradient. They also established a sample complexity result O(ε−6) in the i.i.d. setting for NPG, which is worse than
the state-of-the-art result O(ε−3 ln ε−1) of both centralized NAC [28] and our decentralized NAC with Markovian samples.
[52] proposes decentralized PG in a simple cooperative MARL setting, where all the agents share one action and the same
policy, and they establish a iteration complexity in the order of O(ε−4). [53, 54] apply decentralized PG to Markov games.
[55] applies decentralized NPG to a different cooperative MARL setting where each agent observes its own state, takes its
own action and has access to these information of its neighbors.

2. Review of Multi-Agent RL
In this section, we first introduce some standard settings of RL. Consider an agent that starts from an initial state s0 ∼ ξ
and collects a trajectory of Markovian samples {st, at, Rt}t ⊂ S ×A× R by interacting with an underlying environment
(with transition kernel P) following a parameterized policy πω with induced stationary state distribution µω. The agent
aims to learn an optimal policy that maximizes the expected accumulated reward J(ω) = (1− γ)E

[∑∞
t=0 γ

tRt
]
, where

γ ∈ (0, 1) is a discount factor. The marginal state distribution is denoted as Pω(st) and the visitation measure is defined
as νω(s) := (1− γ)

∑∞
t=0 γ

tPω(st = s), both of which depend on the policy parameter ω ∈ Ω and the transition kernel
P . We also define the mixed transition kernel Pξ(·|s, a) := γP(·|s, a) + (1− γ)ξ(·), whose stationary state distribution is
known to be νω .

In the multi-agent RL (MARL) setting, M agents are connected via a fully decentralized network and interact with a
shared environment. The network topology is specified by a doubly stochastic communication matrix W ∈ RM×M .
At any time t, all the agents share a common state st. Then, every agent m takes an action a(m)

t following its own
current policy π(m)

t (·|st) parameterized by ω(m)
t . After all the actions at := {a(m)

t }Mm=1 are taken, the global state st
transfers to a new state st+1 and every agent m receives a local reward R(m)

t . In this MARL setting, each agent m
can only access the global state {st}t, its own actions {a(m)

t }t and rewards {R(m)
t }t and policy π(m)

t . Next, define the
joint policy πt(at|st) :=

∏M
m=1 π

(m)
t (a

(m)
t |st) parameterized by ωt = [ω

(1)
t ; . . . ;ω

(M)
t ], and define the average reward

Rt := 1
M

∑M
m=1R

(m)
t . The goal of the agents is to collaboratively learn the optimal joint policy that maximizes the



expected accumulated average reward J(ω) := (1− γ)E
[∑∞

t=0 γ
tRt

∣∣∣s0 ∼ ξ
]
. Throughout, we consider the setting that

the agents interact with the environment and observe a trajectory of MDP transition samples, which are used to learn the
optimal joint policy.

3. Sample and Communication-Efficient Decentralized AC
In this section, we propose a decentralized actor-critic (AC) algorithm that is sample and communication-efficient and avoids
revealing agents’ actions, policies and raw rewards.

We first consider a direct extension of the centralized AC to the decentralized case. As each agent m has its own policy
π(m), it aims to update the policy parameter ω(m) using the local policy gradient∇ω(m)J(ω). Under linear approximation
of the value function Vθ(s) ≈ φ(s)>θ where φ(s) is the feature vector, the local policy gradient has the following stochastic
approximation.

∇ω(m)J(ωt)≈
[
Rt+γφ(s′t+1)>θ(m)

t − φ(st)
>θ(m)

t

]
ψ

(m)
t (a

(m)
t |st), (1)

where a(m)
t ∼ π(m)

t (·|st), st+1 ∼ Pξ(·|st, at), s′t+1 ∼ P(·|st, at). (2)

Here, θ(m)
t is agent m’s critic parameter and ψ(m)

t (a
(m)
t |st) = ∇ω(m) lnπ

(m)
t (a

(m)
t |st) is the local score function. It is

clear that both θ(m)
t and ψ(m)

t (a
(m)
t |st) can be obtained/computed by agent m using the local information. However, the

average reward Rt requires agent m aggregating the local rewards from all the other agents, which raises concerns. In the
existing literature on decentralized AC, this issue is avoided by either 1) sharing the agents’ actions with each other instead
[12, 13, 14, 15, 16, 17, 18, 19, 20], yet the action information is also highly sensitive; or 2) learning a parameterized model
to estimate the average reward [12], which requires extra learning effort and does not provide an accurate estimation. Hence,
we are motivated to develop a simpler approach that provides accurate estimation of the average reward while avoids sharing
raw local rewards.

1. Efficient Policy Gradient Estimation. We propose a decentralized policy gradient estimation scheme that improves
the sample and communication efficiency and avoids revealing the agents’ local actions, policies and raw rewards. First,
in order for each agent to estimate the average reward Rt in eq. (1), we let each agent m generate a noisy local reward
R̃

(m)
t = R

(m)
t (1 + e

(m)
t ) and share with other agents, where e(m)

t ∼ N (0, σ2
m) The noise variance is determined by the

agent based on its desired level. Specifically, every agent m first initializes its local estimation of the averaged reward
R

(m)

t using its own noisy reward, i.e., R
(m)

t,0 = R̃
(m)
t . Then, each agent m performs decentralized local averaging with its

neighbors Nm for T ′ iterations, i.e.,

R
(m)

t,`+1 =
∑
m′∈NmWm,m′R

(m)

t,` , `=0, 1,. . ., T ′ − 1. (3)

After that, agent m obtains the final estimate R
(m)

t := R
(m)

t,T ′ . It can be shown that R
(m)

t converges to the averaged noisy

reward 1
M

∑M
m=1 R̃

(m)
t exponentially fast. Ideally, by averaging these noisy local rewards over the M agents, the variance

of the noise in the final estimation will be scaled by a factor of 1
M . Therefore, to obtain an accurate estimation, the network

needs to have a sufficiently large number of agents, which does not always hold in practice. To address this issue, we let
each agent m collect a mini-batch of N Markovian samples in each iteration t to estimate the local policy gradient, which
then takes the following form.

∇̂ω(m)J(ωt) =
1

N

(t+1)N−1∑

i=tN

[
R

(m)

i + γφ(s′i+1)>θ(m)
t − φ(si)

>θ(m)
t

]
ψ

(m)
t (a

(m)
i |si), (4)

where R
(m)

i is an estimation of Ri obtained by agent m following the process described in eq. (3). Intuitively, each R
(m)

i

is corrupted by a zero-mean noise with variance O( 1
M ) due to averaging over the agents. Then, the mini-batch samples

further help scale the noise variance by a factor of 1
N . Consequently, with a sufficiently large batch size N , we can obtain

an accurate estimation of the averaged reward and hence the policy gradient. To summarize, our decentralized policy
gradient estimation scheme has the following advantages.

• Avoid sharing raw rewards: The agents share only noisy rewards R̃(m)
t with their neighbors, and the noise variance

can be adjusted based on the desired level such that R(m)
t is unknown to the other agents. This is in contrast to other



decentralized AC algorithms where the agents need to either share local actions, rewards or collaboratively learn an
additional parameterized reward model.

• Sample-efficient: The mini-batch updates help greatly suppress the noise variance of the local policy gradient in (4) and
improve its estimation accuracy. On the other hand, mini-batch policy gradient also helps reduce the optimization variance
caused by Markovian sampling and leads to a good finite-time sample complexity as we prove later. We note that there is
no trade-off between noise variance and sample efficiency here, because for highly noisy local rewards we can choose a
large batch size to suppress the overall estimation error to the desired level.

• Communication-efficient: The mini-batch updates also significantly reduce the communication frequency as well as the
complexity as we prove later. In comparison, the existing decentralized AC requires to perform one communication round
per Markovian sample.

Remark. The mini-batch policy gradient in eq. (4) can be computed in an accumulative way by the agent when observing the
mini-batch of transition samples on the fly. There is no need to store these samples and perform a large batch computation.

2. Fully Decentralized Critic Update. The critic parameters of the agents are updated following the standard decentralized
TD-type algorithm. Specifically, consider the t-th local critic update of each agent m. It first collects a mini-batch of Nc
Markovian samples. Then, starting from a fixed initialization θ(m)

t,0 = θ−1, agent m performs Tc iterations of decentralized

TD updates as follows, where {st}t∈N follows the transition kernel P and a(m)
t ∼ π(m)

t (·|st): for t′ = 0, 1, ..., Tc − 1,

θ
(m)
t,t′+1 =

∑

m′∈Nm
Wm,m′ θ

(m′)
t,t′ +

β

Nc

(t+1)Nc−1∑

i=tNc

[
R

(m)
i + γφ(si+1)>θ(m)

t,t′ − φ(si)
>θ(m)

t,t′

]
φ(si). (5)

Then, the updated critic parameter is set to be θ(m)
t := θ

(m)
t,Tc

. To further reduce the consensus error, we perform additional
T ′c steps of local model averaging, as also adopted in [43]. The pseudo code of the entire decentralized AC algorithm is
summarized in Algorithms 1 and 2 below.

Algorithm 1 Decentralized Actor-Critic
Initialize: Actor-critic parameters ω0, θ−1.
for actor iterations t = 0, 1, . . . , T − 1 do

I Critic update on θt: by Algorithm 2.
I Collect N Markovian samples by eq. (2).
for agents m = 1, ...,M in parallel do

I Send noisy local rewards and perform T ′ local
average steps following eq. (3).
I Compute the estimated local policy gradient
∇̂ω(m)J(ωt) following eq. (4).
I Actor update on ωt:
ω

(m)
t+1 = ω

(m)
t + α∇̂ω(m)J(ωt).

end
end
Output: ωT̃ with T̃ uniform∼ {1, 2, . . . , T}.

Algorithm 2 Decentralized TD (critic update)
Initialize: Critic parameter θt,0 = θ−1.
for critic iterations t′ = 0, 1, . . . , Tc − 1 do

I Collect Nc Markovian samples following policy πt
and transition kernel P .
for agents m = 1, ...,M in parallel do

I Send local critic parameters.
I Decentralized TD update in eq. (5).

end
end
for iterations t′ = Tc, ..., Tc + T ′c − 1 do

for agents m = 1, ...,M in parallel do
I θ

(m)
t,t′+1 =

∑
m′∈NmWm,m′ θ

(m′)
t,t′ .

end
end
Output: θt = θt,Tc+T ′c .

4. Finite-Time Analysis of Decentralized AC
In this section, we analyze the finite-time convergence of Algorithm 1 and characterize the sample and communication
complexities. All the notations and universal constants are summarized in Appendices A & F respectively. We first introduce
the following standard assumptions that have been widely adopted in the existing literature.
Assumption 1. Regarding the transition kernels P,Pξ, denote µω, νω respectively as their stationary state distributions
under policy πω and denote P,Pξ respectively as their marginal state distributions. Then, there exist constants κ > 0 and
ρ ∈ (0, 1) such that for all t ≥ 0,

sup
s∈S

dTV
(
P (st | s0 = s) , µω

)
≤ κρt, sup

s∈S
dTV

(
Pξ (st | s0 = s) , νω

)
≤ κρt (6)



where dTV (P,Q) denotes the total-variation distance between probability measures P and Q.

Assumption 2. There exist constants Cψ, Lψ, Lπ > 0 such that for all ω, ω̃ ∈ Ω, s ∈ S and a ∈ A, ‖ψω(a|s)‖ ≤ Cψ,
‖ψω̃(a|s)− ψω(a|s)‖ ≤ Lψ‖ω̃ − ω‖ and dTV

(
πω̃(·|s), πω(·|s)

)
≤ Lπ‖ω̃ − ω‖.

Assumption 3. There exists Rmax > 0 such that for any agent m and any Markovian sample (s, a, s′), we have 0 ≤
R(m)(s, a, s′) ≤ Rmax.

Assumption 4. The feature vectors satisfy ‖φ(s)‖ ≤ 1 for all s ∈ S. There exists a constant λφ > 0 such that
λmin

(
Es∼µω [φ(s)φ(s)>]

)
≥ λφ for all ω.

Assumption 5. The communication matrix W ∈ RM×M of the decentralized network is doubly stochastic, and its second
largest singular value satisfies σW ∈ [0, 1).

Assumption 1 has been widely considered in the existing literature [56, 24, 57, 58, 59, 28, 43] and it holds for any time-
homogeneous Markov chains with finite-state space and any uniformly ergodic Markov chains. Assumption 2 introduces
boundedness and Lipschitzness to the policy and its associated score function [60, 28], and holds for many parameterized
policies such as Gaussian policy [25] and Boltzman policy [61]. Assumption 4 can always hold by normalizing the feature
vector φ(s) Assumption 5 is widely used in decentralized optimization [62, 63] and multi-agent reinforcement learning
[39, 37, 43], which ensures that all the decentralized agents can reach a global consensus.

With the above assumptions, we obtain the following finite-time convergence result of the decentralized AC algorithm.
Throughout, we follow [28, 27] and define the critic approximation error as ζcritic

approx := supω Es∼νω (Vω(s) − φ(s)>θ∗ω)2

where θ∗ω is the optimal critic parameter (see its definition right before Lemma D.3 in Appendix D). We also define sample
complexity as the total number of Markovian samples required for achieving E[‖∇J(ω)‖2] ≤ ε. All the universal constants
are listed in Appendix F.

Theorem 1. Let Assumptions 1–5 hold and adopt the hyperparameters of the decentralized TD in Algorithm 2 following
Lemma D.4. Choose α ≤ 1

4LJ
, T ′ ≥ lnM

2 lnσ−1
W

. Then, the output of the decentralized AC in Algorithm 1 has the following
convergence rate.

E
[∥∥∇J(ωT̃ )

∥∥2
]
≤ 4Rmax

Tα
+4(c4σ

2T ′
W +c5β

2σ
2T ′c
W )+ 4c6

(
1− λB

8
β
)Tc

+
4c7
N

+
4c8
Nc

+64C2
ψζ

critic
approx.

Moreover, to achieve E
[∥∥∇J(ωT̃ )

∥∥2] ≤ ε for any ε ≥ 128C2
ψζ

critic
approx, we can choose T,N,Nc = O(ε−1) and Tc, T ′c, T

′ =

O(ln ε−1). Consequently, the overall sample complexity is T (TcNc + N) = O(ε−2 ln ε−1), and the communication
complexities for synchronizing linear model parameters and rewards are T (Tc + T ′c) = O(ε−1 ln ε−1) and TT ′ =
O(ε−1 ln ε−1), respectively.

To the best of our knowledge, Theorem 1 provides the first finite-time analysis of decentralized AC under Markovian
sampling. To elaborate, under any pre-specified variance σ2

m of the reward noise, our result shows that the gradient norm
asymptotically converges to the order O(N−1 +N−1

c + ζcritic
approx), which can be made arbitrarily close to the linear model

approximation error ζcritic
approx by choosing sufficiently large batch sizes N,Nc. In particular, exact gradient convergence

can be achieved when there is no model approximation error. The overall sample complexity of our decentralized AC is
O(ε−2 ln ε−1), matching the state-of-the-art complexity result for centralized AC [28]. Moreover, with proper choices of
the batch sizes N,Nc = O(ε−1), the overall communication complexity is significantly reduced to O(ε−1 ln ε−1).

The proof of Theorem 1 relies on developing several new algorithmic and technical developments to reduce the communica-
tion complexity of both the decentralized actor and critic updates while establishing tight convergence error bounds for both
components. We further elaborate on these novel technical developments below.

• To achieve an overall reduced communication complexity, we adopt mini-batch updates in both the actor and critic steps
to reduce the communication frequency, as opposed to the single sample-based update adopted in the existing work
on decentralized TD learning [39]. Specifically, in the analysis of the decentralized TD described in Algorithm 2 (see
Lemma D.4), the mini-batch updates with batch size O(ε−1) substantially improve the communication complexity from
O(ε−1 ln ε−1) to O(ln ε−1) and help achieve the state-of-the-art sample complexity. Eventually, this together with the
mini-batch updates in the decentralized actor steps help achieve the desired overall low communication complexity.

• To achieve the state-of-the-art overall sample complexity, we require a fast convergence of the decentralized TD learning.
Although the standard Tc decentralized mini-batch TD updates can yield a small convergence error for the global critic



model (i.e., the average of all local critic models), it still suffers from a relatively large consensus error. To resolve this
issue, we introduce an additional T ′c global consensus steps in Algorithm 2 to reduce the consensus error. It is proved that
a small number O(ln ε−1) of such steps suffices to yield a desired TD error.

• We inject random noises into the local raw rewards R(m)
t to protect the information. These noises introduce additional

Markovian bias and variance to the local policy gradients in (4). Fortunately, as proved in Lemma D.6, by applying
mini-batch policy gradient updates, we are able to control the bias and variance induced by the noisy rewards to an
acceptable level that does not affect the overall sample and communication complexities.

5. Decentralized Natural AC
Natural actor-critic (NAC) is a popular variant of the AC algorithm. It utilizes a Fisher information matrix to perform a
natural policy gradient update, which helps attain the globally optimal solution in terms of the function value convergence.
In this section, we develop a fully decentralized version of the NAC algorithm that is sample and communication-efficient.

Algorithm 3 Decentralized Natural Actor-Critic
Initialize: Actor-critic parameters ω0, θ−1, natural policy gradient h−1.
for actor iterations t = 0, 1, . . . , T − 1 do

I Critic update on θt: by Algorithm 2.
for agents m = 1, ...,M in parallel do

for iterations k = 0, 1, . . . ,K − 1 do
I Collect Nk Markovian samples following eq. (2).
I Send R̃(m)

i and z(m)
i,` and perform T ′ and Tz local average steps, respectively.

I Estimate local gradient ∇̂ω(m)fωt(ht,k) following eqs. (8) and (4).
I Perform SGD update in eq. (9).

end
I Actor update on ωt: ω

(m)
t+1 = ω

(m)
t + αh

(m)
t .

end
end
Output: ωT̃ with T̃ uniform∼ {1, 2, . . . , T}.

A major challenge of developing fully decentralized NAC algorithm is computing the inverse Fisher information
matrix-vector product involved in the natural policy gradient update. To explain, first recall the exact natural pol-
icy gradient update of the centralized NAC algorithm, i.e., ωt+1 = ωt + αF (ωt)

−1∇J(ωt), where F (ωt) :=
Est∼νωt ,at∼πt(·|st)

[
ψt(at|st)ψt(at|st)>

]
is the Fisher information matrix. However, in the multi-agent case, it is challeng-

ing to perform the natural policy gradient update in a decentralized manner. This is because the Fisher information matrix
F (ωt) is based on the concatenated multi-agent score vector ψt(at|st) = [ψ

(1)
t (a

(1)
t |st); ...;ψ(M)

t (a
(M)
t |st)] and the inverse

matrix-vector product F (ωt)
−1∇J(ωt) is not separable with regard to each agent’s policy parameter dimensions. Next, we

develop a fully decentralized scheme to implement the natural policy gradient update in the multi-agent setting.

First, the natural policy gradient h(ωt) := F (ωt)
−1∇J(ωt) is the solution of a quadratic program, i.e.,

h(ωt)=arg min
h

fωt(h) :=
1

2
h>F (ωt)h−∇J(ωt)

>h. (7)

Therefore, we can apply K steps of SGD with Markovian sampling to solve this problem and obtain an estimated
natural policy gradient update. Specifically, starting from the initialization ht,0 = ht−1 (obtained in the previous
iteration), in the k-th SGD step, we sample a mini-batch Bt,k 1 of Nk Markovian samples to estimate ∇fωt(h) as

1
Nk

∑
i∈Bt,k ψt(ai|si)ψt(ai|si)>ht,k − ∇̂J(ωt;Bt,k), where ∇̂J(ωt;Bt,k) is estimated in the same decentralized way as

eq. (4) using the mini-batch of samples Bt,k. In particular, each agent m needs to compute the corresponding local gradient
1
Nk

∑
i∈Bt,k ψ

(m)
t (a

(m)
i |si)

[
ψt(ai|si)>ht,k

]
− ∇̂ω(m)J(ωt;Bt,k), in which ψ(m)

t (a
(m)
i |si) and ∇̂ω(m)J(ωt;Bt,k) can be

computed/estimated by the agent m. Then, it suffices to obtain an estimate of the scalar ψt(ai|si)>ht,k, which can be
rewritten as

∑M
m=1 ψ

(m)
t (a

(m)
i |si)>h(m)

t,k . This summation can be easily estimated by the decentralized agents through

1Specifically, the mini-batch Bt,k contains sample indices
{
tN +

∑k−1
k′=0Nk′ , . . . , tN +

∑k
k′=0Nk′ − 1

}
.



local averaging. Specifically, each agent m locally computes z(m)
i,0 = ψ

(m)
t (a

(m)
i |si)>h(m)

t,k and performs Tz steps of local

averaging, i.e., z(m)
i,`+1 =

∑
m′∈NmWm,m′ z

(m′)
i,` , ` = 0, 1, . . . , Tz − 1. After that, the quantity Mz

(m)
i,Tz

can be proven to

converge to the desired summation
∑M
m=1 ψ

(m)
t (a

(m)
i |si)>h(m)

t,k exponentially fast. Finally, the local gradient for agent m
is approximated as

∇̂ω(m)fωt(ht,k) =
M

Nk

∑

i∈Bt,k
ψ

(m)
t (a

(m)
i |si)z(m)

i,Tz
− ∇̂ω(m)J(ωt;Bt,k). (8)

Then, the agent m performs the following SGD updates to obtain h(m)
t := h

(m)
t,K .

h
(m)
t,k+1 =h

(m)
t,k − η∇̂ω(m)fωt(ht,k), k=0, ...,K − 1. (9)

We emphasize that the above mini-batch SGD updates use Markovian samples. In particular, as shown in Section 6, we
need to develop an adaptive batch size scheduling scheme for this SGD in order to reduce its sample complexity. We
summarize the decentralized NAC in Algorithm 3.

6. Finite-time Analysis of Decentralized NAC
To analyze the decentralized NAC, we introduce the following additional standard assumptions.

Assumption 6. There exists a constant λF > 0 such that λmin

(
F (ω)

)
≥ λF > 0,∀ω ∈ Ω.

Assumption 7. There exists C∗ > 0 such that for ω∗ = arg maxω∈Ω J(ω) and any ω ∈ Ω,

Es∼νω,a∼πω(·|s)
[(νω∗(s)πω∗(a|s)

νω(s)πω(a|s)
)2]
≤ C2

∗ .

Assumption 6 ensures that the Fisher information matrix F (ω) is uniformly positive definite, and is also considered in
[60, 64, 65]. Assumption 7 regularizes the discrepancy between the stationary state-action distributions νω∗(s)πω∗(a|s) and
νω(s)πω(a|s) [34, 66].

We obtain the following finite-time convergence result of the decentralized NAC. Throughout, we follow [34, 28, 65] and
define the actor approximation error ζactor

approx := supω minhEs∼νω,a∼πω
[(
ψω(a|s)>h−Aω(s, a)

)2]
. All universal constants

are listed in Appendix F.

Theorem 2. Let Assumptions 1–7 hold and adopt the hyperparameters of the decentralized TD in Algorithm 2 following

Lemma D.4. Choose hyperparameters α ≤ min
(
1,

λ2
F

4LJC2
ψ
,
C2
ψ

2LJ

)
, β ≤ 1, T ′ ≥ lnM

2 lnσ−1
W

, η ≤ 1
2C2

ψ
, Tz ≥ ln(3DJC

2
ψ)

lnσ−1
W

,

K ≥ ln 3
ln(1−ηλF /2)−1 , N ≥ 2304C4

ψ(κ+1−ρ)
ηλ5
F (1−ρ)(1−ηλF /2)(K−1)/2 and Nk ∝ (1 − ηλF /2)−k/2. Then, the output of Algorithm 3

satisfies

J(ω∗)− E
[
J(ωT̃ )

]
≤ c17

Tα
+ c18

(
1− ηλF

2

)(K−1)/4

+ c19σ
Tz
W + c20σ

T ′
W + c21βσ

T ′c
W + c22

(
1− λB

8
β
)Tc/2

+
c23√
Nc

+ Cψ

√
c16ζcritic

approx + c24ζ
critic
approx + C∗

√
ζactor

approx.

Moreover, to achieve J(ω∗) − E
[
J(ωT̂ )

]
≤ ε for any ε ≥ 2Cψ

√
c16ζcritic

approx + 2c24ζ
critic
approx + 2C∗

√
ζactor

approx, we can choose

T = O(ε−1), N,Nc = O(ε−2), Tc, T ′c, T
′, Tz,K = O(ln ε−1). Consequently, the overall sample complexity is T (TcNc +

N) = O(ε−3 ln ε−1), and the communication complexities for synchronizing linear model parameters and rewards are
T (Tc + T ′c) = O(ε−1 ln ε−1) and TT ′ = O(ε−1 ln ε−1), respectively.

Theorem 2 provides the first finite-time analysis of fully decentralized natural AC algorithm. Our result proves that the
function value optimality gap converges to the order O

(
N
−1/2
c +

√
ζcritic

approx +
√
ζactor

approx

)
, which can be made arbitrarily

close to the actor and critic approximation error by choosing a sufficiently large batch size Nc. In particular, exact global
optimum can be achieved when there is no model approximation error. We note that the overall sample complexity of our



Figure 1: Comparison of accumulated discounted reward J(ωt) among decentralized AC and NAC-type algorithms in a
simulated ring network with 6 agents.

decentralized NAC is O(ε−3 ln ε−1), matching the state-of-the-art complexity result for centralized NAC [28]. Moreover,
with the mini-batch updates, the overall communication complexity is significantly reduced to O(ε−1 ln ε−1).

Similar to that of Theorem 1, our analysis of Theorem 2 also leverages the mini-batch decentralized TD updates to reduce
the communication complexity and deal with the bias and variance of the local policy gradient introduced by noisy rewards.
In addition, decentralized NAC uses mini-batch SGD with Markovian sampling to solve the quadratic problem in eq. (7).
Here, we use a special geometrically increasing batch size scheduling scheme, i.e., Nk ∝ (1− ηλF /2)−k/2, to achieve the
best possible convergence rate under the total sample budget that

∑K
k=1Nk = N and obtain the desired overall sample

complexity result. Such an analysis of SGD with Markovian sampling under adaptive batch size scheduling has not been
studied in the literature and can be of independent interests.

7. Experiments
We test our decentralized algorithms in three experiments: a decentralized ring network, a fully connected network, and
a two-agent cliff navigation environment. Due to space limitation, we present only the ring network experiment results.
Please refer to Appendix E for the other results, all of which demonstrate the effectiveness of our algorithms.

We simulate a fully decentralized ring network with 6 agents. We implement four decentralized AC-type algorithms and
compare their performance, namely, our Algorithms 1 and 3, the existing decentralized AC algorithm (Algorithm 2 of [12])
that uses a linear model to parameterize the agents’ averaged reward (we name it DAC-RP1 for decentralized AC with
reward parameterization), and a modified version of DAC-RP1 that uses minibatch updates with batch size N = 100, which
we refer to as DAC-RP100. For our Algorithm 1, we choose T = 500, Tc = 50, T ′c = 10, Nc = 10, T ′ = Tz = 5, β = 0.5,
{σm}6m=1 = 0.1, and consider batch size choices N = 100, 500, 2000. Algorithm 3 uses the same hyperparameters as
those of Algorithm 1 except that T = 2000 in Algorithm 3. For DAC-RP1, we set learning rates βθ = 2(t + 1)−0.9,
βv = 5(t+ 1)−0.8 and batch size N = 1 as mentioned in [12]. The modified DAC-RP100 adopts the same learning rates as
Algorithm 1 with N = 100.

Figure 1 plots the accumulated reward J(ωt) v.s. communication and sample complexity. Each curve includes 10 repeated
experiments, and its upper and lower envelopes denote the 95% and 5% percentiles of the 10 repetitions, respectively.
For our decentralized AC algorithm (top two figures), its communication and sample complexities for achieving a high
accumulated reward are significantly reduced under a larger batch size N . This matches our theoretical understanding in
Theorem 1 that a large N helps reduce the communication frequency and policy gradient variance. In comparison, DAC-RP1



(with N = 1) has little improvement on the accumulated reward. Moreover, although the modified DAC-RP100 (with
N = 100) outperforms DAC-RP1, its performance is much worse than our Algorithm 1 with N = 100. This performance
gap is due to two reasons: (i) Both DAC-RP algorithms suffer from an inaccurate parameterized estimation of the averaged
reward, and their mean relative reward errors are over 100%. In contrast, our noisy averaged reward estimation achieves a
mean relative error in the range of 10−5 ∼ 10−4;(ii) Both DAC-RP algorithms apply only a single TD update per-round, and
hence suffers from a large mean relative TD error (about 2% and 1% for DAC-RP1 and DAC-RP100, respectively)whereas
our algorithms perform multiple TD learning updates per-round and achieve a smaller mean relative TD error (about 0.3%).
For our decentralized NAC algorithm (bottom two figures), one can make similar observations and conclusions.

8. Conclusion
We developed fully-decentralized AC and NAC algorithms that are efficient and do not reveal agents’ local actions and
policies. The agents share noisy reward information and adopt mini-batch updates to improve sample and communication
efficiency. Under Markovian sampling and linear function approximation, we proved that our decentralized AC and
NAC algorithms achieve the state-of-the-art sample complexities O(ε−2 ln ε−1) and O(ε−3 ln ε−1), respectively, and they
both achieve a small communication complexity O(ε−1 ln ε−1). Numerical experiments demonstrate that our algorithms
achieve better sample and communication complexity than the existing decentralized AC algorithm that adopts reward
parameterization.
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A. Notations
Norms: For any vector x, we denote ‖x‖ as its `2 norm. For any matrix X , we denote ‖X‖, ‖X‖F as its spectral norm and
Frobenius norm, respectively.

Difference matrix: ∆ := I − 1
M 11>, where 1 denotes a column vector that consists of 1s.

Moments of random vectors: For a random vector X , we define its variance and covariance matrix as Var(X) :=
E‖X −EX‖2 and Cov(X) := E

(
[X −EX][X −EX]>

)
, respectively. It is well known that E‖X‖2 = Var(X) + ‖EX‖2

and that Var(X) = tr[Cov(X)].

Score function: At any time t, The joint score function ψt(at|st) := ∇ω lnπt(at|st) can be decomposed into individual
score functions ψ(m)

t (a
(m)
t |st) := ∇ω(m) lnπ

(m)
t (a

(m)
t |st) as ψt(at|st) = [ψ

(1)
t (a

(1)
t |st), . . . , ψ(M)

t (a
(M)
t |st)].

Reward functions: At any time t, we denote R(m)
t := R(m)(st, at, st+1) and Rt := R(st, at, st+1), where R(s, a, s′) =

1
M

∑M
m=1R

(m)(s, a, s′).

Policy gradient: The policy gradient theorem [67] shows that

∇J(ω) = Eνω
[
Aω(s, a)ψω(s, a)

]
. (10)

where Aω(s, a) := Qω(s, a)−Vω(s) denotes the advantage function. In the decentralized case, we have the approximations
Vω(st) ≈ φ(st)

>θ,Qω(st, at) ≈ Rt+γφ(s′t+1)>θ where s′t+1 ∼ P(·|st, at). Therefore, we can stochastically approximate
the partial policy gradient as eq. (1), i.e., for m = 1, ...,M ,

∇ω(m)J(ωt)≈
[
Rt + γφ(s′t+1)>θ(m)

t − φ(st)
>θ(m)

t

]
ψ

(m)
t (a

(m)
t |st).

We also define the following mini-batch stochastic (partial) policy gradient.

∇̃ω(m)J(ωt) := 1
N

∑(t+1)N−1
i=tN

[
Ri + γφ(s′i+1)>θ(m)

t − φ(si)
>θ(m)

t

]
ψ

(m)
t (a

(m)
i |si).

∇̃J(ωt) :=
[
∇̃ω(1)J(ωt); . . . ; ∇̃ω(M)J(ωt)

]
.

Filtrations: We define the following filtrations for Algorithms 1 & 3.



Ft := σ
(
{θ(m)
t′ }m∈M,0≤t′≤t ∪ {si, ai, s′i+1, {e

(m)
i }m∈M}tN−1

i=0 ∪ {stN}
)
.

F ′t := σ
[
Ft ∪ σ

(
{si, ai, s′i+1}

(t+1)N−1
i=tN+1

)]
.

Ft,k = σ
[
Ft ∪ σ

(
{si, ai, si+1, s

′
i+1, {e

(m)
i }m∈M}i∈∪k−1

k′=0
Bt,k′

)]
.

B. Proof of Theorem 1
Theorem 1. Let Assumptions 1–5 hold and adopt the hyperparameters of the decentralized TD in Algorithm 2 following
Lemma D.4. Choose α ≤ 1

4LJ
, T ′ ≥ lnM

2 lnσ−1
W

. Then, the output of the decentralized AC in Algorithm 1 has the following
convergence rate.

E
[∥∥∇J(ωT̃ )

∥∥2
]
≤ 4Rmax

Tα
+4(c4σ

2T ′
W +c5β

2σ
2T ′c
W )+ 4c6

(
1− λB

8
β
)Tc

+
4c7
N

+
4c8
Nc

+64C2
ψζ

critic
approx.

Moreover, to achieve E
[∥∥∇J(ωT̃ )

∥∥2] ≤ ε for any ε ≥ 128C2
ψζ

critic
approx, we can choose T,N,Nc = O(ε−1) and Tc, T ′c, T

′ =

O(ln ε−1). Consequently, the overall sample complexity is T (TcNc + N) = O(ε−2 ln ε−1), and the communication
complexities for synchronizing linear model parameters and rewards are T (Tc + T ′c) = O(ε−1 ln ε−1) and TT ′ =
O(ε−1 ln ε−1), respectively.

Proof. Concatenating all the agents’ actor updates in Algorithm 1, we obtain the joint actor update ωt+1 = ωt + α∇̂J(ωt).
Then, the item 7 of Lemma D.5 implies that

J(ωt+1) ≥ J(ωt) +∇J(ωt)
>(ωt+1 − ωt)−

LJ
2

∥∥ωt+1 − ωt
∥∥2

= J(ωt) + α∇J(ωt)
>∇̂J(ωt)−

LJα
2

2

∥∥∇̂J(ωt)
∥∥2

(i)

≥ J(ωt) + α‖∇J(ωt)‖2 + α∇J(ωt)
>(∇̂J(ωt)−∇J(ωt)

)

− LJα2
∥∥∇̂J(ωt)−∇J(ωt)

∥∥2 − LJα2
∥∥∇J(ωt)

∥∥2

(ii)

≥ J(ωt) +
(α

2
− LJα2

)
‖∇J(ωt)‖2 −

(α
2

+ LJα
2
)∥∥∇̂J(ωt)−∇J(ωt)

∥∥2

(iii)

≥ J(ωt) +
α

4
‖∇J(ωt)‖2 − α

∥∥∇̂J(ωt)−∇J(ωt)
∥∥2

where (i) and (ii) use the inequalities ‖x‖2 ≤ 2‖x − y‖2 + 2‖y‖2 and x>y ≥ − 1
2‖x‖2 − 1

2‖y‖2 for any x, y ∈ Rd,
respectively, and (iii) uses the condition that α ≤ 1

4LJ
. Then, summing up the inequality above over t = 0, 1, . . . , T − 1

yields that

J(ωT ) ≥ J(ω0) +
α

4

T−1∑

t=0

‖∇J(ωt)‖2 − α
T−1∑

t=0

∥∥∇̂J(ωt)−∇J(ωt)
∥∥2
.

Rearranging the equation above and taking expectation on both sides yields that

E
∥∥∇J(ωT̃ )

∥∥2
=

1

T

T−1∑

t=0

E‖∇J(ωt)‖2

≤ 4

Tα
E[J(ωT )− J(ω0)] +

4

T

T−1∑

t=0

E
[∥∥∇̂J(ωt)−∇J(ωt)

∥∥2
]

(i)

≤ 4Rmax

Tα
+ 4c4σ

2T ′
W + 4c5β

2σ
2T ′c
W + 4c6

(
1− λB

4
β
)Tc

+
4c7
N

+
4c8
Nc

+ 64C2
ψζ

critic
approx, (11)



where (i) uses the item 4 of Lemma D.5 and eq. (39) of Lemma D.6 (The condition of Lemma D.6 that T ′ ≥ lnM
2 ln(σ−1)

holds). This proves the error bound of Theorem 1.

Finally, for any ε ≥ 128C2
ψζ

critic
approx, it can be easily verified that the following hyperparameter choices make the error bound in

(11) smaller than ε and also satisfy the conditions of this Theorem and those in Lemma D.4 that β ≤ min
(
λB

8C2
B
, 4
λB
, 1−σ

2CB

)
,

Nc ≥
(

2
λB

+ 2β
) 192C2

B [1+(κ−1)ρ]
(1−ρ)λB .

α = min
(

1,
1

4LJ

)
= O(1)

β = min
( λB

8C2
B

,
4

λB
,

1− σ
2CB

)
= O(1)

T =
⌈48Rmax

αε

⌉
= O(ε−1)

T ′ =
⌈ 1

2 ln(σ−1)
max

[
ln(48c4ε

−1), lnM
]⌉

= O
(

ln(ε−1)
)

T ′c =
⌈ ln(48c5β

2ε−1)

2 ln(σ−1)

⌉
= O

(
ln(ε−1)

)

Tc =
⌈ ln(48c6ε

−1)

2 ln[(1− λBβ/4)−1]

⌉
= O

(
ln(ε−1)

)

N =
⌈48c7

ε

⌉
= O(ε−1)

Nc =
⌈

max
[48c7

ε
,
( 2

λB
+ 2β

)192C2
B [1 + (κ− 1)ρ]

(1− ρ)λB

]⌉
= O(ε−1) (12)

C. Proof of Theorem 2
Theorem 2. Let Assumptions 1–7 hold and adopt the hyperparameters of the decentralized TD in Algorithm 2 following

Lemma D.4. Choose hyperparameters α ≤ min
(
1,

λ2
F

4LJC2
ψ
,
C2
ψ

2LJ

)
, β ≤ 1, T ′ ≥ lnM

2 lnσ−1
W

, η ≤ 1
2C2

ψ
, Tz ≥ ln(3DJC

2
ψ)

lnσ−1
W

,

K ≥ ln 3
ln(1−ηλF /2)−1 , N ≥ 2304C4

ψ(κ+1−ρ)
ηλ5
F (1−ρ)(1−ηλF /2)(K−1)/2 and Nk ∝ (1 − ηλF /2)−k/2. Then, the output of Algorithm 3

satisfies

J(ω∗)− E
[
J(ωT̃ )

]
≤ c17

Tα
+ c18

(
1− ηλF

2

)(K−1)/4

+ c19σ
Tz
W + c20σ

T ′
W + c21βσ

T ′c
W + c22

(
1− λB

8
β
)Tc/2

+
c23√
Nc

+ Cψ

√
c16ζcritic

approx + c24ζ
critic
approx + C∗

√
ζactor

approx.

Moreover, to achieve J(ω∗) − E
[
J(ωT̂ )

]
≤ ε for any ε ≥ 2Cψ

√
c16ζcritic

approx + 2c24ζ
critic
approx + 2C∗

√
ζactor

approx, we can choose

T = O(ε−1), N,Nc = O(ε−2), Tc, T ′c, T
′, Tz,K = O(ln ε−1). Consequently, the overall sample complexity is T (TcNc +

N) = O(ε−3 ln ε−1), and the communication complexities for synchronizing linear model parameters and rewards are
T (Tc + T ′c) = O(ε−1 ln ε−1) and TT ′ = O(ε−1 ln ε−1), respectively.

Proof. Concatenating all the agents’ actor updates in Algorithm 3, we obtain the joint actor update ωt+1 = ωt + αht. Then,
the item 7 of Lemma D.5 implies that

J(ωt+1) ≥ J(ωt) +∇J(ωt)
>(ωt+1 − ωt)−

LJ
2

∥∥ωt+1 − ωt
∥∥2

= J(ωt) + α∇J(ωt)
>ht −

LJα
2

2

∥∥ht
∥∥2

(i)

≥ J(ωt) + α∇J(ωt)
>F (ωt)

−1∇J(ωt) + α∇J(ωt)
>[ht − h(ωt)]



− LJα2
∥∥ht − h(ωt)

∥∥2 − LJα2
∥∥F (ωt)

−1∇J(ωt)
∥∥2

(ii)

≥ J(ωt) +
( α

C2
ψ

− α

2C2
ψ

− LJα
2

λ2
F

)
‖∇J(ωt)‖2 −

(αC2
ψ

2
+ LJα

2
)∥∥ht − h(ωt)

∥∥2

(iii)

≥ J(ωt) +
α

4C2
ψ

‖∇J(ωt)‖2 − αC2
ψ

∥∥ht − h(ωt)
∥∥2

where (i) uses the notation that h(ωt)
4
= F (ωt)

−1∇J(ωt) and the inequality that ‖x‖2 ≤ 2‖x − y‖2 + 2‖y‖2 for any

x, y ∈ Rd, (ii) uses the item 3 of Lemma D.7 and the inequality that x>y ≥ − 1
2C2

ψ
‖x‖2 − C2

ψ

2 ‖y‖2 for any x, y ∈ Rd, and

(iii) uses the condition that α ≤ min
(

λ2
F

4LJC2
ψ
,
C2
ψ

2LJ

)
. Taking expectation on both sides of the above inequality, summing

over t = 0, 1, . . . , T − 1 and rearranging, we obtain that

1

T

T−1∑

t=0

E‖∇J(ωt)‖2 ≤
4C2

ψ

Tα
E[J(ωT )− J(ω0)] +

4C4
ψ

T

T−1∑

t=0

E
∥∥ht − h(ωt)

∥∥2

(i)

≤
4C2

ψRmax

Tα
+ 4C4

ψ

[
c10

(
1− ηλF

2

)(K−1)/2

+ c11σ
2Tz + c12σ

2T ′

+ c13β
2σ2T ′c + c14

(
1− λB

4
β
)Tc

+
c15

Nc
+ c16ζ

critic
approx

]
, (13)

where (i) uses the item 4 of Lemma D.5 and the item 8 of Lemma D.7.

By Assumption 2, lnπω(s, a) is an Lψ-smooth function of ω. Denote ω∗:= arg minω∈Ω J(ω) and denote Eω∗ as the
unconditional expectation over s ∼ νω∗ , a ∼ πω∗(·|s). We obtain that

Eω∗
[

lnπt+1(a|s)− lnπt(a|s)
]

≥ Eω∗
[(
∇ωt lnπt(a|s)

)>
(ωt+1 − ωt)

]
− Lψ

2
E‖ωt+1 − ωt‖2

= αEω∗
[
ψt(a|s)>ht

]
− Lψα

2

2
E
[
‖ht‖2

]

(i)

≥ αEω∗
[
ψt(a|s)>

(
ht − h(ωt)

)]
+ αEω∗

[
ψt(a|s)>h(ωt)−Aωt(s, a)

]
+ αEω∗

[
Aωt(s, a)

]

− Lψα2E
[∥∥ht − h(ωt)

∥∥2]− Lψα2E
[∥∥F (ωt)

−1∇J(ωt)
∥∥2]

(ii)

≥ −αCψ
√

E
[∥∥ht − h(ωt)

∥∥2]− αC∗
√
ζactor

approx

+ αE
[
J(ω∗)− J(ωt)

]
− Lψα2E

[∥∥ht − h(ωt)
∥∥2]− Lψα2λ−2

F E
[∥∥∇J(ωt)

∥∥2]
,

where (i) uses the inequality that ‖x‖2 ≤ 2‖x − y‖2 + 2‖y‖2 for any x, y ∈ Rd and the notation that h(ωt)
4
=

F (ωt)
−1∇J(ωt), (ii) uses Cauchy-Schwarz inequality, the items 3 & 6 of Lemma D.7, the inequality that E‖X‖ ≤√

E
[
‖X‖2

]
for any random vector X and the equality that Eω∗

[
Aωt(s, a)

]
= E

[
J(ω∗)− J(ωt)

]
(See its proof in Lemma

3.2 of [51].). Averaging the inequality above over t = 0, 1, . . . , T − 1 and rearranging it yields that

J(ω∗)− E
[
J(ωT̃ )

]
=

1

T

T−1∑

t=0

E
[
J(ωt)

]

≤ 1

Tα
Eω∗

[
lnπT (a|s)− lnπ0(a|s)

]
+ C∗

√
ζactor

approx +
Cψ
T

T−1∑

t=0

√
E
[∥∥ht − h(ωt)

∥∥2]

+
Lψα

T

T−1∑

t=0

E
[∥∥ht − h(ωt)

∥∥2]
+
Lψα

Tλ2
F

T−1∑

t=0

E
[∥∥∇J(ωt)

∥∥2]

(i)

≤ 1

Tα
Es∼νω∗

[
KL
(
πω∗(·|s)||π0(·|s)

)
− KL

(
πω∗(·|s)||πT (·|s)

)]
+ C∗

√
ζactor

approx



+ Cψ

[
c10

(
1− ηλF

2

)(K−1)/2

+ c11σ
2Tz + c12σ

2T ′ + c13β
2σ2T ′c

+ c14

(
1− λB

4
β
)Tc

+
c15

Nc
+ c16ζ

critic
approx

]1/2

+ Lψα
[
c10

(
1− ηλF

2

)(K−1)/2

+ c11σ
2Tz + c12σ

2T ′ + c13β
2σ2T ′c

+ c14

(
1− λB

4
β
)Tc

+
c15

Nc
+ c16ζ

critic
approx

]

+
Lψα

λ2
F

{4C2
ψRmax

Tα
+ 4C4

ψ

[
c10

(
1− ηλF

2

)(K−1)/2

+ c11σ
2Tz + c12σ

2T ′ + c13β
2σ2T ′c

+ c14

(
1− λB

4
β
)Tc

+
c15

Nc
+ c16ζ

critic
approx

]}

(ii)

≤ 1

Tα
Es∼νω∗

[
KL
(
πω∗(·|s)||π0(·|s)

)]
+ C∗

√
ζactor

approx

+ Cψ

[√
c10

(
1− ηλF

2

)(K−1)/4

+
√
c11σ

Tz +
√
c12σ

T ′ +
√
c13βσ

T ′c

+
√
c14

(
1− λB

4
β
)Tc/2

+

√
c15

Nc
+
√
c16ζcritic

approx

]

+ Lψ

(
1 +

4C4
ψ

λ2
F

)[
c10

(
1− ηλF

2

)(K−1)/4

+ c11σ
Tz + c12σ

T ′ + c13βσ
T ′c

+ c14

(
1− λB

4
β
)Tc/2

+
c15√
Nc

+ c16ζ
critic
approx

]
+

4LψC
2
ψRmax

Tαλ2
F

(iii)
=

c17

Tα
+ c18

(
1− ηλF

2

)(K−1)/4

+ c19σ
Tz + c20σ

T ′ + c21βσ
T ′c + c22

(
1− λB

4
β
)Tc/2

+
c23√
Nc

+ Cψ

√
c16ζcritic

approx + c24ζ
critic
approx + C∗

√
ζactor

approx, (14)

where (i) uses the definition of KL divergence that KL
(
πω∗(·|s)||πω(·|s)

)
= Ea∼πω∗ (·|s)

[
lnπω∗(a|s) − lnπω(a|s)

∣∣s
]

and eqs. (13) & (54), (ii) uses the condition that α ≤ 1 and the inequality that
√∑n

i=1 xi ≤
∑n
i=1

√
xi for any

n ∈ N+ and x1, . . . , xn ≥ 0, (iii) uses the notations that c17:=Es∼νω∗
[
KL
(
πω∗(·|s)||π0(·|s)

)]
+

4LψC
2
ψRmax

λ2
F

, c18 :=

Cψ
√
c10 + c10Lψ

(
1+

4C4
ψ

λ2
F

)
, c19 := Cψ

√
c11 + c11Lψ

(
1+

4C4
ψ

λ2
F

)
, c20 := Cψ

√
c12 + c12Lψ

(
1+

4C4
ψ

λ2
F

)
, c21 := Cψ

√
c13 +

c13Lψ

(
1 +

4C4
ψ

λ2
F

)
, c22 := Cψ

√
c14 + c14Lψ

(
1 +

4C4
ψ

λ2
F

)
, c23 := Cψ

√
c15 + c15Lψ

(
1 +

4C4
ψ

λ2
F

)
, c24 := c16Lψ

(
1 +

4C4
ψ

λ2
F

)
.

This proves the error bound of Theorem 2.

Finally, for any ε ≥ 2Cψ
√
c16ζcritic

approx + 2c24ζ
critic
approx + 2C∗

√
ζactor

approx, it can be verified that the following hyperparameter
choices make the error bound in (14) smaller than ε and satisfy all the conditions of this Theorem and those in Lemma D.4
that β ≤ min

(
λB

8C2
B
, 4
λB
, 1−σ

2CB

)
, Nc ≥

(
2
λB

+ 2β
) 192C2

B [1+(κ−1)ρ]
(1−ρ)λB .

α = min
(

1,
λ2
F

4LJC2
ψ

,
C2
ψ

2LJ

)
= O(1)

β = min
(
1,

λB
8C2

B

,
4

λB
,

1− σ
2CB

)
= O(1)

η =
1

2C2
ψ

= O(1)

T =
⌈14c17

αε

⌉
= O(ε−1)

K =
⌈

max
[ ln 3

ln[(1− ηλF /2)−1]
,

4 ln(14c18ε
−1)

ln
[
(1− ηλF /2)−1

] + 1
]⌉

= O
[

ln(ε−1)
]



Tz =
⌈

max
[ ln(3DJC

2
ψ)

ln(σ−1)
,

ln(14c19ε
−1)

ln(σ−1)

]
=
⌉
O
[

ln(ε−1)
]

T ′ =
⌈

max
[ lnM

2 ln(σ−1)
,

ln(14c20ε
−1)

ln(σ−1)

]⌉
= O

[
ln(ε−1)

]

T ′c =
⌈ ln(14c21ε

−1)

ln(σ−1)

⌉
= O

[
ln(ε−1)

]

Tc =
⌈ 2 ln(14c22ε

−1)

ln[(1− λBβ/4)−1]

⌉
= O

[
ln(ε−1)

]

N =
⌈ 2304C4

ψ(κ+ 1− ρ)

ηλ5
F (1− ρ)(1− ηλF /2)(K−1)/2

⌉
= O(ε−2)

Nc =
⌈

max
[( 2

λB
+ 2β

)192C2
B [1 + (κ− 1)ρ]

(1− ρ)λB
, 196c223ε

−2
]⌉

= O(ε−2) (15)

D. Supporting Lemmas
First, we extend the Lemma F.3 of [43] to the Lemma D.1 below. The item 1 of Lemma D.1 generalizes the case n = 1 to
any n ∈ N+, the items 2 & 3 remain unchanged, and the item 4 is added for convenience of our convergence analysis.

Lemma D.1. The doubly stochastic matrix W and the difference matrix ∆ = I − 1
M 11> have the following properties:

1. ∆Wn = Wn∆ = Wn − 1
M 11> for any n ∈ N+.

2. The spectral norm of W satisfies ‖W‖ = 1.

3. For any x ∈ RM and n ∈ N+, ‖Wn∆x‖ ≤ σnW ‖∆x‖ (σW is the second largest singular value of W ). Hence, for any
H ∈ RM×M , ‖Wn∆H‖F ≤ σnW ‖∆H‖F .

4.
∥∥Wn − 1

M 11>
∥∥ ≤ σnW ,

∥∥Wn − 1
M 11>

∥∥
F
≤ σnW

√
M for any n ∈ N+.

Proof. The proof of items 2 & 3 can be found in [43]. We prove the item 1 and item 4.

We prove item 1 by induction. The case n = 1 of the item 1 can be proved by the following two equalities, as shown in [43].

∆W =
(
I − 1

M
11>

)
W = W − 1

M
11>W = W − 1

M
11>

W∆ = W
(
I − 1

M
11>

)
= W − 1

M
W11> = W − 1

M
11>

Suppose the case of n = k holds for a certain k ∈ N+, then the following two equalities proves the case of n = k + 1 and
thus proves the item 1.

∆W k+1 = (∆W k)W =
(
W k − 1

M
11>

)
W = W k+1 − 1

M
11>

W k+1∆ = W (W k∆) = W
(
W k − 1

M
11>

)
= W k+1 − 1

M
11>

The item 4 can be proved by the following two inequalities.

∥∥∥Wn − 1

M
11>

∥∥∥ (i)
=
∥∥Wn∆

∥∥ = sup
x:‖x‖≤1

‖Wn∆x‖
(ii)

≤ sup
x:‖x‖≤1

σnW ‖∆‖‖x‖
(iv)
= σnW , (16)

∥∥∥Wn − 1

M
11>

∥∥∥
F

(i)
=
∥∥Wn∆

∥∥
F

(iii)

≤ σnW ‖∆‖F



(iv)
= σnW

√
M
(

1− 1

M

)2

+M(M − 1)
(
− 1

M

)2

≤ σnW
√
M, (17)

where (i) uses the item 1, (ii) and (iii) use the item 3 (H = I in (iii)), and (iv) uses the fact that ∆ has M diagnoal entries
1− 1

M and M(M − 1) off-diagnoal entries − 1
M , which implies that ‖∆‖ = 1.

Next, we extend the Lemma F.2. of [43] to the Lemma D.2 below.

Lemma D.2. Suppose the Markovian samples {si, ai}i≥0 are generated following the policy πω and transition kernel P ′
(can be P or Pξ), and s′i+1 ∼ P(·|si, ai). Then, for any deterministic mapping X : S × A× S × S → Rp×q (p, q ∈ N+

are arbitrary.) such that ‖X(s, a, s′, s̃)‖F ≤ Cx and for any s, s′, s̃ ∈ S, a ∈ A, we have

E
[∥∥∥ 1

n

n+n′−1∑

i=n′

X(si, ai, si+1, s
′
i+1)−X

∥∥∥
2

F

∣∣∣sn′
]
≤9C2

x(κ+ 1− ρ)

n(1− ρ)
,∀n, n′ ∈ N+ (18)

where X = E
[
X(si, ai, si+1, s

′
i+1)

∣∣si
]

with si ∼ µω (or νω) when P ′ = P (or Pξ).

Proof. Denote Y (s, a, s′) := Es̃∼P′(·|s,a)

[
X(s, a, s′, s̃)

∣∣s, a, s′
]

which satisfies ‖Y (s, a, s′)‖ ≤ Cx and
Esi∼νω

[
Y (si, ai, si+1)

]
= X . Hence, Lemma F.2 of [43] can be applied to Y (s, a, s′) and obtain the following inequality

E
[∥∥∥ 1

n

n+n′−1∑

i=n′

Y (si, ai, si+1)−X
∥∥∥

2

F

∣∣∣sn′
]
≤8C2

x(κ+ 1− ρ)

n(1− ρ)
. (19)

Therefore, we obtain that

E
[∥∥∥ 1

n

n+n′−1∑

i=n′

X(si, ai, si+1, s
′
i+1)−X

∥∥∥
2

F

∣∣∣{si, ai, si+1}n+n′−1
i=n′

]

=
∥∥∥E
[ 1

n

n+n′∑

i=n′

X(si, ai, si+1, s
′
i+1)−X

∣∣∣{si, ai, si+1}n+n′−1
i=n′

]∥∥∥
2

F

+ Var
[ 1

n

n+n′−1∑

i=n′

X(si, ai, si+1, s
′
i+1)

∣∣∣{si, ai, si+1}n+n′−1
i=n′

]

(i)
=
∥∥∥ 1

n

n+n′−1∑

i=n′

Y (si, ai, si+1)−X
∥∥∥

2

F

+
1

n2

n+n′−1∑

i=n′

Var
[
X(si, ai, si+1, s

′
i+1)

∣∣{si, ai, si+1}n+n′−1
i=n′

]

(ii)

≤
∥∥∥ 1

n

n+n′−1∑

i=n′

Y (si, ai, si+1)−X
∥∥∥

2

F
+
C2
x

n
(20)

where (i) uses the conditional independency among {s′i+1}
(t+1)N−1
i=tN on {si, ai, si+1}n+n′−1

i=n′ and (ii) uses the fact that
‖X(si, ai, si+1, s

′
i+1)‖F ≤ Cx.

Finally, eq. (18) can be proved via the following inequality.

E
[∥∥∥ 1

n

n+n′∑

i=n′

X(si, ai, si+1, s
′
i+1)−X

∥∥∥
2

F

∣∣∣sn′
]

(i)

≤ E
[∥∥∥ 1

n

n+n′−1∑

i=n′

Y (si, ai, si+1)−X
∥∥∥

2

F

∣∣∣sn′
]

+
C2
x

n



(ii)

≤ 8C2
x(κ+ 1− ρ)

n(1− ρ)
+
C2
x

n
≤ 9C2

x(κ+ 1− ρ)

n(1− ρ)
,

where (i) takes the conditional expectation of eq. (20) on s′n and (ii) uses eq. (19).

Next, we prove the following Lemmas D.3 & D.4 on the decentralized TD in Algorithm 2. We first define the following
useful notations.

λφ := λmin

(
Es∼µω [φ(s)φ(s)>]

)
> 0, see Assumption 4.

B(s, s′) := φ(s)
[
γφ(s′)− φ(s)

]>
.

Bt := 1
Nc

∑(t+1)Nc−1
i=tNc

B(si, si+1).

Bω := Es∼µω,a∼πω(·|s),s′∼P(·|s,a)

[
B(s, s′)

]
.

b(m)(s, a, s′) := R(m)(s, a, s′)φ(s).

b(s, a, s′) := 1
M

∑M
m=1 b

(m)(s, a, s′).

b
(m)
t := 1

Nc

∑(t+1)Nc−1
i=tNc

b(m)(si, ai, si+1).

bt := 1
M

∑M
m=1 b

(m)
t .

bω := Es∼µω,a∼πω(·|s),s′∼P(·|s,a)

[
b(s, a, s′)

]
.

θ∗ω := B−1
ω bω , which is the optimal critic parameter under policy πω .

Lemma D.3. The following bounds hold for Algorithm 2.

1. ‖B(s, s′)‖F , ‖Bt‖F , ‖Bω‖F ≤ CB := 1 + γ,
‖b(m)(s, a, s′)‖, ‖b(s, a, s′)‖, ‖b(m)

t ‖, ‖bt‖, ‖bω‖ ≤ Cb := Rmax.

2. θ>Bωθ ≤ −λB2 ‖θ‖2 uniformly for all ω, where λB := 2(1− γ)λφ > 0.

3. ‖θ∗ω‖ ≤ Rθ := 2Cb
λB

uniformly for all ω.

Proof. We first prove the item 1. Notice that for any vectors x, y ∈ Rd,

‖xy>‖F =

√√√√
d∑

i=1

d∑

j=1

(xiyj)2 =

√√√√
d∑

i=1

x2
i

√√√√
d∑

j=1

y2
j = ‖x‖‖y‖.

Hence, we obtain that

‖B(s, s′)‖F =
∥∥φ(s)

(
γφ(s′)− φ(s)

)>∥∥
F

= ‖φ(s)‖‖γφ(s′)− φ(s)‖ ≤ 1 + γ := CB , (21)

‖b(s, a, s′)‖ = R(s, a, s′)‖φ(s)‖ ≤ Rmax := Cb. (22)

The other terms listed in the item 1 can be proved by applying the Jensen’s inequality to the convex function ‖ · ‖.
Next, we prove the item 2, where we use the underlying distribution that s ∼ µω, a ∼ πω(·|s), s′ ∼ P(·|s, a). We obtain
that

θ>Bωθ = Eω
(
θ>φ(s)

[
γφ(s′)− φ(s)

]>
θ
)

= γEω
[(
θ>φ(s)

)(
θ>φ(s′)

)]
− Eω

[(
θ>φ(s)

)2]

≤ γ

2

(
Eω
[(
θ>φ(s)

)2]
+ Eω

[(
θ>φ(s′)

)2])− Eω
[(
θ>φ(s)

)2]



(i)
= (γ − 1)Eω

[(
θ>φ(s)

)2]

= −(1− γ)θ>Eω[φ(s)φ(s)>]θ

(ii)

≤ −λB
2
‖θ‖2, (23)

where (i) uses the fact that s, s′ ∼ µω which is the stationary state distribution with the transition kernel P and the policy
πω , and (ii) uses Assumption 4 and we denote λB := 2(1− γ)λφ > 0.

Finally, the item 3 can be proved via the following inequality.

‖θ∗ω‖2
(i)

≤ − 2

λB
(θ∗ω)>Bωθ

∗
ω ≤

2

λB
‖θ∗ω‖‖Bωθ∗ω‖ =

2

λB
‖θ∗ω‖‖bω‖ ≤

2Cb
λB
‖θ∗ω‖, (24)

where (i) uses the item 2.

Lemma D.4. Under Assumptions 1–5 and choosing β ≤ min
(
λB

8C2
B
, 4
λB
, 1−σW

2CB

)
, Nc ≥

(
2
λB

+ 2β
) 192C2

B [1+(κ−1)ρ]
(1−ρ)λB ,

Algorithm 2 has the following convergence rate.

M∑

m=1

E
[∥∥θ(m)

Tc+T ′c
− θ∗ωt

∥∥2∣∣ωt
]
≤ σ2T ′c

W β2c2 + 2M
[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

]
. (25)

Moreover, to achieve
∑M
m=1 E

[∥∥θ(m)
Tc+T ′c

− θ∗ωt
∥∥2∣∣ωt

]
≤ ε, we can choose Tc, T ′c = O

[
ln(ε−1)

]
and Nc = O(ε−1).

Consequently, the sample complexity is TcNc = O
[
ε−1 ln(ε−1)

]
and the communication complexity is Tc + T ′c =

O
[

ln(ε−1)
]
.

Proof. In Algorithm 2, by averaging the TD update rule (26) over the agents m ∈ M, we obtain that the averaged critic
parameter θt,t′ := 1

M

∑M
m=1 θ

(m)

t,t′ follows the following update rule

θt,t′+1 =
1

M

M∑

m=1

[ M∑

m′=1

Wm,m′θ
(m′)
t,t′ + β

(
Bt′θ

(m)
t,t′ + b

(m)
t′
)]

=
1

M

M∑

m′=1

θ
(m′)
t,t′ + β

1

M

M∑

m=1

(
Bt′θ

(m)
t,t′ + b

(m)
t′
)

= θt,t′ + β
(
Bt′θt,t′ + bt′

)
(26)

which can be viewed as a centralized TD update using the Markovian samples {si, ai}i from the transition kernel P and the
joint policy πt. Therefore, Theorem 4 in [28] can be directly applied to analyze this centralized TD update and obtain the
following convergence rate of θt,t′ , since all the conditions of that theorem are met 2.

E
[∥∥θt,Tc − θ∗ωt

∥∥2∣∣ωt
]
≤
(

1− λB
4
β

)Tc
E
[∥∥θt,0 − θ∗ωt

∥∥2∣∣ωt
]

+
( 2

λB
+ 2β

)192
(
C2
BR

2
θ + C2

b

)
[1 + (κ− 1)ρ]

(1− ρ)λBNc

(i)

≤ 2

(
1− λB

4
β

)Tc (∥∥θ−1

∥∥2
+R2

θ

)
+
c1
Nc

(ii)

≤ c3

(
1− λB

4
β

)Tc
+
c1
Nc

. (27)

where (i) uses the condition that β ≤ 4/λB , the item 3 of Lemma D.3 and the constant that c1 :=
1920(C2

BR
2
θ+C2

b )[1+(κ−1)ρ]

(1−ρ)λ2
B

,

(ii) uses the constant that c3 := 2
(∥∥θ−1

∥∥2
+R2

θ

)
.

2We corrected the typo 1− λB
8
β, which should be 1− λB

4
β.



Next, we consider the consensus error ‖∆Θt,t′‖2F =
∑M
m=1

∥∥θ(m)
t,t′ − θt,t′

∥∥2
where we define Θt,t′ := [θ

(1)
t,t′ , . . . , θ

(M)
t,t′ ]>.

Note that the critic-step (26) can be rewritten into the following matrix form

Θt,t′+1 = WΘt,t′ + β
(
Θt,t′B

>
t′ + [b

(1)
t′ ; . . . ; b

(M)
t′ ]>

)
; t′ = 0, 1, . . . , Tc − 1, (28)

which further implies that for any t′ = 0, 1, . . . , Tc − 1,

∥∥∆Θt,t′+1

∥∥
F

(i)

≤
∥∥W∆Θt,t′

∥∥
F

+ β
∥∥∆Θt,t′B

>
t′
∥∥
F

+ β
∥∥∆[b

(1)
t′ ; . . . ; b

(M)
t′ ]>

∥∥
F

(ii)

≤ (σW + βCB)
∥∥∆Θt,t′

∥∥
F

+ β

√√√√M

M∑

m=1

‖b(m)
t′ ‖2

(iii)

≤ 1 + σW
2

∥∥∆Θt,t′
∥∥
F

+ βMCb,

where (i) uses the item 1 of Lemma D.1, (ii) uses the item 3 of Lemma D.1 and the item 1 of Lemma D.3, (iii) uses the
condition that β ≤ 1−σW

2CB
and the item 1 of Lemma D.3. Telescoping the inequality above yields that

∥∥∆Θt,Tc

∥∥
F
≤
(1 + σW

2

)Tc∥∥∆Θt,0

∥∥
F

+
2βMCb
1− σW

(i)
=

2βMCb
1− σW

, (29)

where (i) uses the equality that ∆Θ0 = O due to the initial condition that Θt,0 = [θ−1; . . . ; θ−1]>.

On the other hand, the final T ′c local average steps in Algorithm 2 can be rewritten into the following matrix form

Θt,t′+1 = WΘt,t′ ; t = Tc, Tc + 1, . . . , Tc + T ′c − 1.

Hence, the average critic parameter θt,t′ does not change in these local average steps, i.e.,

θt,Tc+T ′c =
1

M
Θ>t,Tc+T ′c1 =

1

M
Θ>t,Tc(W

T ′c)>1 =
1

M
Θ>t,Tc1 = θt,Tc . (30)

Therefore, we obtain that

M∑

m=1

∥∥θ(m)
t,Tc+T ′c

− θt,Tc
∥∥2

=

M∑

m=1

∥∥θ(m)
t,Tc+T ′c

− θt,Tc+T ′c
∥∥2

= ‖∆Θt,Tc+T ′c‖2F = ‖∆WT ′cΘt,Tc‖2F

(i)
= ‖WT ′c∆Θt,Tc‖2F

(ii)

≤ σ
2T ′c
W ‖∆Θt,Tc‖2F

(iii)

≤ σ
2T ′c
W

(2βMCb
1− σW

)2 (iv)
= σ

2T ′c
W β2c2/2 (31)

where (i) and (ii) use the items 1 and 3 of Lemma D.1 respectively, (iii) uses eq. (29), (iv) denotes that c2 := 2
(

2MCb
1−σW

)2
.

Combining eqs. (27) & (31) yields that

M∑

m=1

E
[∥∥θ(m)

t,Tc+T ′c
− θ∗ωt

∥∥2∣∣ωt
]
≤ 2

M∑

m=1

E
[∥∥θ(m)

t,Tc+T ′c
− θt,Tc

∥∥2∣∣ωt
]

+ 2ME
[∥∥θt,Tc − θ∗ωt

∥∥2∣∣ωt
]

≤ σ2T ′c
W β2c2 + 2M

[
c3

(
1− λB

4
β
)Tc

+
c1
Nc

]
.

In the inequality above, replacing θ(m)
t,Tc+T ′c

from Algorithm 2 by its corresponding variable θ(m)
t from Algorithm 1 proves

eq. (25). Finally, it can be easily verified that the following hyperparameter choices make the error bound in (25) smaller
than ε and also satisfy the conditions of Lemma D.4.

β = min
( λB

8C2
B

,
4

λB
,

1− σW
2CB

)
= O(1)



Nc = max
[( 2

λB
+ 2β

)192C2
B [1 + (κ− 1)ρ]

(1− ρ)λB
, 6Mc1ε

−1
]

= O(ε−1)

Tc =
⌈ ln(6Mc3ε

−1)

ln
[(

1− λBβ/4
)−1]

⌉
= O

[
ln(ε−1)

]

T ′c = 2
⌈ ln(3β2c2ε

−1)

ln(σ−1
W )

⌉
= O

[
ln(ε−1)

]

Lemma D.5. For any ω, ω̃ ∈ Ω, s ∈ S and a(m) ∈ Am (Am denotes the action space for the agent m), the following
properties hold.

1. ‖ψ(m)
ω (a(m)|s)‖ ≤ Cψ , where ψ(m)

ω (a(m)|s) := ∇ω(m) lnπ
(m)
ω (a(m)|s).

2. ‖ψ(m)
ω̃ (a(m)|s)− ψ(m)

ω (a(m)|s)‖ ≤ Lψ‖ω̃(m) − ω(m)‖.

3. dTV
[
π

(m)

ω̃(m)(·|s), π(m)

ω(m)(·|s)
]
≤ Lπ‖ω̃(m) − ω(m)‖.

4. 0 ≤ Vω(s), Qω(s, a) ≤ (1− γ)Rmax, 0 ≤ J(ω) ≤ Rmax.

5. dTV
[
νω(·|s), νω̃(·|s)

]
≤ Lν‖ω′ − ω‖ where Lν := Lπ[1 + logρ(κ

−1) + (1− ρ)−1].

6. dTV
[
Qω̃(s, a), Qω(s, a)

]
≤ LQ‖ω̃ − ω‖ where LQ := 2RmaxLν

1−γ .

7. J(ω) is LJ -smooth where LJ := Rmax(4Lν + Lψ)/(1− γ).

8. ‖∇J(ω)‖ ≤ DJ :=
CψRmax

1−γ .

9. F (ω) is LF -Lipschitz where LF := 2Cψ(LπCψ + LνCψ + Lψ).

10. h(ω) is Lh-Lipschitz where Lh := 2λ−1
F (DJλ

−1
F LF + LJ).

Proof. For any ω(m), ω̃(m) ∈ Ωm, s ∈ S and a(m) ∈ Am, arbitrarily select ω(m′) = ω̃(m′) ∈ Ωm′ , a(m′) ∈ Am′ for every
m′ ∈ {1, ...,M}/{m}. Denote ω = [ω(1); . . . ;ω(M)], ω̃ = [ω̃(1); . . . ; ω̃(M)], a = [a(1), . . . , a(M)]. Notice that the joint
score vector has the following decomposition

ψω(a|s) = [ψ(1)
ω (a(1)|s); . . . ;ψ(M)

ω (a(M)|s)]. (32)

Hence, the items 1 & 2 can be proved via the following two inequalities, respectively.

‖ψ(m)
ω (a(m)|s)‖ ≤

√√√√
M∑

m′=1

‖ψ(m′)
ω (a(m′)|s)‖2 (i)

= ‖ψω(a|s)‖
(ii)

≤ Cψ.

‖ψ(m)
ω̃ (a(m)|s)− ψ(m)

ω (a(m)|s)‖ = ‖ψω̃(a|s)− ψω(a|s)‖
(i)

≤ Lψ‖ω̃ − ω‖ = Lψ‖ω̃(m) − ω(m)‖

where (i) uses Assumption 2.

Next, we prove the item 3. Notice that

dTV
[
πω̃(·|s), πω(·|s)

]

(i)
= sup

A⊂A
|πω̃(A|s)− πω(A|s)|



(ii)

≥ sup
A1⊂A1,...,AM⊂AM

∣∣∣
M∏

m′=1

πω̃(m′)(Am′ |s)−
M∏

m′=1

πω(m′)(Am′ |s)
∣∣∣

(iii)
= sup

A1⊂A1,...,AM⊂AM

∣∣∣
M∏

m′=1,m′ 6=m
πω(m′)(Am′ |s)

∣∣∣
∣∣∣πω̃(m)(Am|s)− πω(m)(Am|s)

∣∣∣

(iv)
= sup

Am⊂Am

∣∣∣πω̃(m)(Am|s)− πω(m)(Am|s)
∣∣∣ = dTV

[
π

(m)

ω̃(m)(·|s), π(m)

ω(m)(·|s)
]
,

where (i) denotes that πω(A|s) =
∫
A
πω(a|s)da, (ii) uses the relation that ×m∈MAm ⊂ A, (iii) uses our construction that

ω(m′) = ω̃(m′) ∈ Ωm′ ,∀m′ ∈ {1, ...,M}/{m}, and (iv) uses Am′ = Am′ to achieve the supremum. Therefore, the item 2
can be proved via the following inequality.

dTV
[
π

(m)

ω̃(m)(·|s), π(m)

ω(m)(·|s)
]

= dTV
[
πω̃(·|s), πω(·|s)

] ≤
Lπ ‖ω̃ − ω‖ = Lπ‖ω̃(m) − ω(m)‖,

where (i) uses Assumption 2.

The item 4 can be proved by the following three inequalities that use Assumption 3.

0 ≤ Vω(s) = Eω
[ ∞∑

t=0

γtRt

∣∣∣s0 = s
]
≤
∞∑

t=0

γtRmax =
Rmax

1− γ ,

0 ≤ Qω(s, a) = Es′∼P(·|s,a)[R(s, a, s′) + γVω(s′)] ≤ Rmax + γ
Rmax

1− γ =
Rmax

1− γ ,

0 ≤ J(ω) = (1− γ)Eω
[ ∞∑

t=0

γtRt

]
≤ (1− γ)

∞∑

t=0

γtRmax = Rmax.

The proof of the items 5 – 7 can be found in the proof of Lemma 3, Lemma 4 and Proposition 1 of [28], respectively.

Next, the item 8 is proved by the following inequality.
∥∥∇J(ω)

∥∥ =
∥∥Es∼νω,a∼πω(·|s)

[
Qω(s, a)ψω(a|s)

]∥∥
(i)

≤ Es∼νω,a∼πω(·|s)
[
|Qω(s, a)|

∥∥ψω(a|s)
∥∥] (ii)

≤ CψRmax

1− γ ,

where (i) applies Jensen’s inequality, (ii) uses Assumption 2 and the item 4.

Next, the item 9 is proved by the following inequality.
∥∥F (ω̃)− F (ω)

∥∥
=
∥∥Es∼νπω̃ ,a∼πω̃(·|s)

[
ψω̃(a|s)ψω̃(a|s)>

]
− Es∼νπω ,a∼πω(·|s)

[
ψω(a|s)ψω(a|s)>

]∥∥
(i)

≤
∥∥Es∼νπω̃ ,a∼πω̃(·|s)

[
ψω̃(a|s)ψω̃(a|s)>

]
− Es∼νπω ,a∼πω(·|s)

[
ψω̃(a|s)ψω̃(a|s)>

]∥∥

+ Es∼νπω ,a∼πω(·|s)
[∥∥[ψω̃(a|s)− ψω(a|s)]ψω̃(a|s)>

∥∥]

+ Es∼νπω ,a∼πω(·|s)
[∥∥ψω(a|s)[ψω̃(a|s)− ψω(a|s)]>

∥∥]

(ii)

≤
∥∥∥
∫

S×A
[νω̃(s)πω̃(a|s)− νω(s)πω(a|s)]

[
ψω̃(a|s)ψω̃(a|s)>

]
dsda

∥∥∥+ 2CψLψ‖ω̃ − ω‖

≤ C2
ψ

∫

S×A
|νω̃(s)πω̃(a|s)− νω(s)πω(a|s)|dsda+ 2CψLψ‖ω̃ − ω‖

≤ C2
ψ

∫

S×A
νω̃(s)|πω̃(a|s)− πω(a|s)|dsda



+ C2
ψ

∫

S×A
πω(a|s)|νω̃(s)− νω(s)|dsda+ 2CψLψ

∥∥ω̃ − ω
∥∥

(iii)

≤ 2LπC
2
ψ

∥∥ω̃ − ω
∥∥+ 2LνC

2
ψ

∥∥ω̃ − ω
∥∥+ 2CψLψ

∥∥ω̃ − ω
∥∥ := LF

∥∥ω̃ − ω
∥∥

where (i) applies triangle inequality and then Jensen’s inequality to the norm ‖·‖, (ii) uses Assumption 2, (iii) uses the equality
that

∫
S νω(s)ds =

∫
A πω(a|s)da = 1 as well as the inequlities that

∫
A |πω̃(a|s)− πω(a|s)|da = 2dTV

[
πω̃(·|s), πω(·|s)

]
≤

2Lπ‖ω̃ − ω‖ (based on Assumption 2) and that
∫
S |νω̃(s)− νω(s)|ds = 2dTV

[
νω(·|s), νω̃(·|s)

]
≤ 2Lν‖ω′ − ω‖ (based on

the item 5).

Finally, the item 10 is proved by the following inequality
∥∥h(ω̃)− h(ω)

∥∥
=
∥∥F (ω̃)−1∇J(ω̃)− F (ω)−1∇J(ω)

∥∥
≤ 2
∥∥[F (ω̃)−1 − F (ω)−1]∇J(ω̃)

∥∥+ 2
∥∥F (ω)−1[∇J(ω̃)−∇J(ω)]‖

(i)

≤ 2DJ

∥∥F (ω)−1[F (ω)− F (ω̃)]F (ω̃)−1
∥∥+ 2LJ

∥∥F (ω)−1
∥∥∥∥ω̃ − ω

∥∥
(ii)

≤ 2DJλ
−2
F LF

∥∥ω̃ − ω
∥∥+ 2LJλ

−1
F

∥∥ω̃ − ω
∥∥ := Lh

∥∥ω̃ − ω
∥∥,

where (i) uses the items 7 & 8, and (ii) uses the inequality that ‖F (ω)−1‖ = λmax(F (ω)−1) = λmin[F (ω)]−1 ≤ λ−1
F for

all ω (since F (ω) and F (ω)−1 are positive definite) and the item 9.

Next, we bound the approximation error of the following stochastic (partial) policy gradients.

∇̂ω(m)J(ωt) :=
1

N

(t+1)N−1∑

i=tN

[
R

(m)

i + γφ(s′i+1)>θ(m)
t − φ(si)

>θ(m)
t

]
ψ

(m)
t (a

(m)
i |si), (33)

∇̂J(ωt) :=
[
∇̂ω(1)J(ωt); . . . ; ∇̂ω(M)J(ωt)

]
, (34)

∇̂ω(m)J(ωt;Bt,k) :=
1

Nk

∑

i∈Bt,k

[
R

(m)

i + γφ(s′i+1)>θ(m)
t − φ(si)

>θ(m)
t

]
ψ

(m)
t (a

(m)
i |si), (35)

∇̂J(ωt;Bt,k) :=
[
∇̂ω(1)J(ωt); . . . ; ∇̂ω(M)J(ωt)

]
. (36)

Lemma D.6. Let Assumptions 1-5 hold and adopt the hyperparameters of the decentralized TD in Algorithm 2 following
Lemma D.4. Choose T ′ ≥ lnM

2 ln(σ−1
W )

. Then, the following properties hold.

1. The estimated average reward R
(m)

i has the following bias and variance bound.

M∑

m=1

E
[
R

(m)

i −Ri
∣∣Ri
]2 ≤Mσ2T ′

W R2
max, (37)

M∑

m=1

Var
[
R

(m)

i

∣∣Ri
]
≤4R2

maxσ
2, (38)

where Ri := [R
(1)
i ; . . . ;R

(M)
i ] denotes the joint reward.

2. The stochastic policy gradients have the following error bound.

E
[∥∥∇̂J(ωt)−∇J(ωt)

∥∥2] ≤c4σ2T ′
W + c5β

2σ
2T ′c
W + c6

(
1− λB

8
β
)Tc

+
c7
N

+
c8
Nc

+ 16C2
ψζ

critic
approx (39)

E
[∥∥∇̂J(ωt;Bt,k)−∇J(ωt)

∥∥2∣∣Ft,k
]
≤c4σ2T ′

W + 16C2
ψ

M∑

m=1

∥∥θ(m)
t − θ∗ωt

∥∥2



+
c7
Nk

+ 16C2
ψζ

critic
approx, (40)

where Ft,k := σ
[
Ft ∪ σ

(
{si, ai, si+1, s

′
i+1, {e

(m)
i }m∈M}i∈∪k−1

k′=0
Bt,k′

)]
.

Proof. We will first prove the item 1.

When Ri := [R
(1)
i ; . . . ;R

(M)
i ] is given and fixed, the randomness of R̃(m)

i := R
(m)
i (1 + e

(m)
i ) and ∇̂ω(m)J(ωt) defined in

eq. (4) only comes from the noises {e(m)
i }Mm=1. Since {e(m)

i }Mm=1 are independent noises with zero mean and variances
σ2

1 , . . . , σ
2
M , R̃i := [R̃

(1)
i ; . . . ; R̃

(M)
i ] has the following moments

E
[
R̃i|Ri

]
= Ri,

cov
[
R̃i|Ri

]
= diag

[
(R

(1)
i )2σ2

1 , . . . , (R
(M)
i )2σ2

M

]
:= Σi.

Hence, R̂i := [R
(1)

i , . . . , R
(m)

i ]> = WT ′R̃i (the second “=” comes from eq. (3) and the notations that R̃(m)
i := R̂

(m)
i,0 and

that R̂(m)
i := R̂

(m)
i,T ′) has the moment that E

[
R̂i|Ri

]
= WT ′Ri and Cov

[
R̂i|Ri

]
= WT ′Σi(W

T ′)>. Therefore, eq. (37)
can be proved as follows

M∑

m=1

E
[
R

(m)

i −Ri
∣∣Ri
]2

=
∥∥∥E
[
R̂i −Ri1

∣∣Ri
]∥∥∥

2

=
∥∥∥WT ′Ri −

1

M
11>Ri

∥∥∥
2

≤
∥∥∥WT ′ − 1

M
11>

∥∥∥
2

‖Ri‖2
(i)

≤ Mσ2T ′
W R2

max,

where 1 is a M -dim vector of 1’s, (i) uses the inequality that ‖Ri‖2 =
∑M
m=1(R

(m)
i )2 ≤MR2

max (based on Assumption 3)
and the item 4 of Lemma D.1. Then, eq. (38) can be proved as follows

M∑

m=1

var
[
R

(m)

i

∣∣Ri
]

= Var
[
R̂i|Ri

]
= tr

[
(WT ′)>ΣiW

T ′
]

= tr
[(
WT ′ − 1

M
11>

)
Σi

(
WT ′ − 1

M
11>

)>]
+ tr

[
(WT ′)Σi

( 1

M
11>

)]

+ tr
[( 1

M
11>

)
Σi(W

T ′)>
]

+ tr
[( 1

M
11>

)
Σi

( 1

M
11>

)]

(i)

≤ MR2
maxσ

2
∥∥∥WT ′ − 1

M
11>

∥∥∥
2

+
2

M
tr
[
WT ′Σi11

>]+
1

M2
tr[1(1>Σi1)1>]

(ii)

≤ MR2
maxσ

2σ2T ′
W +

2

M
1>ΣiW

T ′1 +
1

M2
(1>Σi1)tr[1>1]

(iii)

≤ R2
maxσ

2 +
3

M
1>Σi1

= R2
maxσ

2 +
3

M

M∑

m=1

(R
(m)
i )2σ2

m

(iv)

≤ 4R2
maxσ

2,

where (i) uses the equality that tr(Y >) = tr(Y ) and the inequality (41) below in which X = WT ′ − 1
M 11> and the m-th

entry of vm ∈ RM is 1 while its other entries are 0, (ii) uses the item 4 of Lemma D.1 and the equality that tr(xy>) = y>x
for any x, y ∈ RM , (iii) uses the condition that T ′ ≥ [lnM ]/[2 ln(σ−1

W )] and the item 1 of Lemma D.1, (iv) uses Assumption
3.

tr(XΣiX
>) =tr(X>XΣi) =

M∑

m=1

v>mX
>XΣivm ≤

M∑

m=1

‖vm‖‖X‖2‖Σivm‖



=

M∑

m=1

(R
(m)
i )2σ2

m‖X‖2 ≤MR2
maxσ

2‖X‖2. (41)

Next, we will prove eq. (39) in the item 2, where the error term can be decomposed as follows
∥∥∇̂J(ωt)−∇J(ωt)

∥∥2 ≤ 4
∥∥∇̂J(ωt)− gt

∥∥2

︸ ︷︷ ︸
(I)

+4
∥∥gt − g∗t

∥∥2

︸ ︷︷ ︸
(II)

+ 4
∥∥g∗t − g∗t

∥∥2

︸ ︷︷ ︸
(III)

+4
∥∥g∗t −∇J(ωt)

∥∥2

︸ ︷︷ ︸
(IV )

, (42)

where we use the following notations that

gt := [g
(1)
t ; . . . ; g

(M)
t ], (43)

g
(m)
t :=

1

N

(t+1)N−1∑

i=tN

[
Ri + γφ(s′i+1)>θ(m)

t − φ(si)
>θ(m)

t

]
ψ

(m)
t (a

(m)
i |si), (44)

g∗t :=
1

N

(t+1)N−1∑

i=tN

[
Ri + γφ(s′i+1)>θ∗ωt − φ(si)

>θ∗ωt
]
ψt(ai|si), (45)

g∗t := Es∼νωt ,a∼πt(·|s),s′∼P(·|s,a)

[
R(s, a, s′) + γφ(s′)>θ∗ωt − φ(s)>θ∗ωt

]
ψt(a|s)

∣∣ωt
]
. (46)

Conditioned on the following filtration

F ′t :=σ
[
Ft ∪ σ

(
{si, ai, s′i+1}(t+1)N−1

i=tN+1

)]

=σ
(
{θ(m)
t′ }m∈M,0≤t′≤t ∪ {si, ai, s′i+1}(t+1)N−1

i=0 ∪ {s(t+1)N} ∪ {{e(m)
i }m∈M}tN−1

i=0

)
,

the error term (I) can be bounded as follows.

E
[∥∥∇̂J(ωt)− gt,k

∥∥2
∣∣∣F ′t
]

= E
[ M∑

m=1

∥∥∇̂ω(m)J(ωt)− g(m)
t,k

∥∥2
∣∣∣F ′t
]

(i)
=

M∑

m=1

E
[∥∥∥ 1

N

(t+1)N−1∑

i=tN

(
R

(m)

i −Ri
)
ψ

(m)
t (a

(m)
i |si)

∥∥∥
2∣∣∣F ′t

]

(ii)

≤
M∑

m=1

∥∥∥E
[ 1

N

(t+1)N−1∑

i=tN

(
R

(m)

i −Ri
)
ψ

(m)
t (a

(m)
i |si)

∣∣∣F ′t
]∥∥∥

2

+

M∑

m=1

Var
[ 1

N

(t+1)N−1∑

i=tN

(
R

(m)

i −Ri
)
ψ

(m)
t (a

(m)
i |si)

∣∣∣F ′t
]

(iii)

≤
M∑

m=1

∥∥∥E
[ 1

N

(t+1)N−1∑

i=tN

(
R

(m)

i −Ri
)∣∣∣F ′t

]
ψ

(m)
t (a

(m)
i |si)

∥∥∥
2

+
1

N2

M∑

m=1

(t+1)N−1∑

i=tN

Var
[(
R

(m)

i −Ri
)
ψ

(m)
t (a

(m)
i |si)

∣∣F ′t
]

(iv)

≤
M∑

m=1

[ 1

N

(t+1)N−1∑

i=tN

E
(
R

(m)

i −Ri
∣∣F ′t
)]2∥∥ψ(m)

t (a
(m)
i |si)

∥∥2

+
1

N2

M∑

m=1

(t+1)N−1∑

i=tN

∥∥ψ(m)
t (a

(m)
i |si)

∥∥2
var
[
R

(m)

i −Ri
∣∣F ′t
]



(v)

≤
C2
ψ

N

M∑

m=1

(t+1)N−1∑

i=tN

[
E
(
R

(m)

i −Ri
∣∣F ′t
)]2

+
C2
ψ

N2

(t+1)N−1∑

i=tN

M∑

m=1

var
[
R

(m)

i

∣∣F ′t
]

(vi)

≤ C2
ψ(Mσ2T ′

W R2
max) +

C2
ψ

N
(4R2

maxσ
2)

= C2
ψR

2
max

(
Mσ2T ′

W +
4

N
σ2
)
, (47)

where (i) uses the definitions of ∇̂ω(m)J(ωt) and g(m)
t defined in eqs. (33) & (44) respectively, (ii) uses the relation

that E‖X‖2 = Var(X) + ‖EX‖2 for any random vector X , (iii) uses the facts that ψ(m)
t (a

(m)
i |si), Ri ∈ F ′t are fixed

while {R(m)

i }(t+1)N−1
i=tN are random and independent given F ′t , (iv) uses the equality that Var(xY ) =

∑d
j=1 var(xyj) =

∑d
j=1 y

2
j var(x) = ‖y‖2var(x) for any random scalar x and fixed vector Y = [y1, . . . , yd] ∈ Rd (Here we denote

y = ψ
(m)
t (a

(m)
i |si) ∈ F ′t), (v) applies Jensen’s inequality to the convex function (·)2 and uses the item 1 of Lemma D.5 as

well as the fact that Ri ∈ F ′t is fixed, (vi) uses eqs. (37) & (38) and the fact that the conditional distribution of R
(m)

i on
Ri ∈ F ′t is the same as that on F ′t since the noise e(m)

i is independent from any other variables.

Then we bound the error term (II) of eq. (42) as follows.

∥∥gt − g∗t
∥∥2

=
M∑

m=1

∥∥∥ 1

N

(t+1)N−1∑

i=tN

(
[γφ(s′i+1)− φ(si)]

>(θ
(m)
t − θ∗ωt)

)
ψ

(m)
t (a

(m)
i |si)

∥∥∥
2

(i)

≤ 1

N

(t+1)N−1∑

i=tN

M∑

m=1

∥∥γφ(s′i+1)− φ(si)
∥∥2∥∥θ(m)

t − θ∗ωt
∥∥2∥∥ψ(m)

t (a
(m)
i |si)

∥∥2

(ii)

≤
C2
ψ(1 + γ)2

N

(t+1)N−1∑

i=tN

M∑

m=1

∥∥θ(m)
t − θ∗ωt

∥∥2

= 4C2
ψ

M∑

m=1

∥∥θ(m)
t − θ∗ωt

∥∥2
, (48)

where (i) applies Jensen’s inequality to the convex function ‖ · ‖2, (ii) uses Assumption 4 and the item 1 of Lemma D.5.

To bound the error term (III) of eq. (42), denote that

X(s, a, s′, s̃) =
[
R(s, a, s̃) + γφ(s̃)>θ∗ωt − φ(s)>θ∗ωt

]
ψt(a|s), (49)

which satisfies ‖X(s, a, s′, s̃)‖ ≤
[
|R(s, a, s̃)|+

∥∥γφ(s̃)+φ(s)
∥∥∥∥θ∗ωt

∥∥]∥∥ψt(a|s)
∥∥ ≤ Cψ(Rmax +2Rθ) (the second≤ uses

the item 3 of Lemma D.3) andX = Esi∼νt
[
X(si, ai, si+1, s

′
i+1)

∣∣Ft
]

= g∗t where sN , ωt ∈ Ft := σ
(
{θ(m)
t′ }m∈M,0≤t′≤t∪

{si, ai, s′i+1, {e
(m)
i }m∈M}tN−1

i=0 ∪ {stN}
)

are fixed. Hence, Lemma D.2 yields that

E
[∥∥g∗t − g∗t

∥∥2∣∣Ft
]

= E
[∥∥∥ 1

N

(t+1)N−1∑

i=tN

X(si, ai, si+1, s
′
i+1)−X

∥∥∥
2∣∣∣Ft

]

≤
9C2

ψ(Rmax + 2Rθ)
2(κ+ 1− ρ)

N(1− ρ)
. (50)

Next, we bound the error term (IV) of eq. (42). Notice that

g∗t −∇J(ωt)

= Eωt
[(
R(s, a, s̃) + [γφ(s̃)− φ(s)]>θ∗ωt −

[
R(s, a, s̃) + γVωt(s̃)− Vωt(s)

])
ψt(a|s)

∣∣∣ωt
]

= Eωt
[(
γ
[
φ(s̃)>θ∗ωt − Vωt(s̃)

]
−
[
φ(s)>θ∗ωt − Vωt(s)

])
ψt(a|s)

∣∣∣ωt
]
. (51)



Hence,

‖g∗t −∇J(ωt)‖2 =
∥∥∥Eωt

[(
γ
[
φ(s̃)>θ∗ωt − Vωt(s̃)

]
−
[
φ(s)>θ∗ωt − Vωt(s)

])
ψt(a|s)

∣∣∣ωt
]∥∥∥

2

(i)

≤ Eωt
[∥∥∥
(
γ
[
φ(s̃)>θ∗ωt − Vωt(s̃)

]
−
[
φ(s)>θ∗ωt − Vωt(s)

])
ψt(a|s)

∥∥∥
2∣∣∣ωt

]

(ii)

≤ 2C2
ψEωt

[
γ2
∥∥∥φ(s̃)>θ∗ωt − Vωt(s̃)

∥∥∥
2

+
∥∥∥φ(s)>θ∗ωt − Vωt(s)

∥∥∥
2∣∣∣ωt

]

= 2C2
ψγ

2

∫

S×A×S

∥∥∥φ(s̃)>θ∗ωt − Vωt(s̃)
∥∥∥

2

νt(s)πt(a|s)P(s̃|s, a)dsdads̃

+ 2C2
ψEωt

[∥∥∥φ(s)>θ∗ωt − Vωt(s)
∥∥∥

2∣∣∣ωt
]

(iii)

≤ 2C2
ψγ

∫

S×A×S

∥∥∥φ(s̃)>θ∗ωt − Vωt(s̃)
∥∥∥

2

νt(s)πt(a|s)Pξ(s̃|s, a)dsdads̃

+ 2C2
ψEωt

[∥∥∥φ(s)>θ∗ωt − Vωt(s)
∥∥∥

2∣∣∣ωt
]

(iv)
= 2C2

ψ(γ + 1)Eωt
[∥∥∥φ(s)>θ∗ωt − Vωt(s)

∥∥∥
2∣∣∣ωt

]

(v)

≤ 4C2
ψζ

critic
approx, (52)

where (i) applies Jensen’s inequality to the convex function ‖ · ‖2, (ii) uses the inequality that ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2
for any x, y ∈ Rd, (iii) uses the inequality that P(s′|s, a) ≤ γ−1Pξ(s′|s, a);∀s, s′ ∈ S, a ∈ A, (iv) uses the equality that∫
S×A νt(s)πt(a|s)Pξ(s̃|s, a)dsda = νt(s̃), and (v) uses the notation that ζcritic

approx := supω Es∼νω
[∣∣Vω(s) − φ(s)>θ∗ω

∣∣2].
Substituting eqs. (47),(48),(50)&(52) into eq. (42) yields that

E
[∥∥∇̂J(ωt)−∇J(ωt)

∥∥2∣∣Ft
]

≤ 4C2
ψR

2
max

(
Mσ2T ′

W +
4

N
σ2
)

+ 16C2
ψ

M∑

m=1

∥∥θ(m)
t − θ∗ωt

∥∥2

+
36C2

ψ(Rmax + 2Rθ)
2(κ+ 1− ρ)

N(1− ρ)
+ 16C2

ψζ
critic
approx

= c4σ
2T ′
W +

c7
N

+ 16C2
ψ

M∑

m=1

∥∥θ(m)
t − θ∗ωt

∥∥2
+ 16C2

ψζ
critic
approx, (53)

where θ(m)
t , ωt ∈ Ft are fixed, and we take the conditional expectation of eq. (47) on Ft ⊂ F ′t and denote that c4 :=

4MC2
ψR

2
max, c7 := 16C2

ψR
2
maxσ

2 +
36C2

ψ(Rmax+2Rθ)2(κ+1−ρ)
1−ρ . Substituting eq. (25) into the unconditional expectation of

eq. (53) yields that

E
[∥∥∇̂J(ωt)−∇J(ωt)

∥∥2]

≤ c4σ2T ′
W +

c7
N

+ 16C2
ψ

(
σ

2T ′c
W β2c2 + 2M

[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+ 16C2

ψζ
critic
approx

= c4σ
2T ′
W + c5β

2σ
2T ′c
W + c6

(
1− λB

8
β
)Tc

+
c7
N

+
c8
Nc

+ 16C2
ψζ

critic
approx,

where we denote that c5 := 16c2C
2
ψ , c6 := 32Mc3C

2
ψ , c8 := 32Mc1C

2
ψ . This proves eq. (39).

Equation (40) can be proved in the same way as that of proving eq. (53). There are two differences. First, ∇̂J(ωt;Bt,k)

uses the minibatch Bt,k of size Nk while ∇̂J(ωt) uses batchsize N . Second, eq. (40) is conditioned on the filtration
Ft,k := σ

[
Ft ∪ σ

({
si, ai, si+1, s

′
i+1, {e

(m)
i }m∈M

}
i∈∪k−1

k′=0
Bt,k′

)]
which includes not only the filtration Ft use by eq. (53)

but also the minibatches ∪k−1
k′=0Bt,k′ used by the previous (k − 1) SGD steps.



Lemma D.7. Implementing Algorithm 3 with η ≤ 1
2C2

ψ
, T ′ ≥ lnM

2 ln(σ−1
W )

, Tz ≥ ln(3DJC
2
ψ)

ln(σ−1
W )

, K ≥ ln 3
ln[(1−ηλF /2)−1] , N ≥

2304C4
ψ(κ+1−ρ)

ηλ5
F (1−ρ)(1−ηλF /2)(K−1)/2 and Nk ∝ (1− ηλF /2)−k/2, the involved quantities have the following properties, where Eω

denotes the expectation under the underlying distributions that s ∼ νω , a ∼ πω(·|s).

1. λF ≤ λmax[F (ω)] = ‖F (ω)‖ ≤ C2
ψ,∀ω.

2. 1
2 ≤ 1− ηC2

ψ ≤
∥∥I − ηF (ω)

∥∥ ≤ 1− ηλF , so η ≤ 1
2λF

.

3. C−2
ψ ≤ ‖F (ω)−1‖ ≤ λ−1

F . For any ω, x ∈ Rdω , x>F (ω)−1x ≥ C−2
ψ ‖x‖2.

4.
∥∥h(ω)

∥∥ ≤ 1
λF

∥∥∇J(ω)
∥∥ ≤ DJ

λF
.

5. h(ω) = arg min
h

Eω
[(
ψω(a|s)>h−Aω(s, a)

)2]
, so

Eω
[(
ψω(a|s)>h(ω)−Aω(s, a)

)2] ≤ ζactor
approx where s ∼ νω , a ∼ πω(·|s).

6. Eω∗
[
ψω(a|s)>h(ω)−Aω(s, a)

]
≥ −C∗

√
ζactor

approx,∀ω.

7. Nk =
N(1−ηλF /2)(K−1−k)/2(1−

√
1−ηλF /2)

1−(1−ηλF /2)K/2
≥ 576C4

ψ(κ+1−ρ)
λ4
F (1−ρ) .

8. ht approximates the natural gradient h(ωt) with the following error bound.

E
[∥∥ht − h(ωt)

∥∥2] ≤ c10

(
1− ηλF

2

)(K−1)/2

+ c11σ
2Tz
W + c12σ

2T ′
W + c13β

2σ
2T ′c
W

+ c14

(
1− λB

8
β
)Tc

+
c15

Nc
+ c16ζ

critic
approx. (54)

Proof. The item 1 is proved by the following inequality.

λF
(i)

≤λmin[F (ω)] ≤ λmax[F (ω)]
(ii)
= ‖F (ω)‖

=
∥∥Eω

[
ψ(a|s)ψ(a|s)>

]∥∥ ≤ Eω
[∥∥ψ(a|s)

∥∥∥∥ψ(a|s)>
∥∥] (iii)

≤ C2
ψ,

where (i) uses Assumption 6, (ii) uses the fact that F (ω) is positive definite implied by Assumption 6, (iii) applies Jensen’s
inequality to the convex function ‖ · ‖ and (iv) uses Assumption 2.

Next we will prove the item 2. On one hand,

λmin

[
I − ηF (ω)

]
= 1− ηλmax

[
F (ω)

] (i)

≥ 1− ηC2
ψ ≥

1

2
, (55)

where (i) uses the item 1, (ii) uses the condition that η ≤ 1
2C2

ψ
. On the other hand,

λmin

[
I − ηF (ω)

]
≤ λmax

[
I − ηF (ω)

] (i)
= ‖I − ηF (ω)‖ = I − ηλmin

[
F (ω)

]
≤ 1− ηλF , (56)

where (i) uses the fact that I − ηF (ω) is positive definite based on eq. (55). Hence, eqs. (55) & (56) prove the item 2.

The item 3 can be proved by the fact that F (ω)−1 is positive definite with minimum eigenvalue λmax[F (ω)]−1 ≥ C−2
ψ and

maximum eigenvalue λmin[F (ω)]−1 ≤ λ−1
F implied by the item 1.

The item 4 can be proved by the following inequality.

‖h(ω)‖ =
∥∥F (ω)−1∇J(ω)

∥∥ ≤
∥∥F (ω−1)

∥∥∥∥∇J(ω)
∥∥ (i)

≤ λ−1
F

∥∥∇J(ω)
∥∥ (ii)

≤ λ−1
F DJ ,

where (i) uses the item 3 and (ii) uses the item 8 of Lemma D.5.



Next we will prove item 5.

Consider the following function of x ∈ Rdω .

fω(x) =
1

2
Eω
[(
ψω(a|s)>x−Aω(s, a)

)2]

=
1

2
x>Eω

[
ψω(a|s)ψω(a|s)>

]
x− Eω

[
Aω(s, a)ψω(a|s)

]>
x+

1

2
Eω
[
Aω(s, a)2

]

=
1

2
x>F (ω)x−∇J(ω)>x+

1

2
Eω
[
Aω(s, a)2

]

Since ∇2f(ω) = F (ω) is positive definite, f is strongly convex quardratic and thus it has unique minimizer h(ω) =
F (ω)−1∇J(ω) obtained by solving h from the equation∇fω(h) = F (ω)h−∇J(ω) = 0. Hence,

Eω
[∥∥ψω(a|s)>h(ω)−Aω(s, a)

∥∥2]

= min
h

Eω
[(
ψω(a|s)>h−Aω(s, a)

)2]

≤ sup
ω

min
h

Eω
[(
ψω(a|s)>h−Aω(s, a)

)2]
:= ζactor

approx, (57)

which proves the item 5.

The item 6 can be proved by the following inequality.

Eω∗
[
Aω(s, a)− ψω(a|s)>h(ω)

]

=

∫
νω∗(s)πω∗(a|s)

[
Aω(s, a)− ψω(a|s)>h(ω)

]
dsda

=

∫
νω(s)πω(a|s)νω∗(s)πω∗(a|s)

νω(s)πω(a|s)
[
Aω(s, a)− ψω(a|s)>h(ω)

]
dsda

= Eω
[νω∗(s)πω∗(a|s)
νω(s)πω(a|s)

[
Aω(s, a)− ψω(a|s)>h(ω)

]]

≤
√
Eω
[(νω∗(s)πω∗(a|s)

νω(s)πω(a|s)
)2]√

Eω
[(
Aω(s, a)− ψω(a|s)>h(ω)

)2] (i)

≤ C∗
√
ζactor

approx, (58)

where (i) uses Assumption 7 and the item 5. Multiplying −1 to the above inequality proves the item 6.

Next, the item 7 can be proved as follows.

Nk
(i)
=N

(1− ηλF /2)−k/2
∑K−1
k′=0(1− ηλF /2)−k′/2

=
N(1− ηλF /2)(K−1−k)/2(1−

√
1− ηλF /2)

1− (1− ηλF /2)K/2

(ii)

≥
2304C4

ψ(κ+ 1− ρ)

ηλ5
F (1− ρ)(1− ηλF /2)(K−1)/2

(1− ηλF /2)(K−1)/2(ηλF /2)

1 +
√

1− ηλF /2

≥
576C4

ψ(κ+ 1− ρ)

λ4
F (1− ρ)

,

where (i) uses the conditions that Nk ∝ (1 − ηλF /2)−k/2 and
∑K−1
k=0 Nk = N and (ii) uses the condition that N ≥

2304C4
ψ(κ+1−ρ)

ηλ5
F (1−ρ)(1−ηλF /2)(K−1)/2

Finally, we will prove the item 8. Until the end of this proof, we use the underlying distribution that ai ∼ πt(·|si),si+1 ∼
Pξ(·|si, ai) for tN ≤ i ≤ (t+ 1)N − 1 in the t-th iteration of the multi-agent NAC algorithm (Algorithm 1).



The local averaging steps of zi,` := [z
(1)
i,` , . . . , z

(M)
i,` ]> yield the following consensus error bound.

M∑

m=1

(z
(m)
Tz
− zTz )2 = ‖∆zi,Tz‖2 = ‖∆WTzzi,0‖2

(i)
= ‖WTz∆zi,0‖2

(ii)

≤ σ2Tz
W ‖∆zi,0‖2

(iii)

≤ σ2Tz
W

M∑

m=1

(z
(m)
i,0 )2 = σ2Tz

W

M∑

m=1

[
ψ

(m)
t (a

(m)
i |si)>h(m)

t,k

]2

(iv)

≤ C2
ψσ

2Tz
W

M∑

m=1

∥∥h(m)
t,k

∥∥2 ≤ C2
ψσ

2Tz
W

∥∥ht,k
∥∥2
,

where zTz := 1
M

∑M
m=1 z

(m)
i,Tz

, (i) and (ii) use the items 1 and 3 of Lemma D.1 respectively, (iii) uses the equality that
‖∆‖ = 1, and (iv) uses the item 1 of Lemma D.5.

Then, we define the following stochastic gradients of function fω .

∇̃ω(m)fωt(ht,k) :=
1

Nk

∑

i∈Bt,k
ψ

(m)
t (a

(m)
i |si)ψt(ai|si)>ht,k − ∇̂ω(m)J(ωt;Bt,k)

∇̃fωt(ht,k) :=
1

Nk

∑

i∈Bt,k
ψt(ai|si)ψt(ai|si)>ht,k − ∇̂J(ωt;Bt,k)

=
[
∇̃ω(1)fωt(ht,k); . . . ; ∇̃ω(M)fωt(ht,k)

]
,

∇̂ω(m)fωt(ht,k) :=
M

Nk

∑

i∈Bt,k
ψ

(m)
t (a

(m)
i |si)z(m)

i,Tz
− ∇̂ω(m)J(ωt;Bt,k),

∇̂fωt(ht,k) :=
[
∇̂ω(1)fωt(ht,k); . . . ; ∇̂ω(M)fωt(ht,k)

]>
,

where ∇̂ω(m)J(ωt;Bt,k) and ∇̂J(ωt;Bt,k) are defined in eqs. (35) & (36) respectively. Hence,

∥∥∇̂fωt(ht,k)− ∇̃fωt(ht,k)
∥∥2

=
M∑

m=1

∥∥∇̂ω(m)fωt(ht,k)− ∇̃ω(m)fωt(ht,k)
∥∥2

=
M∑

m=1

∥∥∥ 1

Nk

∑

i∈Bt,k

[
Mz

(m)
i,Tz
− ψt(ai|si)>ht,k

]
ψ

(m)
t (ai|si)

∥∥∥
2

(i)

≤ 1

Nk

∑

i∈Bt,k

M∑

m=1

∥∥M
(
z

(m)
i,Tz
− zTz

)
ψ

(m)
t (ai|si)

∥∥2

(ii)

≤
M2C2

ψ

Nk

∑

i∈Bt,k

M∑

m=1

(z
(m)
i,Tz
− zTz )2 ≤M2C4

ψσ
2Tz
W

∥∥ht,k
∥∥2
. (59)

where (i) uses the equality that ψt(ai|si)>ht,k =
∑
m∈M z

(m)
i,Tz

= MzTz , (ii) uses the item 1 of Lemma D.5.

Since, ωt, ht,k ∈ Ft,k while {si, ai}i∈Bt,k are random. Hence,

E
[∥∥∇̂fωt(ht,k)−∇fωt(ht,k)

∥∥2∣∣Ft,k
]

= E
[∥∥∥ 1

Nk

∑

i∈Bt,k

[
ψt(ai|si)ψt(ai|si)>

]
ht,k − ∇̂J(ωt;Bt,k)− F (ωt)ht,k +∇J(ωt)

∥∥∥
2∣∣∣Ft,k

]

(i)

≤ 2E
[∥∥∥ 1

Nk

∑

i∈Bt,k

[
ψt(ai|si)ψt(ai|si)>

]
− F (ωt)

∥∥∥
2

‖ht,k‖2
∣∣∣Ft,k

]



+ 2E
[∥∥∇̂J(ωt;Bt,k)−∇J(ωt)

∥∥2∣∣Ft,k
]

(ii)
= 2E

[∥∥∥ 1

Nk

∑

i∈Bt,k

[
ψt(ai|si)ψt(ai|si)>

]
− F (ωt)

∥∥∥
2∣∣∣Ft,k

]
‖ht,k‖2

+ 2E
[∥∥∇̂J(ωt;Bt,k)−∇J(ωt)

∥∥2∣∣Ft,k
]

(iii)

≤
18C4

ψ(κ+ 1− ρ)

Nk(1− ρ)
‖ht,k‖2 + 2c4σ

2T ′
W +

2c7
Nk

+ 32C2
ψ

M∑

m=1

∥∥θ(m)
t − θ∗ωt

∥∥2
+ 32C2

ψζ
critic
approx, (60)

where (i) uses the inequalities that ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2 for any x, y ∈ Rd, (ii) uses the fact that ht,k ∈ Ft,k, and
(iii) uses eq. (40) and applies Lemma D.2 to the quantity that X(s, a, s′, s̃) = ψt(a|s)ψt(a|s)> in which ωt ∈ Ft,k is fixed
and ‖X(s, a, s′, s̃)‖F ≤ C2

ψ .

Combining eqs. (59) & (60) yields that

E
[∥∥∇̂fωt(ht,k)−∇fωt(ht,k)

∥∥2∣∣Ft,k
]

≤2E
[∥∥∇̂fωt(ht,k)− ∇̃fωt(ht,k)

∥∥2∣∣Ft,k
]

+ 2E
[∥∥∇̃fωt(ht,k)−∇fωt(ht,k)

∥∥2∣∣Ft,k
]

≤C4
ψ

[
2M2σ2Tz

W +
36(κ+ 1− ρ)

Nk(1− ρ)

]
‖ht,k‖2 + 4c4σ

2T ′
W

+
4c7
Nk

+ 64C2
ψ

M∑

m=1

∥∥θ(m)
t − θ∗ωt

∥∥2
+ 64C2

ψζ
critic
approx. (61)

Therefore,

E
[∥∥ht,k+1 − h(ωt)

∥∥2∣∣Ft,k
]

= E
[∥∥ht,k − η∇̂fωt(ht,k)− h(ωt)

∥∥2∣∣Ft,k
]

(i)

≤ (1 + ηλF )E
[∥∥ht,k − η∇fωt(ht,k)− h(ωt)

∥∥2∣∣Ft,k
]

+
[
1 + (ηλF )−1

]
E
[∥∥η
[
∇̂fωt(ht,k)−∇fωt(ht,k)

]∥∥2∣∣Ft,k
]

(ii)
= (1 + ηλF )

∥∥ht,k − ηF (ωt)
[
ht,k − h(ωt)

]
− h(ωt)

∥∥2

+ η
(
η + λ−1

F

)
E
[∥∥∇̂fωt(ht,k)−∇fωt(ht,k)

∥∥2∣∣Ft,k
]

= (1 + ηλF )
∥∥[I − ηF (ωt)

][
ht,k − h(ωt)

]∥∥2

+ η
(
η + λ−1

F

)
E
[∥∥[∇̂fωt(ht,k)−∇fωt(ht,k)]

∥∥2∣∣Ft,k
]

(iii)

≤ (1 + ηλF )(1− ηλF )2
∥∥ht,k − h(ωt)

∥∥2

+
2η

λF

(
C4
ψ

[
2M2σ2Tz

W +
36(κ+ 1− ρ)

Nk(1− ρ)

]
‖ht,k‖2 + 4c4σ

2T ′
W

+
4c7
Nk

+ 64C2
ψ

M∑

m=1

∥∥θ(m)
t − θ∗ωt

∥∥2
+ 64C2

ψζ
critic
approx

)

≤ (1− ηλF )
∥∥ht,k − h(ωt)

∥∥2

+
2η

λF

(
2C4

ψ

[
2M2σ2Tz

W +
36(κ+ 1− ρ)

Nk(1− ρ)

]
(‖ht,k − h(ωt)‖2 + ‖h(ωt)‖2)

+ 4c4σ
2T ′
W +

4c7
Nk

+ 64C2
ψ

M∑

m=1

∥∥θ(m)
t − θ∗ωt

∥∥2
+ 64C2

ψζ
critic
approx

)

(iv)

≤
(

1− ηλF
2

)∥∥ht,k − h(ωt)
∥∥2

+
2η

λF

(
2C4

ψ

[
2M2σ2Tz

W +
36(κ+ 1− ρ)

Nk(1− ρ)

]D2
J

λ2
F



+ 4c4σ
2T ′
W +

4c7
Nk

+ 64C2
ψ

M∑

m=1

∥∥θ(m)
t − θ∗ωt

∥∥2
+ 64C2

ψζ
critic
approx

)

(v)

≤
(

1− ηλF
2

)∥∥ht,k − h(ωt)
∥∥2

+
8η

λF

(
C4
ψM

2σ2Tz
W +

c9
Nk

+ c4σ
2T ′
W + 16C2

ψ

M∑

m=1

∥∥θ(m)
t − θ∗ωt

∥∥2
+ 16C2

ψζ
critic
approx

)

where (i) uses the inequality that ‖x+ y‖2 ≤ (1 + ηλF )‖x‖2 + [1 + (ηλF )−1]‖y‖2 for any x, y ∈ Rd, (ii) uses the notation
that∇fωt(h) = F (ωt)h−∇J(ωt) = F (ωt)[h− h(ωt)] and the fact that ωt, ht,k ∈ Ft,k, (iii) uses eq. (61) and the item 2

of this Lemma, (iv) uses the conditions that Tz ≥ ln(3DJC
2
ψ)

ln(σ−1
W )

and the item 7 of this Lemma, and (v) uses the notation that

c9 :=
18C4

ψD
2
J (κ+1−ρ)

λ2
F (1−ρ) + c7.

Then, taking unconditional expectation of the above inequality and iterating it over k = 0, 1, . . . ,K − 1 yield that

E
[∥∥ht − h(ωt)

∥∥2]
= E

[∥∥ht,K − h(ωt)
∥∥2]

≤
(

1− ηλF
2

)K
E
[∥∥ht,0 − h(ωt)

∥∥2]
+

8η

λF

K−1∑

k=0

(
1− ηλF

2

)K−1−k

(
C4
ψM

2σ2Tz
W +

c9
Nk

+ c4σ
2T ′
W + 16C2

ψ

M∑

m=1

E
[∥∥θ(m)

t − θ∗ωt
∥∥2]

+ 16C2
ψζ

critic
approx

)

(i)

≤
(

1− ηλF
2

)K
E
[∥∥ht−1 − h(ωt)

∥∥2]

+
16

λ2
F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′
W + 16C2

ψ

M∑

m=1

E
[∥∥θ(m)

t − θ∗ωt
∥∥2]

+ 16C2
ψζ

critic
approx

)

+
8ηc9[1− (1− ηλF /2)K/2]

NλF (1−
√

1− ηλF /2)

K−1∑

k=0

(
1− ηλF

2

)(K−1−k)/2

(ii)

≤
(

1− ηλF
2

)K
E
[∥∥ht−1 − h(ωt)

∥∥2]
+

16

λ2
F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′
W + 16C2

ψζ
critic
approx

)

+
256C2

ψ

λ2
F

(
σ

2T ′c
W β2c2 + 2M

[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+

8ηc9

NλF (1−
√

1− ηλF /2)2

(iii)

≤
(

1− ηλF
2

)K
E
[∥∥ht−1 − h(ωt)

∥∥2]
+

16

λ2
F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′
W + 16C2

ψζ
critic
approx

)

+
256C2

ψ

λ2
F

(
σ

2T ′c
W β2c2 + 2M

[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+

128c9
Nηλ3

F

(62)

(iv)

≤ 3
(

1− ηλF
2

)K
E
[∥∥ht−1 − h(ωt−1)

∥∥2
+
∥∥h(ωt−1)

∥∥2
+
∥∥− h(ωt)

∥∥2]

+
16

λ2
F

(
C4
ψM

2σ2Tz
W + c4σ

2T ′
W + 16C2

ψζ
critic
approx

)

+
256C2

ψ

λ2
F

(
σ

2T ′c
W β2c2 + 2M

[
c3

(
1− λB

8
β
)Tc

+
c1
Nc

])
+

128c9
Nηλ3

F

(v)

≤ 3
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where (i) uses the notation that ht,0 = ht, the item 7 of this Lemma and the inequality that
∑K−1
k=0

(
1− ηλF
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)K−1−k ≤ 2
ηλF

,

(ii) uses Lemma D.4, (iii) uses the inequality that 1
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√

1−ηλF /2)2

(ηλF /2)2 ≤ 16
(ηλF )2 implied by the item 2 of

this Lemma, (iv) uses the inequality that ‖x+ y + z‖2 ≤ 3‖x‖2 + 3‖y‖2 + 3‖z‖2,∀x, y, z ∈ Rd, and (v) uses the items 4
of this Lemma. Taking unconditional expectation of the above inequality and iterating it over t yield that
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where (i) uses the inequality that 3(1− ηλF /2)K ≤ 1 implied by the condition that K ≥ ln 3
ln[(1−ηλF /2)−1] , (ii) uses eq. (62)

with t = 0, (iii) uses the condition that N ≥ 2304C4
ψ(κ+1−ρ)

ηλ5
F (1−ρ)(1−ηλF /2)(K−1)/2 as well as the inequalities that
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. This proves the item 8 of this Lemma.



E. Experiment Setup and Additional Results
E.1. Experiment Setup

We simulate a fully decentralized ring network with 6 fully decentralized agents, using communication matrix with diagonal
entries 0.4 and off-diagnonal entries 0.3. The shared state space contains 5 states and each agent can take 2 actions. We
adopt the softmax policy πω(a|s) ∝ eωs,a . The entries of the transition kernel and the reward functions are independently
generated from the standard Gaussian distribution (with proper normalization of the absolute value for the transition kernel).
We use the rows of a 5-dimensional identity matrix as state features. We set the discount factor γ = 0.95.

We implement and compare four decentralized AC-type algorithms in this multi-agent MDP: our decentralized AC in
Algorithm 1, our decentralized NAC in Algorithm 3, an existing decentralized AC algorithm (Algorithm 2 of [12]) that
uses a linear model to parameterize the agents’ averaged reward R(s, a, s′) =

∑
i λifi(s, a, s

′) (we name it DAC-RP1 for
decentralized AC with reward parameterization) 3, and our proposed modified version of DAC-RP1 to incorporate minibatch,
which we refer to as DAC-RP100 with batch size N = 100. For our Algorithm 1, we choose T = 500, Tc = 50, T ′c = 10,
Nc = 10, T ′ = Tz = 5, β = 0.5, {σm}6m=1 = 0.1, and consider batch size choices N = 100, 500, 2000. Algorithm 3
uses the same hyperparameters as those of Algorithm 1 except that T = 2000 in Algorithm 3. We select α = 10, 50, 200
for Algorithm 1 with N = 100, 500, 2000 respectively, and Tz = 5, α = 0.1, 0.5, 2, η = 0.04, 0.2, 0.8, K = 50, 100, 200,
Nk ≡ 2, 5, 10 for Algorithm 3 with N = 100, 500, 2000, respectively. For DAC-RP1 that was originally designed for
discount factor γ = 1, we slightly adjust it to fit our setting where 0 < γ < 14. For this adjusted DAC-RP1, we select
diminishing stepsizes βθ = 2(t+1)−0.9, βv = 5(t+1)−0.8 as recommended in [12] and use the rows of a 1600-dimensional
identity matrix as the reward features {fi(s, a, s′) : s, s′ ∈ S, a ∈ A} (i = 1, 2, . . . , 1600) to fully express R(s, a, s′) over
all the 5× 26 × 5 = 1600 triplets (s, a, s′). DAC-RP100 has batchsizes 100 and 10 for actor and critic updates respectively,
and selects constant stepsizes βv = 0.5, βθ = 10. This setting is similar to Algorithm 1 with N = 100 to inspect the reason
of performance difference between Algorithm 1 and DAC-RP1. All the algorithms are repeated 10 times using initial state 0
and the same initial actor parameter ω0 generated from standard Gaussian distribution.

3The original algorithm in [12] uses the parameterization R(s, a) =
∑
i λifi(s, a), and we extend to our setting where the rewards

also depend on the next state s′.
4[12] defined the Q-function Qθ(s, a) = E

[
rt+1 − J(θ)

]
for policy parameter θ and used the temporal differences δit = rit+1 − µit +

Vt+1(v
i
t)− Vt(vit) and δ̃it = Rt(λ

i
t)− µit + Vt+1(v

i
t)− Vt(vit) for critic update and actor update respectively. To fit 0 < γ < 1, we use

δit = rit+1 + γVt+1(v
i
t)− Vt(vit) and δ̃it = Rt(λ

i
t) + γVt+1(v

i
t)− Vt(vit) where µit ≈ J(θt) is removed since Qθ(s, a) = E(rt+1). In

addition, we used two different chains generated from transition kernels P , Pξ respectively for critic update and actor update as in our
Algorithm 1.

Figure 2: Comparison of ‖∇J(ωt)‖2 among decentralized AC-type algorithms in a ring network.



E.2. Gradient Norm Convergence Results in Ring Network

Figure 2 plots ‖∇J(ωt)‖2 v.s. communication complexity (t(Tc + Tc + T ′) = 65t, t(Tc + Tc + T ′ + Tz) = 70t and 2t
for Algorithms 1 & 3, and both DAC-RP algorithms, respectively)5 and sample complexity (t(TcNc +N), 2t and 110t for
both of our AC-type algorithms, DAC-RP1 and DAC-RP100, respectively).6 For each curve, its upper and lower envelopes
denote the 95% and 5% percentiles of the 10 repetitions, respectively.

Similar to the result of accumulative reward J(ωt) shown in Figure 1, it can be seen from Figure 2 that the communication
and sample efficiency of both our decentralized AC and NAC algorithms improve with larger batchsize due to reduced
gradient variance, which matches our understanding in Theorems 1 & 2. Our decentralized AC and NAC algorithms
significantly outperform DAC-RP1 which has batchsize 1. Using mini-batch, DAC-RP100 outperforms a lot than DAC-RP1,
and converges to critical points earlier than Algorithm 1. However, it can be seen from Figure 1 that such early convergence
turns out to have much lower J(ωt) than Algorithm 1 with N = 100 and Nc = 10. Such a performance gap is caused by
two reasons: (i) Both DAC-RP1 and DAC-RP100 suffer from an inaccurate parameterized estimation of the averaged reward,
and the mean relative estimation errors of both DAC-RP1 and DAC-RP100 are over 100% 7. In contrast, our noisy averaged
reward estimation achieves a mean relative error in the range of 10−5 ∼ 10−4. 8 ; (ii) Both DAC-RP1 and DAC-RP100
apply only a single TD update per-round, and hence suffers from a larger mean TD learning error (about 2% and 1% for
DAC-RP1 and DAC-RP100, respectively), whereas our algorithms perform multiple TD learning updates per-round and
achieve a smaller mean relative error (about 0.3% and 0.07% for our decentralized AC and NAC respectively) 9. All these
relative errors are averaged over iterations.

E.3. Additional Experiments in Fully Connected Network
To investigate the effect of network topology on the performance of our algorithms, we also conduct the above experiments
on a fully connected network with 6 fully decentralized agents, using communication matrix with diagonal entries 0.4 and
all the other entries 0.12. The MDP environment and all the hyperparameters are the same as the above experiments for ring
network. Figures 3 & 4 plot the learning curves of the optimality gap J∗ − J(ωt) and ‖∇J(ωt)‖2 respectively for fully
connected network. To make comparison, we plot J∗ − J(ωt) and ‖∇J(ωt)‖ in Figures 5 & 2 respectively for the above
experiments with ring network. It can be seen by comparing these figures that network topology does not much affect the
performance of these algorithms, so the conclusions for ring network that we summarized right before this subsection also
holds for fully connected network.

5Each update of our decentralized AC uses Tc + T ′c and T ′ communication rounds for synchronizing critic model and rewards,
respectively. Each update of our decentralized NAC uses Tc + T ′c, T ′, T ′z communication rounds for synchronizing critic model, rewards
and scalar z, respectively. Each update of both DAC-RP1 and DAC-RP100 uses 1 communication round for synchronizing v and λ
respectively.

6DAC-RP1 uses 1 sample for actor and critic updates respectively. DAC-RP100 uses 100 and 10 samples for actor and critic updates
respectively.

7The relative reward estimation error at the t-th iteration of both DAC-RP1 and DAC-RP100 is defined as A/B where A =
1

M|S|2|A|
∑M
m=1

∑
s,s′∈S

∑
a∈A[R(s, a, s

′)−∑i λ
(m)
i fi(s, a, s

′)]2 and B = 1
|S|2|A|

∑
s,s′∈S

∑
a∈AR(s, a, s

′)2.
8At the t-th iteration of Algorithms 1 & 3, we focus on r(m)

t = 1
N

∑(t+1)N−1
i=tN R

(m)
i as the estimation of the batch-averaged reward

rt =
1
N

∑(t+1)N−1
i=tN Ri since its estimation error affects the accuracy of the policy gradient (4). The relative estimation error is defined

as 1
Mr2t

∑M
m=1(r

(m)
t − rt)2.

9The TD error at the t-th iteration is defined as 1
M‖θ∗ωt‖

2

∑M
m=1 ‖θ

(m)
t − θ∗ωt‖2.



Figure 3: Comparison of optimality gap J(ω∗)−J(ωt) among decentralized AC-type algorithms in fully connected network.

Figure 4: Comparison of ‖∇J(ωt)‖2 among decentralized AC-type algorithms in fully connected network.

Figure 5: Comparison of optimality gap J(ω∗)− J(ωt) among decentralized AC-type algorithms in ring network.

E.4. Two-agent Cliff Navigation

Figure 6: Two-agent cliff navigation. (“S”, “X”, “D” denote
starting point, cliff and destination respectively. The optimal
path is shown in red.)

In this subsection, we test our algorithms in solving a
two-agent Cliff Navigation problem [68] in a grid-world
environment. This problem is adapted from its single-
agent version (see Example 6.6 of [69]). As illustrated in
Figure 6, two agents start from the starting point “S” on
a 3× 4 grid and aim to reach the destination “D”. Here,
global state is defined as the joint location of the two
agents, and there are in total (3× 4)2 = 144 global states.
In most states, an agent can choose to move up, down, left
or right by one step and receives −1 reward. However,
once an agent falls into the cliff “X”, it will return to the
starting point “S” and receives −100 reward. When an



agent reaches “D”, it will always stay at “D”, and receives
0 reward if the other agent also reaches/stays at “D”, or receives −0.5 reward otherwise. If an agent is not at “X” or “D” and
selects a direction that points outside the grid, then it stays in the previous location and receives −1 reward. The optimal
path for both agents is the red path shown in Figure 6, which has the minimum accumulative reward J∗ = −0.1855 under
the discount factor γ = 0.95.

For our Algorithm 1, we choose T = 500, Tc = 50, T ′c = 10, Nc = 10, T ′ = Tz = 5, β = 0.5, {σm}6m=1 = 0.1, and
consider batch size choices N = 100, 500, 2000. Our Algorithm 3 uses the same hyperparameters as those of Algorithm 1
except that we choose T = 2000. We select α = 1, 5, 20 for Algorithm 1 withN = 100, 500, 2000 respectively, and Tz = 5,
α = 0.002, 0.01, 0.04, η = 0.002, 0.01, 0.04, K = 50, 100, 200, Nk ≡ 2, 5, 10 for Algorithm 3 with N = 100, 500, 2000,
respectively. For DAC-RP1, we select T = 10000, βv = 10(t+ 1)−0.6 and βθ = 5(t+ 1)−0.6. For DAC-RP100, we use
T = 2000 and batchsizes 100 and 10 for actor and critic updates respectively, and selects constant stepsizes βv = 0.5,
βθ = 1. This setting is similar to Algorithm 1 with N = 100 to inspect performance difference between Algorithm 1 and
DAC-RP1.

Figure 7: Comparison of optimality gap J(ω∗)− J(ωt) among decentralized AC-type algorithms on cliff navigation.

Figure 8: Comparison of optimality gap J(ω∗)− J(ωt) among decentralized AC-type algorithms on cliff navigation.

We plot J∗−J(ωt) and ‖∇J(ωt)‖ in Figures 7 & 8 respectively. It can be seen from these figures that both our Algorithm 1
& Algorithm 3 significantly reduce the function value gap J∗−J(ωt), and their convergence is faster with a larger batchsize.
In contrast, the function value gaps of DAC-RP1 and DAC-RP100 do not decrease sufficiently and converge to a high
value. In particular, since DAC-RP100 achieves a larger function value gap than our Algorithm 1 with N = 100 while their
hyperparameter choices are similar, we attribute this performance gap to the inaccurate average reward estimation and TD
error, as we analyzed in Appendix E.2.

F. List of Constants
The following global constants are frequently used.

M : The number of agents.

γ: Discount rate.



Rmax: The reward bound such that 0 ≤ R(m)(s, a, s′) ≤ Rmax for any s, s′ ∈ S and a ∈ A (Assumption 3). Hence,

0 ≤ R(m)
(s, a, s′), R(m)

i , Ri ≤ Rmax.

σW ∈ [0, 1): The second largest singular value of W .

ω∗ := maxω J(ω) denotes the optimal policy parameter.

The following constants are defined in Lemma D.3.

CB := 1 + γ.

Cb := Rmax.

λφ := λmin

(
Es∼µω [φ(s)φ(s)>]

)
> 0 satisfies Assumption 4.

λB := 2(1− γ)λφ > 0. (Assumption 4 implies that λφ > 0.)

Rθ := 2Cb
λB

.

The policy-related norm bounds and Lipschitz parameters are defined as follows.

Cψ, Lψ, Lπ > 0 defined in Assumption 2: For all s ∈ S, a ∈ A and ω, ω̃, ‖ψω(a|s)‖ ≤ Cψ, ‖ψω̃(a|s) − ψω(a|s)‖ ≤
Lψ‖ω̃ − ω‖ and dTV

(
πω̃(·|s), πω(·|s)

)
≤ Lπ‖ω̃ − ω‖.

Lν := Lπ[1 + logρ(κ
−1) + (1− ρ)−1].

LQ := 2RmaxLν
1−γ .

LJ := Rmax(4Lν + Lψ)/(1− γ).

DJ :=
CψRmax

1−γ .

LF := 2Cψ(LπCψ + LνCψ + Lψ).

Lh := 2λ−1
F (DJλ

−1
F LF + LJ) where λF := infω∈Ω λmin[F (ω)] > 0 (λmin denotes the minimum eigenvalue) which

satisfies Assumption 6.

The following constants are defined to simplify the notations in the proof.

c1 :=
1920(C2

BR
2
θ+C2

b )[1+(κ−1)ρ]

(1−ρ)λ2
B

.

c2 := 2
(

2MCb
1−σW

)2
.

c3 := 2
(∥∥θ−1

∥∥2
+R2

θ

)
where θ−1 is the initial parameter of decentralized TD (Algorithm 2).

c4 := 4MC2
ψR

2
max.

c5 := 16c2C
2
ψ .

c6 := 32Mc3C
2
ψ .

c7 := 16C2
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36C2

ψ(Rmax+2Rθ)2(κ+1−ρ)
1−ρ .
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2
ψ .

c9 :=
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ψD
2
J (κ+1−ρ)

λ2
F (1−ρ) + c7.

c10 := 2‖h−1‖2 +
14D2

J

λ2
F

+
c9λ

2
F

C4
ψ

where h−1 is the initial natural gradient of Algorithm 3.

c11 :=
48C4

ψM
2

λ2
F

.



c12 := 48c4
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.

c13 :=
768c2C

2
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.
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ψ
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.
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ψ
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.
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ψ
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.
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)]
+
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.
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(
1 +

4C4
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.
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