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ABSTRACT

The approximate degree of a Boolean function f: {0,1}" — {0, 1}
is the minimum degree of a real polynomial p that approximates
f pointwise: |f(x) — p(x)| < 1/3 for all x € {0,1}". For any § >
0, we construct DNF and CNF formulas of polynomial size with
approximate degree Q(n'%), essentially matching the trivial upper
bound of n. This fully resolves the approximate degree of constant-
depth circuits (AC®), a question that has seen extensive research
over the past 10 years. Prior to our work, an Q(n!~9) lower bound
was known only for AC? circuits of depth that grows with 1/8 (Bun
and Thaler, FOCS 2017). Furthermore, the DNF and CNF formulas
that we construct are the simplest possible in that they have constant
width.

Our result gives the first near-linear lower bounds on the bounded-
error communication complexity of polynomial-size DNF and CNF
formulas in the challenging k-party number-on-the-forehead model
and two-party quantum model: Q(n/4kk?)1=9 and Q(n!~9%), respec-
tively, where § > 0is any constant. Our lower bounds are essentially
optimal. Analogous to above, such lower bounds were previously
known only for ACP circuits of depth that grows with 1/8.
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1 INTRODUCTION

Representations of Boolean functions by real polynomials play a
central role in theoretical computer science. Our focus in this paper
is on approximate degree, a particularly natural and useful com-
plexity measure. Formally, the e-approximate degree of a Boolean
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function f: {0,1}" — {0, 1} is denoted deg,(f) and defined as the
minimum degree of a real polynomial p that approximates f within
& pointwise: |f(x) — p(x)] < ¢ for all x € {0,1}". The standard
choice of the error parameter is ¢ = 1/3, which is a largely arbitrary
setting that can be replaced by any other constant in (0, 1/2) with-
out affecting the approximate degree by more than a multiplicative
constant. Since every function {0, 1} — {0, 1} can be computed
with zero error by a polynomial of degree at most n, we see that
the e-approximate degree is always an integer between 0 and n.

The notion of approximate degree originated three decades
ago in the pioneering work of Nisan and Szegedy [38] and has
since proved to be a powerful tool in theoretical computer sci-
ence. Upper bounds on approximate degree have algorithmic ap-
plications, whereas lower bounds are a staple in complexity the-
ory. On the algorithmic side, approximate degree underlies many
of the strongest results obtained to date in computational learn-
ing [5, 26, 29, 30, 39, 59], differentially private data release [23, 60],
and algorithm design in general [25, 35, 45]. In complexity theory,
the notion of approximate degree has produced breakthroughs in
quantum query complexity [1, 2, 4, 10, 14, 17, 28], communication
complexity [11, 15, 16, 24, 34, 42-44, 46, 47, 51, 52], and circuit
complexity [6, 11, 13, 31, 32, 40, 46, 58].

Approximate degree has been particularly prominent in the
study of ACY, the class of polynomial-size constant-depth circuits
with gates V, A, = of unbounded fan-in. The simplest functions in
AC? are conjunctions and disjunctions, which have depth 1, fol-
lowed by polynomial-size CNF and DNF formulas, which have
depth 2, followed in turn by higher-depth circuits. Lower bounds
on the approximate degree of AC? functions have been used to
settle the quantum query complexity of Grover search [10], ele-
ment distinctness [2], and a host of other problems [17]; resolve
the communication complexity of set disjointness in the two-party
quantum model [42, 47] and number-on-the-forehead multiparty
model [11, 24, 34, 44, 46, 47, 51, 52]; separate the communication
complexity classes PP and UPP [15, 46]; and separate the polyno-
mial hierarchy in communication complexity from the communica-
tion class UPP [43]. Despite this array of applications and decades
of study, our understanding of the approximate degree of AC® has
remained surprisingly fragmented and incomplete. In this paper,
we set out to resolve this question in full.

In more detail, previous work on the approximate degree of AC®
started with the seminal 1994 paper of Nisan and Szegedy [38],
who proved that the OR function on n bits has approximate de-
gree O(y/n). This was the best lower bound for an AC? function
until Aaronson and Shi’s celebrated lower bound of Q(nz/ 3) for
the element distinctness problem [2]. In a beautiful result from
2017, Bun and Thaler [20] showed that AC? contains functions in
n variables with approximate degree Q(n'~9), where the constant
& > 0 can be made arbitrarily small at the expense of increasing the
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depth of the circuit. In follow-up work, Bun and Thaler [21] proved
that the Q(n!~%) lower bound for AC° holds even for approxima-
tion to error exponentially close to 1/2. A stronger yet result was
obtained by Sherstov and Wu [57], who showed that AC? has es-
sentially the maximum possible threshold degree (defined as the
limit of e-approximate degree as ¢ /' 1/2) and sign-rank (a gener-
alization of threshold degree to arbitrary bases rather than just the
basis of monomials). Quantitatively, the authors of [57] proved a
lower bound of Q(nl_‘s) for threshold degree and exp(Q(nl_(s)) for
sign-rank, essentially matching the trivial upper bounds. As before,
& > 0 can be made arbitrarily small at the expense of increasing the
circuit depth. In particular, AC? requires a polynomial of degree
Q(n'~%) even for approximation to error doubly (triply, quadruply,
quintuply...) exponentially close to 1/2.

The lower bounds of [20, 21, 57] show that AC? functions have
essentially the maximum possible complexity—but only if one is
willing to look at circuits of arbitrarily large constant depth. What
happens at small depths has been a wide open problem, with no
techniques to address it. Bun and Thaler [20] observe that their
AC? circuit with approximate degree Q(n'~?) can be flattened to
produce a DNF formula of size exp(logo(l"g(l/‘s)) n), but this is su-
perpolynomial and thus no longer in AC. The only progress of
which we are aware is an Q(n3/ 4-3) Jower bound obtained for
polynomial-size DNF formulas in [17, 36]. This leaves a polynomial
gap in the approximate degree for small depth versus arbitrary
constant depth. Our main contribution is to definitively resolve the
approximate degree of AC? by constructing, for any constant § > 0,
a polynomial-size DNF formula with approximate degree Q(n'9%).
We now describe our main result and applications in technical
detail.

1.1 Approximate Degree of DNF and CNF

Formulas
Recall that a literal is a Boolean variable x1, x2, . . ., X, or its nega-
tion X1, X3, . .., Xn. A conjunction of literals is called a term, and

a disjunction of literals is called a clause. The width of a term or
clause is the number of literals that it contains. A DNF formula is a
disjunction of terms, and analogously a CNF formula is a conjunc-
tion of clauses. The width of a DNF or CNF formula is the maximum
width of a term or clause in it. One often refers to DNF and CNF
formulas of width k as k-DNF and k-CNF formulas, respectively.
The size of a DNF or CNF formula is the total number of terms or
clauses that it contains. Thus, AC? circuits of depth 1 correspond
precisely to clauses and terms, whereas AC? circuits of depth 2
correspond precisely to polynomial-size DNF and CNF formulas.
Our main result on approximate degree is as follows.

THEOREM 1.1 (MAIN RESULT). Let§ > 0 be any constant. Then for
eachn > 1, there is an (explicitly given) function f: {0,1}" — {0, 1}
that has approximate degree

deg, j5(f) = Q(n'™)
and is computable by a DNF formula of size n°V) and width O(1).

Theorem 1.1 almost matches the trivial upper bound of n on the
approximate degree of any function. Thus, the theorem shows that
AC? circuits of depth 2 already achieve essentially the maximum
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possible approximate degree. This depth cannot be reduced further
because AC circuits of depth 1 have approximate degree O(+/n). Fi-
nally, the DNF formulas constructed in Theorem 1.1 are the simplest
possible in that they have constant width.

Recall that previously, a lower bound of Q(n'~9) for AC® was
known only for circuits of large constant depth that grows with
1/8. The lack of progress on small-depth AC? prior to this paper
had experts seriously entertaining [21] the possibility that AC*
circuits of any given depth d have approximate degree O(n'~%a),
for some constant §; = §4(d) > 0. Such an upper bound would have
far-reaching consequences in computational learning and circuit
complexity. Theorem 1.1 rules it out.

We obtain the following strengthening of our main result, in
which the allowed approximation error is relaxed from 1/3 to an
optimal 1/2 — 1/n®0).

THEOREM 1.2 (MAIN RESULT FOR LARGE ERROR). Letd > 0 and
C > 1 be any constants. Then for each n > 1, there is an (explicitly
given) function f: {0,1}™ — {0, 1} that has approximate degree

degy__1(f) = Q(n'™%)

and is computable by a DNF formula of size n°W and width O(1).

To rephrase Theorem 1.2, polynomial-size DNF formulas require

degree Q(n'%) for approximation not only to constant error but

even to error % - n%, where C > 1 is an arbitrarily large constant.

Thus, Theorem 1.2 assumes a weaker hypothesis but produces the

same conclusion as Theorem 1.1. The error parameter in Theo-
1

rem 1.2 cannot be relaxed further to % T because any DNF

formula with m terms can be approximated to error % - Q(%) by a
polynomial of degree O(~/nlog m).

Negating a function has no effect on the approximate degree.
Indeed, if f is approximated to error ¢ by a polynomial p, then the
negated function ~f = 1— f is approximated to the same error ¢ by
the polynomial 1 — p. With this observation, Theorems 1.1 and 1.2
carry over to CNF formulas:

CoROLLARY 1.3. Letd > 0 and C > 1 be any constants. Then for
eachn > 1, there is an (explicitly given) function g: {0,1}" — {0, 1}
that has approximate degree

— 1-6
deg,_(9) = 2n'™0)

and is computable by a CNF formula of size n°W and width O(1).

We now turn to applications of our work to basic questions in
communication complexity.

1.2 Multiparty Communication Complexity

We adopt the number-on-the-forehead model of Chandra, Furst, and
Lipton [22], which is the most powerful formalism of multiparty
communication. The model features k communicating players and a
Boolean function F: Xj X X X - - - X X — {0, 1} with k arguments.
An input (x1,x2,...,xx) is distributed among the k players by
giving the i-th player the arguments x1, . .., xj—1, Xj+1, . . ., X; but
not x;. This arrangement can be visualized as having the k players
seated in a circle with x; written on the i-th player’s forehead,
whence the name of the model. Number-on-the-forehead is the
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canonical model in the area because any other way of assigning
arguments to players results in a less powerful model—provided of
course that one does not assign all the arguments to some player,
in which case there is never a need to communicate.

The players communicate according to a protocol agreed upon in
advance. The communication occurs in the form of broadcasts, with
a message sent by any given player instantly reaching everyone
else. The players’ objective is to compute F on any given input with
minimal communication. To this end, the players have access to
an unbounded supply of shared random bits which they can use in
deciding what message to send at any given point in the protocol.
The cost of a protocol is the total bit length of all the messages
broadcast in a worst-case execution. The e-error randomized com-
munication complexity R (F) of a given function F is the least cost
of a protocol that computes F with probability of error at most ¢
on every input. As with approximate degree, the standard setting
of the error parameter is ¢ = 1/3.

The number-on-the-forehead communication complexity of con-
stant depth circuits is a challenging question that has been the focus
of extensive research, e.g., [11, 12, 20, 24, 34, 44, 51, 52]. In contrast
to the two-party model, where a lower bound of Q(+/n) for AC®
circuits is straightforward to prove from first principles [7], the
first n2(1) multiparty lower bound [52] for AC® was obtained only
in 2012. The strongest known multiparty lower bounds for AC? are
obtained using the pattern matrix method of [51], which transforms
approximate degree lower bounds in a black-box manner into com-
munication lower bounds. In the most recent application of this
method, Bun and Thaler [20] gave a k-party communication prob-
lem F: ({0, 1}™)* — {0, 1} in AC® with communication complexity
Q(n/ 4k kz)l_‘s, where the constant § > 0 can be taken arbitrarily
small at the expense of increasing the depth of the AC? circuit. This
shows that AC? has essentially the maximum possible multiparty
communication complexity—as long as one is willing to use circuits
of arbitrarily large constant depth. For circuits of small depth, on
the other hand, the lower bounds are polynomially weaker: the
best lower bound of which we are aware is Q(n/4Kk2)3/4=9 for the
k-party communication complexity of polynomial-size DNF formu-
las, which results from applying the pattern matrix method to the
approximate degree lower bounds in [17, 36]. What is more, if one
changes the question slightly by allowing communication protocols
with error % - n% for a large constant C > 1, then no lower bounds
at all were known on the multiparty communication complexity
of polynomial-size DNF formulas. This fragmented state of the art
closely parallels that for approximate degree prior to our work.

We resolve the multiparty communication complexity of AC? in
detail in the following theorem.

THEOREM 1.4. Fix any constants d € (0,1] and C > 1. Then for all
integersn, k > 2, there is an (explicitly given) k-party communication
problem Fp, - ({0, 13K — {0,1} with

n 1-6
Ry/3(Fp k) 2 (m) )

n1—5

R F, > —,
%,ﬁ( k) = o
where ¢’ > 1 is a constant independent of n and k. Moreover, each

Fy i is computable by a DNF formula of size n¢ and width c’k.

STOC 22, June 20-24, 2022, Rome, Italy

Theorem 1.4 essentially represents the state of the art for multiparty
communication lower bounds. Indeed, the best communication
lower bound to date for any explicit function F: ({0, 1Mk -
{0,1}, whether or not F is computable by an AC? circuit, is
Q(n/Zk) [8]. Theorem 1.4 comes close to matching the trivial upper
bound of n + 1 for any communication problem, thereby showing
that ACO circuits of depth 2 achieve nearly maximum possible com-
munication complexity. Moreover, our result holds not only for
bounded-error communication but also for communication with

error % - n% for any C > 1. The error parameter in Theorem 1.4

is optimal and cannot be further increased to % - ﬁ indeed, it
is straightforward to see that any DNF formula with m terms has a
communication protocol with error % - Q(%) and cost 2 bits. The-
orem 1.4 is also optimal with respect to circuit depth because the
multiparty communication complexity of AC? circuits of depth 1 is
at most 2 bits.

Since randomized communication complexity is invariant under
function negation, Theorem 1.4 remains valid with the word “DNF”
replaced with “CNF”

1.3 Quantum Communication Complexity

We adopt the standard model of quantum communication, where
two parties exchange quantum messages according to an agreed-
upon protocol in order to solve a two-party communication problem
F: XXY — {0, 1}. As usual, an input (x,y) € X XY is split between
the parties, with one party knowing only x and the other party
knowing only y. We allow arbitrary prior entanglement at the start
of the communication. A measurement at the end of the protocol
produces a single-bit answer, which is interpreted as the protocol
output. An e-error protocol for F is required to output, on every
input (x,y) € X X Y, the correct value F(x, y) with probability at
least 1 — ¢. The cost of a quantum protocol is the total number of
quantum bits exchanged in the worst case on any input. The ¢-error
quantum communication complexity of F, denoted Q3 (F), is the least
cost of an ¢-error quantum protocol for F. The asterisk in Q}(F)
indicates that the parties share arbitrary prior entanglement. The
standard setting of the error parameter is ¢ = 1/3, which is as usual
without loss of generality. For a detailed formal description of the
quantum model, we refer the reader to [42, 47].

Proving lower bounds for bounded-error quantum communica-
tion is significantly more challenging than for randomized commu-
nication. An illustrative example is the set disjointness problem on
n bits. Babai, Frankl, and Simon [7] obtained an Q(+/n) randomized
communication lower bound using a short and elementary proof,
which was later improved to a tight Q(n) in [9, 27, 41]. This is in
stark contrast with the quantum model, where the best lower bound
for set disjointness was for a long time a trivial Q(logn) until a
tight Q(+/n) was proved by Razborov [42].

A completely different proof of the Q(+/n) lower bound for set
disjointness was given in [47] by introducing the pattern matrix
method. Since then, the pattern matrix method has produced the
strongest known quantum lower bounds for AC? . Of these, the
best lower bound prior to our work was Q(n'=%) due to Bun and
Thaler [20], where the constant § > 0 can be taken arbitrarily
small at the expense of circuit depth. In the following theorem, we
resolve the quantum communication complexity of AC? essentially
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in full by proving that polynomial-size DNF formulas achieve near-
maximum communication complexity.

THEOREM 1.5. Letd > 0 andC > 1 be any constants. Then for each
n > 1, there is an (explicitly given) two-party communication problem
F: {0,1}" x {0,1}"* — {0,1} that has quantum communication
complexity

Qi L (F) =@
27 ,C
and is representable by a DNF formula of size n°W and width O(1).

This theorem remains valid for CNF formulas since quantum com-
munication complexity is invariant under function negation. As in
all of our results, Theorem 1.5 essentially matches the trivial upper
bound, showing that AC° circuits of depth 2 achieve nearly max-
imum possible complexity. Again analogous to our other results,
Theorem 1.5 holds not only for bounded-error communication but
also for communication with error % - n% for any C > 1. The
error parameter in Theorem 1.5 is optimal and cannot be further

increased to % - ﬁ: as remarked above, any DNF formula with m

terms has a classical communication protocol with error % - Q(%)
and cost 2 bits. Lastly, Theorem 1.5 is optimal with respect to cir-
cuit depth because AC? circuits of depth 1 have communication
complexity at most 2 bits even in the classical deterministic model.

In our overview so far, we have separately considered the classi-
cal multiparty model and the quantum two-party model. By combin-
ing the features of these models, one arrives at the k-party number-
on-the-forehead model with quantum players. Our results readily
generalize to this setting. Specifically, for any constants § > 0 and
C > 1, we give an explicit DNF formula F,, ;: ({0, 1}mM% - {0, 1}
of size n°1) and width O(k) such that computing F, . in the k-

party quantum number-on-the-forehead model with error % -1
n

requires Q(n1_5/4kk) quantum bits. For more details, see the full
version [56].

1.4 Previous Approaches

In the remainder of the introduction, we sketch our proof of Theo-
rems 1.1 and 1.2. To properly set the stage for our work, we start by
reviewing relevant background and presenting previous approaches
and their limitations. The notation that we adopt below is standard,
and we defer its formal review to Section 2.

Dual view of approximation. Let f: X — {0, 1} be a Boolean func-
tion of interest, where X is an arbitrary finite subset of Euclidean
space. The approximate degree of f is defined analogously to func-
tions on the Boolean hypercube: deg,(f) is the minimum degree
of a real polynomial p such that | f(x) — p(x)| < ¢ for every x € X.
A valuable tool in the analysis of approximate degree is linear
programming duality, which gives a powerful dual view of approx-
imation [47]. This dual characterization states that deg,(f) > d if
and only if there is a function ¢: X — R with the following two
properties: (@, f) > ¢l|¢|l1; and ($, p) = 0 for every polynomial p
of degree less than d. Rephrasing, ¢ must have large inner product
with f but zero inner product with every low-degree polynomial.
Equivalently, one may think of ¢ as being heavily correlated with
f but completely uncorrelated with any polynomial of degree less
than d. The function ¢ is variously referred to in the literature as a
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“dual object,” “dual polynomial,” or “witness” for f. The dual char-
acterization makes it possible—in principle if not in practice—to
prove any approximate degree lower bound by constructing the
corresponding witness ¢. This good news comes with a sobering
caveat: for all but the simplest functions, the construction of ¢ is
very demanding, and linear programming duality gives no guidance
whatsoever in this regard.

Componentwise composition. The construction of a dual object is
more approachable for composed functions since one can hope
to break them up into constituent parts, construct a dual ob-
ject for each, and recombine these results. Formally, define the
componentwise composition of functions f: {0,1}" — {0,1} and
g: X — {0, 1} as the Boolean function f o g: X" — {0, 1} given
by (f o g)(x1,...,xn) = f(g(x1),...,9(xn)). To construct a dual
object for f o g, one starts by obtaining dual objects ¢ and ¥ for
the constituent functions f and g, respectively, either by direct
construction or by appeal to linear programming duality. They are
then combined to yield a dual object @ for the composed function,
using dual componentwise composition [33, 49]:

D(x1, X2, ..., %Xn)
= ¢(I[¢(x1) > 0], ..., I[¢)(xn) > 0]) 1_[ [(x)l. (1)
i=1

This composed dual object typically requires additional work to
ensure strong enough correlation with the composed function f o
g. Among the generic tools available to assist in this process is
a “corrector” object { due to Razborov and Sherstov [43], with
the following four properties: (i) { is orthogonal to low-degree
polynomials; (ii) { takes on 1 at a prescribed point of the hypercube;
(iii) ¢ is bounded on inputs of low Hamming weight; and (iv) {
vanishes on all other points of the hypercube. Using {, suitably
shifted and scaled, one can surgically correct the behavior of a given
dual object ® on a substantial fraction of inputs, thus modifying
the metric properties of ® without affecting its orthogonality to
low-degree polynomials. This technique has played an important
role in recent work, e.g., [17, 20, 21, 57].

Componentwise composition by itself does not allow one
to construct hard-to-approximate functions from easy ones. To
see why, consider arbitrary functions f: {0,1}"* — {0,1} and
g:{0,1}"™ — {0, 1} with approximate degree at most n{ and nf,
respectively, for some 0 < a < 1. It is well-known [50] that the
composed function f o g on nyny variables has approximate degree
O(n{'ng) = O(n1nz)®. This means that relative to the new number
of variables, the composed function f og is asymptotically no harder
to approximate than the constituent functions f and g. In particular,
one cannot use componentwise composition to transform functions
on n bits with 1/3-approximate degree at most n* into functions
on N > n bits with 1/3-approximate degree w(N%).

Previous best bound for AC. In the previous best result on the
1/3-approximate degree of AC’, Bun and Thaler [20] approached
the componentwise composition f o g in an ingenious way to
amplify the approximate degree for a careful choice of g. Let
f:{0,1}" — {0,1} be given, with 1/3-approximate degree n*
for some 0 < @ < 1. Bun and Thaler consider the componentwise
composition F = f o (ANDg(jg m) © ORm), for an appropriate
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parameter m = poly(n). It was shown in earlier work [19, 49]
that dual componentwise composition witnesses the lower bound
degy/3(F) = Q(deg;/3(ORm) deg; /5(f)) = Q(vVmdeg,3(f)). Bun
and Thaler make the crucial observation that the dual object for
OR;;, has most of its £; mass on inputs of Hamming weight O(1),
which in view of (1) implies that the dual object for F places most
of its £; mass on inputs of Hamming weight O(n). The authors
of [20] then use the Razborov-Sherstov corrector object to trans-
fer the small amount of £; mass that the dual object for F places
on inputs of high Hamming weight, to inputs of low Hamming
weight. The resulting dual object is supported entirely on inputs of
low Hamming weight and therefore witnesses a lower bound on
the approximate degree of the restriction F’ of F to inputs of low
Hamming weight.

The restriction F’ takes as input N := ©(nmlogm) variables
but is defined only when its input string has Hamming weight
O(n). This makes it possible to represent the input to F/ more eco-
nomically, by specifying the locations of the O(r) nonzero bits
inside the array of N variables. Since each such location can be
specified using [log N bits, the entire input to F” can be specified
using [log N1 - O(n) = O(n) bits. This yields a function F”” on O(n)
variables. A careful calculation shows that this “input compres-
sion” does not hurt the approximate degree. Thus, the approximate
degree of F”’ is at least the approximate degree of F’, which as
discussed above is Q(v/m deg; 5(f)). With m set appropriately, the
approximate degree of F’/ is polynomially larger than that of f.
The passage from f to F’’ is the desired hardness amplification
for approximate degree. In summary, Bun and Thaler’s hardness
amplification involves three steps: (i) start with standard componen-
twise composition; (ii) restrict the input to strings of low Hamming
weight; (iii) compress the input to a near-linear number of variables.
To obtain an Q(n!~%) lower bound on the approximate degree of
AC?, the authors of [20] start with a trivial circuit and iteratively
apply the hardness amplification step a constant number of times,
until approximate degree Q(n'~?) is reached.

Limitations of previous approaches to AC®. Bun and Thaler’s hard-
ness amplification for approximate degree rests on two pillars. The
first is componentwise composition, whereby the given function
f:{0,1}"* — {0, 1} is composed componentwise with n indepen-
dent copies of the gadget ANDg(10g m) © OR. In this gadget, the
AND@(IOg m) gate is necessary to prevent accumulation of error
and to ensure the correlation property of the dual polynomial. The
resulting composed function F = f o (ANDg(1og m) © ORm) is de-
fined on N = ©(nmlog m) variables. The standard dual object for
F = f o (ANDg(1og m) © ORm) places nearly all of its {1 mass on
inputs of Hamming weight O(n) < N to start with, and the £;
mass can further be redistributed to make sure the dual object is
supported entirely on inputs of Hamming weight O(n). This brings
us to the second pillar of [20], input compression. Here, the length-
N input to F is represented compactly as an array of O(n) strings
of length [log N7 each, to indicate the locations of the O(n) ones
among the N input bits. The circuitry to implement these two pil-
lars is expensive, requiring in both cases a polynomial-size DNF
formula of width ©(log n+log m). As a result, even a single iteration
of Bun-Thaler hardness amplification cannot be implemented as a
polynomial-size DNF or CNF formula.
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To prove an Q(n'%) approximate degree lower bound for small
6 > 0 in the framework of [20], one needs a number of iterations
that grows with 1/§. Thus, the overall circuit produced in [20]
has a large constant number of alternating layers of AND and OR
gates of logarithmic and polynomial fan-in, respectively, and in
particular cannot be flattened into a polynomial-size DNF or CNF
formula. Proving Theorem 1.1 within this framework would require
reducing the fan-in of the AND gates from ©(log n +log m) to O(1),
which would completely destroy the componentwise composition
and input compression pillars of [20]. These pillars are present in all
follow-up papers [17, 20, 21, 57] and seem impossible to get around,
prompting the authors of [21, p. 14] to entertain the possibility
that the approximate degree of AC® is much smaller than once
conjectured. We show that this is not the case.

1.5 Our Proof

In this paper, we design hardness amplification from first principles,
without using componentwise composition or input compression.
Our approach efficiently amplifies the approximate degree even
for functions with sparse input, while ensuring that each hard-
ness amplification stage is implementable by a monotone circuit
of constant depth with AND gates of constant fan-in and OR gates
of polynomial fan-in. As a result, repeating our process any con-
stant number of times produces a polynomial-size DNF formula of
constant width.

Our approach at a high level. Let f: {0,1}N — {0,1} be a given
function. Let f|¢g denote the restriction of f to inputs of Hamming
weight at most 6, and let d = deg; 5(f|<g) be the approximate de-
gree of this restriction. The use of uppercase N is meant to empha-
size that the total number of variables can be vastly larger than 6,
making f|<g a function with sparse input. In actual usage, we have
N = 6C for any desired constant C > 1. Since an input y € {0, 1}V
to f|<g is guaranteed to have Hamming weight at most 0, we can
think of y as the disjunction of 0 vectors of Hamming weight at
most 1 each:

y=y1Vyz2V---Vyp,

where each y; is either the zero vector 0N or a basis vector
e1, e, . ..,en, and the disjunction on the right-hand side is applied
coordinate-wise. Our approach centers around encoding each y;
as a string of n < N bits so as to make the decoding difficult for
polynomials but easy for circuits. Specifically, we seek a decoding
function h: {0,1}" — {0,1}" with the following properties:

(i) the sets h~'(v) forv € {ey, es, . .., en, 0N} are indistinguish-
able by polynomials of degree up to D, for some parameter
D;

(ii) the sets i~ (v) for v € {e, es, ..., en, 0V} contain strings
only of Hamming weight O(1);

(iii) h is computable by a constant-depth monotone circuit with
AND gates of constant fan-in and OR gates of polynomial

fan-in.

With such A in hand, we define F: ({0,1}")? — {0, 1} by

0
F(xl,xz, e ,XQ) = f (\/ h(xi)) .
i=1
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Then, one can reasonably expect that approximating F is harder
than approximating f|g. Indeed, an approximating polynomial
has access only to the encoded input (x1, x2, . .., xp). Decoding
this input presumably involves computing (x1,x2,...,x9)
(h(x1), h(x32), . . ., h(xg)) one way or another, which by property (i)
requires a polynomial of degree greater than D. Once the decoded
string h(x1) V h(x2) V- - - V h(xg) is available, the polynomial further
needs to compute f on that input, which in and of itself requires
degree d. Altogether, we expect F to have approximate degree on
the order of Dd. Moreover, property (ii) ensures that F is hard to
approximate even on inputs of Hamming weight O(0), putting us
in a strong position for another round of hardness amplification.
Finally, property (iii) guarantees that the result of constantly many
rounds of hardness amplification is computable by a DNF formula
of polynomial size.

Actual implementation. As one might suspect, the above program
is wildly optimistic and cannot be implemented literally. In the
actual proof, we are able to ensure properties (i) and (ii) only ap-
proximately. In our construction, (i) holds only with respect to
suitably chosen distributions on the sets h~1(v). Furthermore, for
the decoding function h to be hard for polynomials, property (ii)
needs to be relaxed by adding inputs of high Hamming weight to
each h™!(v). We are still able to ensure that with respect to our
distribution, nearly all inputs in h~!(v) have constant Hamming
weight. Property (iii) is implemented as stated, allowing us to obtain
a polynomial-size constant-width DNF formula in the end.

The design of h is the most demanding part of the proof. At
its core, our construction of A contributes the following result of
independent interest. Let k be a parameter, which we take to be a
sufficiently large constant. For each v € {ej, ez, ..., en, ON}, we
construct a probability distribution A, on {0, 1}" that has all but
a vanishing fraction of its mass on inputs of Hamming weight
exactly k, and moreover any two such distributions A, and A, are
indistinguishable by polynomials of low degree. We are further able
to ensure that an input of Hamming weight k belongs to the support
of at most one of the distributions A,. Thus, the A,, are in essence
supported on pairwise disjoint sets of strings of Hamming weight
k, and are pairwise indistinguishable by polynomials of low degree.
The decoding function h works by taking an input x € {0, 1}" of
Hamming weight k and determining which of the distributions
has x in its support—a highly efficient computation realizable as a
monotone k-DNF formula. With small probability, h will receive as
input a string of Hamming weight larger than k, in which case the
decoding may fail.

Construction of the A,. Our starting point is the number-theoretic
notion of m-discrepancy, which is a measure of pseudorandomness
or aperiodicity of a given set of integers modulo m. Formally, the
m-discrepancy of a nonempty finite set S C Z is defined as

l S
GPa

seS

s

disc, (S) = max
k=1,2,...,m~1

where ¢ is a primitive m-th root of unity. The construction of sparse
sets with low discrepancy is a well-studied problem in combina-
torics and theoretical computer science. By building on previous
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work [3, 55], we construct a sparse set of integers with small dis-
crepancy in our regime of interest. For our application, we set the
modulus m = N + 1.

Continuing, let ([Z]) denote the family of cardinality-k subsets

of [n] = {1,2,...,n}. To design the distributions A,, we need

an explicit coloring y: ([Z]) — [N + 1] that is balanced, in the
sense that for nearly all large enough subsets A € {1,2,...,n}
and all i € [N + 1], the family y~1(i) accounts for almost exactly a
1/(N +1) fraction of all cardinality-k subsets of A. The existence of
a highly balanced coloring follows by the probabilistic method, and
we construct one explicitly by leveraging the sparse set of integers
with small (N + 1)-discrepancy constructed earlier in the proof.

Our next ingredient is a dual polynomial o for the OR function, a
staple in approximate degree lower bounds. An important property
of w is that it places a constant fraction of its £; mass on the point
0". Translating o from 0" to a point z of slightly higher Hamming
weight results in a new dual polynomial, call it .. Analogous to
w, the new dual polynomial has a constant fraction of its £; mass
on z and the rest on inputs greater than z in lexicographic order.

For notational convenience, let us now rename y’s range ele-
ments 1,2,...,N + 1 to e,ez,...,enN, ON, respectively. For v €
{e1,e2,...,en, ON}, define @, to be the average of the dual poly-
nomials w; where z ranges over all characteristic vectors of the
sets in y~!(v). Being a convex combination of dual polynomials,
each @, is a dual object orthogonal to polynomials of low degree.
Observe further that each ®,, is supported on inputs of Hamming
weight at least k, and any input of Hamming weight exactly k be-
longs to the support of exactly one ®,,. For inputs x of Hamming
weight greater than k, a remarkable thing happens: ®,(x) is almost
the same for all v. We prove this by exploiting the fact that y is
highly balanced. As a result, the “common part” of the ®,, for inputs
of Hamming weight greater than k can be subtracted out to obtain
a function 5; for each v € {ey, ea, . .., en, 0N }. While these new
functions are not dual polynomials, the difference of any two of
them is since CI>~v - 5:' = ¢, — &,r. Put another way, the &3:, are
pairwise indistinguishable by low-degree polynomials. By defining
the @, in a somewhat more subtle way, we further ensure that each
&); is nonnegative. The distribution A, is then defined to be the
normalized function @, / ||Cf>:, [l1. This construction ensures all the
properties that we need: A, has nearly all of its mass on inputs of
Hamming weight k; an input of Hamming weight k belongs to the
support of at most one distribution 1,; and any pair of distributions
Av, Ay are indistinguishable by a low-degree polynomial. Observe
that in our construction, A, is close to the uniform probability
distribution on the characteristic vectors of the sets in y~1(v).

This completes the proof sketch of our main results on approxi-
mate degree (Theorems 1.1 and 1.2 and Corollary 1.3). To obtain the
communication lower bounds (Theorems 1.4 and 1.5), we invoke
the pattern matrix method for the corresponding models.

2 PRELIMINARIES

2.1 General Notation

For a string x € {0,1}" and a set S € {1,2,...,n}, we let x|s
denote the restriction of x to the indices in S. In other words, x|s =
Xiy Xiy - - .xi‘s‘,where i1 < iz < -+ <i|g| are the elements of S. The
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characteristic vector 15 of aset S C {1,2,...,n} is given by

1 ifies,
(1s)i ={

0 otherwise.

Given an arbitrary set X and elements x, y € X, the Kronecker delta

Ox,y is defined by
1 ifx=uy,
Sy = { y

0 otherwise.
For a logical condition C, we use the Iverson bracket

1 if C holds,
I[C] =

0 otherwise.

We let N = {0,1,2,3,...} denote the set of natural numbers. We
use the comparison operators in a unary capacity to denote one-
sided intervals of the real line. Thus, <a, <a, >a, >a stand for
(=00, a), (—0, al, (a, o), [a, o), respectively. We let In x and log x
stand for the natural logarithm of x and the logarithm of x to
base 2, respectively. The term Euclidean space refers to R" for some
positive integer n. We let e; denote the vector whose i-th component
is 1 and the others are 0. Thus, the vectors ey, ey, . . ., e, form the
standard basis for R”. For a complex number x, we denote the
real part, imaginary part, and complex conjugate of x as usual by
Re(x), Im(x), and X, respectively. We typeset the imaginary unit i in
boldface to distinguish it from the index variable i. For an arbitrary
integer a and a positive integer m, recall that a mod m denotes
the unique element of {0, 1,2,...,m — 1} that is congruent to a
modulo m.

For a set X, we let RX denote the linear space of real-valued
functions on X. The support of a function f € RX is denoted
supp f = {x € X : f(x) # 0}. For real-valued functions with finite
support, we adopt the usual norms and inner product:

Ifllo = max |f(x)],
xesupp f

Ifll =) Ifel,
xesupp f

o= D fg).
xesupp f Nsupp g

This covers as a special case functions on finite sets. Analogous
to functions, we adopt the familiar norms for vectors x € R" in
Euclidean space: ||x|lc = maxj=1,...n |x;| and |lx[ly = X7 |xil.
The tensor product of f € RX and g € RY is denoted f ® g €
RXXY and given by (f ® ¢)(x,y) = f(x)g(y). The tensor product
f®f®---®f (ntimes) is abbreviated f®". We frequently omit the
argument in equations and inequalities involving functions, as in
sgnp = (—1)/. Such statements are to be interpreted pointwise. For
example, the statement “f > 2|g| on X” means that f(x) > 2|g(x)|
for every x € X.

We adopt the standard notation for function composition, with
f og defined by (f 0 g)(x) = f(g(x)). In addition, we use the o oper-
ator to denote the componentwise composition of Boolean functions.
Formally, the componentwise composition of f: {0,1}" — {0, 1}
and g: X — {0,1} is the function f o g: X" — {0,1} given by
(fog)(x1,x2,...,xn) = f(g(x1), g(x2), . . ., g(xn)). Componentwise
composition is consistent with standard composition, which in the
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context of Boolean functions is only defined for n = 1. Thus, the
meaning of f o g is determined by the range of g and is never in
doubt.

For a natural number n, we abbreviate [n] = {1,2,...,n}. Fora
set S and an integer k, we let (i) stand for the family of cardinality-k
subsets of S:

(z)z{AgS:|A|=k}.

Analogously, for any set I, we define
S
(I) ={ACS:|Al eI}.

To illustrate, (g k) denotes the family of subsets of S that
have cardinality at most k. Analogously, we have the symbols
(<Sk), (;k), (>Sk) Throughout this manuscript, we use brace nota-
tion as in {z1, z2, . . ., 2 } to specify multisets rather than sets, the
distinction being that the number of times an element occurs is
taken into account. The cardinality |Z| of a finite multiset Z is
defined to be the total number of element occurrences in Z, with
each element counted as many times as it occurs. The equality
and subset relations on multisets are defined analogously, with the
number of element occurrences taken into account. For example,
{1,1,2} = {1,2,1} but {1, 1,2} # {1, 2}. Similarly, {1,2} € {1,1,2}
but {1,1,2} € {1,2}.

2.2 Boolean Strings and Functions

We identify the Boolean values “true” and “false” with 1 and 0,
respectively, and view Boolean functions as mappings X — {0, 1}
for a finite set X. The familiar functions OR,: {0,1}" — {0, 1}
and AND,,: {0,1}" — {0, 1} are given by OR,(x) = VI, x; and
AND,(x) = /\?:1 xj. We abbreviate NOR,;, = -OR,,. For Boolean
strings x,y € {0, 1}", we let x & y denote their bitwise XOR. The
strings x A y and x V y are defined analogously, with the binary
operator applied bitwise.

For a vector v € N, we define its weight |v] to be |v| = v; +
vy + - +op. If x € {0, 1}" is a Boolean string, then |x| is precisely
the Hamming weight of x. For any sets X C N” and W C R, we
define X|yy to be the subset of strings in X whose weight belongs
toW:

Xlw ={xeX:|x| e W}

In the case of a one-element set W = {w}, we further shorten X|,,
to Xy . For example, N"|<,, denotes the set of vectors whose n
components are natural numbers and sum to at most w, whereas
{0, 1}"|,y denotes the set of Boolean strings of length n and Ham-
ming weight exactly w. For a function f: X — R on a subset
X € {0,1}", we let f|y denote the restriction of f to X[y . Thus,
flw is a function with domain X|y given by flw(x) = f(x). A
typical instance of this notation would be f]<,, for some real num-
ber w, corresponding to the restriction of f to Boolean strings of
Hamming weight at most w.

2.3 Concentration of Measure

Throughout this manuscript, we view probability distributions as
real functions. This convention makes available the shorthand nota-
tion introduced above. In particular, for probability distributions p
and A, the symbol supp p denotes the support of yz, and p®A denotes
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the probability distribution given by (1 ® A)(x,y) = p(x)A(y). We
use the notation y X A interchangeably with p ® A, the former being
more standard for probability distributions. If y is a probability
distribution on X, we consider y to be defined also on any superset
of X with the understanding that y = 0 outside X.

We will need a concentration-of-measure result due to Bun and
Thaler [20, Lemma 4.7] for product distributions on N".

LEMMA 2.1 (CF. BUN AND THALER). Let A1, Ag, ..., A, be distribu-

tions on N with finite support such that
t €N, (2)

where C > 0 and 0 < a < 1. Then for all T > 8Cen(1 + Inn),

T/2

v~Ale2x~~~xAn[”v”1 >T]<a'/%
Bun and Thaler’s result in [20, Lemma 4.7] differs slightly from
the statement above. The proof of Lemma 2.1 as stated can be
found in [57, Lemma 3.6]. By leveraging Lemma 2.1, we obtain the
following concentration result for probability distributions that are
supported on the Boolean hypercube, rather than N, and are shifted
from the origin.

LEMMA 2.2. Fix integers B > k > 0. Let A1, Ag, ..., A¢ be proba-
bility distributions on {0, 1}B with support contained in {0, l}B|>k.
Suppose further that

Cat_k
{0,138 €« ————,
i({0,1}7]1) kT 1e

where C > 0 and 0 < a < 1. Then for all T > 8Cel(1 + In¢) + ¢k,

ie[f], te{kk+1,...,B},

14
xil > T| < aT-E0/2,
(1, x0)~Arx XA | 4
Proor. For i = 1,2,...,¢, consider the distribution y; on
{0,1,...,B -k} given by p;(t) = A;({0, 1}B|,.). Then
Cat
i) < ——, ie[f], t>=0. 3
W< [0l > ©)

Moreover, the random variable |x;| with x; ~ A; has the same
distribution as the random variable u; + k for u; ~ ;. As a result,

¢ ¢
xi| =T\ = P ui+k)>T

(X1, Ay X XA ;l il U piy XX pig [;( i+k)
= [lully = T - k£]

U~ XX ple
< oT-th/2,

where the last step uses Lemma 2.1 along with (3) and the hypothesis
that T > 8Cefl(1 + In¢) + Ck.

2.4 Orthogonal Content

For a multivariate polynomial p: R" — R, we let degp denote
the total degree of p, i.e., the largest degree of any monomial of
p. We use the terms degree and total degree interchangeably in
this paper. It will be convenient to define the degree of the zero
polynomial by deg 0 = —co. For a real-valued function ¢ supported
on a finite subset of R”, the orthogonal content of ¢, denoted orth ¢,
is the minimum degree of a real polynomial p for which (¢, p) # 0.
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We adopt the convention that orth ¢ = o if no such polynomial
exists. It is clear that orth¢ € N U {oo}, with the extremal cases
orthgp =0 & ($,1) # 0and orth¢p = c0o & ¢ = 0. Additional
facts about orthogonal content are given by the following two
propositions.

PrRoOPOSITION 2.3. Let X and Y be nonempty finite subsets of Eu-
clidean space. Then:
(i) orth(¢ + ¢) > min{orth @, orthy/} forallp,y: X — R;
(ii) orth(¢p®y) = orth(¢p)+orth(y) forallp: X — Randy: Y —
R.

A proof of Proposition 2.3 can be found in [57, Proposition 2.1].

PROPOSITION 2.4. Define V = {ON,el,eg, ...,eN} C RN Fix
functions ¢o,: X — R (v € V), where X is a finite subset of Euclidean
space. Suppose that

0rth(¢u - ¢v) > D,

where D is a positive integer. Then for every polynomial p: Xt SR,
the mapping z — (®f=1 ¢z, p) is a polynomial on V¢ of degree at
most (degp)/D.

u,v eV, 4)

PRrOOF. By linearity, it suffices to consider factored polynomials
plx1, ..., xp) = Hle pi(x;), where each p; is a nonzero polynomial
on X. In this setting,

4 14
<® ¢z,.,p> =[ [{zpi)- 5)
i=1 i=1

By (4), we have ($on, pi) = (Pe;s pi) = (feys pi) = -+ = (Pen Pi)
for any index i with degp; < D. As a result, polynomials p; with
degp; < D do not contribute to the degree of the right-hand side
of (5) as a function of z. For the other polynomials p;, the inner
product {(¢,, p;) is a linear polynomial in z;, namely,

(Pz;, Pi) = zi,1{Pey i) + 2i,2(Pess i) + -+ + 2i, N{Pen» i)
N
+11-— Zzi’j (¢0N,pi).

j=1
Thus, polynomials p; with degp; > D contribute at most 1 each
to the degree. Summarizing, the right-hand side of (5) is a real
polynomial in z1, z, . . ., z¢ of degree at most |{i : degp; > D}| <
B 0

Proposition 2.4 generalizes an analogous result in [57, Proposi-
tion 2.2], where the special case N = 1 was treated.

2.5 Approximation by Polynomials

For a real number ¢ > 0 and a function f: X — R on a finite subset
X of Euclidean space, the e-approximate degree of f is denoted
deg,(f) and is defined to be the minimum degree of a polynomial
p such that || f — plle < €. For € < 0, it will be convenient to define
deg,(f) = +o0 since no polynomial satisfies || f — pllcc < € in this
case. We focus on the approximate degree of Boolean functions
f: X — {0,1}. In this setting, the standard choice of the error
parameter is ¢ = 1/3. This choice is without loss of generality since
deg,(f) = O(deg, /5(f)) for every Boolean function f and every
constant 0 < ¢ < 1/2. In what follows, we refer to 1/3-approximate
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degree simply as “approximate degree.” The notion of approximate
degree has the following dual characterization [47, 48].

Fact 2.5. Let f: X — R be given, for a finite set X c R". Let
d > 0 be an integer. Then deg,(f) > d if and only if there exists a
function : X — R such that

fs9) > ellglh,
orthy > d.

This characterization of approximate degree can be verified using
linear programming duality, cf. [47, 48]. Fact 2.5 makes it possible
to prove lower bounds on approximate degree in a constructive
manner, by exhibiting a dual object ¢ that serves a witness. This
object as referred to as a dual polynomial. Often, a dual polynomial
for a composed function f can be constructed by combining dual
objects for various components of f. Of particular importance in
the study of AC? is the dual object for the OR function. The first
dual polynomial for OR was constructed by Spalek [61], with many
refinements and generalizations obtained in follow-up work [17,
18, 20, 53, 54, 57]. We will use the following construction from [57,
Lemma B.2].

LEMMA 2.6. Let ¢ be given, 0 < ¢ < 1. Then for some constant
¢ = c(e) € (0,1) and every integer n > 1, there is an (explicitly given)
function w: {0,1,2,...,n} — R such that

1-¢
w(0) > —=- o],

l(8)] < Nelly (t=12....n),

1
Ctz 2Ct/\ﬁ
(-Dfo(t) >0
orthw > cvn.

(r=0,1,2,...,n),

The following lemma is useful when one needs to adjust a dual
object’s metric properties while preserving its orthogonality to
low-degree polynomials. The lemma plays a basic role in several
recent papers [17, 20, 21, 43, 57] as well as our work. Its proof is
available in the full version [56].

LEMMA 2.7. Let ®: {0,1}B — R be given. Fix integersT > D > 0.
Then there is an (explicitly given) function ®: {0,1}® — R such that

supp @ € {0, 1}%| <7, ©)
orth(® — ) > D, (7)
@ - @y < (1 +2D(g)) '|Z|:>T|<D(x)|- ®)

2.6 Symmetrization

Let Sy, denote the symmetric group on n elements. For a permu-
tation 0 € S, and an arbitrary sequence x = (x1,x2,...,Xn),
we adopt the shorthand ox = (x5(1), X5(2)> - - -» X5(n))- A func-
tion f(x1,x2,...,xp) is called symmetric if it is invariant un-
der permutation of the input variables: f(xi,x2,...,x5) =
f&Xo(1) X6(2)> - - +» X5 (n)) for all x and o. Symmetric functions on
{0, 1}" are intimately related to univariate polynomials, as was
first observed by Minsky and Papert in their symmetrization argu-
ment [37].
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PROPOSITION 2.8 (MINSKY AND PAPERT). Let p: R" — R be a
given polynomial. Then the mapping
L E p(x)

xe{0,1}"|;
is a univariate polynomial on {0, 1,2, ..., n} of degree at most deg p.
The next result, proved in [57, Corollary 2.13], generalizes Minsky

and Papert’s symmetrization to the setting when x1, x2, ..., xp are
vectors rather than bits.

FACT 2.9 (SHERSTOV AND WU). Let p: ®RNY S R bea given
polynomial. Then the mapping

v E
xe{0N e ez, ..., en}?
X1+x2+--+Xx9=0

) ©)

is a polynomial on NN|<9 of degree at most deg p.

Minsky and Papert’s symmetrization corresponds to N = 1 in
Fact 2.9.

3 BALANCED COLORINGS
For integers n > k > 1 and r > 1, consider a mapping y : ([Z]) —

[r]. We refer to any such y as a coloring of([z]) with r colors. An
important ingredient in our main result is the construction of a
balanced coloring, in the following technical sense.

Definition 3.1. Lety: ([Z]) — [r] be a given coloring. For a subset
A C [n], we say that y is e-balanced on A iff for each i € [r],

—¢(lA A A
) <lrontl< ()

We define y to be (¢, §, m)-balanced iff

P [yise-balancedon A] > 1-6
Ae([?])

forall¢ € {m,m+1,...,n}.

The next lemma, proved in the full version [56], uses the proba-
bilistic method to establish the existence of balanced colorings with
excellent parameters.

LEMMA 3.2. Let &,8 € (0,1] be given. Let n,m, k,r be positive
integers withn > m > k and

m 3r 2rn
> = .ln—.
(k) Z 2 In 5 (10)

Then there exists an (¢, 6, m)-balanced coloring y : ([Z]) — [r].

COROLLARY 3.3. Letn,m, k,r be positive integers withn > m >

[n]

k2. Then there is an (¢, ¢, m)-balanced coloring y : ( k ) = [r], where
_ 3ry/kIn(n+1)
T ke

In the full version of our paper [56], we give the following con-
struction of balanced colorings.

THEOREM 3.4 (EXPLICIT BALANCED COLORING). Letn,m,k,r be
integers withn/2 > m > k > 1 andr > 2. Then there is an
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(explicitly given) integer n’ € (n/2,n] and an (explicitly given)
(&, 8, m)-balanced coloring y : ([r]i]) — [r], where

k
m 3C*log?(n +r
£=4r2kexp (—§)+r(+/(4)) , (11)

8 =drexp (—g) (12)
and C* > 1 is an absolute constant.

4 PSEUDODISTRIBUTIONS FROM
BALANCED COLORINGS

Recall from the introduction that our approach centers around en-
coding the vectors ey, ey, . . ., en, oN as n-bit strings withn < N
so as to make the decoding easy for circuits but hard for low-
degree polynomials. The construction of this code requires several
steps. As a first step, we show how to convert any balanced col-
oring of ([Z]) with r colors into an explicit sequence of functions
d1, 92, ..., Pr: {0,1}" — R that are almost everywhere nonneg-
ative, are supported almost entirely on pairwise disjoint sets of
strings of Hamming weight k, and are pairwise indistinguishable
by low-degree polynomials. We call them pseudodistributions to
highlight the fact that each ¢; has £; norm approximately 1, nearly
all of it coming from the points where ¢; is nonnegative.

THEOREM 4.1. Let ¢,8 € [0,1) be given. Let n,m,k,r be posi-

tive integers withn > m > k. Let y: ([Z]) — [r] be a given

(&, 8, m)-balanced coloring. Then there are (explicitly given) func-
tions @1, P2, . . ., Pr: {0,1}"* — R with the following properties.

(i) Support: supp ;i C {x € {0,1}" : |x| =k or |x| = m};
(i) Essential support: {0,1}" |, Nsupp $; = {15 :S € y~1(i)};
(ili) Nonnegativity: ¢; > 0 on {0, 1} |y;
(iv) Normalization: 3 . =k $i(x) = 1;
() Tail bound: 3| sk |$:()] < (8¢ + 4r8)/(1 - e);

(vi) Graded bound: for some absolute constant ¢’ € (0, 1),

e+rs m? c’(C-k)
. < . . [ — .
§ B < T T Xp( — ) (> k;

x:|x|=C

(vii) Orthogonality: for some absolute constant ¢’’ € (0, 1),

orth(¢; — ¢;) > C”\/Za
m

The proof of this result is available in the full version [56].

i,j€|[r].

5 ENCODING VIA INDISTINGUISHABLE
DISTRIBUTIONS
As our next step, we will show that the pseudodistributions

¢1, P2, ..., ¢y in Theorem 4.1 can be turned into actual probability
distributions A1, Az, .. ., A, provided that the underlying coloring

Alexander A. Sherstov

of ([Z]) is sufficiently balanced. The resulting distributions A; in-
herit all the desirable analytic properties established for the ¢;
in Theorem 4.1. Specifically, the A; are supported almost entirely
on pairwise disjoint sets of inputs of Hamming weight k and are
pairwise indistinguishable by low-degree polynomials.

THEOREM 5.1. Let 0 < f < 1 be given. Let n,n’,m, k,r be pos-
itive integers withn > n’ > m > k. Let y: ([’;C]) — [r] be a
B

given (W’ ﬁ, m)-balanced coloring. Then there are (explicitly
given) probability distributions A1, A2, ..., A, on {0, 1} such that

ielr] (13)
{0, 1}, Nsupp A; = {15 : S € y L (i)}, ielr], (14)

suppA; C {x € {0,1}" : |x| = k or |x| = m},

2i({0. 13" [) = 1= B, ielrl, (15
—c(€ — k)/Nn’
Ao, 1yl < SR DI, Pelrl £>k
(16)
orth(A; — 4j) > ¢ % Ljelrl,  (7)

wherec € (0, 1) is an absolute constant, independent of n,n’, m, k, r, .

The proof of this result is available in the full version [56].

6 HARDNESS AMPLIFICATION FOR
APPROXIMATE DEGREE

We have reached the crux of our proof, a hardness amplification
theorem for approximate degree. Unlike previous work, our hard-
ness amplification is directly applicable to Boolean functions with
sparse input and does not use componentwise composition or input
compression.

THEOREM 6.1. Let C* > 1 and ¢ € (0, 1) be the absolute constants
from Theorems 3.4 and 5.1, respectively. Fix a real number0 < f < 1
and positive integers n,m, k, N, 0, D, T such that

n/2>m>k, (18)
, k
, _m 3C*log?(n+ N + 1)
4N +1) kexp( 16k)+(N+1)( i
B
< ——— 19
16(N + 1)2m? (19)
T> % - 0(1+1n6) + Ok, (20)
T > D. (1)

Define

A= (1 +2b (nDG)) exp (——C(Z\/_n_ik)) . (22)

Then there is an (explicitly given) mapping H: ({0,1})? — {0, 1}N
such that each output bit of H is computable by a monotone k-DNF
formula and

deg, po-a((f © Hl<) > min {cdegg(flge)\/ %,D} (23)

for every function f: {0,1}N — {0,1} and every ¢ € [0, 1].
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ProoF. We may assume that
£—20—2A >0 (24)

since otherwise the left-hand side of (23) is by definition +oo. Define
Vv C RN by V = {0N eq, e, ...,en}, and set r = N + 1. In view
of (18) and (19), Theorem 3.4 gives an explicit integer n’ € (n/2, n]
and an explicit (7577, 16;%'"2, m)-balanced coloring y : ([7(/]) -
[r]. Alternately, if one is not concerned about explicitness, the
existence of y can be deduced from the much simpler Corollary 3.3.
Specifically, (19) forces /m > k and in particular n > m > k2> 1.
Moreover, (19) implies that 3r+/k In(n + 1)/mk/* < m’fmz. Now
s

16r2m?’ 16r:m?’

Corollary 3.3 guarantees the existence of a ( m)-
balanced coloring y : ([ZJ) — [r].

Since n” > m > k, Theorem 5.1 gives explicit distributions
AoN s Aeys Aeys o s Aen 0n {0, 1} such that

suppAy C {x € {0,1}" : |x| = kor|x| >m}, vEV, (25)
{0. 1} Nsupp Ae, = {15 : S € y (D)}, ie[N], (20)
{0, 1}"|x Nsupp Aoy = {15 : S € y {(N + 1)}, (27)
A‘U({O’ l}”'k) 2 1- ﬁy [28S V9 (28)
exp(—c(t — k)/+/nm)
Ao({0,1}7;) < , V,t2>k,
({0, 1}"];) k17 ve

(29)

orth(Ap — Ay) = x| ——, vueV. (30)
2m

Properties (26) and (27) imply that
{0,1}"*|x N'supp Ay, Nsupp Ay = &,

.,Vg) € Ve, define

0
Ay =(X) Av,.-
i=1

Equations (20), (25), and (29) ensure that Lemma 2.2 is applicable
to the distributions Ay, Ay,, . . ., Ay, with parameters £ = 0, B = n,
C =1/c, and a = exp(—c/+/nm), whence

o(T — 6k)
- 2yim ) ’
In view of (21), we can now invoke Lemma 2.7 with parameter
B = nd to obtain a function Ay : (o, 1}")9 — R such that

Forv = (vq,vy,..

A(0.13 )5 7) < eXp( vevt.

supp Ay € ({0, 1}") <7, vevl (32)
orth(Ay — Ay) > D, vev?, (33)
Ay = Ayl < A, vev? (34)

We now turn to the construction of the monotone mapping H
in the theorem statement. Define h: {0,1}"* — {0, 1}~ by

(h(2)); = \/ Nz j=12...N. (35

SE([Z])AS esupp A, s€S

Define H: ({0,1}")? — {0, 1} by

0
H(x1,x2, .., x9) = \/ h(xi),  x1,%2,...,%9 € {0,1}",  (36)
i=1
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where the right-hand side is the componentwise disjunction of the
Boolean vectors h(x1), h(x2), . . ., h(xp). Observe that both h and H
are monotone and are given explicitly in closed form in terms of
the probability distributions A, constructed at the beginning of the
proof.

Cramm 6.2. Let v € V be given. Then for all z € {0,1}"| N
supp Ay, one has h(z) = v.

Proor. Consider an arbitrary string z € {0, 1}"|i. In this case,
(35) simplifies to (h(2)); = I[z € supp A, ]. Thus, h(z) can be written
out explicitly as

h(z) = (I[z € supp A, |, I[z € supp A¢, ], . . ., I[z € supp e, ]).

(37)
Now recall from (31) that a string z of Hamming
weight k can belong to at most one of the sets
supp Agn, supp Ae;, supp Ae,, ..., suppAey. As a  result, if
z € supp e, then z ¢ supp A, for all j # i and consequently
h(z) = e; by (37). Analogously, if z € supp Ay~ then z & supp A,
for all j and consequently h(z) = 0N by (37). This settles the claim
forallv e V. [

Now, fix an arbitrary function f: {0,1}N — {0,1} and an error
parameter ¢ € [0, 1]. Our objective is to prove (23). To begin with,
abbreviate

d = deg,.(fl<o)- (38)

By the dual characterization of approximate degree (Fact 2.5), there
is a function ¢: {0, l}N|<9 — R such that

Iyl =1, (39)
foy) >e (40)
orthy > d. (41)

Define ¥: ({0,1}")¢ — R by
¥= ) YW E A

vev?:
ue{0,1}N|¢g Vi+Vat-+vg=u

Observe from (32) that ¥ is a linear combination of functions sup-
ported on inputs of Hamming weight at most T. Therefore,

supp ¥ € ({0, 1}")%|< 7. (42)
Furthermore,

I¥]l < [y () E 1A Iz
h Z vev?: v

ue{0,1}V <o Vi+Vot-Hvg=u

N

D, W@ | max [AV]
vevo

ue{0,1}N|<p

[l¥]l1 max [|Av]lx
vevo
< ¥l max {||Av]lr + [[Av = Av(l1}
vev?o
<1+A, (43)

where the first and fourth steps apply the triangle inequality, and
the last step uses (34) and (39).
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Next, we claim that

orth¥ > min {cd, / l,D} . (44)
2m

Indeed, consider an arbitrary polynomial P: ({0, 1}"M? - R of
degree less than min{cd~/n/(2m), D}. Then

(wPy= 3 yw  E_ (AP

veVY:
uE{O,l}N\gg Vi+Vot-+vg=u

= D, V@ B (AP +(Av-AwP)]
ue{0,1}N l<o v1+v:-+-€~‘~/~+:\70:u
= ) YW B AP (45)

ue{0,1}1N <o Vi+Voto+Vg=u
where the first and second steps use the linearity of inner product,
and the third step is valid by (33). Equation (30) allows us to invoke
Proposition 2.4 with £ = 0 and ¢, = A, to infer that the inner
product (Ay, P) is a polynomial in v of degree less than d. As a
result, Fact 2.9 implies that the expected value in (45) is a polynomial
in u of degree less than d. In summary, (45) is the inner product
of { with a polynomial of degree less than d and is therefore zero
by (41). The proof of (44) is complete.

To analyze the approximate degree of (f o H)|<r, we need to
study the inner product (f o H,¥). To this end, we prove the
following claim.

CrLamm 6.3. Letu € {0, 1}N|<9 andv = (v1,Vg,...,Vg) € v be
given such thatvy + vy +---+vg = u. Then

|f (W) = (Av, f o H)| < 2P0 + A.

PRroOF. Since u is a Boolean vector, the equality vi + vy + -+ +
vy = u forces

ViVVvaV---Vvg=u, (46)

where the disjunction is applied componentwise. For any input
(x1, %2, ...,x9) where x; € {0,1}"|x N supp Ay,, we have

0 0
(f o H)(x1, %2, ..., ) = f (\/ h(xi)) = f (v vi) = f),
i=1 i=1

where the second and third steps use Claim 6.2 and(46), respectively.
Since supp Ay = ]_[f’:1 supp Ay;, we have shown that

foH= f(u) on ({0,1}")? NsuppAy.  (47)

Furthermore,

[
A0, 13" )%) = [ [ A (0. 13" 1k) = (1= B > 1- o, (48)
i=1
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where the second step uses (28). Now

|f W)~(Av, f o H)|
<|f (@) = (Av, f o H)| + [{Ay — Ay, f o H)|
< 1) = (Av, f o H)| + [|Av = Ayl

f@-E foH

< EIf@ = foH|+ Ay = Al

+ 1Ay = Avlly

<0 Av(({0. 13110)%) + 2 - Av(({0. 1}7[1)9) + [IAy = Ay s

<260+ Ay = Avlh
< 2660 + A,

where the last three steps use (47), (48), and (34), respectively. [

We are now in a position to finish the proof of Theorem 6.1. We
have

(f9) = (foHD)
> vwfw)
ue{0,1}N |<g

- ) W E

vev?:
ue{0,1}N <o

Y, Vw  E [f@- (A foH)]
ue{0,1}N |<g VeV

Vi+Vp+ Vg =u

>, Wwl  E

veVY:
ue{0,1}N]<o Vi+Vy+e+Vg=u

(Av, f o H)

/A

|fw) = Ay, f o H)|

<yl max max  |f(u) - (Ay, f o H)|
ue{0,1}N <o vev?:
Vi+vet-+vVg=u
< Yl (2B0 + A)
< 280 + A, (49)

where the last two steps use Claim 6.3 and (39), respectively. Then

(f oH, W) > e — 280 — A
e—2p0-A
> 0
+A
> (e~ 260 - 20171, (50

where the first step uses (40) and (49), the second step is justified
by (24) and (43), and the third step is legitimate since a/(1+b) > a—b
for all a € [0,1] and b > 0. Recall from (42) that ¥ is supported on
inputs of Hamming weight at most T and can therefore be regarded
as a function on ({0, 1}”)9|<T. Now the claimed bound (23) is
immediate from (44), (50), and Fact 2.5. 0

COROLLARY 6.4. Fixrealsa € (0,1], A > 1, and C > 1 arbitrarily.
Then for all large enough integers 0, there is an (explicitly given)
mapping H: {O,I}LTHOIJ — {O,I}LQCJ with T = |0log? 8] such
that the output bits of H are computable by monotone [50(A+ C)/a]-
DNF formulas and

2
deg,__1((f o H)l<r) > Ti75e (51)
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for every ¢ € [0, 1] and every function f: {0, l}wcJ — {0, 1} with
deg,(fl<o) = 0.

The proof of this corollary is available in the full version [56].

7 MAIN RESULT ON APPROXIMATE DEGREE

We will now establish our main results on the approximate degree
of DNF formulas, stated in the introduction as Theorems 1.1 and 1.2
and Corollary 1.3. Our proof amounts to starting with the triv-
ial one-variable formula x; and iteratively applying the hardness
amplification of Corollary 6.4.

THEOREM 7.1. For every § € (0,1] and A > 1, there is a con-
stant ¢ > 1 and an (explicitly given) family {fn}"_; of functions

fn:{0,1}" — {0, 1} such that each f;, is computable by a monotone
c-DNF formula and satisfies

1
degi_ 1 (fu) == -n'"9, n=123,.... (52)
27 A c

Proor. Let K be the smallest integer such that

1-(2/3)K
Define
A=2A+3. (54)

Now, letn > 1be any large enough integer. Define Ty, T1, T2, . . ., T
recursively by Ty = Ln/logZK n] and T; = |Tj—1 log? Tj—] for i >
1. Thus,

n

i< ————> i=0,12,...,K, 55
TS o2&y ! (55)
Ty~ — i=0,1,2,...,K (56)
i~ , i=0,12... K
! log?K=D)

where ~ denotes equality up to lower-order terms in n. Provided
that n is larger than a certain constant, inductive application of
Theorem 6.4 gives functions

1+(2/3)i1
gn.i: {0, 1} 159010 i=o012....K, (57
such that

<) >T 7Y =012, K

degi 1 1. 1 (gni
B
(58)

and each g, ; is an explicitly constructed monotone c¢;-DNF for-

mula for some constant ¢; independent of n. In more detail, the
requirement (58) for i = 0 amounts to deg;_%‘(gn,okn) > 1and
2T

is trivially satisfied by the “dictator” function g, o(x) = x1, whereas
for i > 1 the function g, ; is obtained constructively from g ;—1
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by invoking Theorem 6.4 with
2 i-1
a=|= ,

i-2
C:1+(%) s
3

0="Ti1,
f =9n,i-1,
111 1
T2 oA TA TA
1 i-1

Specializing (55)-(58) to i = K, the function g, g is a monotone
cx-DNF formula for some constant cx independent of n, takes at

most N := n1 /3" input variables, and has approximate degree
degi_ 1 (gnx)>degi_ 1 1 _ 21 (gn,x)
2 NA+1 T”?
> de
> g%,$,$,...,é(gn,l<|<rx)

= Q(n!=")

w(N'79),

where the first and last steps hold for all large enough n due to (54)
and (53), respectively. The desired function family {f,},_, can

=1
then be defined by setting f;, = 9| mvaseess for all n larger

>K71)J,K
than a certain constant ng, and taking the remaining functions
fi, f2, .. ., fn, to be the dictator function x — x;. 0

The remainder of this paper is available in the full version [56].
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