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ABSTRACT
Finding the connected components of a graph is a fundamental prob-
lem with uses throughout computer science and engineering. The
task of computing connected components becomes more di�cult
when graphs are very large, or when they are dynamic, meaning
the edge set changes over time subject to a stream of edge inser-
tions and deletions. A natural approach to computing the connected
components on a large, dynamic graph stream is to buy enough
RAM to store the entire graph. However, the requirement that the
graph �t in RAM is prohibitive for very large graphs. Thus, there is
an unmet need for systems that can process dense dynamic graphs,
especially when those graphs are larger than available RAM.

We present a new high-performance streaming graph-processing
system for computing the connected components of a graph. This
system, which we call G����Z�������, uses new linear sketching
data structures (C���S�����) to solve the streaming connected
components problem and as a result requires space asymptotically
smaller than the space required for a lossless representation of
the graph. G����Z������� is optimized for massive dense graphs:
G����Z������� can process millions of edge updates (both inser-
tions and deletions) per second, even when the underlying graph is
far too large to �t in available RAM. As a result G����Z�������
vastly increases the scale of graphs that can be processed.
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1 INTRODUCTION
Finding the connected components of a graph is a fundamental
problem with uses throughout computer science and engineering.
A recent survey by Sahu et al. [66] of industrial uses of algorithms
reports that, for both practitioners and academic researchers, con-
nected components was the most frequently performed computa-
tion from a list of 13 fundamental graph problems that includes
shortest paths, triangle counting, and minimum spanning trees.
It has applications in scienti�c computing [62, 69], �ow simula-
tion [70], metagenome assembly [27, 58], identifying protein fami-
lies [53, 76], analyzing cell networks [5], pattern recognition [31, 38],
graph partitioning [46, 47], random walks [36], social network com-
munity detection [42], graph compression [37, 45], medical imag-
ing [33], and object recognition [32]. It is a starting point for strictly
harder problems such as edge/vertex connectivity, shortest paths,
and :-cores. It is used as a subroutine for path�nding algorithms
such as Djikstra and �⇤, some minimum spanning tree algorithms,
and for many approaches to clustering [23–25, 61, 74, 75].

The task of computing connected components becomes more
di�cult when graphs are very large, or when they are dynamic,
meaning the edge set changes over time subject to a stream of
edge insertions and deletions. Applications on large graphs include
metagenome assembly tasks that may include hundreds of millions
of genes with complex relations [27], and large-scale clustering,
which is a common machine learning challenge [25]. Applications
using dynamic graphs include identifying objects from a video
feed rather than a static image [39], or tracking communities in
social networks that change as users add or delete friends [10, 11].
And of course graphs can be both large and dynamic. Indeed, Sahu
et al.’s [66] survey reports that a majority of industry respondents
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work with large graphs (> 1million nodes or > 1 billion edges) and
a majority work with graphs that change over time.

A natural approach to computing the connected components on
a large, dynamic graph stream is to buy enough RAM to store the
entire graph. Indeed, dynamic graph stream processing systems
such as Aspen and Terrace [21, 60] can e�cently query the con-
nected components of a large graph subject to a stream of edge
insertions and deletions when the graph �ts in RAM. However, the
requirement that the graph �t in RAM is prohibitive for most large
graphs: for example, a graph with ten million nodes and an average
degree of 1 million, using 2B to encode an edge, would require 10TB
of memory. We show in Section 6 that the Aspen and Terrace graph
representations are signi�cantly larger than this lower bound.

Figure 1: Published graphs have few nodes or are sparse.
Each point represents a graph data set from NetworkRepos-
itory. Any point below the dark line indicates a graph that
can be represented as an adjacency list in 16GB of RAM.

In public graph-data-set repositories, most graphs are smaller
than typical single-machine RAM sizes. As Figure 1 illustrates,
nearly all graphs in Network Repository [64] can be stored as
an adjacency list in less than 16GB. This �xed memory budget
furthermore implies that graphs with large numbers of vertices
must be sparse. Similarly, the Stanford SNAP graph repository and
the SuiteSparse repository have few graphs larger than 16GB, and
graphs with many nodes are always extremely sparse.

Large, dense graphs, we argue, are absent from graph reposito-
ries not because they are unworthy of study, but because there are
few tools to analyze them. To illustrate: dense graphs do appear in
Network Repository [64], but these graphs are never larger than a
few GB; moreover, as the graphs’ vertex count increases, the maxi-
mum density decreases such that the densest graphs never require
more than 10 GB. A compelling explanation for the absence of large,
dense graphs is selection bias: interesting dense graphs exist at all
scales, but large, dense graphs are discarded as computationally
infeasible and consequently are rarely published or analyzed. More-
over, some large dense graphs are known to exist as proprietary
datasets: for instance, Facebook works with graphs with 40 million
nodes and 360 billion edges. These graphs are processed at great
cost on large high-performance clusters, and are consequently not
released for general study.[18]

Thus, there is an unmet need for systems that can process dense
graphs, especially when those graphs are larger than available RAM.

Existing systems are not designed for large, dense, dynamic graph
streams and instead optimize for other use cases. Aspen and Terrace
are optimized for large, sparse, dynamic graphs that completely �t in
RAM, but their performance degrades signi�cantly on dense graphs
and graphs larger than RAM. There is a deep literature on parallel
systems for connected components computation in multicore [28],
GPU [6], and distributed settings [13, 40] but these focus on static
graphs which �t in RAM. Many external memory [12] and semi-
external memory [1] systems focus on graphs that are too large for
RAM and must be stored on disk, but none of these systems focus
on graphs whose edges can be deleted dynamically.

In this paper, we explore the general problem of connected com-
ponents on large, dense, dynamic graphs. We introduce G����Z���
�����, which computes the connected components of graph streams
using a $ (+ /log3 (+ ))-factor less space than an explicit represen-
tation of the graph. G����Z������� uses a new ✓0-sketching data
structure that outperforms the state of the art on graph sketch-
ing workloads. Additionally, G����Z������� employs node-based
bu�ering strategies that improve I/O e�ciency. These techniques al-
low G����Z������� to scale better than existing systems in several
settings. First, for in-RAM computation, G����Z�������’s small
size means it can process larger, denser graphs than Aspen or Ter-
race: speci�cally, dense graphs twice as large as Aspen and at least
40 times larger than Terrace given 64 GB of RAM. Moreover, even
if the input graph �ts in RAM on all systems, G����Z������� is
up to 2.5 times faster than Aspen and 36 times faster than Terrace
on large dense graphs. Finally, G����Z������� scales to SSD at
the cost of a 29% decrease to ingestion rate, and is more than two
orders of magnitude faster than Aspen and Terrace, which su�er
signi�cant performance degradation when scaling out of RAM.

G����Z������� employs a new sketch algorithm, overcoming a
computational bottleneck of existing linear sketching techniques
in the semi-streaming graph algorithms literature [20]. The asymp-
totically best existing streaming connected components algorithm
is Ahn et al.’s S��������CC [3, 56], which has asymptotically
low space and update time complexity. S��������CC relies on
✓0-sampling, which it uses to sample edges across arbitrary graph
cuts. However, the best known ✓0-sampling algorithm su�ers from
high constant and polylogarithmic factors in its space and update
time, as we show in Section 3. This overhead makes any implemen-
tation of the S��������CC data structure infeasibly slow and large.
G����Z������� employs what we call C���S�����, a specialized
✓0-sampling algorithm for sampling edges across graph cuts, to solve
the connected components problem. For large graphs C���S�����
uses 4 times less space than the best general ✓0-sampling algorithm
and can process updates more than three orders of magnitude faster.

G����Z������� also uses new write-optimized data structures
to overcome prohibitive resource requirements of existing semi-
streaming algorithms. Streaming algorithms have had a signi�cant
impact in large part because they require a small (polylogarith-
mic) amount of RAM. In contrast, graph semi-streaming algorithms
have higher RAM requirements: for most problems on a graph
with + nodes, sublinear RAM is insu�cient to even represent a
solution so $ (+polylog(+ )) RAM is typically assumed. With the
large polylog factors, this is often more RAM than is feasible in
practice; see Section 2. We propose the hybrid streaming model,
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which enjoys the memory advantage of the streaming model while
allowing enough space in external memory to compute on dynamic
graph streams. In this model there is still $ (+polylog(+ )) space
available, but only$ (polylog(+ )) of this space is RAM and the rest
is disk, which may only be accessed in $ (polylog(+ ))-size blocks.
The simultaneous challenges in this model are to design algorithms
that use small total space but also have low I/O complexity. While
existing graph semi-streaming algorithms use small space, their
heavy reliance on hashing and random access patterns make them
slow on disk. We show that G����Z������� is simultaneously a
space-optimal in-RAM semi-streaming algorithm and an I/O e�-
cient external memory algorithm for the connected components
problem. We also validate its performance experimentally, showing
that G����Z������� can operate on modern consumer solid-state
disk, increasing the scale of dynamic graph streams that it can
process while incurring only a 29% cost to stream ingestion rate.

Results. In this paper we establish the following:

• G����Z�������: We present a new high-performance stream-
ing graph-processing system for computing the connected com-
ponents of a graph. This system, which we call G����Z�������,
uses new linear sketching data structures (C���S�����, de-
scribed below) to solve the streaming connected components
problem and as a result requires a$ (+ /log3 (+ ))-factor less space
than any lossless representation of the graph. G����Z�������
is optimized for massive dense graphs: G����Z������� can pro-
cess millions of edge updates (both insertions and deletions) per
second, even when the underlying graph is far too large to �t in
available RAM. As a result G����Z������� vastly increases the
scale of graphs that can be processed.

• C���S�����: ✓0-sampling optimized for graph connec-
tivity sketching. We give a new ✓0-sampling algorithm,
C���S�����, for vectors of integers mod 2. Given a vec-
tor of length = and failure probability X , C���S����� uses
$ (log2 (=) log(1/X)) bits of space and $ (log(=) log(1/X)) aver-
age time per update, which is a factor of $ (log(=)) faster than
the best existing ✓0-sampler for general vectors [20].
C���S����� is a key subroutine in G����Z�������, where it
is used to sample graph edges across arbitrary cuts as part of
connected components computation. Here it is used to sketch
vectors of length

�+
2
�
= $ (+ 2), where + denotes the number of

nodes in the graph. We show experimentally that C���S����� is
more than 3 orders of magnitude faster than the state-of-the-art
✓0 sampling algorithm on graph streaming workloads.
In addition to the $ (log(+ ))-factor speedup, several non-
asymptotic factors contribute to this performance improvement
as well. First, the existing algorithm’s average update cost is
dominated by $ (log(+ ) log(1/X)) division operations, while
C���S�����’s average update cost is dominated by$ (log(1/X))
bitwise XOR operations, which are much faster. In addition, the
general algorithm performs 128-bit arithmetic operations (in-
cluding division) when processing graphs with more than 105
nodes, whereas C���S����� can use standard 64-bit operations
to achieve the same error probability. Finally, both algorithms

match the asymptotic space lower bound but C���S����� uses
roughly 4 times less space than the general algorithm.

• Asymptotic guarantees of G����Z�������: space-
optimality, I/O e�ciency, $ (log3 (+ )) time per update.
G����Z�������’s core algorithm matches the $ (+ log3 (+ ))-bit
space lower bound for the streaming connected compo-
nents problem, and its average per-update time cost of
$ (log(+ )) is $ (log(+ ))) times faster than the best ex-
isting algorithm [3]. Additionally, G����Z������� can
e�ciently ingest stream updates even when its sketch data
structure is too large to �t in RAM: its I/O complexity is
B>AC (length of stream) + $ (+ /⌫ log3 (+ ) + + log⇤ (+ )) and for
realistic block sizes it is an I/O-optimal external-memory
algorithm [17]. As a result, given a �xed amount of RAM and
disk, G����Z������� is capable of e�ciently computing the
connected components of larger graphs than existing algorithms
in the streaming or external memory models.

• Empirical achievements of G����Z�������: better scal-
ing for in-memory, out-of-core, and parallel computa-
tion, and undetectable failure probability.G����Z�������’s
C���S�����-based design increases the size of input graphs that
can be processed, scales well to persistent memory, and facilitates
parallelism in stream ingestion. As a result, G����Z������� can
ingest 2-5 million edge updates per second on a single scienti�c
workstation (see Section 6), both when its data structures reside
completely in RAM and also when they reside on fast disk. As a
result of these advantages, G����Z������� is faster and more
scalable than the state of the art on large, dense graphs:

– G����Z������� handles larger graphs for in-RAM
computation. G����Z�������’s space-e�cient C���S�����
allows it to process graph streams larger than can be stored
explicitly in a �xed amount of RAM and give it an asymp-
totic $ (+ /log3 (+ )) space advantage over state-of-art systems
on dense graphs. Given the polylogarithmic factors and con-
stants, we need to determine the actual crossover point where
G����Z������� processes graphs more compactly than Aspen
and Terrace. We show empirically that this crossover point
occurs when the space budget is between 32 and 64 gigabytes.
That is, for dense graphs on several hundred thousand nodes,
G����Z������� is 40% more compact than Aspen and several
times more compact than Terrace, and this advantage only
increases for larger space budgets or input sizes. Additionally,
for dense graph streams on 218 nodes G����Z������� ingests
updates 24 times faster than Terrace and twice as fast as Aspen.

– G����Z������� can use persistent memory to handle
even larger graphs. G����Z�������’s node-based work
bu�ering strategy facilitates out-of-core computation, allow-
ing G����Z������� to use SSD to increase the scale of graph
streams it can process while incurring a small cost to perfor-
mance. We show experimentally that G����Z������� ingests
updates more than two orders of magnitude faster than Aspen
and Terrace when all systems swap to disk, and that using SSD
slows G����Z������� stream ingestion by only 29%.
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– G����Z�������’s stream ingestion is highly parallel.
G����Z������� employs a node-basedwork bu�ering strategy
that facilitates parallelism and improves data locality. We show
experimentally that G����Z�������’s multithreaded stream
ingestion system scales well with more threads: its ingestion
rate is 25 times higher with 46 threads than an optimized
single-thread implementation.

– G����Z�������’s theoretical failure probability is un-
detectable in practice. G����Z������� and similar graph
sketching approaches achieve their remarkable space e�ciency
at the cost of a random chance of failure. We show empirically
that G����Z�������’s observed failure rate is even lower than
the proved (polynomially small) upper bound: in fact, for 5000
trials on real-world and synthetic graphs it never failed.

2 PRELIMINARIES
2.1 Graph Streaming & Hybrid Graph

Streaming
In the graph semi-streaming model [26, 55] (sometimes just
called the graph streaming model), an algorithm is presented
with a stream ( of updates (each an edge insertion or deletion)
where the length of the stream is # . Stream ( de�nes an input
graph G = (V, E) with+ = |V| and ⇢ = |E |. The challenge in this
model is to compute (perhaps approximately) some property of G
given a single pass over ( and at most $ (+polylog(+ )) words of
memory. Each update has the form ((D, E),�) where D, E 2 E,D < E
and � 2 {�1, 1} where 1 indicates an edge insertion and �1 indi-
cates an edge deletion. Let B8 denote the 8th element of ( , and let (8
denote the �rst 8 elements of ( . Let E8 be the edge set de�ned by
(8 , i.e., those edges which have been inserted and not subsequently
deleted by step 8 . The stream may only insert edge 4 at time 8 if
4 8 E8�1, and may only delete edge 4 at time 8 if 4 2 E8�1.

In Section 4 we additionally use a new variant of the graph
semi-streaming model, which we call the hybrid graph stream-
ing se�ing (since it incorporates some components of the external
memory model [71] into the semi-streaming model). In this setting,
there is an additional constraint on the type of memory available for
computation: only " = ⌦(polylog(+ )) = > (+ ) RAM is available,
and ⇡ = $ (+polylog(+ )) disk space is available. A word in RAM
is accessed at unit cost, and disk is accessed in blocks of ⌫ = > (")
words at a cost of ⌫ per access. Any semi-streaming algorithm
can be run with this additional constraint, but may become much
slower if the algorithm makes many random accesses to disk. The
algorithmic challenge in the hybrid graph streaming setting is to
minimize time complexity (of ingesting stream updates and return-
ing solutions) in addition to satisfying the typical limited-space
requirement of the data stream setting. In Section 4 we show how
G����Z������� can be adapted to this model, and is both a space-
optimal single pass streaming algorithm with $ (log2 (+ )) update
time and an I/O e�cient external memory algorithm.

Problem 1 (The streaming Connected Components prob-
lem.). Given a insert/delete edge stream of length # that de�nes
a graph G = (V, E), return a insert-only edge stream that de�nes a
spanning forest of G.

2.2 Prior Work in Streaming Connected
Components

We summarize S��������CC, Ahn et al.’s [3] semi-streaming algo-
rithm for computing a spanning forest (and therefore the connected
components) of a graph.

For each node E8 in ⌧ , de�ne the characteristic vector 58 of E8
to be a 1-dimensional vector indexed by the set of possible edges in
G. 58 [( 9,:)] is only nonzero when 8 = 9 or 8 = : and edge ( 9,:) 2 E.
That is, 58 2 {�1, 0, 1}(

+
2 ) s.t. for all 0  9 < : <

�+
2
�
:

58 [( 9,:)] =
8>><
>>:

1 8 = 9 and (E 9 , E: ) 2 E
�1 8 = : and (E 9 , E: ) 2 E
0 otherwise

9>>=
>>;

Crucially, for any ( ⇢ V , the sum of the characteristic vectors
of the nodes in ( is a direct encoding of the edges across the cut
((,V \ (). That is, let G =

Õ
E2( 5E and then |G [( 9,:)] | = 1 i�

( 9,:) 2 ⇢ ((,V \ ().
Using these vectors, we immediately have a (very ine�cient)

algorithm for computing the connected components from a stream:
Initialize 58 = {0}(

+
2 ) for all 8 . For each stream update B = ((D, E),�),

set 5D [D, E]+ = � and 5E [D, E]+ = ��.
After the stream, run Boruvka’s algorithm [57] for �nding a

spanning forest as follows. For the �rst round of the algorithm, from
each 08 arbitrarily choose one nonzero entry (F ,~) (an edge in E
s.t. w = i or y = i). Add 48 to the spanning forest. For each connected
component ⇠ in the spanning forest, compute the characteristic
vector of ⇠: 0⇠ =

Õ
E2⇠ 5E . Proceed similarly for the remaining

rounds of Boruvka’s algorithm: in each round, choose one nonzero
entry from the characteristic vector of each connected component
and add the corresponding edges to the spanning forest. Sum the
characteristic vectors of the component nodes of the connected
components in the spanning forest, and continue until no new
merges are possible. This will take at most $ (log(+ )) rounds.

The key idea to make this a small-space algorithm is to use
“✓0-sampling” [20] to run this version of Boruvka’s algorithm by
compressing each characteristic vector 58 into a data structure of
size$ (log2 (+ )) that can return a nonzero entry of 58 with constant
probability.

De�nition 1. A sketch algorithm is a X ✓0-sampler if it is
(1) Sampleable: it can take as its input a stream of updates to

the coordinates of a non-zero vector 0, and output a non-zero
coordinate ( 9, 5 [ 9]) of 5 . S(5 ) denotes the sketch of vector 5 .

(2) Linear: for any vectors 5 and 6, S(5 ) + S(6) = S(5 +6) and
this operation preserves sampleability, i.e., S(5 +6) can output
a nonzero coordinate of vector 5 + 6.

(3) Low Failure Probability. the algorithm returns an incorrect
or null answer with probability at most X .

For all ✓0-samplers in this paper, S(5 ) is a vector and adding two
sketches is equivalent to adding their vectors elementwise.

Lemma 1. (Adapted from [20], Theorem 1): Given a 2-wise indepen-
dent hash family F and an input vector of length =, there is an X
✓0-sampler using $ (log2 (=) log(1/X)) bits of space.

We denote a ✓0 sketch of a vector G as S(G). Since the sketch is
linear, S(G) + S(~) = S(G +~) for any vectors G and ~. This allows
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us to process stream updates as follows: we maintain a running
sum of the sketches of each stream update, which is equivalent to
a sketch of the vector de�ned by the stream. That is, let 0C8 denote
08 after stream pre�x (C . For the 9th stream update B 9 = ((8, G),�)
we obtain S(5 98 ) = S(B 9 ) + S(5 9�18 ).

Linearity also allows us to emulate the merging step of Boruvka’s
algorithm by summing the sketches of all nodes in each connected
component. We require $ (log(+ )) independent ✓0 sketches for
each E 2 V , one for each round1, and each must succeed with
probability 1�1/100 so the size of the sketch data structure for each
node is $ (log3 (+ )). We refer to the sketch data structure for each
node as a node sketch and each of its $ (log(+ )) ✓0-subsketches
as C���S�������. The total size of the entire data structure is
$ (+ log3 (+ )). Recent work [56] has shown that this is optimal.

The above description assumes that the exact number of nodes
+ is known a priori. This is not strictly necessary: All we need is
a loose upper bound on the number of nodes we will eventually
see. Given an upper bound * s.t. +  *  + 2 for some constant
2 , we can simply de�ne 58 to have length

�*
2
�
. The node sketch

of 58 then has size $ (log3 (* 2)) = $ (log3 (+ )). We create a node
sketch for E8 the �rst time it appears in a stream update (E8 , E 9 ) so
the total space cost is still $ (+ log3 (+ )). Similarly, even if nodes
are identi�ed in the input stream as arbitrary strings instead of
integer IDs in the range [+ ], we can use a hash function with range
[$ (* 2)] to ensure that every node gets a unique integer ID with
high probability.

3 ✓0-SAMPLING REVISITED
Existing ✓0-sampling algorithms are asymptotically small and fast
to update, but in practice high constant and logarithmic overheads
in size and update time prevent these algorithms from being useful
for a streaming connected components algorithm. We now review
some details of the best known ✓0-sampling algorithm and demon-
strate experimentally that using it to emulate Boruvka’s algorithm
for graph connectivity would be prohibitively slow and would
require an enormous amount of space. Then we introduce an ✓0-
sketching algorithm which exploits the structure of the connected
components problem to improve performance, and experimentally
demonstrate that it is 4 times smaller and 3 orders of magnitude
faster to update than the state of the art.

The best known ✓0-sampling algorithm [20] is summarized in
Figure 3. Given a vector 5 2 Z= , the data structure consists of a
matrix of log(=) by @ log(1/X) "buckets" (for some small constant @).
Each bucket represents the values at a random subset of positions
of 5 . This representation is lossy: we can recover a nonzero element
of 5 from bucket B8, 9 only when a single position in B8, 9 is nonzero.
Equivalently, the support of B8, 9 , denoted by BD?? (B8, 9 ), is 1. If
BD?? (B8, 9 ) = 1, we say that B8, 9 is good, and say that it is bad
otherwise. With probability 1�X , 98, 9 s.t. B8, 9 is good and therefore
we can recover a nonzero value from 5 . Each bucket includes a
checksum that indicates whether it is good with high probability.

Each bucket B8, 9 contains three values: 08, 9 ,18, 9 , and 28, 9 . If B8, 9
is good, then the checksum test on line 15 passes and 5 [18, 9 ] =
08, 9/18, 9 . If the checksum test fails B8, 9 is bad.

1In the original paper the authors note that adaptivity concerns require the use of new
sketches for each round of Boruvka’s algorithm.

Figure 2: Compressing a characteristic vector. Each high-
lighted cell contains one nonzero element from the vector
and can be sampled, yielding an edge incident to node 1.

1: function ������_������(idx, �) ù Add � to vector index ‘idx’
2: for all col 2 [0,@ log(1/X)) do
3: col_hash hash(col, idx)
4: row 0
5: checksum A [col]idx mod ?
6: while row == 0 OR col_hash[row-1] == 0 do
7: col[row].a col[row].a + idx ⇥ �
8: col[row].b col[row].b + �
9: col[row].c col[row].c + � ⇥ checksum
10: row row + 1
11: function ����_������( ) ù Get a non-zero vector index
12: for all col 2 [0,@ log(1/X)) do
13: for all bucket 2 col do
14: value bucket.a/bucket.b
15: if value is integer AND bucket.c == bucket.b ⇥

A [col]value mod ? then
16: return {value, bucket.b} ù Found a good bucket, done
17: return sketch_failure ù All buckets bad

Figure 3: State—of—the—art ✓0-sampling algorithm.

When a stream update (4,�) arrives, its membership in each
bucket is determined using the hash function on line 3: if ⌘0B⌘(4) ⌘
0 (mod 28 ) then 4 is in B8, 9 . If it is in bucket B8, 9 , it is applied to
08, 9 ,18, 9 , and 28, 9 according to the logic on lines 7, 8, and 9. When
the sketch is queried, it checks whether each bucket passes the
checksum test on line 15. If some bucket passes this test, its sampled
value is returned. Figure 2 gives an example of this process. For a
more thorough analysis of this algorithm see [20].

Existing ◆0-samplers are slow to update for graph streaming
workloads. Note in line 9 that updating 28, 9 of bucket B8, 9 requires
modular exponentiation, necessitating$ (log(=)) multiplication op-
erations and $ (log(=)) modulo operations (where the modulus is
a large prime). As a result, in the worst case this algorithm per-
forms $ (log(=) log(1/X)) arithmetic operations per stream update.
In the average case, the update modi�es only $ (log(1/X)) buckets,
however, the cost to generate checksums is still$ (log(=) log(1/X)).
Moreover, for su�ciently large vectors, this modular exponentia-
tion must be done on integers larger than a 64-bit machine word,
drastically increasing computation time in practice.
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Vector Length Standard ✓0 C���S����� Speedup
103 223,000 7,322,000 33.1 x
104 124,000 5,180,000 42.3 x
105 54,800 4,384,000 79.8 x
106 29,300 3,730,000 127 x
107 20,900 3,177,000 151 x
108 16,300 2,825,000 172 x
109 13,100 2,587,000 196 x
1010 1,350 2,272,000 1,680 x
1011 918 2,108,000 2,300 x
1012 833 1,963,000 2,350 x

Figure 4: C���S����� is faster than standard ✓0 sketching.
Ingestion rates (in updates/second) are listed for both ✓0
sketching methods.
Vector Length Standard ✓0 C���S����� Size Reduction

103 2.30KiB 1.21KiB 1.9 x
104 4.98KiB 2.34KiB 2.1 x
105 7.23KiB 3.43KiB 2.1 x
106 9.90KiB 4.73KiB 2.1 x
107 14.1KiB 6.79KiB 2.1 x
108 17.8KiB 8.58KiB 2.1 x
109 21.9KiB 10.6KiB 2.1 x
1010 55.9KiB 13.6KiB 4.1 x
1011 66.0KiB 16.1KiB 4.1 x
1012 77.0KiB 18.8KiB 4.1 x

Figure 5:C���S����� is signi�cantly smaller than standard
✓0 sketching. Sizes are listed for both ✓0 sketching methods.

The “Standard ✓0” column of Figure 4 displays the single-threaded
ingestion rate in updates per second of the state-of-the-art ✓0-
sampling algorithm for vectors of various sizes. These results were
obtained on aDell Precision 7820with 24-core 2-way hyperthreaded
Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz and 64GB 4x16GB
DDR4 2933MHz RDIMM ECC Memory. Note how ingestion rate
decreases as vector length increases, and in particular there is a cat-
astrophic slowdown at vector length 1010. This dramatic decrease
in ingestion rate is due to the need to perform modular exponen-
tiation on integers larger than 264, requiring the use of 128-bit
integers thus slowing computation. When sketching characteris-
tic vectors of length $ (+ 2) for streaming connected components,
128-bit integers are required when + � 105.

When using ✓0-sampling for Boruvka emulation, each stream up-
date ((D, E),�) must be applied to the node sketches of D and E . For
any node D, the node sketch of D is made up of log(+ ) ✓0-sketches
of 0D . Each of these ✓0-sketches has a failure rate of X = 1/100
and, therefore, a width of log(1/X) = 7. Processing a stream update
requires 2 · 7 ·$ (log2 ( |0D |) = 28 ·$ (log2 (+ )) multiplication and
modulo operations. For a graphwith amillion nodes, S��������CC
must apply each update to 28 sketch vectors of length 1012, so it
can process roughly 800/28 = 29 edge updates per second.

Existing ◆0-samplers are large for graph streaming work-
loads. Each node sketch consists of log(+ ) ✓0 sketches and each ✓0-
sketch is a vector of 72 log(+ 2) = 142 log(+ ) buckets. Each bucket is

composed of three integers so a node sketch consists of 422 log2 (+ )
integers. As noted above, 128-bit(16B) integers are necessary when
+ � 105, so for 2 = 2 the size of a node sketch is 1344 log2 (+ )B.
Since there is a node sketch for each node in the graph, the entire
streaming data structure has size 1344+ log2 (+ )B. When + = 1
million, this data structure is roughly 500 GiB in size.

Using existing ◆0-samplers o�ers no advantage on modern
hardware. The goal of a streaming connected components algo-
rithm is to use smaller space than would be required to store the
entire graph explicitly. As we demonstrate empirically in Section 6,
the most space-e�cient dynamic graph processing system, As-
pen, requires roughly 4B of space for each edge in the graph. A
straightforward back-of-the-envelope calculation reveals that even
for dense graphs with average degree + /2, S��������CC would
use less space than Aspen only on very large inputs which re-
quire enormous RAM capacities and decades of processing time:
1344+ log2 (+ )B  4⌫ · + 2/4 only when + � 5 · 105. Processing
a half a million-node graph using S��������CC would require
220 GB of RAM and, at an ingestion rate of less than 35 edges
per second, would take more than 56 years to process the graphs’
roughly 64 billion edges. While S��������CC’s space complexity
is much smaller than explicit graph representations like Aspen’s
asymptotically, in absolute terms it o�ers no advantage on modern
hardware.

3.1 Improved ◆0-Sampler for Graph
Connectivity

We present C���S�����, an ✓0�sampling algorithm for vectors
on the integers mod 2, which is smaller than the best existing
general-purpose ✓0-sampling algorithm and is asymptotically faster
to update. Since addition of characteristic vectors (Section 2.2) can
be thought of as addition over vectors 2 Z2, C���S����� is suf-
�cient for solving the connected components problem. Addition-
ally, C���S����� may be useful for other sketching algorithms
for problems such as edge- or vertex-connectivity, testing bipar-
titeness, and �nding minimum spanning trees and densest sub-
graphs [2, 3, 29, 52].

Since C���S�����’s goal is to recover a nonzero entry from
vectors of integers mod 2, it can use a much simpler bucket data
structure than the general-purpose ✓0-sketch, improving space and
update time costs. The C���S����� algorithm is summarized in
Figure 6. Each bucket B8, 9 maintains 2 values: U8, 9 , which is used
to recover the position of a single nonzero entry, and W8, 9 , which
is used as a checksum. U8, 9 and W8, 9 are each $ (log(=)) bits, and
therefore require $ (1) machine words. Since each vector value
is either 0 or 1, � = 1 for every stream update (4,�), and so for
simplicity we refer to the update as (4).

Function ������_������() in Figure 6 describes how
C���S����� processes a stream update. Given update (4),
if ⌘1 (4) ⌘ 0 (mod 28 ) then 4 is in B8, 9 . For each such B8, 9 ,
U8, 9 = U8, 9 � 18=(4) and W8, 9 = W8, 9 � ⌘2 (18=(4)) where � denotes
bitwise XOR, 18=(4F) denotes the binary representation of 4F , and
⌘1 and ⌘2 are hash functions drawn from a 2-wise independent
family of hash functions. Note that the procedure for determining
whether 4 2 B8, 9 is identical to the algorithm in Figure 3, but the
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1: function ������_������(idx) ù Toggle vector index ‘idx’
2: for all col 2 [0,@ log(1/X) do
3: col_hash hash1(col, idx)
4: row 0
5: checksum hash2(col, idx)
6: while row == 0 OR col_hash[row-1] == 0 do
7: col[row].U  col[row].U � idx
8: col[row].W  col[row].W � checksum
9: row row + 1
10: function����_������( ) ù Get a non-zero vector index
11: for all col 2 [0,@ log(1/X)) do
12: for all bkt 2 col do
13: if bkt.W == hash2(col, bkt.U ) then
14: return bkt.U ù Found a good bucket, done
15: return sketch_failure ù All buckets bad

Figure 6: Pseudocode for the C���S����� algorithm.

procedure for updating B8, 9 is di�erent. Importantly, C���S�����
never performs modular exponentiation, which as we will show
makes it a ;>6(+ ) factor faster than the existing algorithm in the
average case. As a result of ������_������(), given a sequence of
updates (41), (42), . . . , (4: ) to the data structure,

U8, 9 =
 
F2 [: ]

18=(4F) (1)

W8, 9 =
 
F2 [: ]

⌘2 (18=(4F)) (2)

Function ����_������() describes how C���S����� returns a
nonzero entry of the input vector. For any bucket B8, 9 :

A4BD;C =

8>><
>>:

4 0 if U8, 9 = 18=(4 0) and W8, 9 = ⌘2 (18=(4 0))
FAIL if U8, 9 = 0 and W8, 9 = 0 OR

if W8, 9 < ⌘2 (U8, 9 )
A nonzero entry is recovered from C���S����� by attempting

to recover a nonzero entry from each B8, 9 until one returns a value
other than FAIL. If no such bucket exists, the algorithm returns
NULL.

T������ 1. C���S����� is an ✓0 sampler that, for input vector
G 2 Z=2 , has space complexity $ (log2 (=) log(1/X)), worst-case up-
date complexity$ (log(=) log(1/X)), average-case update complexity
$ (log(1/X)), and failure probability at most X .

P����. The space and update time results follow by construc-
tion: each bucketB8, 9 requires a constant number of machine words,
and 8 2 [$ (log(=)]) and 9 2 [$ (log(1/X)]. Applying an update to
any bucket B8, 9 requires constant time, and in the worst case, an
update will be applied to each of the $ (log(=) log(1/X)) buckets.
In the average case an update is applied to $ (log(1/X)) buckets.

Lemma 2. C���S�����’s selection process succeeds with probability
at least 1 � X . Equivalently, C���S����� contains a bucket B8, 9 with
a single nonzero entry, that is, Pr

⇥
98, 9 s.t. BD?? (B8, 9 ) = 1

⇤
� 1 � X .

P����. Adapted from [20]. Choose 8 2 [log(=)] such that 28�2 
kG k0 < 28�1 where kG k0 denotes the ✓0 norm of G , i.e., the number
of nonzero entries of G . Let �G be the set of positions of nonzero

entries in G . Then, since ⌘1 is drawn from a 2-universal family of
hash functions, 89 2 [6 log(1/X)],

Pr
⇥
BD?? (B8, 9 = 1)

⇤
=

’
:2�G

1
28

✓
1 � 1

28

◆ kG k0�1

>
kG k0
28

✓
1 � kG k0

28

◆
> 1/8.

Then Pr
⇥
BD?? (B8, 9 < 1)89 2 [6 log(1/X)]

⇤
< (1 � 1/8)6 log(1/X) =

(7/8)6 log7/8 (1/X)/log7/8 (2) = X�6/log7/8 (2) < X . ⇤

Lemma 3. C���S�����’s checksum succeeds with high probabil-
ity. That is, 8F ,~, ifBD?? (BF,~) = 1 then WF,~ = ⌘2 (UF,~) and if
BD?? (BF,~) > 1 then Pr

⇥
WF,~ < ⌘2 (UF,~)

⇤
� 1 � 1/=2 for some

constant c.

P����. When B8, 9 has a single nonzero entry, it always passes
the error check. That is, if BD?? (B8, 9 ) = 1, UF,~ = 18=(48 ) where 48
is the single nonzero element of B8, 9 , and WF,~ = ⌘2 (18=(48 )).

WhenB8, 9 has more than one nonzero entry, then it passes the er-
ror check only in the rare event of a hash collision: If BD?? (B8, 9 ) > 1,
�x 48 2 B8, 9 . By equations (1) and (2), WF,~ = ⌘2 (UF,~) i�…

9 2B8,9 \48 ⌘2 (18=( 9)) � ⌘2 (18=(48 )) = ⌘2 (UF,~). Since ⌘2 is a 2-
wise independent hash function, assuming that W8, 9 is 2 log(=) bits:

Pr
266664
⌘2 (18=(48 )) = ©≠

´
 

9 2B8,9 \48
⌘2 (18=( 9))™Æ

¨
� ⌘2 (UF,~)

377775
=

1
22 log(=)

=
1
=2

.

⇤

Lemmas 2 and 3 imply that C���S����� is sampleable with
probability 1 � X (see De�nition 1). C���S����� may be added via
elementwise

…
(exclusive or). Linearity of C���S����� follows

from the observation that exclusive or is a linear operation. ⇤

Figure 4 illustrates that C���S����� is far faster than the stan-
dard ✓0-sampling algorithm. In fact, when sketching characteristic
vectors of graphs with at least 105 nodes, it is more than 3 or-
ders of magnitude faster. This dramatic speedup is a result both of
C���S�����’s asymptotically lower update time complexity, and
the fact that its update cost is dominated by bitwise exclusive OR
operations, which are in practice much faster than the division oper-
ations standard ✓0-sampling performs. Finally, standard ✓0 sampling
is slowed signi�cantly by the need to perform $ (log(+ ) log(1/X)
modular exponentiation operations on 128-bit integers for each
update when+ � 105. C���S����� does not require 128-bit opera-
tions until processing graphs with tens of billions of nodes.

Figure 5 shows that, for the same input vector length and failure
probability, C���S����� is twice as small as standard ✓0 sampling
for smaller vectors, and four times smaller for larger vectors. This
is a result of the fact that C���S�����’s bucket data structures
use half the machine words of standard ✓0 sampling, and the fact
that C���S����� does not need to use 128-bit integers for longer
vectors.
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4 BUFFERING FOR I/O EFFICIENCY AND
IMPROVED PARALLELISM

In the streaming connectivity problem, stream updates are �ne-
grained: each update represents the insertion or deletion of a single
edge. Since streams are ordered arbitrarily, even a short sequence of
stream updates can be highly non-local, inducing changes through-
out the graph. As a result, S��������CC and similar graph stream-
ing algorithms do not have good data locality in the worst case. This
lack of locality can cause many CPU cache misses and therefore
reduce the ingestion rate, even when sketches are stored in RAM.
The cache-miss cost can be high since ingesting each stream update
(D, E,�) requires modifying a logarithmic number of sketches, and
can thus induce a poly-logarithmic number of cache misses. The
consequences are even worse if sketches are stored on disk since
each edge update requires loading a logarithmic number of sketches
from disk, leading to the following observation.

Observation 1. In the hybrid semi-streaming model with " =
> (+ log3 (+ )) RAM and ⇡ = ⌦(+ log3 (+ )) disk, S��������CC uses
⌦(1) I/Os per update and processing the entire stream of length #
uses ⌦(# ) = ⌦(⇢) I/Os.

Any sketching algorithm that scales out of core su�ers severe
performance degradation unless it amortizes the per-update over-
head of accessing disk. Such an amortization is not straightforward,
since sketching inherently makes use of hashing and as a result in-
duces many random accesses, which are slow on persistent storage.
We now introduce a sketching algorithm for the streaming con-
nected components problem that amortizes disk access costs, even
on adversarial graph streams, and as a result is simultaneously a
space-e�cient graph semi-streaming algorithm and an I/O-e�cient
external-memory algorithm. We also note that the design facilitates
parallelism, which we experimentally verify in Section 6.

4.1 I/O-E�cient Stream Ingestion
We describe G����Z�������’s I/O e�cient stream ingestion proce-
dure in the hybrid streaming model (see Section 2.1).

Arbitrarily partition the nodes of the graph into node groups of
cardinality max{1,⌫/log3 (+ )}. Let U ⇢ V denote a node group,
and let S(U) denote the node sketches associated with the nodes
in U. Store S(U) contiguously on disk. This allows S(U) to be
read into memory I/O e�ciently: if node groups are of cardinality
1, then ⌫ is smaller than the size of a node sketch, and if each node
group has cardinality ⌫/log3 (+ ) > 1, then the sketches for the
group have total size $ (⌫).

Applying stream update ((D, E),�) to node sketches of D and E
immediately upon arrival takes ⌦(1) I/Os since the corresponding
sketches must be read from disk. To amortize the cost of fetching
sketches, G����Z������� only fetchesS(U8 ) when it has collected
max{⌫, log3 (+ )} updates for U8 . Since there may be $ (+ ) node
groups, collecting these updates for each node group cannot be
done in RAM. Instead, we collect these updates I/O e�ciently on
disk using a gu�er tree, a simpli�ed version of a bu�er tree [9]
which uses $ (+ (log3 (+ )) space.

Like a bu�er tree, a gutter tree consists of a tree whose vertices
each have bu�ers of size $ ("). Each non-leaf vertex has $ ("/⌫)
children. We refer to a leaf vertex of the gutter tree as a gu�er ,

because it �lls with stream data but is periodically emptied by
applying the contained stream data to sketches. Each leaf vertex
in the gutter tree is associated with a node groupU and has size
max{⌫, log3 (+ )}, the same size as S(U). When a gutter for node
group U �lls, G����Z������� reads S(U) and the updates stored
in the gutter into memory, applies the updates to S(U), and writes
S(U) back to disk. Since data does not persist in leaf vertices, no
rebalancing is necessary.

Lemma 4. G����Z�������’s stream ingestion uses $ (+ log3 (+ ))
space and B>AC (# ) = $ (# /⌫(log"/⌫ (+ /⌫))) I/Os in the hybrid
streaming setting.

P����. G����Z�������’s sketch data structures use
$ (+ log3 (+ )) space.

Each leaf in the gutter tree has a gutter of size max{⌫, log3 (+ )}.
This is one gutter for each node group and there are
+ /(max{1,⌫/log3 (+ )}) node groups so the total space for the
leaves of the gutter tree is $ (+ log3 (+ )).

In the level above the leaves, there are + log3 (+ )/⌫ · ⌫/"
vertices each with size " , so the total space used at this level
is $ (+ log3 (+ )). Each subsequent higher level of the tree uses
$ ("/⌫) space less than the level below it, so the total space used
for the entire gutter tree is $ (+ log3 (+ )).

The I/O complexity of the gutter tree is equivalent to that of the
bu�er tree, except that leaf gutters are �ushed by reading in the
appropriate sketches from disk and applying the updates in the
gutter to these sketches. Asymptotically this incurs no additional
cost so the total I/O complexity for ingestion is B>AC (# ). ⇤

4.2 I/O-E�cient Connectivity Computation
Lemma 5. Once all stream updates have been processed, G����Z���
����� computes connected components using $ ((+ log3 (+ )/⌫) +
(+ log⇤ (+ )) I/Os in the hybrid streaming model.

P����. Each round of Boruvka’s algorithm has three phases.
In the �rst, an edge is recovered from the sketch of each current
connected component. In the second, for each edge its endpoints are
merged in a disjoint set union data structure which keeps track of
the current connected components. In the third phase, for each pair
of connected components merged in phase 2, the corresponding
sketches are summed together. We analyze the I/O cost of each
phase of a round separately.

In the �rst round, to query the sketches in the �rst phase, all
of the sketches must be read into RAM which can be done with a
single scan. This uses $ (+ log3 (+ )/⌫) I/Os.

The disjoint set union data structure has size (+ ) and must be
stored on disk. In the second phase the cost of each DSU merge is
log⇤ (+ ) I/Os, so the total I/O cost is + log⇤ (+ ).

In the third phase, summing the sketches of the merged com-
ponents together is I/O e�cient if ⌫ = $ (log3 (+ )), since the disk
reads and writes necessary for summing sketches are the size of a
block or larger. The cost for the third phase is (+ log3 (+ )/⌫).

If ⌫ = l (log3 (+ )), sketches are much smaller than the block
size. Since the merges performed in each round of Boruvka are a
function both of the input stream and of the randomness of the
sketches, these merges induce random accesses to the sketches on
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Figure 7: G����Z������� stream ingestion data �ow.
1: function ����_������(edge {u, v}) ù Write edge update to bu�ers
2: ������_������({u, v})
3: ������_������({v, u})
4: function ��_�����_������( ) ù Apply batched updates to supernode
5: {batch, node} ���_�����( )
6: for all sketch 2 supernodes[node] do
7: ������_������_�����(sketch, batch)
8: function ������_������_�����(sketch, batch)
9: for all update 2 batch do
10: sketch.������_������(update)

Figure 8: Pseudocode for G����Z�������’s core stream in-
gestion routines. ����_������() is part of the user API,
while ��_�����_������(), and ������_������_�����()
are internal functions.

disk and so summing the sketches for each merge takes $ (1) I/Os.
In total, the third phase takes $ (+ ) I/Os in this case. ⇤

Corollary 1. When ⇢ = ⌦(+ log3 (+ )) and ⌫ = > (log3 (+ )) or" =
$ (+ ), G����Z������� is I/O optimal for the connected components
problem; i.e., it uses B>AC (⇢) = $ (⇢/⌫(log"/⌫ (+ /⌫))) I/Os.

Note that for optimality the graph cannot be too sparse. In prac-
tice, for some graph streams " = $ (+⌫) and ⇡ = $ (+ log3 (+ )).
In this case, we can omit the upper levels of the gutter tree and
write I/O e�ciently to the leaf gutters stored on disk. In Section 5
we describe how G����Z������� can perform stream ingestion
using either a full gutter tree or just the leaf gutters, and evaluate
the performance of both approaches in Section 6.

5 SYSTEM DESCRIPTION
The G����Z������� algorithm is split into two components:
stream ingestion, in which edge updates are processed and stored
using C���S�����, and query-processing, in which a spanning
forest for the graph is recovered from these sketches. These compo-
nents use SSD when the sketches are so large that they do not �t
in RAM. Their implementations are parallel for better performance
on multi-core systems.

G����Z�������’s user-facing API consists of ����_������()
for processing stream updates, and ����_��������_������() to
compute and return the connected components. On initialization
G����Z������� allocates log(+ ) C���S����� data structures for
each node in the graph, for a total sketch size of approximately
280+ · log2 (+ ) bytes. It also initializes its bu�ering data structure.

1: function ����_��������_������( ) ù Get the connected components
2: �������( ) ù Ensure all updates are applied
3: found_edge true
4: cc_round 0
5: spanning_forest {}
6: while found_edge do ù loop until merging stops
7: found_edge false
8: if cc_round � log2/3 (num_nodes) then
9: return algorithm_fails ù Asymptotically small probability
10: for all supernode 2 supernodes do
11: edge supernode[cc_round].����_������( )
12: if edge < ; then ù Check if cut empty, if not merge
13: found_edge true
14: supernodes[edge.src].�����(supernodes[edge.dst])
15: spanning_forest.������(edge)
16: cc_round cc_round + 1
17: return spanning_forest
18: function �������( )
19: �����_�����( ) ù Force updates out of bu�ers
20: while bu�ers not empty do
21: ��_�����_������( )

Figure 9: Pseudocode for G����Z�������’s core post-
processing routines. ����_��������_������() is part of the
user API, while �������() is an internal function.
5.1 Stream Ingestion
Each update in the input stream is immediately placed into a bu�er-
ing system. Periodically, the bu�ering system produces a batch of
updates bound for the same graph node D. This batch is inserted
into a work queue, which then hands the batch o� to a Graph
Worker , i.e., a thread for carrying out batched sketch updating.
Because each batch is only applied to a single node sketch, and
because each of the log(+ ) C���S�����es in a node sketch can be
updated in parallel, many Graph Workers can operate in parallel
without contention (see Section 5.1). A high-level illustration and
pseudo code of G����Z������� stream ingestion are shown in
Figure 7 and Figure 8 respectively.

Bu�ering. G����Z�������’s bu�ering system ingests updates
from the stream and periodically outputs a batch of updates for a
single node in the graph. G����Z������� implements two bu�er-
ing data structures: a gutter tree, described in Section 4, and a
simpli�ed version of the gutter tree, which only includes the leaves.
Depending upon available memory, G����Z������� uses only one
of these two bu�ering structures at any time. The leaf-only version
is fundamentally a special case gutter tree used when su�cient
memory is available (" > + · ⌫) and is optimized for this case.

These bu�ering techniques confer several bene�ts. First, when
G����Z�������’s sketches are so large that they do not �t in RAM
and are stored on SSD, applying updates to a single node sketch in
large batches amortizes the I/O cost of reading the node sketch into
memory. Without bu�ering, each stream update would incur ⌦(1)
I/Os in the worst case. We demonstrate in Section 6.4 that bu�ering
facilitates I/O e�ciency and parallelism.
Gutter tree. G����Z������� allocates 8MB for each non-leaf bu�er
in the gutter tree. The gutter tree writes updates to the disk in
blocks of 16KB, and has a fan-out of 8MB

16KB = 512. A write block of
16KB is an e�cient I/O granularity for SSDs and a bu�er size of
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8MB balances bu�ering performance with the latency of �ushing
updates through the gutter tree. When + > 5 · 104, the size of
a sketch is greater than 100KB, much larger than the 16KB block.
Therefore, the leaf nodes of the gutter tree accumulate updates for
a single graph node. G����Z������� allocates space for each leaf
gutter equal to twice the size of a node sketch.

When we initialize G����Z�������, we leverage the static struc-
ture of the gutter tree to pre-allocate its disk space. A call to
������_������({D, E}) inserts {D, E} to the root bu�er of the gutter
tree. Another thread asynchronously �ushes the contents of full
bu�ers to the appropriate child using the pwrite system call. When a
�ush causes the bu�er of a child node to �ll, that child node is recur-
sively �ushed before the �ush of the parent continues. When a leaf
gutter is full this thread moves the batch of updates into the work
queue for processing by Graph Workers in ��_�����_������().

Leaf-only gutter tree. For each graph node D we maintain a gutter
that accumulates updates for D. When the system is initialized, we
allocate the memory for each of these gutters. By default, each leaf
gutter is 1/2 the size of a node sketch. This choice balances RAM
usage with I/O e�ciency as shown in Section 6.4.

������_������((D, E)) inserts edge 4 = (D, E) directly into the
gutter for node D. As before, when the gutter becomes full, it is
�ushed and the batch is inserted into the work queue.

Note that the leaf-only gutter data structure need not �t entirely
in RAM, so long as at least a page of memory is available per bu�er
the rest can be e�ciently swapped to SSD; see Section 6.

Work queue. The work queue functions as a simple solution for
the producer-consumer problem, in which the thread �lling bu�ers
produces work and the Graph Workers consume it. Once a bu�er
is �lled the ������_������() function inserts the batch of updates
into the work queue. Later a Graph Worker removes the batch from
the front of the queue in ��_�����_������().

Insertions to the queue are blocked while the queue is full, and
Graph Workers in need of work are blocked while the queue is
empty. The work queue can hold up to 86 batches, where 6 is the
number of Graph Workers. A moderate work queue capacity of 86
limits the time either the bu�ering system or graph workers spend
waiting on the queue, even when batch creation is volatile, while
keeping the memory usage of the work queue low.

Sketch updates. In each call to ��_�����_������(), Graph Work-
ers call ���_�����() to receive a batch of updates bound for a
particular node D from the work queue. The Graph Worker then
uses ������_������_�����(sketchD , batch) to update each of the
$ (log(+ )) C���S������� in the node sketch of D.

As described in Section 3.1, a C���S����� is a vector of buckets,
each of which consists of a 64 bit U value and a 32 bit W value.
Each C���S����� stores a two dimensional array � of buckets
B8, 9 , with dimensions log(+ 2)⇥ (log(1/X) = 7). To apply an update
(4 = {D, E}) to a C���S�����, the Graph Worker determines which
bucketsB8, 9 contain 4 , and setsU8, 9 := U8, 9 �4 andW8, 9 := W8, 9 �⌘~ (4).
The hash values are calculated using xxHash [19].

Each C���S����� data structure uses 7 log(+ 2) = 14 log(+ )
12B buckets. In total, this is 168 log(+ ) bytes per C���S�����, and
168 log(+ ) log2/3 (+ ) bytes per node sketch.

Multithreading sketch updates. Applying a batch to a node
sketch in ��_�����_������() is handled asynchronously by a
Graph Worker, allowing what we call batch-level parallelism.
We implement these workers using C++ STL threads.

We use OpenMP [59] to dispatch a group of threads to process
each C���S����� update in ������_������_�����(). We refer to
this as sketch-level parallelism. OpenMP allows us to specify the
number of threads to allocate to a task and handles work allocation
transparently. When updating a node sketch, applying a batch to
each C���S����� is treated as one work unit and OpenMP allocates
the log(+ ) units between the apportioned threads.

Implementing both batch- and sketch-level parallelism gives
us a natural way to tune G����Z�������’s performance. For in-
stance, we can decide to con�gure more Graph Workers with fewer
threads per group, or fewer Graph Workers with more threads per
group. We experimentally determine a good con�guration for our
hardware and datasets (see Section 6.4).

A single work unit is never shared between threads in the same
group. As a result, a C���S����� is only modi�ed by one thread
in a group, so no locking is necessary at the sketch level. How-
ever, locking is necessary at the batch level because consecutive
batch updates may be requested to the same node sketch, and thus
multiple graph workers may seek to dispatch thread groups to the
same sub-sketches. We minimize the size of this critical section
by exploiting linearity of ✓0-samplers. Rather than locking a node
sketch ( (G) for the entire batch operation, we apply the updates to
an empty sketch ( (G0) and lock only to add ( (G) = ( (G) + ( (G0).

5.2 Query Processing
When a connectivity query is issued, G����Z������� calls
����_��������_������() which returns a spanning forest of the
graph. The �rst step of post-processing is to �ush the bu�ering data
structure of any remaining updates, moving the batches to the work
queue in �������(). We then wait for the Graph Workers to �nish
processing these batches. Finally, G����Z������� runs Boruvka’s
algorithm to generate a spanning forest of the input graph.

6 EVALUATION

Experimental setup. We implemented G����Z������� as a
C++14 executable compiled with g++ version 9.3 for Ubuntu. All
experiments were run on a Dell Precision 7820 with 24-core 2-way
hyperthreaded Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz, 64GB
4x16GB DDR4 2933MHz RDIMM ECC Memory and two 1 TB Sam-
sung 870 EVO SSDs. In some of our experiments we arti�cially
limited RAM to force systems to page to disk using Linux Control
Groups. We put a swap partition and the gutter tree data on one of
the two SSDs, and the other SSD held the datasets.

6.1 Datasets
We used two types of data sets in this paper. First, we generated
large, dense graphs using a Graph500 speci�cation, and converted
these to streams for our evaluation. We also evaluated correctness
on graphs from the SNAP graph repository [44] and the Network
Repository [64]. All data sets used are described in Table 10.
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Name # of Nodes # of Edges # Stream Updates
kron13 213 1.7 ⇥ 107 1.8 ⇥ 107
kron15 215 2.7 ⇥ 108 2.8 ⇥ 108
kron16 216 1.1 ⇥ 109 1.1 ⇥ 109
kron17 217 4.3 ⇥ 109 4.5 ⇥ 109
kron18 218 1.7 ⇥ 1010 1.8 ⇥ 1010

p2p-gnutella 6.3 ⇥ 104 1.5 ⇥ 105 2.9 ⇥ 105
rec-amazon 9.2 ⇥ 104 1.3 ⇥ 105 2.5 ⇥ 105
google-plus 1.1 ⇥ 105 1.4 ⇥ 107 2.7 ⇥ 107
web-uk 1.3 ⇥ 105 1.2 ⇥ 107 2.3 ⇥ 107

Figure 10: Dimensions of datasets used in this evaluation.

Synthesizing Dense Graphs and Streams We created undirected
graphs using the Graph500 Kronecker generator. We produced
�ve simple, undirected graphs. These graphs are dense: each has
roughly one half of all possible edges. The Graph500 generator does
not output simple graphs by default, so to produce our �ve simple
graphs we pruned duplicate edges and self-loops [8].

We then transformed each of the 5 graphs into a random stream
of edge insertions and deletions with the following guarantees: (i)
an insertion of edge 4 always occurs before a deletion of 4 , (ii) an
edge never receives two consecutive updates of the same type, (iii)
we disconnect a small (fewer than 150) set of nodes from the rest
of the graph, and (iv) by the end of the stream, exactly the input
graph (with the exception of the edges removed to disconnect the
vertices in (iii)) remains. Note that this mechanism deliberately
adds edges not in the original graph, but they are always subse-
quently deleted. We implemented (iii) to guarantee some non-trivial
connected components in each stream’s �nal graph.
Publicly Available Datasets We also used the following real-world
data sets. p2p-gnutella is a graph representing the Gnutella peer-
to-peer network [63]. rec-amazon is a co-purchase recommenda-
tion graph for products listed on Amazon [43], where each node
represents a product and there is an edge between two nodes if
their corresponding products are frequently purchased together.
google-plus is a graph among users of the Google Plus social net-
work [51] where edges represent follower relations. web-uk is a
web graph, where edges represent links between pages [64]. Each
of these real-world graphs was converted to a stream using the
process described above.

6.2 G����Z������� is Fast and Compact
We now demonstrate that, given the same memory resources,
G����Z������� can handle larger inputs than Aspen and Terrace
on su�ciently large and dense graph streams. We also show that
unlike these systems, G����Z�������maintains good performance
when its data structures are stored on SSD.

Both Aspen and Terrace are optimized for the batch-parallel
model of dynamic graph processing. In this model, updates are
applied to a non-empty graph in batches containing exclusively in-
sertions or exclusively deletions. This contrasts with our streaming
model, an initially empty graph is de�ned entirely from a stream of
interspersed inserts and deletes. To avoid unfairly penalizing Aspen
and Terrace, we group the input stream into batches insertions and

Dataset Aspen Terrace G����Z�������
kron13 0.000328 0.000519 0.58
kron15 3.40 6.30 3.10
kron16 6.40 23.7 7.00
kron17 16.8 96.0* 15.7
kron18 57.7 N/A 35.1

(a) Space used by each system. All numbers listed in GiB. Terrace did
not �nish processing kron17 within 24 hours.

(b) G����Z������� is asymptotically more memory e�cient than ei-
ther Aspen or Terrace on large, dense graphs.

Figure 11: G����Z������� uses less space than Aspen or
Terrace to process large, dense graph streams.
deletions to these systems (ignoring any query correctness issues
this may introduce) and present these batches as the input stream.
Whenever one of these arrays �lls, we feed it into the appropriate
batch update function provided by Aspen or Terrace2.

We ran G����Z�������, Aspen, and Terrace on each Kronecker
stream. We used a batch size of 106 for Aspen and Terrace because
we found this to produce the highest ingestion rates for both sys-
tems. To record memory usage we logged the output of the Linux
top command tracking each system every �ve seconds. All experi-
ments were run for a maximum of 24 hours.
Memory pro�ling. G����Z�������’s space-e�cient C���S�������
make it a $ (+ /log3 (+ ))-factor smaller than Aspen or Terrace
asymptotically. Given the polylogarithmic factors and constants,
this experiment determines the actual crossover point where
G����Z������� is more compact than Aspen and Terrace. As
shown in Figure 11, G����Z������� is smaller than Terrace even
on kron15, and smaller than Aspen on kron17 and kron18.
I/O Performance and Ingestion Rate. Unlike Aspen and Terrace,
G����Z������� maintains consistently high ingestion rates when
its data structures are stored on SSD. In Figure 12b we summarize
the results of running Aspen, Terrace, and G����Z������� with
only 16GB of RAM. The ingestion rates of both Aspen and Terrace
plummet once their data structures exceed 16GB in size and they are

2Note that Terrace does not currently support batch deletions, so we rely on its
individual edge deletion functionality instead and do not maintain a deletions array.
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Dataset Aspen Terrace Gutter Tree GZ Leaf-Only GZ
kron13 4.98 0.138 3.93 5.22
kron15 3.54 0.133 3.77 4.87
kron16 2.54 0.0143 3.59 4.51
kron17 1.90 0.0404* 3.26 4.24
kron18 0.0759* N/A 2.50 2.49

(a) Ingestion rates in millions of updates per second. Asterisks indicate
the system did not �nish within 24 hours.

(b) Aspen and Terrace perform poorly on disk whileG����Z�������’s
stream ingestion rate remains high.

Dataset Aspen Terrace Gutter Tree Leaf-Only Gutters
kron13 0.041 0.126 0.02 0.02
kron15 0.202 0.800 0.10 0.10
kron16 0.746 1.260 0.22 0.19
kron17 3.11 N/A 0.44 0.42
kron18 N/A N/A 97.5 103

(c) CC computation time after stream ingestion.

Figure 12: G����Z������� remains fast even when its data
structures are stored on disk, unlike Aspen and Terrace.

forced to store excess data on SSD. Neither Aspen nor Terrace were
able to �nish their largest evaluated stream within 24 hours (217
for Terrace and 218 for Aspen). In comparison, G����Z�������’s
ingestion rate remains high when its memory consumption extends
into secondary storage. G����Z�������’s gutter tree �nished the
kron18 streamwith an average ingestion rate of 2.50million updates
per second, a 29% reduction to its performance compared to when
its sketches are stored entirely in RAM.

In RAM, G����Z�������’s ingestion rate is higher than Aspen’s
on all Kronecker streams. We summarize these results in Figure 13.
Notably, on kron18 G����Z������� ingests 4.09 million updates
per second, nearly three times faster than Aspen. G����Z�������
ingests more than an order of magnitude faster than Terrace on
these streams, so we omit it from the �gure.

6.3 G����Z������� is Reliable
G����Z�������’s sketching algorithm is not deterministically cor-
rect: it has a nonzero failure probability, which is guaranteed to be at

Figure 13:G����Z������� is faster than Aspen and Terrace
even when all data structures �t in RAM.

Figure 14: G����Z������� updates sketches in parallel, in-
creasing ingestion rate by 26⇥ when using 46 threads.

most 1/+ 2 for some constant 2 . To establish that failures do not oc-
cur in practice, we compared G����Z������� with an in-memory
adjacency matrix stored as a bit vector. Speci�cally, we applied
stream updates to G����Z������� and the adjacency matrix and
periodically queried G����Z������� and compared its results with
the output of running Kruskal’s algorithm on the adajacency matrix.
We performed 1000 such correctness checks each on the kron17,
p2p-gnutella, rec-amazon, google-plus, and web-uk streams. No
failures were ever observed. While our algorithm’s performance is
optimized for dense graphs, this experiment demonstrates that it
succeeds with high probability for both dense and sparse graphs.

6.4 G����Z������� is Highly Parallel
Due to the atomized nature of sketch updates, we expect stream
ingestion to scale well on multi-core systems. We experimentally
demonstrate this claim by varying the number of threads used for
processing updates and observe a signi�cant speed-up.

Figure 14 shows the ingestion rate of G����Z������� as the
number of threads processing the kron17 graph stream increases.
The threads are given a pool of 64GB RAM so that the parallel per-
formance can be measured without memory contention. To avoid
external memory accesses, we use leaf-only gutters for bu�ering.
The per-thread increase in ingestion rate is signi�cant; the inges-
tion rate for 46 threads is approximately 26 times higher than that
of a single thread. Additionally, at 46 threads the marginal ingestion
rate is still positive, suggesting that adding more threads would
further increase performance.
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Figure 15: G����Z������� gutter size vs ingestion speed.

We also experimentally determined that a group size of one gives
the best performance with our combination of machine and inputs.

6.5 G����Z������� Bu�ering Facilitates
Parallelism and I/O E�ciency

Applying sketch updates is highly scaleable, but only if updates are
bu�ered and applied in batches. When sketches are stored on disk,
processing each update individually requires ⌦(1) IOs. Addition-
ally, cache contention and thread synchronization bottleneck the
ingestion rate even when sketches are in RAM. For these reasons
we retain bu�ers of a constant factor 5 of the node-sketch size.

Figure 15 summarizes the ingestion rate of G����Z������� on
the kron17 stream for di�erent values of 5 when the sketches are
stored in RAM and when they are stored on disk. G����Z�������
is given 46 Graph Workers and a group size of 1. With bu�ers
of size 1 (no bu�ering), G����Z������� ingests 130,000 updates
per second in RAM, 33 times slower than when 5 = .10. On SSD,
the ingestion rate is only 2000 insertions per second, 3 orders of
magnitude slower than peak on-disk performance.

When the sketches �t in RAM, performance increases rapidly
indicating that 5 can be quite small while providing a high ingestion
rate. However, once memory requirements exceed main memory, 5
must be larger to o�set disk IOs. To achieve an ingestion rate within
5% of peak performance on kron17, 5 as small as 0.01 is su�cient
for entirely in RAM computation, while 5 = .50 is required when
node sketches partially reside on disk.

6.6 Connectivity Queries are Fast
We show experimentally that G����Z������� gives comparable
query performance to Aspen and Terrace on dense graphs when
all systems’ data structures �t in RAM. When their data structures
reside on disk, G����Z������� answers queries more than �ve
times faster than Aspen (and Terrace ingests too slowly to test).

G����Z�������’s bu�ering strategies create a tradeo� between
stream-ingestion rate and query latency. When G����Z�������
receives a connectivity query, it must process remaining stream
updates in its bu�ering system before computing connectivity using
Boruvka’s algorithm. Large bu�ers improve stream-ingestion rate
(see Section 6.5), particularly when sketches are stored on disk,
but this comes at the cost of increased query latency since these
large bu�ers must be emptied. For the same reasons, small bu�ers
improve query latency but may decrease ingestion rate.

Figure 16a compares the query latency of G����Z�������, As-
pen, and Terrace on the kron17 stream where connectivity queries
are issued every 10% of the way through the stream. In this experi-
mentG����Z������� used small 400-byte leaf-only bu�ers, enough
space for 100 stream updates. At the beginning of the stream, when

(a) In-memory query times.

(b) On-disk query times.

Figure 16: G����Z������� query performance is compara-
ble to or better than Aspen and Terrace for dense graphs.

the graph is sparser, both Aspen and Terrace answer queries more
quickly than G����Z�������. As the stream progresses and the
graph becomes denser, G����Z�������’s query time stays constant
while Aspen’s and Terrace’s increase. By 70% of the way through
the stream G����Z������� is fastest. Even with G����Z�������’s
small bu�er size its ingestion rate was 3.95 million per second, twice
as fast as Aspen and almost 100 times faster than Terrace.

Figure 16b compares the query latency of G����Z������� and
Aspen when RAM is limited to 12GiB, forcing both systems to store
part of their data structures on disk. Terrace ingests too slowly
given only 12GiB of RAM to be included in the experiment. In this
experiment G����Z������� used 8.3 KB leaf-only bu�ers (one-
tenth of sketch size). G����Z������� takes 24 seconds to perform
queries regardless of graph density. Aspen’s queries are fast until
the graph is too dense to �t in RAM; its last query takes 142 seconds,
�ve times slower than G����Z�������. Notably, G����Z�������
maintains an ingestion rate of 4.15 million updates per second, 46
times faster than Aspen. Both systems spend the majority of time
on insertions, where G����Z�������’s advantages come through.

7 RELATEDWORK

Graph Streaming Systems. Existing graph stream processing sys-
tems are designed primarily to handle updates in batches consisting
entirely of insertions or entirely of deletions. Streaming systems
that process updates in batches are generally divided into two cate-
gories. The �rst (which includes Terrace) consists of those systems
which �nish ingestion prior to beginning queries and �nish queries
prior to accepting any additional edges [7, 14, 22, 54, 60, 67, 68].
The second (which includes Aspen) allows updates to be applied
asynchronously by periodically taking “snapshots” of the graph
during ingestion to be used in conducting queries [16, 21, 34, 35, 50].

The batching employed in these systems amortizes the cost of
applying updates, but also limits the granularity at which insertions
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and deletions may be interspersed during ingestion. In contrast,
G����Z������� allows for insertions and deletions to be arbitrarily
interspersed during ingestion without sacri�cing query correctness.

External Memory Systems. There is a rich literature of graph
processing systems process static graphs in external memory. Some
such systems store the entire graph out-of-core [30, 41, 49, 78, 80],
and others are semi-external memory systems that maintain only
the vertex-set in RAM [4, 48, 65, 77, 79]. Some systems provide (at
least theoretical) design extensions to handle queries on graphs
with insert-only updates [15, 41, 72, 73, 78], but to the best of our
knowledgeG����Z������� is the �rst to leverage external-memory
e�ectively in the streaming model of insertions and deletions.

8 CONCLUSION
G����Z������� computes the connected components of graph
streams using space asymptotically smaller than an explicit rep-
resentation of the graph. It is based on C���S�����, a new ✓0-
sketching data structure that outperforms the state of the art on
graph-streaming workloads. This new sketching technique allows
G����Z������� to process larger, denser graphs than existing
graph-streaming systems given a �xed RAM budget and to ingest
these graph streams more quickly. Even when G����Z�������’s
sketch data structures are too large to �t in RAM, its work-bu�ering
strategies allow it to process graph streams on SSD at the cost of
a only small decrease in ingestion rate. Thus, G����Z������� is
simultaneously a space-optimal graph semi-streaming algorithm
and an I/O-e�cient external-memory algorithm.

The small space complexity of G����Z�������’s linear sketch
is optimized for large, dense graphs, unlike prior graph-processing
systems, which often focus on sparse graphs. Thus,G����Z�������
demonstrates that computational questions on graphs once thought
intractably large and dense are now within reach.

Currently large, dense graphs are studied rarely and at great cost
on large high-performance clusters [18]. Since G����Z�������’s
sketches can be updated independently (Section 5.1), we believe that
they can be partitioned throughout a distributed cluster without
sacri�cing stream ingestion rate.

G����Z������� illustrates that additional algorithmic improve-
ments help make graph semi-steaming algorithms into a powerful
engineering tool by reducing the update-time complexity and al-
lowing sketches to be stored e�ciently on SSD. These techniques
may generalize to other graph-analytics problems.
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