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ABSTRACT
We present ParaCrash, a testing framework for studying crash
recovery in a typical HPC I/O stack, and demonstrate its use by
identifying 15 new crash-consistency bugs in various parallel file
systems (PFS) and I/O libraries. ParaCrash uses a “golden version”
approach to test the entire HPC I/O stack: storage state after re-
covery from a crash is correct if it matches the state that can be
achieved by a partial execution with no crashes. It supports system-
atic testing of a multilayered I/O stack while properly identifying
the layer responsible for the bugs.

CCS CONCEPTS
• Information systems→Hierarchical storagemanagement;
• Software and its engineering→ File systems management.
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1 INTRODUCTION
In order to enable massive I/O parallelism for HPC applications,
the HPC community has developed specialized I/O stacks over the
past decades [27, 62, 68]. Such stack consists of multiple layers
(see Figure 1), including a parallel I/O library such as HDF5 [32]
and NetCDF [54] for scientific data management; the MPI I/O li-
brary [28] for parallel I/O communication; and a parallel file system
(PFS) for distributed data accesses. Much attention was paid to their
performance, but few studies investigated their crash consistency –
what conditions are satisfied by the storage state of the HPC I/O
stack after recovery from a crash [60].

Various crash recovery tools [8–10, 34] are used to restore a
system to an internally consistent state after a crash. Fault tolerance
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techniques such as checkpointing [19, 48] and journaling [18, 47]
have also been proposed. Nevertheless, crashes happen frequently,
recovery takes a long time, and not all data can be recovered [6].
Recent studies [22, 38] reported that PFSs experienced frequent
failures, and their data recovery could take months with manual
assistance. Users also repeatedly report losing HDF5 and NetCDF
datasets during the past decade [1–5, 7, 11, 12].

Researchers have conducted intensive studies on crash consis-
tency for various file systems [15, 24–26, 43, 50]. They have used
two main approaches: formal verification [20, 23, 59, 71] and test-
ing [15, 20, 39, 43, 50, 70–72]. These methods do not apply easily
to address the crash-consistency challenges of the HPC I/O stack.
It is hard to apply formal methods to production systems, due to
their complexity and frequent updates. The developers of an I/O
library such as HDF5 cannot test their library without an underly-
ing PFS that is maintained by another vendor. On the other hand,
they cannot assume that the underlying PFS is correct. Therefore,
they need a testing framework that can test the entire stack as a
unit, but still be able to attribute bugs to the proper layer across
the I/O stack. Such a framework requires a clear definition of the
contract between the I/O layers, i.e., of their crash consistency model:
Namely, what is a correct state for the I/O layer after recovery from
a crash. HDF5 will recover to a correct state, assuming that the PFS
recovered to a correct state.

To this end, we present ParaCrash, an effective testing framework
for identifying crash-consistency bugs in the HPC I/O stack. We
use a “golden master testing” approach, where the tested system is
compared to a system assumed to be correct. For crash-consistency
bugs, this means comparing the storage state recovered after a crash
to a legal reference state occurring without crashes. The legal state
is obtained by executing a legal subset of I/O operations of the tested
system preceding the crash. The legal subsets are defined by a crash
consistency model. For example, with the strict crash-consistency
model, if a crash occurs after a sequence of I/O operations, all the
I/O operations preceding the crash need to be recovered. Weaker
crash-consistency models allow that some I/O operations to be lost.

ParaCrash runs test programs and traces I/O operations and com-
munications across the stack. It then builds call graph and causality
graph to represent the execution order constraints between these
operations. After that, it emulates a crash. During the crash emula-
tion, the I/O library invokes MPI and PFS operations that invoke
local file system operations up to the crash. The order of the lowest-
level storage accesses is only partially constrained by the program
logic – file systems may internally reorder I/O operations or lazily
flush them to persistent storage. Therefore, the emulation explores
different orderings of these accesses, each resulting in a potentially
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distinct final crash states. We then run the recovery procedure to
obtain a possible recovered state.

On the other hand, a legal state is obtained by running a legal
subset of the operations of the tested system before the crash in
causality order to completion, including persisting the updates. A
legal state for HDF5 is obtained by running a subset of the HDF5
operations; a legal state for the PFS is obtained by running a subset
of the PFS operations. The recovered state is compared to the legal
states. If there is no match, a crash-consistency bug is found. We
then reuse the same procedure for testing the state of the PFS after
a crash, comparing it to states obtained from the execution of legal
subsets of the PFS operations that preceded the crash. If the PFS
state is correct, then the bug is attributed to the I/O libraries atop
PFS. Otherwise, it is due to the PFS or the local file system. Since
the local file system and MPI-IO are well tested, all the bugs we
found were due to either PFS or HDF5.

The procedure of identifying crash-consistency bugs allows us-
ing different crash-consistency models at different layers. It can be
applied to different multilayered I/O stacks. Its generic approach
largely automates the testing procedure.We also provide customized
tools for the test programs using specific upper-level I/O library.

We used ParaCrash to test I/O stacks that included HDF5 or
NetCDF, MPI-IO, PFS, and local file system ext4. We tested five
different PFSs: BeeGFS [37], OrangeFS [61], GlusterFS [21], GPFS
[57], and Lustre [58]. ParaCrash identified 15 new crash-consistency
bugs, and half of them have been confirmed by developers. For each
test, ParaCrash can finish the checking of crash states in half an
hour or less. Overall, we make the following contributions:

• We study crash consistency guarantees of a typical HPC I/O stack,
and definemultiple crash-consistencymodels for reasoning about
its crash-consistency behaviors.

• We develop a new testing approach for the multi-layered, parallel
I/O stack. It compares storage states after crash recovery against
legal states produced from partial executions allowed by the
crash-consistency model.

• We build an automated testing framework named ParaCrash,
which can pinpoint the layer responsible for a crash-consistency
bug in a typical HPC I/O stack.

• We apply our testing framework to popular PFSs and parallel I/O
libraries, and identify 15 new crash-consistency bugs. Some of
them are deep consistency bugs that cannot be easily identified
without a cross-layer approach.

We release the ParaCrash framework onGithub: https://github.com/
my-HenryS/ParaCrash.

2 BACKGROUND AND MOTIVATION
In this section, we first present the system architecture of a typical
HPC I/O stack, and then discuss the challenges of identifying its
crash-consistency bugs.

2.1 System Overview of the HPC I/O Stack
We show the system architecture of a typical HPC I/O stack in
Figure 1. PFS often uses local file systems such as ext4 to access disks
on each storage server. Other PFSs such as GPFS (a.k.a., Spectrum

MPI-IO APIs POSIX APIs

MPI-IO Library

Parallel I/O Library

HPC Applications

(HDF5, NetCDF)

Parallel File System

Network
Network

Local FS Local FS

LocalFS-based Block-based

Figure 1: System architecture of HPC I/O stacks.

Scale) directly operate atop the block I/O interface. To aggregate
storage capacity and bandwidth, the PFS stripes files across multiple
storage servers. The PFS also manages its metadata; metadata is
stored either in a database or in a file system and is most often
stored on dedicated metadata servers. To facilitate the management
of scientific data, the parallel I/O stack usually relies on parallel I/O
libraries such as HDF5 [32] and NetCDF [54]. The MPI I/O library
is used to optimize the data transfer between application clients
and storage servers.

Compared to generic distributed storage systems, a typical HPC
I/O stack has several distinguishing properties. First, it has a deep
software stack, with unique components, as shown in Figure 1.
Second, the PFS is designed to support efficiently parallel updates
to a single file by all processes in a large-scale parallel application.
This requires extremely scalable, fine-grained coherence protocols
Third, redundancy is usually achieved using RAID storage at the
data servers, rather than by replication at the PFS level. Since RAID
decreases vulnerabilities to hardware failures, crashes are most
often due to the software, rather than the hardware.

2.2 Recovering from a Crash is Challenging
As discussed in Section 1, crashes in the HPC I/O stack are frequent
and costly. Therefore, efficient crash recovery is important. The
post-crash behaviors of an I/O system depend on what has been
persisted before failures. The I/O library stored its state in the PFS
and the PFS may have stored its state in local file systems. Therefore
we need to recover the local file systems first, followed by the PFS,
and then the parallel I/O library. The recovered states of the local
file systems may not represent a valid PFS state; and the recovered
PFS state may not represent a valid I/O library state.

Crash-consistency models specify what conditions should be
satisfied by each of these layers – the contract each layer should
obey after recovering from a crash. Each layer will perform its
own recovery assuming that the layer below satisfied its contract.
Unfortunately, this contract is not clearly defined. POSIX semantics
define the behavior of a file system in the absence of crashes, but do
not define what can be recovered after a crash [20]. This is also true
for HDF5 or other parallel I/O libraries. This ambiguity makes it
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Figure 2: Crash-consistency bugs in BeeGFS. Dashed black
arrows indicate server communications. Red arrows indi-
cate possible bugs when the order the updates are persisted
is different from the order the updates execute.

harder for I/O library and application developers to conduct crash
recovery at their levels.

2.3 Avoiding Consistency Bugs is Challenging
To facilitate our discussion on crash-consistency bugs in the HPC
I/O stack, we present an example of BeeGFS in Figure 2. The pro-
gram attempts to replace the content of a target file by creating,
modifying, and renaming a temporary file in BeeGFS.

In this example, we identify three inconsistent crash states: 1 A
crash happens after persisting the rename operation for the direc-
tory entry on the metadata node, but before persisting the append
on the storage node. From the application’s perspective, both the old
and new versions of the file will be lost, and tmp will be removed.
This crash cannot be resolved by the recovery tool beegfs-fsck
available in BeeGFS. 2 Similar data inconsistency will happen
if a crash happens after persisting the unlink operation on the
storage node but before persisting the rename operation on the
metadata node. The tmp file contains the updated data, while file
suffers from data loss. BeeGFS cannot recover file data, and this
requires application-level recovery mechanism. 3 The third case is
caused by the intra-node persistence reordering between rename
and unlink on the metadata node. For some local file systems such
as Btrfs [56], these two directory operations could be reordered.
Upon this crash, remounting BeeGFS will cause inconsistent states
in its metadata, and thus, the original file cannot be accessed.

These crash-consistency bugs occur for two major reasons: (1)
atomicity violations, in which updates that are part of an atomic op-
eration are partially persisted; and (2) ordering violations, in which
updates are not persisted in the order of their execution. In order
to avoid these crash-consistency bugs, developers can utilize trans-
actional protocols to enforce atomicity and execute fsync calls

to enforce ordering. However, this adds significant performance
overhead, which limits their use in HPC.

3 RELATED WORK
The HPC I/O stack has been extensively developed over the past
decades [21, 37, 57, 58, 61]. Researchers have developed a variety
of optimization techniques to improve its performance [53, 67, 74],
including the adoption of new storage technologies [64, 65] and
high-performance interconnects [66, 69]. Recent studies [22, 29, 36]
investigated the fault handling of parallel file systems. However,
few studies worked on the crash-consistency issues with a complete
HPC I/O stack. To the best of our knowledge, ParaCrash is the first
work that conducts a thorough analysis of the crash consistency
of a complete HPC I/O stack, and develops an efficient testing
framework for pinpointing crash-consistency bugs.

The detection of crash consistency bugs has been studied for
local file systems [43] and distributed databases [15]. Several studies
applied model checking for identifying crash-consistency bugs
[20, 71, 72]. Researchers also utilized fuzzing approaches [39, 70]
to detect application-level vulnerabilities [50] and built crash-safe
file systems [24, 59]. Specifically, ALICE [50] explored application-
level crash consistency based on the analyzed abstract persistence
models (APMs) for different local file systems. PACE [15] tested
the internal consistency of distributed databases, with a pruning
strategy designed for replicated state machines. Both tools require
program-specific checker scripts. CrashMonkey [43] could generate
test cases and it tested crash consistency for local file systems by
comparing crash states against an oracle. It traces block-level I/O
and focuses on consistency bugs at persistence points like fsync.
Unfortunately, none of these tools can be directly applied to the
HPC I/O stack. They lack support for parallel programs and do no
handle multilayered storage systems. Unlike them, ParaCrash is
mainly developed for testing the multilayered HPC I/O stack with
a cross-layer approach.

Debugging tools were developed to identify general bugs in
Linux file systems. Some of them used fuzzing techniques, such
as syzkaller [30] and JANUS [70]. Others utilized static analysis
and model checking to identify semantic bugs, such as JUXTA [42]
and Recon [33]. However, none of them are specialized for check-
ing crash-consistency bugs, particularly for parallel file systems.
ParaCrash aims to detect crash-consistency bugs in the parallel file
systems and I/O libraries with enhanced tracing approaches and a
new trace analysis framework.

4 PARACRASH DESIGN
In this section, we present ParaCrash, which aims to efficiently
test the parallel I/O stack for identifying crash consistency bugs.
Given a test program and crash consistency models for each layer,
ParaCrash will automatically generate possible crash states, check
their correctness, and identify the corrupted I/O layer.

4.1 ParaCrash Overview
We illustrate the system architecture of ParaCrash in Figure 3.
ParaCrash takes five steps to check crash-consistency bugs for
each test program. First, ParaCrash traces both storage and com-
munication operations on clients and servers, when running a test
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Figure 3: The system architecture of ParaCrash.

program. Second, ParaCrash performs an end-to-end analysis of the
traces to associate communication operations to the corresponding
storage operations. For each layer, it builds a causality graph that
represents the happens-before order of the I/O operations at that
layer (§4.2). Third, ParaCrash generates normal executions where
all the I/O operations up to the crash front were executed, and none
after. The operations are executed in an order consistent with the
causality ordering. For each of the normal executions, ParaCrash
creates crash states by dropping non-persisted I/O operations (§4.3).
A pruning algorithm is applied to reduce the search space (§5.3).
Fourth, ParaCrash executes the system recovery procedure for each
crash state, in order to obtain recovered states. It also creates le-
gal storage states by replaying legal subsets of I/O operations that
satisfy the relevant crash consistency model. A recovered crash
state is inconsistent if it does not match any of the legal states. The
consistency checker will run this test at the highest layer, and if
the test fails, it will continue to the lower layers to pinpoint the
root cause (§4.4). Finally, ParaCrash removes redundant bugs that
have the same root cause, and will classify them based on semantic
information (§5.2). We discuss each step in the following sections.

4.2 Trace Recording and Correlated Analysis
ParaCrash builds a multi-layer, multi-process I/O causality graph by
tracing all necessary storage and communication operations at each
I/O layer. This includes the I/O library, MPI and I/O calls at the client
and server nodes. For user-level PFSs (e.g., BeeGFS), we trace POSIX
I/O operations of the server processes. For kernel-level PFSs (e.g.,
GPFS) that do not use system calls to interact with the underlying
storage layer, we trace block-level I/O commands. The information
of each trace entry includes the timestamp and command arguments
(e.g., file offset). ParaCrash also traces inter-process communica-
tions – both MPI communications at the application level and RPC
calls to servers. The MPI calls determine the happens-before, or
causality order among calls of different clients. The caller-callee
relation determines causality across libraries and subsystems; the
RPC calls help ParaCrash to order the client events with respect to
the server events. The chronological order of client calls is also part
of the causality order. This is correct for single-threaded clients,
but over-constrained for multi-threaded clients. In order to relax
this, we would also need to trace thread synchronizations.

file chunk file chunk

Storage #1Storage #0

internal data structures of an HDF5 file mapped to the file locations

MPI_File_open(MODE_CREATE)

MPI_File_write_at(fh, 800, buf, 88)
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lseek(fd, 0)
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Figure 4: Trace analysis of an HDF5 program.

ParaCrash combines all the separate trace files and creates the
causality graph. Its nodes are trace entries and its edges are caller-
callee or sender-receiver pairs. In Figure 4, we use an example of
MPI-IO file accesses to an HDF5 file stored on PFS to illustrate the
described tracing and correlated analysis procedure.

At the bottom I/O layer, we have storage operations that access
specific locations in local files or blocks. Our trace analysis can
identify which locations are accessed or modified in persistent
storage for each I/O library function call, or for each PFS call. When
the layout of the internal data structures of the I/O library or the
PFS is known, we can additionally associate the file locations and
file offsets with the data structures of the I/O library. Figure 4 shows
the mapping from PFS files to local files. Using this mapping and
the recorded arguments of the write calls (e.g., MPI_File_write,
pwrite), each call will be tagged with the data structures it modifies.
While not necessary for bug detection, this information can be used
to prune the state search space and benefit our root cause analysis.
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Algorithm 1: Crash State Generation
Input: The causality graph of lowermost-level I/O operations
Output: 𝑐𝑟𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒𝑠

1 𝑗𝑜𝑢𝑟𝑛𝑎𝑙𝑖𝑛𝑔← data, ordered or writeback
2 𝑛𝑜𝑟𝑚𝑎𝑙_𝑠𝑡𝑎𝑡𝑒𝑠 ← all consistent cuts of the causality graph
3 foreach 𝑛𝑜𝑟𝑚𝑎𝑙_𝑠𝑡𝑎𝑡𝑒 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙_𝑠𝑡𝑎𝑡𝑒𝑠 do
4 𝑙 𝑓 𝑠_𝑜𝑝𝑠 ← lowermost-level I/O operations before the cut

// pick 0-k victims that will not persist, along with

their dependent operations

5 foreach 𝑛 ∈ [0, 𝑘 ] do
6 𝑐ℎ𝑜𝑖𝑐𝑒𝑠_𝑜 𝑓 _𝑣𝑖𝑐𝑡𝑖𝑚𝑠 ← 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 (𝑙 𝑓 𝑠_𝑜𝑝𝑠,𝑛)
7 𝑢𝑛𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑑 ← {}
8 foreach 𝑣𝑖𝑐𝑡𝑖𝑚𝑠 ∈ 𝑐ℎ𝑜𝑖𝑐𝑒𝑠_𝑜 𝑓 _𝑣𝑖𝑐𝑡𝑖𝑚𝑠 do
9 foreach 𝑣𝑖𝑐𝑡𝑖𝑚 ∈ 𝑣𝑖𝑐𝑡𝑖𝑚𝑠 do
10 𝑢𝑛𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑑 += 𝑑𝑒𝑝𝑒𝑛𝑑𝑠_𝑜𝑛 (𝑣𝑖𝑐𝑡𝑖𝑚, 𝑙 𝑓 𝑠_𝑜𝑝𝑠)
11 𝑐𝑟𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒 ← 𝑙 𝑓 𝑠_𝑜𝑝𝑠 −𝑢𝑛𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑑
12 𝑐𝑟𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑟𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒)

/* Find operations that depend on the victim */

13 Function 𝑑𝑒𝑝𝑒𝑛𝑑𝑠_𝑜𝑛(𝑣𝑖𝑐𝑡𝑖𝑚, 𝑙 𝑓 𝑠_𝑜𝑝𝑠):
14 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 ← {𝑣𝑖𝑐𝑡𝑖𝑚};
15 foreach 𝑙 𝑓 𝑠_𝑜𝑝 ∈ 𝑙 𝑓 𝑠_𝑜𝑝𝑠 − 𝑣𝑖𝑐𝑡𝑖𝑚 do
16 foreach 𝑑 ∈ 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 do
17 if 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑠_𝑏𝑒 𝑓 𝑜𝑟𝑒 (𝑑, 𝑙 𝑓 𝑠_𝑜𝑝) then
18 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑙 𝑓 𝑠_𝑜𝑝)
19 return 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠

4.3 Crash Emulation
ParaCrash emulates possible crash states by replaying the I/O oper-
ations traced at the lowermost level, i.e., POSIX I/O calls to the local
file systems or the block-level I/O operations. Replaying I/O opera-
tions at the lowermost level will expose errors induced by any of
the upper-level I/O layers. We do not need to execute the operations
in the order of their timestamps: any total order that is consistent
with the causality order will be explored, as it corresponds to a
possible execution.

We present the pseudocode for our crash state exploration in
Algorithm 1. At the beginning, the crash emulator creates normal
execution states by exploring all possible consistent cuts. A cut splits
the I/O operations into BEFORE (the crash) and AFTER (the crash)
sets. The cut is consistent if no I/O operations in AFTER happens
before an I/O operation in BEFORE. The storage state obtained
by executing all the BEFORE set and none of the AFTER set of a
consistent cut is defined as a normal state. A crash state is obtained
by picking up to 𝑘 victim I/O operations from the BEFORE set
and not persisting them, where 𝑘 is a configurable parameter. The
happens-before order of the execution imposes some constraints
on the persist-before order of persist operations, as explained below.
When a victim I/O operation is not persisted, some other dependent
I/O operations will not be persisted either. Finally, the algorithm
creates a list of possible crash states at the local storage level. Each
I/O layer above will have its view of the crash states by reading
from the lower I/O layers.

To determine which operations are not persisted, the algorithm
computes the persist-before order for I/O operations. For operations
on the same local file system, the persistence order depends on the

Algorithm 2: Local FS Persistence dependency
/* Check if op1 should persist before op2 */

1 @𝑙𝑟𝑢_𝑐𝑎𝑐ℎ𝑒 ;
2 Function 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑠_𝑏𝑒 𝑓 𝑜𝑟𝑒(𝑜𝑝1, 𝑜𝑝2):
3 if 𝑠𝑎𝑚𝑒_𝑙𝑜𝑐𝑎𝑙 𝑓 𝑠 (𝑜𝑝1, 𝑜𝑝2) then
4 if 𝑗𝑜𝑢𝑟𝑛𝑎𝑙𝑖𝑛𝑔 = 𝑑𝑎𝑡𝑎 then
5 return ℎ𝑎𝑝𝑝𝑒𝑛𝑠_𝑏𝑒 𝑓 𝑜𝑟𝑒 (𝑜𝑝1, 𝑜𝑝2)
6 else if 𝑗𝑜𝑢𝑟𝑛𝑎𝑙𝑖𝑛𝑔 = 𝑤𝑟𝑖𝑡𝑒𝑏𝑎𝑐𝑘 then
7 return 𝑖𝑠_𝑚𝑒𝑡𝑎 (𝑜𝑝1) 𝑖𝑠_𝑚𝑒𝑡𝑎 (𝑜𝑝2)

ℎ𝑎𝑝𝑝𝑒𝑛𝑠_𝑏𝑒 𝑓 𝑜𝑟𝑒 (𝑜𝑝1, 𝑜𝑝2)
8 ...
9 else
10 return ∃ sync : sync.fd = op1.fd and

ℎ𝑎𝑝𝑝𝑒𝑛𝑠_𝑏𝑒 𝑓 𝑜𝑟𝑒 (𝑜𝑝1, 𝑠𝑦𝑛𝑐) and
ℎ𝑎𝑝𝑝𝑒𝑛𝑠_𝑏𝑒 𝑓 𝑜𝑟𝑒 (𝑠𝑦𝑛𝑐, 𝑜𝑝2) ;

enabled journaling mode in the local file system. With data journal-
ing, operations are persisted in the order they execute; hence the
persistence order among operations on the same local file system is
same as the causality order. The operations that were persisted at a
local file system up to a crash could be any prefix of the sequence
of I/O operations executed by the local server. Any combination of
such prefixes determines a possible global crash scenario. With a
relaxed journaling mode like writeback mode [52], only metadata
operations are ordered.

For I/O commands to the block device, their ordering are enforced
by barriers. Once we determine the persistence ordering, crash
states are explored in a similar way to local file systems.

For local file system operations or block I/O commands to dif-
ferent storage servers, their relative order is jointly constrained
by commit operations (e.g., fsync and scsi_synchronize_cache)
and the causality order. If the normal execution contains a commit
operation, all updates to the same file that preceded the commit
call are persisted.

For each selection of crash states, ParaCrash emulates their up-
dates on the snapshot of the initial local file system or the image of
the block device, and then restarts and remounts the PFS. The num-
ber of possible crash states can be large, and many distinct crash
states could expose the same bug. Therefore, we develop various
empirical pruning techniques to reduce the search space (see the
detailed discussion in Section 5.3).

4.4 Consistency Checking
ParaCrash tests crash consistency with respect to consistency mod-
els. A crash consistency model specifies what conditions should be
satisfied by a storage system after recovery from a crash. It reflects
the persistence expectations that an upper-level storage system or
an application holds. Unfortunately, these are not defined by exist-
ing standards, nor are they documented for products. Yet, without
such definitions, it is impossible to decide which layer is responsible
for a failure to recover to an acceptable state after a crash. This is
why precise definitions of crash consistency models are essential
in multilayered storage systems. They are more important in the
context of HPC, as I/O libraries must work with many different
underlying PFSs, and a focus on performance leads to weaker guar-
antees for crash recovery. In this section, we propose a general
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approach to defining crash consistency models, propose a few spe-
cific models that we believe are adequate for HPC I/O, and describe
how ParaCrash tests an HPC I/O stack with these models.

4.4.1 Storage System Semantics. We derive crash consistency mod-
els from the behavior of the storage system in the absence of crashes.
Therefore, the first step is to define what these behaviors should
be. The POSIX standard [35] provides an informal specification
for POSIX compliant file systems. Formal specifications have been
provided by various studies [17, 31, 44, 45, 55]. For our purposes,
suffice to specify that some operations are required to be atomic, in
particular, metadata updates. And the operations should appear to
execute in the order they were issued: a read returns the value of
the last preceding write to the same location. When I/O operations
are issued by multiple processes, precedence should be understood
to be the causality or “happens-before” partial order determined by
the execution order of each process, and the order of synchroniza-
tions between processes [40]. The same definitions can be used for
an I/O library, such as HDF5: metadata operations are expected to
be atomic, and causality order is preserved.

4.4.2 Correct Crash Recovery. Ideally, a storage system should sup-
port “precise exceptions”: if the user code is single-threaded, after
recovery, we expect that all the I/O operations before the crash
point appear to have completed, and no I/O operations after the
crash point appear to have started. For multi-threaded or multi-
process user codes, the failure "point" is a consistent cut through
the causality graph: after recovery, all I/O operations preceding the
consistent cut appear to have completed, and none after the con-
sistent cut appear to have started. Non-atomic storage operations
concurrent with the crash could be only partially executed.

Unfortunately, it is expensive to support a precise exception
model. Therefore, weaker models are proposed. We postulate that
recovery semantics for a storage system should be defined in terms
of the API of that system, irrespective of how the system is imple-
mented. This leads to the following approach: A correct recovery
protocol should bring the storage to a state that could be obtained
by executing a subset of the I/O operations preceding the crash in
their original causality order. We call this partially ordered subset
a preserved set. Different consistency models will correspond to
different definitions of the legal preserved sets. For the HPC I/O
stack, we consider the following crash-consistency models:

Strict Crash Consistency. As discussed, it means that all oper-
ations preceding the crash, and only those, appear to have executed.
If the program is deterministic, then the storage is restored to the
state at the crash point (i.e., one preserved set per crash); if it is
non-deterministic, it is restored to the state that could have been
achieved with a different multiprocessing schedule.

Commit Crash Consistency. Storage systems often provide
commit operations that ensure that preceding I/O operations are
persisted to the storage. A typical example is POSIX fsync: fsync
flushes dirty data associated with a file to persistent storage. Com-
mit crash consistency requires that (1) if a commit operation (e.g.,
fsync(fd3) in Figure 5) happened before the crash, then all I/O
operations persisted by this commit (e.g., write(fd3, "C") in Fig-
ure 5) are in the the preserved set; (2) operations that were not
persisted by the commit operations but happened before the crash

write(fd1,”A”)
send(buf)
write(fd2,”B”)
crash

Process 0

recv(buf)
write(fd3,”C”)
fsync(fd3)
crash

Process 1

Figure 5: A parallel execution at the point of a system crash.

could be either persisted or not persisted, leading to different pre-
served sets; (3) operations that happen after the crash are not in
the preserved set.

Causal Crash Consistency. This model extends the commit
crash consistency with an additional requirement: if an I/O opera-
tion𝐴 is in the preserved set, then any I/O operation that happened
before 𝐴 is also in the preserved set. The definition of causal crash
consistency seems to match the intuition of programmers, and is
a good match for the dominant I/O pattern of scientific applica-
tions, where the computation goes through successive phases, each
depending on the previous one. A local file system such as ext4,
mounted in data journaling mode, is causally consistent. Parallel file
systems usually recover to a causally consistent state even though
they do not explicitly guarantee it.

Baseline Crash Consistency:We believe that the weakest rea-
sonable crash consistency model is to require that if a file or a
dataset was closed before the crash occurred, then all updates to
that file before it was closed were preserved. Formally, the pre-
served set includes all updates performed on a file or dataset that
was not opened in write mode when the crash happened.

We illustrate these definitions in Figure 5. With strict crash
consistency, all three writes are preserved. With commit crash
consistency, the write of C is preserved, but the writes of A or B
may be lost. With causal crash consistency, the writes of A and
C are preserved, but it is legal for the write of B to be lost. With
baseline consistency, all three writes may be lost.

4.4.3 Crash-Consistency Checking. Once a crash state is created
for the checked I/O layer, ParaCrash will check whether it satisfies
the required crash consistency model, i.e., whether it matches a
legal “golden state” generated by replaying a legal preserved set
of I/O operations. To reduce the checking overhead, the checker
first checks the storage consistency using the checker available for
the corresponding I/O layer. For example, we have beegfs-fsck
for BeeGFS, mmfsck for GPFS, and h5check for HDF5. These tools
check that the internal storage system structure is consistent, but
they do not check which I/O operations preceding the crash were
preserved. If the first consistency test passes, we then test the crash
state against the specified consistency model. To do so, ParaCrash
compares each recovered crash state to the legal states obtained by
the replay of corresponding preserved sets of I/O operations.

If a crash state fails to match any of the legal states, we run
recovery tools (e.g., h5clear for HDF5) to resolve the inconsistency.
We only regard this state as inconsistent if the recovery tools cannot
fix the inconsistency issue. The choice of a crash consistency model
leads to different preserved sets and hence different legal storage
states (see Section 4.4.2). Since weaker models allow for a larger
number of legal states, fewer behaviors are considered to be wrong.
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Figure 6: The workflow of ParaCrash. We use circled num-
bers to indicate the order of the workflow.

ParaCrash checks crash states using a top-down approach: it
checks whether the crash state is a correct I/O library state, based
on the legal preserved sets of I/O library calls. If not, it checks
whether the crash state is a correct PFS state, based on the legal
preserved sets of PFS operations. If the state is an invalid I/O library
state, but a valid PFS state, then the bug is attributed to the I/O
library; otherwise it is attributed to the PFS. We illustrate the entire
workflow of ParaCrash in Figure 6.

5 IMPLEMENTATION AND OPTIMIZATIONS
ParaCrash takes a configuration file and two programs as input, and
automatically generates crash-consistency reports for the tested
I/O stack. The configuration file is used to specify (1) system con-
figurations like the PFS mount point, storage directories, file stripe
size, number of servers and client; (2) the crash consistency model
for each I/O layer, and (3) the mode used for crash state explo-
ration. ParaCrash supports three crash-state exploration modes:
brute-force, pruning, and optimized exploration. The brute-force
mode implements Algorithm 1 and 2 to generate crash states. The
pruning mode leverages an efficient crash state pruning mechanism
to cut down the exploration space. And the optimized exploration
mode enables incremental crash state exploration in addition to
pruning. The two programs are a preamble program that initializes
the storage system and a test program that runs next. ParaCrash
traces and emulates crashes for the test program. In this section, we
will discuss implementation details and ParaCrash optimizations.

5.1 Tracing and Replaying
The I/O tracing component of ParaCrash is developed based on the
Recorder tracing tool [63], strace [14], and Open-iSCSI [41, 73].
We use Recorder and strace to trace the HDF5, MPI-IO and I/O
calls of all the test programs. For user-level PFS (e.g., BeeGFS), we
use strace to trace the local I/O operations. For kernel-level PFS
(e.g., GPFS), we mount them on iSCSI disks and trace block-level I/O
commands. As shown in Figure 7, the PFS I/O tracing component
is generic. The syscall-based tracing applies to the user-level PFS
and SCSI-based tracing applies to the kernel-level PFS. ParaCrash
also traces communication calls at each layer. Similar to I/O tracing,
we use Recorder for tracing MPI communications and strace for
communications between user-level PFS servers. For kernel-level
like GPFS, we trace their tcp communications between servers.

We enhanced Recorder in order to trace all relevant I/O oper-
ations (including HDF5, MPI-IO, and POSIX) of the test program.

I/O
Tracer SCSI

iSCSI target

Kernel-level PFS

GPFS

NSD NSD

Lustre

ldiskfs ldiskfs

iSCSI target
img.0

System Call

User-level PFS

BeeGFS

meta storage

GlusterFS

server server

ext4 ext4ext4

/dev/sd*

img.1

Figure 7: I/O tracing approach for PFS in ParaCrash.

We implement these new features using 253 additional LoC to
trace additional HDF5 and MPI functions, and record more detailed
function call parameters. For example, ParaCrash records both the
address and content of the MPI_File_write call. It also records
the exact memspace and filespace dimension of H5Dwrite. The
tracing component of ParaCrash is lightweight, and it does not
require program modification. After tracing, a separate file will be
created for each process with traces at each I/O layer.

To generate crash states and legal storage states, ParaCrash
replays I/O traces at different I/O layers. To replay operations of
the parallel or local file systems, ParaCrash utilizes the Python’s
OS module to invoke system calls. Replaying I/O calls at the HDF5
level requires a different approach. We build an h5replay tool to
replay HDF5 I/O operations. Given a sequence of HDF5 operations
to replay, it creates a C program containing the HDF5 function
calls and their dependent statements, and executes the generated
program.

5.2 Bug Classification
ParaCrash uses the rules described in Table 1 to classify bugs. We
classify a bug as a reordering issue between two operations if the
first pattern is observed (Table 1a), and as an atomicity issue if
the second pattern (Table 1b) is observed. ParaCrash also checks
atomicity issues for more than two operations.

ParaCrash generates a crash consistency report for each test
program based on the I/O layer the crash is attributed to and its
bug classification. As multiple test programs may expose similar
bugs, we use the following rules to aggregate inconsistent crash
states that have the same cause. For test programs using POSIX
APIs, two inconsistent crash states are considered to have the same
cause, if they are caused by the broken atomicity or reordering of
the same pair of operations. For test programs using an I/O library
like HDF5, we also take the I/O library objects (e.g., B-tree nodes
and symbol table nodes) into count. In this case, two inconsistent
crash states are considered to have the same cause, if they involve
the same set of operations on the same data or metadata structures.

We implemented a tool named h5inspect to map HDF5 objects
to their location in the file, which will assist with the bug classifi-
cation and multi-level trace analysis in §4.2. Given an HDF5 file,
h5inspect generates a JSON file to record its object mapping in-
formation. We implement h5inspect based on h5check [34], and
it supports HDF5 1.8, HDF5 1.10, and NetCDF 4.7.
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Table 1: Pairwise failure patterns. "✗" mark denotes that the
crash state fails the test, while "✓" mark indicates that it
passes the test.

Inconsistency 𝐼1
𝑂𝐵

Persisted Not persisted

𝑂𝐴
Persisted ✓ ✓

Non-persisted ✗ ✓

(a) Reordering issue:𝑂𝐴 should be persisted before𝑂𝐵 .

Inconsistency 𝐼2
𝑂𝐵

Persisted Not persisted

𝑂𝐴
Persisted ✓ ✗

Non-persisted ✗ ✓

(b) Atomicity issue:𝑂𝐴 should be persisted with𝑂𝐵 .

5.3 Optimizations for State Exploration
The crash state exploration procedure may generate hundreds or
even thousands of possible crash states for a simple test program.
The reconstruction of a crash state can take several seconds, even
for a small-scale PFS configuration of four servers. Therefore, this
can lead to a long exploration time for each single test program. To
address these two issues, we propose two optimization techniques:

To address the state explosion challenge, we develop an efficient
crash state pruning mechanism to reduce the number of crash state
reconstructions. Specifically, ParaCrash maintains a list of incon-
sistent crash scenarios that have been explored, and skips scenario
that has been already explored.

Consider the configurations described in Table 1a, where 𝑂𝐴

and𝑂𝐵 are the lowermost I/O operations traced at different servers
(local filesystem I/O operations for user-level PFS; block I/O opera-
tions for kernel-level PFS). If a recovered state fails the test when
𝑂𝐴 was not persisted but 𝑂𝐵 was, but any of the other three com-
binations pass the test, then we identify that the problem is due
to a reordering of these two operations. Henceforth, we do not
test scenarios where 𝑂𝐴 is not persisted while 𝑂𝐵 is persisted. The
pruning rule for avoiding duplicate atomicity issue is specified in a
similar manner: Once we find that several operations have to be
executed atomically, we do not further test scenarios where these
operations are partially persisted.

In addition, we leverage the semantic information obtained from
the mapping of high-level data structures to low-level local file
offsets to further prune the exploration space. For example, storage
operations that update data chunks in the I/O library dataset will
not be reordered, as they are not likely to incur metadata consis-
tency issues. We show in Section 6.4 that our proposed pruning
mechanisms can greatly reduce the number of crash states, while
not decreasing test coverage.

To reduce the state reconstruction time, ParaCrash implements
an incremental crash state reconstruction mechanism. In the brute-
force mode, we create each crash state by replaying all the local
file system I/O operations. PFS has to synchronize with its local
file system, which is usually accomplished by restarting the PFS.
However, the differences between crash states can be merely one
or two I/O operations, and we do not need to restart from scratch
when moving from one state to another. An optimized order in

Table 2: System Configuration.
Category Software Version Configuration

Operating System Ubuntu 16.04 default
CentOS 7.9 lustre-patched

Parallel File System

BeeGFS 7.1.2 tuneRemoteFSync
OrangeFS 2.9.7 default
GlusterFS 5.13 striped volume
GPFS 5.0.4 default
Lustre 2.12.6 default

Parallel I/O Library
MPICH 3.0.4 shared library, pvfs enabled
HDF5 1.8.12 shared library, mpi enabled
NetCDF 4.7.5 shared library, mpi enabled

which crash states are visited is chosen to reduce the number of
PFS rebooting operations. We model this procedure as solving a
traveling salesman problem (TSP). The collection of all crash states
are the nodes of an undirected graph, and the distance between
two crash states is the number of PFS servers in different states. In
ParaCrash, we use a greedy TSP solver [13] to find an optimized
visiting path.

6 PARACRASH EVALUATION
To evaluate the efficiency of ParaCrash, we run test programs on
various parallel file systems and investigate the causes and the
consequences of the identified crash consistency bugs. ParaCrash
found 15 new crash consistency bugs and attributed them to the
PFS or the parallel I/O library. We also show that our optimized
exploration mechanisms are effective, as they achieved up to 12.6×
performance improvement while identifying the same bugs.

6.1 System Configuration
We evaluate ParaCrash with five parallel file systems: GPFS (a.k.a.,
Spectrum Scale) [57], Lustre [58], BeeGFS [37], OrangeFS [61], for-
merly known as PVFS2, and GlusterFS [21]. Their configurations
are shown in Table 2. BeeGFS, OrangeFS, and Lustre are configured
with two metadata servers and two storage servers. For GlusterFS
and GPFS, we run two servers in total, as each server can manage
both data and metadata. The stripe size at each storage server is
set to 128KB. When a file grows larger than the stripe size, its file
chunks are stored across data servers in a round-robin manner.
As for the metadata services, BeeGFS and GlusterFS store their
metadata with extended attributes, while OrangeFS uses the default
Berkeley DB [46] to store the metadata information.

We use HDF5 (h5py as the Python wrapper) and NetCDF (py-
netcdf4 as the Python wrapper, HDF5 format) as the parallel I/O
libraries in our evaluation, as HDF5 and NetCDF are deployed in a
majority of HPC systems as their core I/O libraries. The caching
of parallel I/O libraries is enabled by default. The PFS servers for
BeeGFS, OrangeFS, and GlusterFS are assumed to run their own
local file system ext4. The local file system uses its safest mode in
our evaluation – data journaling. Following the testing approach
used in previous research [15], ParaCrash enables PFS testing with
multiple servers on a single machine, with each server being a
separate process or runs in individual virtual machine listening on
a distinct network port.
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Figure 8: Number of inconsistent crash states on different file systems. The line plots represent the number of HDF5 inconsis-
tencies where PFS is in the correct states.

6.2 Test Cases and Test Models
We use 11 representative test programs to evaluate ParaCrash, in-
cluding POSIX-IO programs, HDF5 and NetCDF programs, and
parallel HDF5 programs. For all test programs, we test PFS with
the causal crash consistency model, since none of the parallel file
systems satisfies strong consistency, but all of them satisfy causal
consistency. For HDF5 and NetCDF programs, the I/O libraries are
tested with both baseline consistency and causal crash consistency.

We follow the common practice of using the simplest test for
identifying a bug. The test programs use code fragments found in
real HPC programs. If we identify a bug using these test programs,
the bug could exist in real HPC programs as well. ParaCrash allows
users to generate their own test programs, although the generation
of test programs is not the focus of this work. As we will discuss in
Section 6.3, simple test programs can reveal many crash-consistency
bugs across the HPC I/O stack.

POSIX Programs. Each POSIX program invokes a sequence
of I/O system calls to the parallel file system. The test program
typically consists of two or more key operations. We list these test
programs and their initial states as follows. Some of them were
used in previous file system studies [20, 51].

• Atomic-Replace-via-Rename (ARVR). This program atomically
updates the file content of a preexisting file foo. ARVR creates
a temporary file tmp, writes to it with the updated content, and
then replaces the original file with the tmp via a rename operation.
This pattern is used by checkpointing libraries [16, 49] to ensure
that the latest checkpoint file always has the same name.
• Create-and-Rename (CR). The PFS is initialized with two direc-
tories A and B. The CR program creates a file foo under A and
moves it to the other directory.
• Rename-and-Create (RC). The PFS is initialized with one direc-
tory named A. The RC program renames it to B and next creates
a file B/foo.
• Write-Ahead-Logging (WAL). The PFS is initializedwith a file foo.
The WAL program first writes logs to record file modifications,
and then it overwrites the file content with multiple pages.

HDF5 and NetCDF Programs. Each program contains one or
two common I/O library function calls, such as dataset creation
or deletion. These programs start with a common initial state in
which a file stores two groups and two datasets. The fundamental
HDF5 operations include dataset creation, deletion, rename, and
resize. Correspondingly, our HDF5 test suite tests each of these
operations with test programs H5-create, H5-delete, H5-rename,

and H5-resize. As NetCDF supports fewer operations on variables
and groups, we only test its variable create and rename operation
with CDF-create and CDF-rename. We do not find any bugs with
CDF-rename, so we do not report it in this paper. We also have
two parallel programs in the evaluation, each of them runs collec-
tive HDF5 calls (i.e., dataset creation and resize). We believe these
programs represent common use cases, as they cover the essential
metadata operations of these I/O libraries.

Metadata Node Storage Node #1
updates metadata
in database
sendto(client)

recvfrom(client)
pwrite(keyval.db)
fdatasync(keyval.db)
pwrite(attrs.db)
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Figure 9: ARVR program crashes differently on BeeGFS (see
Figure 2), OrangeFS, GlusterFS, and GPFS. The legal storage
states under causal consistency are shown in figure (a). Fig-
ure (b) and (c) show that some BeegFS bugs do not occur in
OrangeFS and GlusterFS. Figure (d) shows GPFS traces. GPFS
will be inconsistent if the atomic group of writes is partially
persisted.

Sensitivity. We observe that whether consistency bugs are trig-
gered may depend on the system configuration. With POSIX pro-
grams, PFS accesses multiple files and directories across the servers.
Their file distribution pattern may affect the persistence order-
ing between I/O operations. Therefore, we test POSIX programs
with different distribution patterns and check if they expose dif-
ferent bugs. HDF5 and NetCDF programs use tree structures to
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Table 3: List of crash consistency bugs discovered by ParaCrash. We show in the 4th column the details of each bug. We use
op@server to represent an operation executed on the server and # to distinguish between different servers of the same type.
We use 𝐴→ 𝐵 to show that A should be persisted before B, and [𝐴, 𝐵] to indicate that A should be persisted with B. In the 3rd
column, the root cause layer is the same as the inconsistent layer if we do not specify it.

No. Program Inconsistent layer
(Root Cause Layer) Details Consequence Sensitivity

1. ARVR BeeGFS, OrangeFS append(file chunk of tmp)@storage→
rename(d_entry of tmp, d_entry of foo)@metadata Data loss N/A

2. ARVR BeeGFS rename(d_entry of tmp, d_entry of foo)@metadata→
unlink(old file chunk of tmp)@storage Data loss N/A

3. ARVR GPFS [write(log file)@server#2, write(parent_dir)@server#2,
write(file inode)@server#1, write(parent_dir inode)@server#2]

Data loss (accept all mmfsck fixes)
Metadata loss (if inode entry not deleted) N/A

4. CR
BeeGFS, OrangeFS link(idfile, d_entry of A/foo)@metadata→

unlink(d_entry of B/foo)@metadata File created in both directories N/A
GPFS write(inode of directory A/)@server→

write(inode of directory B/)@server

5. RC
BeeGFS rename(d_entry of A, d_entry of B)@metadata#1→

link(idfile, d_entry of B/foo)@metadata#2 File created in a wrong directory
file distrib.

GPFS write(directory entry of the parent directory)@server→
write(log file)@server N/A

6. WAL BeeGFS, GlusterFS,
OrangeFS

append(file chunk of log)@storage#1→
overwrite(file chunk of foo)@storage#2 No logs written after file modification file distrib.

7. WAL BeeGFS link(idfile, d_entry of log)@metadata→
overwrite(file chunk of foo)@storage No logs created after file modification N/A

8. WAL BeeGFS, GlusterFS overwrite(file chunk of foo)@storage→
unlink(d_entry of log)@metadata No logs created after file modification N/A

9. H5-parallel-create HDF5 Local heap→
B-tree nodes of the same group Cannot open an unmodified dataset # of clients

10. H5-create HDF5 (BeeGFS, OrangeFS,
GlusterFS, GPFS, Lustre)

B-tree nodes & local name heap→
Symbol table node of the same group Cannot open an unmodified dataset N/A

11. H5-delete HDF5 Symbol table node→
B-tree nodes & local heap of the same group Cannot open an unmodified dataset N/A

12. H5-rename HDF5 [B-tree nodes, symbol table & local heap from both
source and destination group] The renamed dataset is lost N/A

13. H5-parallel-resize,
H5-resize

HDF5 (BeeGFS, OrangeFS,
GlusterFS, GPFS, Lustre) Superblock→ B-tree node of the resized dataset Cannot read data from the resized dataset

(addr overflow) h5clear options

14. H5-resize HDF5 Child B-tree node→ Parent B-tree node Cannot read data from the resized dataset
(wrong B-tree signature) dim. of dataset

15. CDF-create NetCDF (BeeGFS, OrangeFS,
GlusterFS, GPFS, Lustre) Superblock→ Object header Cannot open the file

(NetCDF: HDF5 error [Errno -101]) N/A

organize metadata (B-tree nodes and symbol table nodes). Inconsis-
tencies could be triggered when the nodes in the tree are split across
servers. Thus, we test them with a variety of dataset dimensions
(from 200×200 to 1000×1000, 200×200 by default in our setting),
and different numbers of datasets per group (from 1 to 8, 2 by de-
fault). For parallel programs, we also choose a different number of
clients (from 1 to 10, 2 by default). We report our sensitivity study
results in Table 3. Note that increasing the number of servers, or
the number of victims in Algorithm 1, did not expose new bugs.

6.3 Identified Crash-Consistency Bugs
For each test program, ParaCrash reports the inconsistent crash
states and attributes each bug to either HDF5 or PFS. We remove
the redundant inconsistent states and identify their unique root
causes (see Section 5.2).

We report the test results of ParaCrash in Figure 8. ParaCrash
identified 15 unique crash-consistency bugs. We list them in Table 3.

6.3.1 PFS Crash Consistency Bugs. As expected, we found that PFSs
suffer from more crash-consistency bugs than local file systems.
As shown in Figure 8, as we replace the PFS with ext4 that uses
data journaling mode, no crash leaves the system in an inconsistent
state for any of the POSIX test programs.

For BeeGFS, we find that each of the POSIX I/O test programs
may lead to inconsistent states after crashes. The bugs are results
of the improper synchronization of persistent I/O operations across
different servers. For example, the two crash-consistency bugs illus-
trated in Figure 2 are exposed by the ARVR program. Every POSIX
test program identified crash-consistency bugs in BeeGFS. Their
consequences include data loss, files created in wrong location, and
the loss of log files.

OrangeFS provides stronger persistence guarantees for its meta-
data services, since each 4KB modification to the database will be
followed by a fdatasync() operation (see Figure 9). This prevents
the reordering of I/O operations on the metadata servers, and thus
helps OrangeFS prevents one data inconsistency scenario for test
program ARVR. However, ParaCrash still identified crash consis-
tency bugs in OrangeFS. They occurred for two reasons: (1) multiple
updates on the metadata server are not issued in the correct order,
and the fsck of OrangeFS fails to fix the inconsistency (e.g., CR
program); (2) I/O operations on distinct storage servers could be
persisted in different order than how they are issued. Therefore,
the append operation in the ARVR program could still be reordered
after the directory entry rename (implemented by database updates)
and this results in data loss if the system crashes between their
persistence.
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Figure 10: Performance of ParaCrash using different crash state exploration strategies.
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Figure 11: Scalability of ParaCrash as we increase the num-
ber of storage servers. 1

GlusterFS does not have dedicated metadata servers. The meta-
data and data chunks of a single file or directory are stored on the
same servers. The metadata and data operations to a single file
are ordered when the file is smaller than the stripe size, as these
operations are executed by the same local file system. This pre-
vents all vulnerable reorderings of the ARVR program. However,
crash-consistency bugs can happen, when data updates are issued
to different files or different stripes of a single file, across multiple
storage servers. ParaCrash identified such bugs (see Figure 8). For
example, the WAL test program that modifies two files, and HDF5
programs that operates against large files.

ParaCrash also reports bugs in kernel-level PFS – GPFS and
Lustre. GPFS suffers from data inconsistency after running three
out of the four POSIX programs. For CR and RC test program,
GPFS bugs have similar causes and consequences as for BeeGFS. As
shown in Figure 9(d) and Table 3, the root cause and consequence
of running ARVR program against GPFS is different, and we treat
it as a new bug. The recovery mechanism of file systems affects
the consequence severity. After we run the GPFS checker mmfsck,
GPFS still suffers from data or metadata loss. We did not find crash-
consistency bugs in Lustre when we run the POSIX test programs.
This is because Lustre properly aggregates intermediate changes to
the files and invokes accurate disk barriers to flush data to the disk.
However, we identified crash-consistency bugs in both Lustre and
GPFS, when we run HDF5 test programs. We will describe them in
the following section.

6.3.2 HDF5 and NetCDF Crash Consistency Bugs. After testing
the I/O stack with ParaCrash, we find that HDF5 violates base-
line crash consistency (H5-create, H5-delete, CDF-create, and
H5-parallel-create) as well as causal consistency (H5-resize,

H5-rename). All these identified bugs can result in application data
loss. The violations of baseline crash consistency make unmod-
ified datasets inaccessible. The bugs exposed by H5-resize and
H5-rename corrupt the resized or renamed dataset. We confirmed
these bugs with HDF5 developers. We also confirmed with h5py
developers that these bugs do not come from the python interface.

We list all the bugs (whether attributed to the PFS or HDF5
library) in Table 3. As shown, a majority of crash-consistency
bugs at the HDF5 level are caused by the improper persistence
ordering of I/O operations against the library’s metadata struc-
tures. For example, the parent B-tree node and its child node in
the H5-resize program should be persisted in the correct order.
This crash-consistency bug happens as we increase the dataset
dimension from 800×800 to 1000×1000.

6.3.3 Cross-layer Bug Attribution. We attribute bugs to the PFS if it
violates the causal crash consistency. This is the case for the bugs ex-
posed by the tests of H5-create, H5-resize, H5-parallel-resize,
and CDF-create. All other bugs are attributed to the HDF5 library.
Proper bug attribution depends on the assumed contract between
HDF5 and PFS: The bugs attributed to HDF5 will affect HDF5 run-
ning atop other PFSs that are not strongly crash consistent – essen-
tially all of them. On the other hand, if the PFS only commits to
satisfy a weaker consistency model, then some of its crash states
will become legal, and bugs attributed to the PFS could be attrib-
uted to HDF5. This is the virtue of integrated testing: it forces an
agreement on the respective crash handling responsibilities of the
two layers.

.

6.4 ParaCrash Performance
ParaCrash can efficiently explore crash-consistency bugs with test
programs. We compare our proposed optimization strategies with
our brute-force exploration as the baseline. Since increasing 𝑘 (the
number of victims in Algorithm 1) did not expose new bugs, we use
𝑘 = 1 to report the performance of our crash state exploration. We
evaluate the performance of ParaCrash using BeeGFS, OrangeFS,
and GlusterFS. Generating all possible crash states in a brute-force
manner may take up to 1806 seconds. We show in Figure 10 that our
optimized exploration strategies are effective. In this experiment,
we run all test programs with their default settings.

1H5-delete program fails as we run it on OrangeFS withmore than eight storage servers.
This is due to a bug in OrangeFS that crashes the file system when ftruncate() is
invoked. We have reported this bug to the OrangeFS developers.
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With our proposed pruning mechanism, the crash state explo-
ration time for each test program running on different file systems
is significantly reduced (up to 2.9× for POSIX programs and 7.3×
for HDF5 programs). For example, the exploration time of ARVR
program on BeeGFS is significantly reduced from 1021.5 seconds to
352.4 seconds, as the pruning decrease the number of crash states
from 280 to 99. The pruning strategy reduces the total number
of crash states by 2.2× on average. As discussed in Section 5.3,
the pruning mechanism is especially effective for HDF5 programs,
in which we leverage the semantic information from the object
mappings to skip many crash states.

With incremental crash-state exploration, ParaCrash reduces
the time of generating each crash state by 4.2× on average. This
optimization is especially effective for testing BeeGFS, as it requires
the longest time (up to 7.8 seconds) to restart the PFS. Together
with the pruning, our incremental exploration mechanism reduces
the time of testing BeeGFS by 5.0× on average. Note that these op-
timization strategies did not reduce the number of bugs discovered.
We obtain similar performance trends as we run ParaCrash with
GPFS and Lustre.

To evaluate the scalability of ParaCrash, we increase the number
of storage servers. In this experiment, we decrease the PFS stripe
size as the number of servers increases. For example, we choose
the default 128KB stripe size for all 4-server settings and 16KB for
32-server settings (BeeGFS requires stripe size > 64KB, so we do not
further decrease it).We show the scalability result in Figure 11. Since
the file is striped into more chunks, there are more combinations
of I/O operations persisted on different servers. Therefore, without
pruning, the exploration time will increase exponentially as we
increase the number of servers. ParaCrash offers better scalability:
Its execution time increases linearly as we increase the number of
servers. Note that we do not identify new crash-consistency bugs
as we increase the number of servers or clients. This is expected,
since our tests, especially those related to the metadata of parallel
file systems, involve dependencies between a moderate number of
storage operations. Therefore, running ParaCrash at a larger scale
may not be required.

7 CONCLUSION
We take an initial effort in studying the crash-consistency bugs in
the HPC I/O stack. In order to properly attribute bugs to the respon-
sible I/O layer, we provide a clear definition of crash-consistency
models for the entire I/O stack, which could guide the future de-
velopment of parallel file systems and I/O libraries. To pinpoint
crash-consistency bugs in the HPC I/O stack, we develop a test-
ing framework named ParaCrash, which employs a golden master
testing methodology and various optimization techniques. Our eval-
uation shows that ParaCrash efficiently identifies 15 new bugs in
the popular parallel file systems and I/O libraries.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We ran experiments on local machines with Intel Core i7-7700K
CPU @ 4.20GHz, 16G DRAM, and 256GB SSDs. The operation sys-
tem is Ubuntu 18.04 and we use ext4 as the local filesystem. We
set up BeeGFS (beegfs-7.1.2) with multi-mode, OrangeFS (orangefs-
2.9.7) withMPICH support, andGlusterFS (gluster-5.13) with striped
volume. We build HDF5 library with shared and enable-parallel
options. We detect consistency bugs for HDF5 (h5py 2.10.0, HDF5
1.8.12) and netCDF (py-netcdf4 1.5.3, netcdf 4.7.4). We use netCDF4
format (based on HDF5) for netCDF library. ParaCrash is imple-
mented with Python 3.7.5 and GCC 7.5.0.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/my-HenryS/ParaCrash
Artifact name: ParaCrash
Citation of artifact: 10.5281/zenodo.5168471

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel Core i7-7700K CPU @ 4.20GHz

Operating systems and versions: Ubuntu 18.04

Compilers and versions: GCC 7.5.0; MPICH 3.0.4; Python 3.7.5

Applications and versions: HDF5 (h5py 2.10.0, HDF5 1.8.12) and
netCDF (py-netcdf4 1.5.3, netcdf 4.7.4)

Libraries and versions: MPICH 3.0.4;
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