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Abstract

A data structure A is said to be dynamically optimal over a class of data structures C if A is constant-

competitive with every data structure C 2 C. Much of the research on binary search trees in the past

forty years has focused on studying dynamic optimality over the class of binary search trees that are

modified via rotations (and indeed, the question of whether splay trees are dynamically optimal has

gained notoriety as the so-called dynamic-optimality conjecture). Recently, researchers have extended

this to consider dynamic optimality over certain classes of external-memory search trees. In particular,

Demaine, Iacono, Koumoutsos, and Langerman propose a class of external-memory trees that support a

notion of tree rotations, and then give an elegant data structure, called the Belga B-tree, that is within

an O(log logN)-factor of being dynamically optimal over this class.

In this paper, we revisit the question of how dynamic optimality should be defined in external memory.

A defining characteristic of external-memory data structures is that there is a stark asymmetry between

queries and inserts/updates/deletes: by making the former slightly asymptotically slower, one can make

the latter significantly asymptotically faster (even allowing for operations with sub-constant amortized

I/Os). This asymmetry makes it so that rotation-based search trees are not optimal (or even close to

optimal) in insert/update/delete-heavy external-memory workloads. To study dynamic optimality for

such workloads, one must consider a di↵erent class of data structures.

The natural class of data structures to consider are what we call bu↵ered-propagation trees. Such trees

can adapt dynamically to the locality properties of an input sequence in order to optimize the interactions

between di↵erent inserts/updates/deletes and queries. We also present a new form of beyond-worst-case

analysis that allows for us to formally study a continuum between static and dynamic optimality. Finally,

we give a novel data structure, called the J"llo Tree, that is statically optimal and that achieves dynamic

optimality for a large natural class of inputs defined by our beyond-worst-case analysis.
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1 Introduction

Static and dynamic optimality in internal memory Since the early 1960s, many balanced binary
trees have been developed with worst-case O(logN) time per operation [1, 6, 22], where N is the number of
elements in the tree. In such trees, the cost of any particular operation can be much smaller, even O(1), if
the element being queried is stored near the root of the tree. This means that a search tree can potentially
achieve o(logN) time per operation on workloads that exhibit locality properties.

Since the 1980s, considerable e↵ort has been devoted to designing distribution-sensitive binary

search trees that perform workload-specific optimizations. Broadly speaking, there are two approaches
to analyzing distribution-sensitive search trees. The first approach is to bound the performance based on
some property of the input sequence [5, 13, 17–19, 25, 26, 33, 34], e.g., the sequential access bound [34], the
working set bound [26, 33], the weighted dynamic finger bound [13, 18, 19], and the unified bound [5, 26].
The second approach is competitive analysis, where one must select a class of data structures C, such as
static binary trees or binary trees that are modified via rotations, and then design a single data structure A

(not necessarily from C) that is competitive with any data structure in C. If the members of C are static,
a O(1)-competitive algorithm1 is said to be statically optimal against C and if they are dynamic, a
O(1)-competitive algorithm is said to be dynamically optimal against C.

Splay trees are famously statically optimal against the class of binary trees [33]. On the other hand,
whether dynamic optimality can be achieved against the class of binary-trees-with-rotations remains one of
most elusive problems in the field of data structures (see [27] for a survey). The Tango Tree [23] is known
to be within a factor of O(log logN) of dynamic optimality. The splay tree [32] is widely believed to achieve
dynamic optimality, but it remains open whether the structure is even o(logN)-competitive.

Research on dynamic optimality against internal-memory search trees has historically considered se-
quences of operations consisting exclusively of queries. We emphasize that this is not a limitation of past
work—indeed, it turns out that queries and inserts/updates/deletes are su�ciently similar to one another
that the queries-only assumption is without loss of generality. As we will see later, this equivalence does not
hold in external memory.

Static and dynamic optimality in external memory Search trees are every bit as ubiquitous in
external memory as they are in internal memory—e.g., they are used prominently in file systems [28, 37],
databases [7,20], and key-value stores [12,21,30]. The principle di↵erence with internal memory is that disks
are accessed in blocks of some (typically large) size B.2 External-memory search trees are analyzed in the
Disk-Access Model [2], where the goal is to minimize the number of block accesses (also known as I/Os).

B-trees [7, 20] are balanced search trees optimized for external memory, which means they have fanout
⇥(B), and hence a worst case of O(logB N) I/Os per operation. Again, the cost of any particular operation
can be much smaller if the element being queried is stored near the root. This raises a natural question:
what can be said about static and dynamic optimality for external-memory search trees? We remark that
most of the work on this question has focused on dynamic optimality and treated static optimality implicitly.

The notion of dynamic optimality in external-memory search trees is less well understood than in internal
memory. Part of the reason for this is the di�culty of identifying the class of data structures over which
dynamic optimality should be defined, and in particular identifying the mechanism by which elements can
move vertically in the tree.

Early work focused on a skip-list-like mechanism where keys can move towards the root in the tree by
becoming a pivot and splitting some node in two [14, 31]. We call this class of data structures merge-split

trees. Bose et al. [14] gave a data structure that achieves dynamic optimality in this model and showed
that the performance of their data structure is determined by the working-set bound [26,33].

Merge-split trees are limited in their ability to exploit the locality of a workload. For example, on the
sequential workload in which 1, 2, . . . , N are accessed round robin, merge-split trees incur amortized cost

1Here, we can see an example where it is especially important that A not have to be a member of C. In particular, if we wish
to construct an A that is O(1)-competitive with any (omnisciently constructed) static C, then we must allow for A to adapt
dynamically over time.

2As a convention, B is measured in terms of the number of machine words that fit in a block.
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⌦(logB N) per operation. In contrast, even in-memory binary trees implemented using rotations can achieve
the sequential access bound [34] on the same workload, that is, an amortized O(1) I/Os. The main
di↵erence between merge-split trees and binary trees with rotations is that merge-split trees move individual
elements up and down the tree, but they do not move entire subtrees together (as is the case for rotations).

Recently, Demaine et al. [24] introduced a di↵erent class of dynamic trees that support “rotations”
similar to those in in-memory binary search trees. The authors study dynamic optimality over this class of
data structures and introduce the Belga B-tree, which they prove is O(log logN)-competitive against any
rotation-based search tree.

The work on external-memory dynamic optimality so far has focused on exploiting the underlying locality
properties of the workload in order to optimize queries. The tradeo↵ being explored is the decision of which
keys are stored near the root of the tree and which keys are stored further down.

This paper: optimizing the asymmetry of external-memory operations One of the remarkable
(and perhaps unexpected) di↵erences between search trees in internal and external memory, however, is that
in external memory, inserts/updates/deletes can be implemented to have amortized performance asymptoti-
cally faster than that of queries. While the worst-case cost of queries is logarithmic, inserts/updates/deletes
can take an amortized subconstant number of I/Os [8–10,15,16,29].

An important consequence of this asymmetry is that there are many input sequences for which the
positioning of di↵erent keys in the tree is not the dominant factor controlling performance. To study
dynamic optimality for such sequences, we must consider a class of algorithms that can optimize the cost of
queries vs insertion/deletions/updates.

The key technique for such optimizations is bu↵ered propagation in which one propagates insert/update/delete
operations down the tree in bu↵ered batches. This allows for a single I/O to make progress on many in-
sert/update/delete operations simultaneously, so that the amortized cost of such operations is small. We em-
phasize that, on insert/update/delete-heavy workloads, even standard trees that non-adaptively use bu↵ered
propagation, such as the B

"-trees [3, 8, 10, 15], can be asymptotically faster than the best possible adaptive
rotation-based search trees.

Bu↵ered propagation comes with a tradeo↵ curve: we can make inserts/updates/deletes faster (up to
a factor of O(B)) at the cost of making queries slower (up to a factor of O(logB)). This means that
there is an opportunity to adapt dynamically to a sequence of operations, both by adjusting the amount
of bu↵ered propagation over time, and by using di↵erent amounts of bu↵ered propagation in di↵erent parts

of the tree. There is also an opportunity to adapt the choice of pivots used by each internal node in the
tree in order to strategically split collections of operations in a way that sends queries in one direction and
inserts/updates/deletes in another.

All of these tradeo↵s can be formally captured with a class of data structures that we call bu↵ered-

propagation trees—the problem of optimizing the tradeo↵s between queries and non-queries in an external-
memory search tree corresponds to the problem of achieving dynamic optimality against bu↵ered-propagation
trees.

We remark that even static optimality against bu↵ered propagation trees is an interesting question. That
is, given a workload of query operations and update operations (which change values associated with keys,
so the set of keys does not change over time), can one construct a data structure that is competitive with
the optimal statically-structured bu↵ered propagation tree? Even though the bu↵ered propagation tree has
a static structure, it can still strategically select the pivots and the amount of bu↵ered propagation at each
internal node in order to optimize for spatial locality between operations. Even if we are given the operations
up front (in an o✏ine manner), it is not immediately clear how one should go about constructing the optimal
static bu↵ered propagation tree.

A continuum between static and dynamic optimality Achieving full dynamic optimality against any
sophisticated class of search trees (whether it be internal-memory rotation-based trees or external-memory
bu↵ered-propagation trees) is a di�cult problem to get traction on: even small changes to a tree can have
significant impact on asymptotic performance, so an omniscient adversary can potentially perform rapid
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modifications to the data structure in order to adapt to the workload at a very fine-grained level. In addition
to considering the question of how to model dynamic optimality in external memory, a second contribution
of this paper is to revisit the question of how we should perform beyond-worst-case analysis within that
model, in order to characterize how “close” a given data structure is to achieving dynamic optimality.

One insight is that, in practice, it is natural to expect that the properties of an input sequence may evolve
slowly over time, meaning that the (o✏ine) optimal dynamic bu↵ered propagation tree will also evolve slowly.
We capture this property formally by declaring a sequence of operations to be K-smooth if there exists an
optimal dynamic bu↵ered propagation tree T for the sequence such that only a 1/K-fraction of T ’s I/Os are
spent restructuring the tree.

We propose a natural form of beyond-worst-case analysis: rather than trying to achieve full dynamic
optimality, can we achieve dynamic optimality for the class of K-smooth inputs (and for some reasonably
small K)? Instead of thinking of this as a restriction on input sequences, one can also think of it as a type of
resource augmentation. Can we design a data structure that is O(1)-competitive with any K-speed-limited

bu↵ered propagation tree , that is any bu↵ered propagation tree that is limited to spend at most a 1/K-
fraction of its I/Os on modifying the tree? Note that any data structure that is O(1)-competitive against
K-speed-limited bu↵ered propagation trees is guaranteed to be O(1)-competitive on all K-smooth input
sequences—therefore the problem of achieving competitive guarantees against K-speed-limited adversaries
subsumes the problem of achieving optimality on K-smooth inputs.

The study of K-speed-limited adversaries o↵ers an intriguing continuum between static and dynamic
optimality. Optimality against 1-speed-limited adversaries is equivalent to static optimality, and optimality
against 1-speed-limited adversaries is equivalent to full dynamic optimality. The smaller a K that we can
achieve optimality against, the closer we are to achieving true dynamic optimality. We remark that this same
continuum would also be interesting to study for internal-memory search trees, and we leave this direction
of work as an open problem.

Achieving dynamic optimality against a speed-limited adversary The third contribution of the
paper is a new data structure that we call the J"llo Tree. The J"llo Tree is statically optimal, meaning that
on any workload of updates and queries, the tree is constant competitive with any static bu↵ered propagation
tree. The J"llo Tree is also dynamically optimal against any su�ciently speed-limited bu↵ered propagation
tree.

Our main theorem is that, for any � 2 (0, 1) \ ⌦(log logN/ logB), we can build a J"llo Tree that is
O(1/�)-competitive with any B

3�-speed-limited bu↵ered propagation tree. The construction and analysis of
the J"llo Tree is the main technical result of the paper.

In addition to requiring that the adversary is speed limited, our competitive analysis assumes a B
3�-factor

of resource augmentation on cache size, meaning that we compete an adversary whose cache is a B
3�-factor

smaller than ours. We also present a version of the analysis that incurs a small additive overhead in exchange
for eliminating the cache-size resource augmentation.

Paper outline In Section 2, we formally define bu↵ered propagation trees and speed-limited adversaries,
and we state our main results. Then in Section 3 we give a sketch of the J"llo Tree’s design and analysis.
The full design and analysis appear in the extended version of the paper [11].

2 Defining the Class of Speed-Limited Bu↵ered Propagation Trees

In this section, we formally define bu↵ered propagation trees (and speed-limited bu↵ered propagation trees).
We then define the adversary Speed-Limited OPT (or OPT for short) against which we will analyze the J"llo
Tree. And finally we use these definitions to formally state the main result of the paper.

Both bu↵ered propagation trees and the J"llo Tree live in the Disk-Access Model [2]. In particular, the
computer has a cache of size M machine words, and has access to an (unbounded-size) external memory
consisting of blocks of some size B machine words. An algorithm can read/write a block from external
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memory to cache at the cost of one block access (or I/O), and time is measured as the total number of
I/Os incurred by the algorithm.

2.1 An introduction to bu↵ered propagation

In external-memory data structures, there is an asymmetry that allows for inserts/updates/deletes to be
implemented asymptotically faster than query operations. The fundamental technique for achieving these
speedups is bu↵ered propagation , in which one propagates insert/update/delete operations down the tree
in bu↵ered batches. For each node x in the tree, if x has f children c1, . . . , cf , then x maintains a bu↵er
of size B/f for each of those children. Each bu↵er collects insert/update/delete messages destined for that
child ci. Messages are flushed down from x to the children c1, . . . , cf in collections of size B/f (i.e., whenever
a bu↵er for one of the children overflows). The O(1) I/Os that are used to perform a bu↵er flush are shared
across ⇥(B/f) insert/update/delete operations. By giving a node x a smaller fanout, one can decrease the
amortized cost of a bu↵er flush, making inserts/updates/deletes faster. On the other hand, smaller fanouts
also make the height of the tree larger, which makes queries slower.

A classic example of bu↵ered propagation is the B
"-tree [8, 10, 15, 16], which has found applications in

databases [10, 35, 36] and file systems [28, 37–41]. In a B
"-tree, all nodes have the same fixed fanout f

(typically, one sets f = B
" for some constant "). Queries cost O(logf n) and insert/update/delete operations

have amortized cost O( f
B logf N), so that, e.g., an insert/update/delete-heavy workload can be performed

asymptotically faster than in standard B-trees if f is selected to be small. An interesting feature of this
tradeo↵ curve is that, if B � f logf N , then insert/update/delete operations can even take sub-constant

amortized time—the same guarantee is not possible for queries.
The fanout f used within a B

"-tree can be tuned to the sequence of operations. One must be careful not
to select the wrong fanout for the workload, however. For example, the B

1/2-tree, where f =
p
B, achieves

an insert/update/delete performance O( logB np
B

) while achieving an optimal query performance of O(logB n).

But, if a workload consists exclusively of inserts/updates/deletes then the B
1/2-tree will perform a factor ofp

B away from optimal.
Although we typically think of B"-trees as having fanout f that is uniform across all nodes (and unchang-

ing), the B"-tree generalizes to a class of data structures where di↵erent nodes can have di↵erent fanouts. In
this paper we define a broad class of data structures that we call bu↵ered propagation trees, and which
can be viewed as weight-balanced B

"-trees with non-uniform fanout.
Non-uniform fanouts are especially natural if some parts of the key space are insert/update/delete heavy

and other parts of the key space are query heavy. A bu↵ered propagation tree can pick a large f for nodes
that see mostly queries and a small f for nodes that see mostly inserts/updates/deletes. This means that
pivots can be strategically selected in order to split collections of operations in a way that sends queries
in one direction and inserts/updates/deletes in another.3 By contrast, since f is uniform in a B

"-tree, the
performance of the tree is fairly insensitive to pivot choice. By choosing the right pivots and local f , one
can potentially exploit the underlying spatial locality of the workload to achieve asymptotic improvements
over any uniform-fanout B

"-tree. In the dynamic case, where a bu↵ered propagation tree is permitted to
change its structure over time, it can also adapt to the temporal locality of the sequence of operations being
performed.

2.2 Formally defining bu↵ered propagation trees

We now formally define the class of bu↵ered propagation trees. To simplify discussion, we restrict ourselves
to queries/inserts/updates—discussion of deletes can be found in the extended version of the paper [11].

For each node x in a bu↵ered propagation tree, let K(x) be the keys stored in the subtree rooted
at x. Let d(x) be the number of children that x has and call them c1, . . . , cd(x). Then x selects some
subset p1 < · · · < pd(x)�1 2 K(v) to act as pivots. The children c1, . . . , cd(x) of x then have key sets

3As we will see later in this paper, the careful selection of pivots can have substantial asymptotic impact on the performance
of the tree, even when fanouts are selected optimally.
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K(c1) = K(x)\ (�1, p1],K(c2) = K(x)\ (p1, p2], . . . ,K(cj) = K(x)\ (pj�1,1]. The result is that each node
x is associated with some interval of keys, called x’s key range , such that any operation on that key range
is routed through x.

The size of a node is the number of keys in the node’s key range in the tree.4 Every node in the tree
has a target size (for leaves the target size is B/2), dictating what size the node is supposed to be: as a
rule, at any given moment, if a node has target size s, then its true size must be in the range [s,O(s)]. All
the children of a node must have the same target sizes as one another, and we refer to the target size of the
children of a node as its target child size . Without loss of generality, the target child size of a node is
smaller than the target size.

Flushing messages between nodes in a bu↵ered propagation tree The target fanout of an internal
node is defined to be the target size divided by the target child size. If a node has target fanout f , then the
node maintains a bu↵er of size B/f for each of its children. The bu↵er for each child c stores insert/update
messages for that child—these messages keep track of insert/update operations that need to be performed
on keys in c’s key range.

To understand how insert/update messages work, it is helpful to think about the progression of a given
message down the tree. Any given insert/update operation on some key k inserts a message into a bu↵er
at the root. Over time, the message then travels to the leaf whose key range contains k, at which point
the insert/update operation is finally applied. Whenever a bu↵er for some child y overflows in a node x,
that bu↵er is flushed to the child y; and the messages in the bu↵er are distributed appropriately across y’s
bu↵ers; this may then cause bu↵ers in y to overflow, etc..

In order to perform a query on a key k, one traverses the root-to-leaf path to the leaf ` that contains k
in its key range. By examining the messages in the bu↵ers of the nodes in the root-to-leaf path, as well as
the contents of leaf `, the tree can answer the query on key k.

Modifying a bu↵ered propagation tree and defining speed-limitation A bu↵ered propagation tree
can dynamically change the fanouts and pivot-choices within nodes in order to adapt to the sequence of
operations being performed.

The most basic operation that a bu↵ered propagation tree can perform is to split a node x into two nodes
x1, x2 whose target-sizes/target-child-sizes are the same as x’s were. This is known as a balanced split .
Balanced splits allow for the tree to perform weight-balancing, and we will treat balanced splits as being
free (for our adversary), meaning they do not cost any I/Os, even if the tree is K-speed-limited for some K.

The other way that a bu↵ered propagation tree can modify itself is through batch rebuild , in which
some collection of nodes in the tree are replaced with new nodes (using possibly di↵erent pivots and fanouts
than before).

In more detail, when performing a batch rebuild, we can take any set of nodes X = {x1, . . . , xm}, and
and replace them with a di↵erent set of nodes Y = {y1, . . . , ym0} arbitrarily, with the restriction that after
the replacement, the tree should still be valid (i.e., each node meets its target size requirement, each child
has target size equal to the parent’s child target size, and pairs of consecutive key ranges are separated by a
valid pivot). Note that after a batch rebuild, bu↵ers may be significantly overflowed in some nodes, in which
case the tree must perform a series of bu↵er flushes to fix this. If a bu↵er is overflowed by a factor of k, then
flushing that bu↵er takes ⇥(k) I/Os.5

A K-speed-limited bu↵ered propagation tree is limited as follows: the tree is only permitted to devote
a 1

K fraction of its I/Os to batch rebuilds. Another way to think about this is that I/Os spent on batch
rebuilds are a factor-of-K more expensive than other I/Os. So a batch rebuild of a set of nodes X into a
new set of nodes Y costs (|X|+ |Y |)K I/Os.

Defining K-smooth inputs A K-smooth input is any sequence of operations with the following prop-
erty: The optimal bu↵ered propagation tree cost C for those operations is within a constant factor of the

4This can di↵er from |K(x)| for node x because insertions into x’s key range can reside in a bu↵er above x.
5We can also think of the flush as being partitioned into bkc distinct flushes, each of which flushes B/f items.
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optimal K-speed-limited bu↵ered propagation tree cost C
0 for those operations. Intuitively, this means

that there is an optimal (or at least near-optimal) bu↵ered propagation tree that, during the sequence of
operations, spends only a O(1/K)-fraction of its I/Os on optimizing the structure of the tree for the sequence.

Note that we are intentionally generous in what we consider to be “optimizing the structure of the tree”.
Balanced splits are not counted against the adversary, are not a↵ected by K-speed-limitation, and thus do
not factor into K-smoothness. This is important because on an insertion-heavy workload, a tree may be
forced to perform a large number of balanced splits, even if the tree is not changing its fanouts/pivots in
any interesting way. Thus, insertion-heavy workloads would penalize the adversary unfairly for I/Os that
the adversary has no choice but to spend.

To achieve dynamic optimality for K-smooth inputs, it su�ces to achieve dynamic optimality (for all
inputs) against K-speed-limited bu↵ered propagation trees:

Observation 1. If a data structure T is c-competitive against dynamic K-speed-limited bu↵ered propagation

trees, then T is O(c)-competitive on K-smooth input sequences against dynamic bu↵ered propagation trees.

Throughout the body of the paper, we shall focus on the problem of achieving dynamic optimality against
K-speed-limited bu↵ered propagation trees, since this problem is strictly more general than the problem of
considering K-smooth inputs.

Defining Speed-Limited OPT In this paper, we will consider the class of K-speed-limited bu↵ered
propagation trees, where K = B

3� for some parameter �. Given a sequence of operations S, we define
speed-limited OPT (or OPT for short) to be the K-limited bu↵ered propagation tree that achieves the
minimum total I/O cost on that sequence of operations. We will design a data structure, the J"llo Tree,
that is competitive with OPT.

Caching in OPT and in the J"llo Tree OPT is assumed to a have a cache that stores the top of OPT’s
tree. As per the Disk-Access Model [2], any accesses to nodes that are cached are free, in the sense that they
do not incur I/Os. We assume that the cache for OPT stores any node x whose target size is above N/C,
for some caching parameter C. (Note that this means, w.l.o.g., that OPT may as well make such nodes be
fully insert/update-optimized with ⇥(1) fanouts—and furthermore, w.l.o.g., OPT does not perform batch
rebuilds on cached nodes.) We will further assume N/C = N

1�⌦(1) (meaning that if OPT were to have
uniform fanout, then at most a constant fraction of OPT’s tree levels would be cached).

In the same way that we assume a factor of B3� resource augmentation in terms of speed-limitation,
the J"llo Tree will is also given a factor of B3� cache-size resource augmentation against OPT. Namely, we
will assume that the J"llo Tree caches any node x whose size is above N

CB3� . If both data structures were
B

�-trees, this would correspond with caching O(1) more layers than OPT caches.

2.3 Results

Our main theorem is the following:
Suppose that B � ⌦(logN) and that B is su�ciently large as a function of 1/�. Let ↵ be the total I/O

cost incurred by the J"llo Tree, and let � be the total cost incurred by the optimal B3�-speed-limited bu↵ered
propagation tree OPT using a factor of B3� smaller cache than does the J"llo Tree. Then ↵  O(�/�).

We also present a version of the theorem that does not assume resource augmentation on cache size. As
long as N � B, then the cost of removing the resource augmentation is only a small additive I/O cost per
operation.

Suppose that B � ⌦(logN) and that B is su�ciently large as a function of 1/�. Let ↵ be the total I/O
cost incurred by the J"llo Tree, let I be the total number of inserts/updates performed on the J"llo Tree,
and let R be the total number of queries performed on the J"llo Tree. Let � be the total cost incurred by
the optimal B3�-speed-limited bu↵ered propagation tree OPT using the same cache size as the J"llo Tree
uses. Then

↵  O(�/�) + min{I/B�
, R logB�}.
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In the extended version of the paper [11], we also discuss how to incorporate deletes into both the
definition of a speed-limited adversary and the design and analysis of the J"llo Tree.

3 Technical Overview

Because both the J"llo Tree itself and its analysis are quite intricate, in this section we present a sketch of
the main ideas in the data structure and our proofs. The full data structure and its analysis appear in the
extended version of the paper [11].

To simplify the presentation, we begin by considering optimality against a weakened version of OPT. As
subsections proceed, we remove restrictions on OPT and work our way towards achieving dynamic optimality
the optimal B3�-speed-limited bu↵ered propagation tree.

We begin in Subsection 3.1 by considering an OPT that has uniform fanouts (i.e., OPT is a B
"-tree with

optimal fanout). In Subsection 3.2, we consider an OPT that is allowed arbitrary fanouts, but is restricted
in its ability to select pivots. In Subsection 3.3, we examine the obstacles that arise OPT is permitted to
select pivots arbitrarily. Finally, in Subsection 3.4, we consider the full version of OPT, in which OPT gets
to select both pivots and fanouts freely.

3.1 A warmup: designing a fanout-convergent tree

Suppose we are given an initial set of N records to be stored in a bu↵ered propagation tree T with L =
⇥(N/B) leaves, and we are given a sequence of operations S = hs1, s2, . . . , ski of inserts/updates and queries.
Let Cf (S) be the cost that the operations S would incur if T were implemented as a B

"-tree with fanout
f . In this section, we present the fanout-convergent tree , which is a data structure for implementing the
operations S so that the total cost is O(minf Cf (S)) (without knowing S ahead of time).

Problem: the cost of rebuilds A natural approach to achieving cost O(minf Cf (S)) would be to treat
the selection of f as a multi-armed bandit problem [4]. The problem with this approach is that, in order to
o↵set the costs of rebuilding the tree in each trial of the multi-armed bandit problem, each individual trial
must be very long. The result is that, in the time that it takes for the tree to change size by a constant factor
we would only be able to perform a small number of trials, preventing the multi-armed bandit algorithm
from converging fast enough to be useful.

Saving time by moving in only one direction In order to keep the total costs of tree rebuilds small,
we only adjust the fanout f in one direction. The tree begins as fully query-optimized, i.e., with fanout B,
and over time the fanout decreases monotonically. A key insight is that, whenever a tree with fanout f is
rebuilt as a new tree with smaller fanout, the number of I/Os needed to perform this is only O(L/f), since
only the internal nodes of the tree need to be reconstructed. It follows that if a tree begins with fanout B,
and each successive rebuild shrinks the fanout by a factor of at least two, then the total cost of all of the
rebuilds is a geometric series bounded by O(L) I/Os. (Here we are treating the size of the tree as staying
O(N) at all times, but as we shall see momentarily, this assumption is without loss of generality.)

Any bu↵ered propagation tree must incur at least ⌦((logN)/B) � ⌦(1/B) cost per insert/update and
at least ⌦(logB N) � ⌦(1) cost per query. Thus, whenever either (a) the total number of inserts/updates
surpasses N or (b) the total number of queries surpasses L, then the O(L) cost of rebuilds has been amortized
away. Whenever either (a) or (b) occurs, we restart the entire procedure from scratch, returning to a fanout
of B.

Since we restart our data structure each time that one of (a) or (b) occurs, we can assume without loss
of generality that the number of inserts/updates in S is at most N , that the number of queries in S is at
most L, and that one of the two inequalities is strict (there are either exactly N inserts/update or exactly L

queries). Given such an S, our challenge is to decrease the fanout over time in such a way that we achieve
total cost O(minf Cf (S)).
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Selecting query-biased fanouts Let f0, f1, ... be the sequence of fanouts, where operation si is performed
on a tree of fanout fi�1. Note that f0 = B, that f0 � f1 � f2 � · · · , and that the fanout fi�1 must be
determined based only on the first i� 1 operations. When selecting fanouts, we do not need to consider the
costs of rebuilds, since in total they sum to at most O(L).

We select the fanouts f0, f1, f2, . . . so that they are always slightly query-biased. In particular, if the first
i operations contain Ri  L queries and Wi  N inserts/updates, then we select the fanout fi to be the
optimal fanout for performing L queries and Wi inserts/updates. That is, we always treat the number of
queries as L, even if it is much smaller. This rule ensures that the sequence f0 � f1 � f2 � · · · is monotone
decreasing.

Analyzing the performance The analysis of each si is made slightly di�cult by the fact that si is
performed with fanout fi�1 instead of with fanout fi. One useful observation is that, by slightly tweaking
the algorithm, we can achieve performance asymptotically as good as if each operation i were performed
with fanout fi. This can be enforced by performing the i-th operation with fanout

p
fi�1 (note that square-

rooting the fanout only hurts the query cost by a constant factor and improves insert/update cost). As long
as

p
fi�1  fi, then this is asymptotically as good as using fanout fi. On the other hand, since the sequence

f0, f1, f2, . . . is monotone decreasing there can only be O(log logB) indices i for which
p
fi�1 � fi and the

cost of these O(log logB) operations is negligible since each costs O(logL) I/Os.
Let f be the optimal fanout for performing all of the operations in S (recall that, without loss of generality,

S has at most L queries and N inserts/updates). Each of the fanouts f0, f1, f2, . . . are query-biased in the
sense that fi � f . As a result, we need not worry about the performance of query operations, that is, we
can perform the analysis as though queries take time 0. It follows that, without loss of generality, we may
assume that all query operations are performed at the beginning of the workload (since the positions of the
queries do not a↵ect the fanouts used for the inserts/updates). Furthermore, we can assume that the number
of queries is precisely L, since it turns out that adding  L queries to a workload with N inserts/updates
does not a↵ect the asymptotic cost of the workload.

In summary, the following two simplifying assumptions are without loss of generality: that fi is the
fanout used to perform si, and that S starts with L queries followed only inserts/updates. One consequence
of the second assumption is that the query-biased rule for selecting the fanouts is equivalent to:

fi = argminf Cf (hs1, . . . , sii). (1)

Using Eq. 1, we can prove that the first i operations cost at most Cfi(hs1, . . . , sii) (which in turn is
minf Cf (hs1, . . . , sii)). If we assume that this holds for i � 1, then by induction the cost of the first i

operations is at most,

Cfi�1(hs1, . . . , si�1i) + Cfi(hsii)
= min

f
Cf (hs1, . . . , si�1i) + Cfi(hsii)

 Cfi(hs1, . . . , si�1i) + Cfi(hsii)
= Cfi(hs1, . . . , sii).

It follows that the cost of all the operations s1, . . . , sk is bounded by minf Cf (hs1, . . . , ski), as desired.
The guarantee achieved above, in which we are competitive with the best fixed fanout f , is the simplest

adaptive guarantee that one could hope for. It does not adapt to the spatial-locality of where operations are
performed in the tree, however, meaning it is still far from optimal.

3.2 Considering an OPT with Fixed Pivots and Keys

Before considering dynamic optimality over the class of speed-limited bu↵ered propagation trees, we consider
a simpler class of adversaries that we call fixed-pivot bu↵ered propagation trees (or fixed-pivot trees

for short). A fixed-pivot tree contains some fixed set of N records (where N is assumed to be a power of two)
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Each supernode has a bu↵er of size B1+�

Each supernode has fanout B�

Figure 1: The fixed-pivot J"llo Tree consists of supernodes with fixed fanouts B
�. Each supernode has a

bu↵er of size B
1+�. To handle the fact that the bu↵er is size !(B), each bu↵er is itself implemented as a

fanout-convergent tree.

and supports query and update operations (but not inserts and deletes). A fixed-pivot tree is any bu↵ered
propagation tree that satisfies the fixed-pivot-structure property: every internal node x has a power-
of-two fanout, and each of x’s children subtrees are exactly equal-size. The fixed-pivot-structure property
ensures that there is essentially no freedom to select pivots in a fixed-pivot tree. In particular, each subtree
has some power-of-two size 2j and the rank of the subtree’s final element (i.e., the pivot for the subtree) is
forced to be a multiple of 2j . We now describe the fixed-pivot J"llo Tree , which is O(��1)-competitive
with any B

3�-speed-limited fixed-pivot tree.

The structure of a fixed-pivot J"llo Tree One of the challenges of dynamically adapting the fanout of
a node x is that, whenever the x’s fanout changes, x’s children must be split or merged accordingly, which
consequently a↵ects their fanouts (and, in particular, when you increase or decrease the fanout of x, the
merging/splitting that this action forces upon the children has the opposite e↵ect of decreasing or increasing
their fanouts, respectively). The interdependence between each node x and its children complicates the task
of dynamically adapting fanouts.

The fixed-pivot J"llo Tree solves this issue by decomposing the tree into what we call supernodes.
Every supernode has a fixed fanout of B� (which we will also assume is a power of two). Abstractly, each
supernode x maintains a bu↵er of size B

1+�, allowing for the supernode to bu↵er up to B messages for each
of its children. This large bu↵er allows for the supernode x to be fully insert/update-optimized (meaning
that it flushes messages B at a time) while still having large fanout.

The downside of a large bu↵er is that the cost of maintaining and searching within the bu↵er is potentially
substantial. In order to optimize this cost, we implement each supernode’s bu↵er as a fanout-convergent tree
(i.e., the data structure from Section 3.1) that is rebuilt from scratch every B

� logB� I/Os.6 The supernode
structure of a fixed-pivot J"llo Tree is illustrated in Figure 1.

Whereas the supernode structure of the fixed-pivot J"llo Tree is static, the internals of each supernode
(and namely the fanout-convergent tree that implements the bu↵er) adapt to the operations that go through
the supernode. At first glance, the fixed-pivot J"llo Tree may seem quite coarse-grained, in the sense that each
supernode adapts as an entire unit rather than having individual nodes adapt their fanouts. Nonetheless,
we will see that the adaptive power of the data structure is su�cient to make it O(��1)-competitive with
any B

3�-speed-limited fixed-pivot tree.

Imposing a supernode structure on OPT Consider a sequence of query and update operations S =
hs1, s2, . . .i on the fixed-pivot J"llo Tree, and let OPT be the optimal B3�-speed-limited fixed-pivot tree for

6We remark that supernodes will continue to play a critical role in the design of the (non-fixed-pivot) J"llo Tree later in this
overview. The key di↵erence will be that, in order to simulate optimal pivot-selection, the internal structure of each supernode
will become substantially more sophisticated.

10



n/B�

n/B�

OPT

Chopped OPT

(The new nodes are highlighted in blue)

Figure 2: Chopped OPT is constructed from OPT by adding additional nodes so that every root-to-leaf path
includes nodes of sizes N,N/B

�
, N/B

2�
, . . .. Here, we show an example of nodes being added of sizes N/B

�

(the new nodes are in blue). Notice that, when a node is added, it takes some of the children of its parent.

S.
In order to compare the fixed-pivot J"llo Tree to OPT, we begin by modifying OPT into a new structure

that we call Chopped OPT that can be partitioned into supernodes. To do this, we add to OPT a layer of
nodes whose sizes (i.e., the number of keys in their key range) are all exactly B

1+�, a layer of nodes whose
sizes are all exactly B

1+2�, a layer of nodes whose sizes are all exactly B
1+3�, and so on; see Figure 2. (Note

that some of these nodes may already be present in OPT, in which case they need not be added.) One can
think of Chopped OPT as consisting of supernodes, where each supernode has a root of size B

1+h� for some
h and leaves of size B

1+(h�1)�.
Each root-to-leaf path in Chopped OPT is at most a factor of ��1 longer than the same path in OPT.

The result is that Chopped OPT is O(��1)-competitive with OPT. In order to analyze the fixed-pivot J"llo
Tree, we show that it is O(1)-competitive with Chopped OPT.

Competitive analysis against Chopped OPT Each supernode in the fixed-pivot J"llo Tree has a
corresponding supernode in Chopped OPT that covers the same key range. For each (non-root) supernode
x in the fixed-pivot J"llo Tree, define the Chopped-OPT parent p(x) of x to be the supernode in Chopped
OPT whose key range contains x’s key range, and whose size (in terms of the number of keys in its key range)
is B� times larger than x’s size. The size requirement means that p(x) sits one layer higher in Chopped OPT
than x sits in the fixed-pivot J"llo Tree.

In order to analyze the performance of a supernode x, there are two cases to consider, depending on
whether Chopped OPT modifies the structure of p(x) during x’s lifetime. We will see that if p(x) is modified
then the speed-limitation on Chopped OPT can be used to amortize the cost incurred by the J"llo Tree, and
otherwise a competitive analysis can be performed to compare the performance of supernode x to that of its
parent p(x) in Chopped OPT.

The first case is that, at some point during x’s life (recall that each supernode x gets rebuilt from
scratch after B

� logB� I/Os), Chopped OPT modifies p(x). In this case, because Chopped OPT is B
3�-

speed-limited, one can think of the modification of p(x) as costing Chopped OPT B
3� I/Os. On the other

hand, the supernode p(x) in Chopped OPT is a parent supernode for at most B� supernodes x in the J"llo
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Tree. Thus we can think of Chopped OPT as paying B
(3�1)� I/Os to our supernode x. In other words, the

B
3�-speed-limitation on Chopped OPT pays for the B

� logB� I/Os incurred by x during its life.
The second case is that, over the course of x’s lifetime, Chopped OPT never modifies p(x). In this case,

we compare the total cost incurred by operations in x to the cost incurred by the same operations in p(x).7

Define Sx to be the set of query and update operations that go through supernode x during x’s lifetime.
Whereas the operations in Sx may take di↵erent paths than each other down supernode x, all of the operations
in Sx take the same root-to-leaf path P through supernode p(x) in Chopped OPT. We show that the cost
incurred by the operations Sx on the path P in Chopped OPT is minimized by setting all of the fanouts in
P to be equal; we call this the equal-fanout observation . Note that the equal-fanout observation does

not mean that the entire supernode p(x) is optimized by having all of its fanouts equal; the observation just
means that for each individual path in p(x), the cost of the operations that travel all the way down that
path would be optimized by setting the fanouts in that path to be equal (di↵erent paths would have di↵erent
optimal fanouts, however).

By the equal-fanout observation, the cost that operations Sx incur in p(x) is asymptotically at least the
cost that operations Sx would incur in a fanout-convergent tree containing L = ⇥(B�) leaves. On the other
hand, the bu↵er in x is implemented as a fanout-convergent tree with ⇥(B�) leaves. It follows that the cost
of operations Sx to x is O(1)-competitive with the cost of operations Sx to p(x).

The analysis described above ignores the fact that update messages may propagate down the J"llo Tree
at di↵erent times than when they propagate down Chopped OPT. As a result, some of the operations in Sx

may actually remain bu↵ered above supernode p(x) in Chopped OPT until well after the end of x’s lifetime.
By the time these bu↵ered messages make it to p(x), Chopped OPT may have already modified p(x). It
turns out that, whenever this occurs, one can extend the charging argument from the first case in order to
pay for any I/Os incurred by x.

3.3 The Pivot-Selection Problem

The importance of pivot selection The selection of pivots in a bu↵ered propagation tree can have
a significant impact on asymptotic performance. Consider, for example, a sequence of operations S =
hs1, s2, . . .i, where each operation is either a query for some key k1 or an update for some key k2, where
k2 is the successor of k1. If the pivots in the tree are selected independently of the workload S, then all of
the operations in S will (most likely) be sent down the same root-to-leaf path. On the other hand, if the
bu↵ered propagation tree uses k1 as a pivot in the root node, then all of the queries to k1 will be sent down
one subtree, while all of the updates to k2 will be sent down another, allowing for the tree to implement
updates in amortized time O((logN)/B) and queries in amortized time O(logB N). Therefore, in order to
be competitive with OPT, one must be competitive even in the cases were OPT’s pivots split the workload
into natural sub-workloads, each of which is optimized separately with properly selected fanouts. As was
the case in this example, the exact choice of pivot can be very important, meaning that there is no room to
select a pivot that is “almost” in the right position.

What supernodes must guarantee Define the fanout-convergent cost for a set of operations S in a
supernode x to be the cost of implementing S in a fanout-convergent tree that has ⇥(B�) leaves. We say that
a key-range [k1, k2] in supernode x achieves fanout-convergence over some time window W if the
cost of the operations S that apply to [k1, k2] during W is within a constant factor of the fanout-convergent
cost of those operations.

Consider what goes wrong in the analysis of the fixed-pivot J"llo Tree if we allow Chopped OPT to select
arbitrary pivots. Recall that in the competitive analysis, we compare each supernode x to its parent p(x) in

7An important subtlety is the e↵ect that caching may have on x and p(x). We assume that OPT caches all nodes with
key-range sizes N/C or larger for some parameter C, and that the J"llo Tree caches all nodes with key-range sizes N/(B3�

C)
or larger. In other words, the J"llo Tree caches O(1) more layers of supernodes than does Chopped OPT. The resource
augmentation on cache size ensures that, if x is (partially) uncached by the J"llo Tree, then p(x) is (completely) uncached by
Chopped OPT. In Section 2, we also give a version of the analysis that does not assume any resource augmentation in caching,
at the cost of incurring a small additional additive cost in the analysis.
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Chopped OPT.
If Chopped OPT is permitted to select arbitrary pivots, however, then x may actually have two parents

p1(x) and p2(x), each of which partially overlaps x’s key range.8 We need the supernode x to achieve fanout-
convergence on both of the key ranges x \ p1(x) and x \ p2(x) (rather than simply achieving for the entire
key range of x).

Since the (non-fixed-pivot) J"llo Tree does not know what the pivot p is that separates p1(x) and p2(x),
the J"llo Tree must be able to provide a guarantee for all possible such pivots. For any pivot p, define the
p-split cost of a supernode x to be the sum of (a) the fanout-convergent cost for the operations in x that
involve keys  p, and (b) the fanout-convergent cost for the operations in x that involve keys > p. Each
supernode x must provide what we call the Supernode Guarantee: for any p, x’s total actual cost is
O(1)-competitive with its p-split cost.

One additional requirement in the supernode guarantee: speed One of the aspects of pivot selec-
tion that makes it di�cult is that a supernode x’s lifetime may be relatively short. In particular, whenever
a supernode x’s size changes by a su�ciently large constant factor, the J"llo Tree is forced to perform rebal-
ancing on that supernode, thereby ending x’s life. In the worst case, for supernodes x in the bottom layer
of the tree, the lifetime of the supernode may consist of only O(B1+�) inserts (and some potentially small
number of queries), meaning that the total I/O-cost of the supernode could be as small as O(B� logB�).
Thus convergence to the supernode guarantee must be fast.

This issue is further exacerbated by the fact that the supernode guarantee requires not only pivot selection
but also optimal fanout-convergence on each side of that pivot. But even just the time to achieve optimal
fanout-convergence on a tree with B

� leaves, using the approach in Subsection 3.1, may take ⇥(B� logB�)
I/Os. This means that the natural approach of achieving fanout convergence from scratch (on both sides
of the pivot) every time that we modify our choice of pivot is not viable. Instead, the processes of pivot
selection and fanout convergence must interact so that both pieces of the supernode guarantee can be achieved
concurrently within a small time window.

The di�culty of a moving target One natural approach to pivot-selection is to keep a random sampling
of the operations performed so far and to use this to determine an approximation of the pivot popt that is
optimal for performing all of the operations so far. If the pivot popt is relatively static over time (e.g., if the
operations being performed are drawn from some fixed stochastic distribution), then such an approach may
work well. On the other hand, if popt shifts over time, then the approach of “following” popt fails.

To see why, suppose that popt(t) is the optimal pivot choice for performing the first t operations and
that for operation t we use popt(t � 1) as our pivot, i.e., we perfectly follow popt. Further suppose that the
optimal pivot popt(t) places the insert-heavy portion of the workload on its left side and the query-heavy
portion on its right side. One example of what may happen is that popt drifts to the right over time, due to
inserts being performed to the right of where popt just was. The result is that, for many insert operations t,
the pivot popt(t� 1) may be to the left of the insert-key even though the pivot popt(t) is to the right of the
insert-key — this makes popt(t� 1) a poor pivot to use for operation t. One can attempt to mitigate this by
overshooting and using a pivot to the right of popt(t� 1), but this then opens us up to other vulnerabilities
(such as popt drifting to the left).

In the next subsection, where we describe our techniques for implementing the supernode guarantee, we
will see an alternative approach to pivot selection that allows for our performance to converge to that of the
optimal pivot, without having to “follow” it around. We will then also see how to integrate pivot selection
with fanout convergence so that the supernode guarantee holds even for supernodes with short lifetimes.

3.4 Providing the supernode guarantee

As is the case for the fixed-pivot J"llo Tree, the supernodes bu↵ers in the (non-fixed-pivot) J"llo Tree are
implemented with a tree structure. To avoid ambiguity, we refer to the leaves of this tree structure as the

8Because each of x’s parents covers a larger key-range than x, x can have at most two parents.
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supernode’s leaves (even though they are the children of the supernode, and are therefore other supernodes).

Simplifying pivot selection by shortcutting leaves A given supernode may have a large number of
possible pivots (especially if the supernode is high in the tree). On the other hand, as discussed in Subsection
3.3, picking the wrong pivot (even by just a little) can be disastrous.

We can reduce the e↵ective number of pivot options by adding a new mechanism called shortcutting .
In order to shortcut a leaf `, we store the bu↵er for leaf ` directly in the root node of the supernode, meaning
that the root takes 1 more block of space than it would normally. Whenever a leaf is shortcutted, all messages
within the supernode destined for that leaf are stored within the root bu↵er (and not in any root-to-leaf
paths). Queries that go through leaf ` incur only O(1) I/Os in the supernode, since they can access ` directly
in the root. Inserts/updates that go through leaf ` incur only O(1/B) amortized cost in the supernode, since
the leaf gets its own bu↵er of size B in the root of the supernode.

Because each shortcutted leaf increases the size of the root by 1 block, we can only support O(1) short-
cutted leaves at a time. We prove that, to simulate optimal pivot-selection, one can instead select O(1)
shortcutted leaves in a way so that one of those shortcutted leaves contains the optimal pivot. This means
that, rather than satisfying the supernode guarantee directly, it su�ces to instead satisfy the following
“shortcutted” version of the guarantee:

• The Shortcutted Supernode Guarantee: Consider a sequence of operations S on a supernode
x. For any possible shortcutted leaf `, define the `-split cost of S to be the sum of (a) the fanout-
convergent cost of the operations in S that are on keys smaller than those in `; (b) the fanout-convergent
cost of the operations in S that are on keys larger than those in `; and (c) the shortcutted cost of
implementing the operations in S that apply to leaf `. The total cost of all operations S on a supernode
x in its lifetime is guaranteed to be O(1)-competitive with the `-split cost of S.

The shortcutted supernode guarantee implies the standard supernode guarantee, but the former is more
tractable because now, rather than selecting a specific pivot (out of a possibly very large number of options),
we only have to select one of O(B�) leaves to shortcut. Moreover, we get to select multiple such leaves at
a time (we will end up selecting 3 at a time), which will allow for us to perform an algorithm in which we
“chase” the optimal shortcutted leaf from multiple directions at once.

An algorithm for shortcut selection Fix a supernode x and consider the task of implementing the
shortcutted supernode guarantee. The algorithm breaks the supernode’s lifetime into short shortcut con-

vergence windows, where each shortcut convergence window satisfies the shortcutted supernode guarantee.
Each shortcut convergence window is broken into phases, where the first phase has some length T (in

I/Os), and then each subsequent phase i is defined to consist of 1/8-th as many I/Os as the sum of phases
1, 2, . . . , i� 1. If we think of I/Os as representing time, then each phase i extends the length of the shortcut
convergence window by a factor of 1+ 1/8. At the beginning of each phase i, our algorithm will select three
leaves q < r < s to be shortcutted during that phase. These are the only leaves that are shortcutted during
the phase; see Figure 3.

At any given time t, define the optimal static shortcut `opt(t) for the supernode x to be the leaf
` that minimizes the `-split cost of the operations performed up until time t (during the current shortcut
convergence window). During each shortcut convergence window, we keep track of the optimal static shortcut
`opt as it changes over time.

For now, we will describe the shortcut selection algorithm with two simplifying assumptions. The first
is that the key-ranges between shortcuts9 each achieve fanout-convergence during each phase. The second
is that the set of leaves in supernode x does not change during the shortcut convergence window (i.e., no
node-splits occur). Later we will see how to modify the algorithm to remove both of these assumptions.

We can now describe how the algorithm works. At the beginning of each phase i > 1, there are two
anchor shortcuts q and s that have already been shortcutted for all of phase i � 1. The key property

9By this we mean the four key ranges corresponding with the four sets of leaves, {1, 2, . . . , q � 1}, {q + 1, . . . , r � 1},
{r + 1, . . . , s� 1}, {s+ 1, . . .}.
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q r sT1 T2 T3

Figure 3: Each supernode selects three children q, r, s (at a time) to shortcut. These children have their
bu↵ers stored at the top of the supernode. The four key ranges between q, r, s are implemented as fanout-
convergent trees T1, T2, T3, T4.

that the anchor shortcuts satisfy is that the optimal static shortcut `opt is between them. The two anchor
shortcuts q and s remain shortcutted for all of phase i. If, at any point during phase i, the optimal static
shortcut `opt crosses one of q or s (so that it is no longer between them), then we terminate the entire
shortcut convergence window and begin the next one starting with phase 1 again — in a moment, we will
argue that whenever the shortcut convergence window terminates, it satisfies the shortcutted supernode
guarantee.

In addition to shortcutting the anchors q and s during phase i, we also shortcut the leaf r that is half-way
between q and s. At the end of the phase, we then select the anchor shortcuts for phase i + 1 to be {q, r}
if `opt is between q and r, and to be {r, s} if `opt is between r and s. The result is that, if the shortcut
convergence window does not terminate during a phase i, then the distance between the anchor shortcuts
used in phase i+ 1 will be half as large as the distance between the anchor shortcuts in phase i.

Analyzing running time Before proving the shortcutted supernode guarantee, we first bound the running
time of the shortcut convergence window W . Because the distance between the anchor shortcuts halves
between consecutive phases, the window W is guaranteed to terminate within O(logB�) phases. This means

that the number of I/Os incurred by x is at most O(T (1+1/8)logB�

)  O(TB�/5). As long as T is reasonably
small (e.g., less than B

�/2), then the length of each shortcut convergence window is small enough to fit in a
supernode’s lifetime.

Proving the shortcutted guarantee We now argue that, whenever a shortcut convergence window
W terminates, the supernode x satisfies the shortcutted supernode guarantee. Recall that the window
terminates when the static optimal shortcut `opt crosses over one of the anchors q or s (let’s say it crosses q).
The fact that `opt crosses over q can be used to argue that the q-split cost of x during W is O(1)-competitive
with the `opt-split cost of the x during W . Thus our goal is to compare the total cost incurred on x during
the shortcut convergence window by our data structure to the q-split cost of x for the same time window.

Let A1, A2, . . . , Ai be the costs in I/Os of phases 1, 2, . . . , i to supernode x, and let B1, B2, . . . , Bi be the
q-split costs of the operations in each of phases 1, 2, . . . , i (here q is the shortcut from the final phase i). We
wish to show that A1 + · · ·+Ai  O(B1 + · · ·+Bi). In particular, this will establish that the cost incurred
by x during window W is constant-competitive with the q-split cost during the same window.

Recall that each phase is defined to take a constant-fraction more I/Os than the previous phase, meaning
that A1, . . . , Ai are a geometric series (except for the final term Ai which may be smaller). Thus, rather
then proving that A1 + · · ·+Ai  O(B1 + · · ·+Bi), it su�ces to show that Ai�1  O(Bi�1).

The fact that q is an anchor shortcut in the final phase i implies that q was shortcutted in x for all of
phase i � 1. This means that the cost of supernode x to our data structure during phase i � 1 is at most
the q-split cost of the operations in phase i� 1, that is, Ai�1  O(Bi�1). As observed above, it follows that
A1 + · · ·+Ai  O(B1 + · · ·+Bi), which completes the proof of the shortcutted supernode guarantee.
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Removing the simplifying assumptions At this point, we have completed a high-level overview of
how an algorithm can perform shortcut selection in order to achieve the shortcutted supernode guarantee.
As noted earlier, however, the analysis makes several significant simplifying assumptions: (1) that the key
ranges between shortcuts each achieve fanout-convergence during each phase; and (2) that the set of leaves
for supernode x is a static set. Removing these simplifications requires several significant additional technical
ideas which we give an overview of in the rest of this subsection.

Handling a dynamically changing leaf set We begin by removing the assumption that x’s leaf set is
static. For supernodes x in the bottom layer of the tree (which are the supernodes we will focus on for the
rest of this section), the leaf-set of the supernode may change dramatically over the course of the supernode’s
lifetime, due to inserts causing leaves to split. Thus, during a given phase i of a shortcut convergence window,
the number of leaves between the two anchor shortcuts q and s may increase by more than factor of two.
This means that the distance between the anchor shortcuts that are used in phase i+1 (in terms of number
of leaves between them) could be larger than the distance between the anchor shortcuts in phase i. If this
happens repeatedly, then the shortcut convergence window may never terminate.

To combat this issue, we modify the supernode guarantee as follows. Rather than comparing the cost of
a supernode x to the p-split cost of x for every possible pivot p, we only compare the cost of x to the p-split
costs for pivots p that were already present in the tree at the beginning of x’s lifetime. We call these the
valid pivot options for x.

Similarly, we modify the shortcutted supernode guarantee to only consider the `-split cost for leaves `

that contain at least one valid pivot option. One can show that the weakened version of the two guarantees
still su�ces for performing a competitive analysis on the J"llo Tree.

In order to provide the new version of the shortcutted supernode guarantee, we modify the pivot-selection
algorithm as follows. Rather than halving the number of leaves between the anchor shortcuts in each phase,
we instead halve the number of valid pivot options contained in the leaves between the anchor shortcuts.
That is, rather than selecting the shortcutted leaf r to be half way between the two anchor shortcuts q and
s, we instead select r so that it evenly splits the set of valid pivot options between q and s.

With this new algorithm, each shortcut convergence window is guaranteed to terminate withinO(logB1+�)
phases. In order to keep the length of each shortcut convergence window small, we make it so that each
phase i is only an O(�)-fraction as large as the sum of phases 1, 2, . . . , i � 1 (rather than a 1/8-fraction).
One side-e↵ect of this is that, for supernodes in the bottom layer of the tree, the competitive ratio for the
supernode guarantee ends up being O(��1) (rather than O(1)). Nonetheless, this weakened guarantee still
turns out to be su�cient for the competitive analysis of the J"llo Tree.10

E�ciently combining pivot selection with fanout-convergence Next we remove the assumption
that, within a given phase of a shortcut convergence window, the key ranges between consecutive short-
cuts each achieve fanout-convergence. Recall that a fanout-convergent tree with B

� leaves requires up to
⇥(B� logB�) I/Os to converge. Since we cannot a↵ord to make the minimum phase length T be⇥(B� logB�),
we cannot simply perform fanout-convergence blindly within each phase.

In order to perform fanout-convergence and shortcut selection concurrently, we modify the structure
of a supernode as follows. Each supernode now consists of two layers of micro-supernodes, where each
micro-supernode has fanout ⇥(B�/2). Each micro-supernode has the same structure as what we previously
gave to supernodes: each micro-supernode can have up to three shortcut leaves, and each micro-supernode
implements the key ranges between shortcut leaves as fanout-convergent trees. A leaf ` in the full supernode
x is considered to be shortcutted in x if ` is shortcutted in the micro-supernode `

0 containing `, and if `0 is,
in turn, shortcutted in the root micro-supernode; see Figure 4.

Whenever the shortcut selection algorithm for a supernode x selects a new shortcut at the beginning of
the phase, it does this by clobbering and rebuilding only two of the micro-supernodes (specifically, the root

10Importantly, it is only in the bottom layer of the tree where we have this weakened supernode guarantee. That is, the
guarantee continues to hold with O(1)-competitiveness for all supernodes in higher layers.
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`0

`

Figure 4: We break each supernode x into two levels, each of which is implemented using micro-supernodes
with fanouts B

�/2. To shortcut a leaf ` in x, we find the micro-supernode `
0 containing `; we then rebuild

the root micro-supernode r so that `0 is shortcutted in r; and finally we rebuild `
0 so that ` is shortcutted in

`
0. Importantly, this process only disrupts fanout-convergence in two of the ⇥(B�/2) micro-supernodes.

micro-supernode and one micro-supernode in the bottom layer of x). Critically, this means that the other
micro-supernodes continue to perform fanout convergence without interruption.

If a micro-supernode y survives for cB
�/2 logB�/2 I/Os, for some su�ciently large constant c, and the

shortcuts of y are never changed by the shortcut selection algorithm during those I/Os, then each of the
fanout-convergent trees in y are guaranteed to have achieved fanout convergence (or to have incurred negli-
gibly few I/Os). In this case, we say that y also achieves fanout convergence.

When a new shortcut is selected, the actual cost of rebuilding the two micro-supernodes is only O(B�/2)
I/Os. Additionally, the fact that we clobber two micro-supernodes (possibly before they have a chance
to achieve fanout-convergence) may disrupt fanout convergence for up to O(B�/2 log(B�/2)) I/Os. In this
sense, the total cost of selecting a new shortcut (both the cost in terms of I/Os expended to rebuild the
micro-supernodes, and the cost in terms of the I/Os that those supernodes had incurred prior to being
clobbered) at the beginning of a phase is O(B�/2 log(B�/2)) I/Os. By setting the minimum phase length T

to cB
�/2 log(B�/2) for a su�ciently large constant c, we can amortize away this cost using the I/Os incurred

in other micro-supernodes during the phase.

Analyzing pivot selection and fanout-convergence concurrently The two-level structure of a su-
pernode, described above, allows for us to perform shortcut selection and fanout-convergence concurrently
with minimal interference. One issue, however, is that the time frame in which a given micro-supernode
achieves fanout convergence may overlap multiple phases (and even multiple shortcut convergence windows)
of the shortcut selection algorithm. Thus, the introduction of micro-supernodes misaligns fanout-convergence
and pivot selection so that the individual shortcut convergence windows may no longer satisfy the shortcutted
supernode guarantee.

In order to get around these issues, we define what we call the p-re-shortcutted cost of a supernode x

with respect to a given pivot p. Roughly speaking, the re-shortcutted cost of the supernode x with respect
to a pivot p is just the sum of (a) the actual costs incurred by micro-supernodes in x that do not contain p in
their key range, and (b) the p-split cost of each micro-supernode that does contain p in its key range. Rather
than proving that each shortcut convergence window satisfies the supernode guarantee, we instead prove a
weaker property: for each pivot p, the cost of x in each shortcut convergence window is O(1)-competitive
with the p-re-shortcutted cost of x during the same window. Combining this guarantee across all shortcut
convergence windows, we get that the cost of x over its entire lifetime is O(1)-competitive with the p-re-
shortcutted cost of x during its entire lifetime. Then, using the fact that (almost all of) the micro-supernodes
in x achieve fanout-convergence by the end of x’s lifetime, we conclude that the p-re-shortcutted cost of x
during its lifetime is constant-competitive with the p-split cost of x. Thus, even though each individual
shortcut convergence window may not satisfy the supernode guarantee, the supernode x does satisfy the
supernode guarantee over the course of its lifetime.
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