Undo Workarounds for Kernel Bugs
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Abstract

OS kernels are full of bugs resulting in security, reliability,
and usability issues. Several kernel fuzzers have recently been
developed to find these bugs and have proven to be effective.
Yet, bugs take several months to be patched once they are
discovered. In this window of vulnerability, bugs continue
to pose concerns. We present workarounds for kernel bugs,
called bowknots, which maintain the functionality of the sys-
tem even when bugs are triggered, are applicable to many ker-
nel bugs, do not cause noticeable performance overhead, and
have a small kernel footprint. The key idea behind bowknots
is to undo the side effects of the in-flight syscall that triggers
a bug, effectively neutralizing the syscall. We also present a
static analysis tool, called Hecaton, that generates bowknots
automatically and inserts them into the kernel. Through exten-
sive evaluations on the kernel of Android devices as well as
x86 upstream kernels, we demonstrate that bowknots are ef-
fective in mitigating kernel bugs and vulnerabilities. We also
show that Hecaton is capable of generating the right bowknots
fully automatically in majority of cases, and requires minimal
help from the analyst for the rest. Finally, we demonstrate the
benefits of bowknots in improving the efficiency of kernel
fuzzing by eliminating repetitive reboots.

1 Introduction

Commodity OS kernels are monolithic, large, and hence full
of bugs. Bugs in the kernel cause important problems. First,
they risk the system’s security as some bugs might be ex-
ploitable vulnerabilities. The kernel is a highly privileged
layer in the system software stack and hence is attractive to at-
tackers. Indeed, OS kernels are hot targets for security attacks
these days. For example, according to Google, an increasing
number of attacks on mobile devices are targeting the ker-
nel (i.e., 44% of attacks in 2016 vs. 9% and 4% of them in
2015 and 2014, respectively) [9]. Second, they impact the
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reliability and usability of the system. Even a simple crash
bug, e.g., a null pointer dereference, results in a system hang
or reboot, causing usability issues for the users. Even worse,
bugs can corrupt the state of the software and hardware and
lead to unexpected behavior. Finally, as we will show, kernel
bugs can even pose practical challenges for kernel fuzzing by
inducing repetitive reboots and wasting the fuzzing time.

The common practice today is to find these bugs and patch
them. There has been a lot of progress recently to automate the
first step (i.e., finding bugs). More specifically, several kernel
fuzzers have been recently developed such as Syzkaller [13],
kAFL [36], Digtool [32], and MoonShine [31]. Indeed, these
fuzzers have been successfully used to find bugs in the ker-
nel [10,12,37]. However, the second step (i.e., patching bugs)
remains a highly manual and lengthy process. In practice,
this requires reporting the bug to the developers of the code,
e.g., the vendor in charge of a device driver, and waiting for a
patch. Unfortunately, this wait can take months for the bug
to sit in a queue, be evaluated by developers, and get a patch
developed, tested, and merged into the kernel. Our study of
bugs found by Syzkaller [12] shows that bugs have taken on
average 66 days to be patched. Moreover, at the time of the
study (November 2019), there were several open bugs that
were waiting for a patch for an average of 233 days. While
waiting for a patch, the kernel remains vulnerable.

In this paper, we introduce workarounds for kernel bugs be-
fore they are correctly patched. We refer to such a workaround
as a Bug undO Workaround for KerNel sOlidiTy (bowknot).
A bowknot has five important properties. First, it is fast to
generate. Unlike a proper patch for a bug that takes months
to be ready, a bowknot takes at most a few hours. Second, it
is designed to maintain the system’s functionality even if the
bug is triggered'. Kernel bugs almost always are triggered
when unanticipated syscalls are issued, either by mistake by
a faulty application or intentionally by malware. A bowknot
undoes the side effects of this faulty or malicious syscall in-

'In the paper, we use the term “trigger a bug” to mean either executing
buggy code or triggering a kernel sanitizer warning (or even a manual check)
right before executing buggy code. See §4.1 for more details.



vocation, allowing the kernel to continue to correctly serve
well-structured syscalls. Third, a bowknot does not require
any special hardware support, e.g., power management sup-
port in a driver needed for checkpointing (§8), and hence
is applicable to a large number of bugs in various devices.
Fourth, a bowknot does not add any noticeable performance
overhead. This is because it does not do much as long as the
bug is not triggered. Only when the bug is triggered, it is
invoked to undo its side effects. Finally, a bowknot requires
small changes to the kernel. It requires modifications only to
the functions in the execution path that triggers the bug.

The key idea behind a bowknot is to undo the effects of
the syscall that triggers a bug. In other words, when a syscall
is issued and triggers a bug, the bowknot gets activated and
neutralizes the effects of that syscall. Undoing the syscall at
arbitrary points of execution is challenging since not only a
syscall can affect the kernel memory state, it can even change
the state of I/O devices, e.g., a camera. The latter is especially
important for device drivers, which contain most of the kernel
bugs (e.g., 85% of bugs in Android kernels [44]). To address
this problem, we leverage existing undo statements in error
handling blocks in the kernel to generate the right undo blocks
for the functions in the execution path of the bug.

Bowknots, as described, achieve all the aforementioned
properties, except for one. More specifically, generating a
bowknot manually, while feasible, is challenging and time-
consuming. Therefore, to satisfy this requirement, we in-
troduce Hecaton, a static analysis tool that helps generate
bowknots automatically”. Hecaton analyzes the whole kernel
to find the relationship between state-mutating statements in
the kernel and their corresponding undo statements in error
handling basic blocks. It then uses this knowledge to gen-
erate the right undo block for the function containing the
bug and the parent functions in the call stack. It also auto-
matically inserts the undo blocks into the kernel. Due to
the limitations discussed in §5.3, in some cases, Hecaton’s
automatically-generated bowknots need manual alterations.
As a result, Hecaton provides a confidence score for each
bowknot. This score helps the analyst determine whether a
manual fix is required, before spending any time on testing the
bowknot. Our evaluations with real bugs show the confidence
score correctly predicts the completeness of the automatically
generated bowknots in 90% of the cases.

We evaluate bowknots and Hecaton with 113 real bugs,
CVEs, and automatically injected bugs in several kernel com-
ponents including the IPC subsystem, networking stack, file
system, and device drivers in different Android devices and
x86 upstream Linux kernels. First, we show that bowknots
are effective workarounds for bugs. More specifically, we
show that bowknots can effectively mitigate 92.3% of real
bugs and CVEs and 94.6% of injected bugs. Second, we show
that bowknots manage to maintain the system functionality

2Hecaton’s source code is available at https:/trusslab.github.io/hecaton/

in 87.6% of these cases. Third, we show that Hecaton auto-
matically generates complete bowknots for 64.6% of kernel
bugs. For the rest, it only requires adding on average 3 state-
ments and less than 2 hours of work by the analyst. Fourth, we
evaluate the correctness of bowknots’ undo capability with
a manual case-by-case study on 10 randomly selected real
bugs. We show that for 6 out of these 10 bugs, automatically
generated bowknots completely undo the side effects of the
buggy syscall. Fifth, we show the effectiveness of bowknots
in improving the efficiency of kernel fuzzing by effectively
eliminating repetitive reboots. Sixth, we empirically compare
bowknots with a recent bug workaround solution, Talos [18].
Bowknots significantly outperform Talos for bug mitigation,
for maintaining the system functionality, and for improving
kernel fuzzing in the face of repetitive reboots. Finally, we
also evaluate the performance overhead of bowknot on nor-
mal execution of kernel components. We show that bowknots’
overhead is less than the baseline variations for TCP through-
put and GPU framerate even if we instrument all their corre-
sponding kernel functions with bowknots.

2 Motivation

2.1 Unpatched Kernel Bugs

As mentioned, kernel bugs pose security, reliability, and us-
ability problems. Unfortunately, even when discovered, these
bugs do not get patched immediately and there is a notice-
able delay from when a bug is reported until when a patch is
available. One reason behind this delay is that bugs can be
complex and fixing them requires time and effort. To demon-
strate this, we studied the bugs found by Syzbot [12], an
automated fuzzing system based on Syzkaller [13]. At the
time of the study (November 2019), there were 1691 bugs
that were fixed. Our analysis shows that these bugs took an
average of 66 days to get fixed. Moreover, there were 503
bugs that were still open, for an average of 232 days.

Moreover, bugs in device drivers (which constitute 85%
of the kernel bugs [44]) might take even longer as the bug
needs to be reported to the developers of the driver. For ex-
ample, bugs in several drivers of Android smartphones based
on Qualcomm chipsets need to be fixed by Qualcomm. Qual-
comm says, "the company hopes to patch disclosed flaws and
vulnerabilities within 90 days" [7].

2.2 Problems with Unpatched Kernel Bugs

Security. The most important problem with unpatched ker-
nel bugs is that they endanger the system’s security. Bugs
might be exploitable, allowing attackers to mount privilege
escalation attacks. Given the high privileges of the kernel, a
successful attack can be devastating for the victim’s device.

Reliability and usability. Even if not exploitable, kernel
bugs cause reliability and usability problems, e.g., due to a
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Figure 1: Repetitive reboots when fuzzing the camera device driver of Nexus 5X.

hang or reboot. Even worse, a bug might corrupt the state of
the hardware and software, resulting in unexpected behavior.
Inefficient kernel fuzzing. A lesser-known problem of
unpatched kernel bugs is that they cause practical problems for
fuzzing the kernel by causing repetitive reboots [38]. Kernel
bugs, when triggered by the fuzzer, result in the reboot of the
system. Unfortunately, reboots waste a noticeable amount of
fuzzing time. The reboot itself takes 10s of seconds to minutes
according to our own experience with various Android-based
mobile devices and according to others [6]. In addition to
wasting fuzzing time, a reboot resets the state of the system,
throwing away the progress made by the fuzzer in mutating
the state in order to find new bugs.

Unfortunately, modern feedback-driven fuzzers such as
Syzkaller and AFL may trigger the same bug many times
resulting in repetitive reboots, i.e., costly and useless reboots
caused by the same bug, due to the feedback-driven fuzzing
algorithm [5, 8] and some bugs being easy to trigger.

Figure 1 shows the timeline for one of these fuzzing ses-
sions (i.e., fuzzing the camera device driver of Nexus 5X
using Syzkaller). As can be seen, reboots happen very fre-
quently, resulting in only 44.6% of the overall fuzzer uptime
being spent on fuzzing (i.e., fuzzing time). The main reason
for most reboots is triggering only 6 unique bugs again and
again.

2.3 Current Approaches

Approach I: mitigation through code disabling. One pos-
sible approach is to try to mitigate a bug by disabling the part
of the code that contains the bug. This can be done at different
granularities. For example, the buggy subcomponent within
the code can be disabled. If applied to the kernel, one can
imagine disabling a device driver if it has a bug. It can also
be applied at the function level. Talos uses this approach [18].
It neutralizes a vulnerability in a codebase by disabling the
function that contains it. The function instead is instrumented
to return an appropriate error message.

Although disabling the code can mitigate the bugs and
vulnerabilities in many cases, it very likely breaks the system
functionality. Losing functionality in a system will deter the
use of this approach in practice. This approach does not help
with the kernel fuzzing efficiency either. This is because code
disabling limits the code coverage of the fuzzer (see §7.1.1
and §7.4 for empirical results).

Approach II: dirty patching. One might wonder whether
the analyst can perform a “quick and dirty patch” to fix the
bug. For example, if the bug is a null pointer dereference,
they can add a null pointer check to return directly to avoid
crashing. Unfortunately, dirty patching suffers from similar
drawbacks as code disabling. That is, it can break the func-
tionality of the system or result in unexpected behavior if not
done carefully. In addition, such patches might still need engi-
neering effort. For example, a dirty patch for a use-after-free
bug resulting from a race condition is not trivial.

3 Overview

3.1 Goals

Our goal is to design a bug workaround solution that can
mitigate the undesirable side effects of a bug until a proper
patch is available. In other words, the applicability of the
workaround is in the window of vulnerability from when the
bug is first discovered until when the correct patch is available.

The main users of kernel bug workarounds are kernel secu-
rity analysts, OS vendors, and IT departments. For example,
the security team in an OS vendor company might find a
bug and report it to the corresponding developers, e.g., an-
other company in charge of a device driver or a development
team within the same company. While they wait for the patch,
they can use a workaround to mitigate the bug. Or an IT
department might apply a workaround for a known bug in the
company’s servers or employees’ workstations. Finally, secu-
rity analysts can leverage this tool to mitigate kernel bugs in
their own devices, e.g., to improve the efficiency of their ker-
nel fuzzing sessions. To show our solution’s applicability, we
implement and test it on several targets, such as ARM-based
Android smartphones and x86-based Linux kernels.

We identify five important properties that a bug workaround
solution must satisfy. First, it should be fast to generate, other-
wise it will not be available soon enough to help in the afore-
mentioned window of vulnerability. Second, a workaround
for a kernel bug should maintain the system’s functionality
even if the bug is triggered. Third, the workaround approach
should be widely applicable to different kernel components
and different kernels. Moreover, it should not require special
hardware support, e.g., to checkpoint the state of an I/O de-
vice (§8). Fourth, a workaround should not add any noticeable
performance overhead. Finally, a workaround should require
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Figure 2: High-level idea behind bowknots and Hecaton.

small changes to the kernel, otherwise it will not be accepted
by vendors for release in the window of vulnerability.

3.2 Key Idea & Design

Bowknots. In this paper, we introduce a workaround for
kernel bugs called Bug undO Workaround for KerNel sOlid-
iTy (bowknot). The key idea behind a bowknot is to undo the
effects of the in-flight syscall that triggers a bug. That is, if
a syscall is issued and triggers a bug, the bowknot generated
for that bug undoes the syscall and returns, effectively neu-
tralizing the syscall. It is important to note that a bowknot
does not disallow a syscall, e.g., disallow all ioct1 syscalls. It
allows the syscall to be used as long as it does not trigger the
bug. Only when an invocation of the syscall results in the bug
getting triggered (e.g., due to using unexpected inputs), the
bowknot kicks in to undo it so that the system can continue
its execution and serve other well-structured syscalls.
Bowknots protect the kernel from corruption, which is criti-
cal for continued use of the system. They, however, can impact
the program issuing the syscall. For example, they might re-
sult in the program breaking or terminating with an error
message. We believe this is acceptable for three reasons. First,
we do not anticipate most kernel bugs to be triggered by well-
behaved applications. Many kernel bugs are only triggered
when a meticulously-crafted syscall is issued, typically by
malware. Second, applications can be restarted, if corrupted.
Finally, kernel bugs that unconditionally break the usability of
well-behaved applications are rare. This is because the kernel
is tested for basic functionality by kernel developers.
Hecaton. Bowknots, as described so far, satisfy all but one of
the aforementioned properties. More specifically, generating
them manually requires noticeable engineering effort as one
needs to study the execution path that triggers the bug and
figure out how to undo the syscall. Therefore, to satisfy this
last property, we introduce Hecaton, a static analysis tool that
generates bowknots and inserts them into the kernel automati-
cally. To do so, Hecaton leverages existing undo statements
found within error handling blocks in the kernel to generate
the right undo blocks for the functions in the execution path of
the bug. Existing error handling blocks in the kernel undo the

effects of a syscall on the software and hardware state in case
of expected errors, such as a null pointer or a busy I/O error
in some fixed code locations. While the kernel does not have
error handling code for arbitrary bug sites in the execution
of a syscall, the idea in Hecaton is to leverage existing undo
statements in these blocks to generate the right undo code
needed for a bowknot. More specifically, Hecaton leverages
existing error handling blocks to discover undo statements for
each state-mutating statement. Using such knowledge, Heca-
ton can then automatically generate the required bowknot for
different functions. Figure 2 shows the high-level idea behind
bowknots and Hecaton.

3.3 Workflow

Assume that the OS analyst has identified a bug in the ker-
nel and would like to apply a bowknot to it. They take the
following steps to achieve this.

In the first step, they need to identify the functions in the
execution path from the beginning of the syscall until where
the bug is triggered, i.e., the call stack. The call stack must
include the inline functions since it will be used by Heca-
ton, which operates at the source code level. Bugs found by
Syzkaller, such as the reported bugs in the Syzbot system [12],
come with enhanced call traces, including all the inline func-
tions and their location in the source code. For other bugs, the
analyst can use any tool to find the stack. However, finding
the inline functions in the stack might not be trivial. To make
this step easy for the analyst, we provide support in Hecaton.
That is, Hecaton instruments all the functions in the kernel
component under study with some logging messages. The
analyst then executes the Proof-of-Concept (PoC) program of
the bug, checks the kernel logs, and extracts the list of func-
tions executed in the syscall. They then feed this list back into
Hecaton, which uses it to generate a copy of the kernel where
only these functions are instrumented with bowknots. Heca-
ton provides a confidence score for each bowknot. If all the
confidence scores for the instrumented functions are higher
than a predefined threshold, the analyst goes to the next step
to test the instrumented kernel. Otherwise, they can decide
to investigate the bowknots with low confidence score and
manually correct them, or altogether drop working on these
bowknots if they are unwilling to spend time and manual
effort to fix the bowknots.

The analyst then tests the instrumented kernel using the
PoC and test programs. The purpose of test programs is to
demonstrate proper functionality of the system after undo by
bowknots. More specifically, the analyst first runs the PoC to
verify that it does not succeed, e.g., it does not crash the kernel.
They then run the tests to verify that the kernel component
under test is still functional. If either fails, the analyst checks
the generated bowknots. The analyst spends a few hours (e.g.,
up to 2 hours in our evaluation) to identify the problem, e.g., a
missing undo statement. In fact, some of the bowknots might



have explicit warnings from Hecaton (§5.2), which makes the
manual step more straightforward. After a fix, they run the
tests again. If the analyst does not find a fix in this period (e.g.,
the two hours), they declare the use of bowknots ineffective.

It is noteworthy that the analyst does not even need a fully
functional PoC to test the bowknots. A program that results
in the execution of the same functions but does not even
trigger the bug suffices. We have indeed used this in our own
evaluations. We tested a reported PoC that reached the bug
but did not trigger it. Yet, by adding an explicit crash just
before the bug site, we emulated the behavior and tested the
undo behavior by the bowknot.

Finally, we note some bugs might be triggered through
more than one call stacks. While such bugs are not common,
to mitigate them, the analyst needs to generate bowknots for
each call stack separately.

4 Bowknots

Bowknots are workarounds for kernel bugs. The key idea
behind bowknots is to undo the side effects of the syscall
that triggers the bug. More specifically, bowknots undo the
side effects of state-mutating statements from the syscall’s
kernel entry point until where the bug is triggered. We define
a state-mutating statement as one that alters the state of the
kernel or an underlying I/O device.

For example, imagine a camera device driver ioctl
syscall, which when called, allocates a memory buffer using
kmalloc (), acquires a spin lock (spin_lock () ), and turns
on the flash for the camera (using the hypothetical function
turn_on_flash () ). Now imagine there exists a bug after this
where a pointer might be null depending on the syscall input.
To mitigate this bug, the analyst can apply a bowknot. It first
turns off the camera flash (by calling turn_off_ flash()),
unlocks the spin lock (by calling spin_unlock () ), and frees
the allocated memory buffer (by calling kfree ()). As can
be seen, the state of the system (including the kernel mem-
ory state as well as the I/O hardware state, e.g., the camera
hardware state) after undo is the same as the state before is-
suing the syscall. Therefore, the system can now resume its
execution as if the syscall did not happen.

Our strategy for undoing a syscall is to leverage existing
undo statements in error handling code in the kernel to gener-
ate the proper undo code that undoes the effects of all state-
mutating statements in the syscall. Existing error handling
code in the kernel undoes the effect of these statements when
facing an expected error. The insight behind this approach is
that OS kernels have to be robust and handle various corner
cases or errors. Therefore, we attempt to reuse the existing
undo statements to generate the right undo code for a bug
location. In this section, we show how a bowknot can be used
for a bug. In the next section, we discuss how Hecaton helps
to automatically generate the undo code for bowknots.

4.1 Function Instrumentation

The goal of function instrumentation for a bowknot is to
undo the executed statements in a function when a bug
is triggered. We support two types of bowknots for a
function: automatically-triggered and manually-triggered.
Automatically-triggered bowknots are the common ones and
are used for crash bugs and bugs automatically detected by
a kernel sanitizer. The manually-triggered ones are for more
complex bugs, such as race conditions and memory leaks.

Automatically-triggered bowknots. Figure 3 (Up) shows
an instance of an automatically-triggered bowknot for
a function in Qualcomm’s KGSL GPU driver. This
function is the handler for one of the supported ioctl
syscall commands for this driver and is called by the
main ioctl handler, kgsl_ioctl. The function instru-
mentation has several parts. The first part is an undo
block at the end of a function, which contains all the
undo statements corresponding to the state-mutating state-
ments in the function. There are two state-mutating
statements in this function: kgsl_context_get_owner (),
which returns a context object while incrementing its
reference counter, and mutex_lock (), which acquires a
lock. The corresponding statements to undo the ef-
fects of these statements in the function are, respectively,
kgsl_context_put () and mutex_unlock (). This undo ba-
sic block is also protected by an always-false global variable
(bowknot_global_always_false) preventing it from being
used in the normal execution of the function. It is only acces-
sible through explicit jumps to bowknot_label.

The second part of the instrumentation is for detecting, at
runtime, the state-mutating statements that are executed be-
fore the crash. This is because not all execution paths within
a function execute the same set of state-mutating statements.
If not taken into account, in the case of a specific bug, an un-
necessary undo statement might get executed. Therefore, we
instrument the function to keep track of the execution of the
state-mutating statements. To do this, we use a per-function
mask variable. We add the mask update statements after each
state-mutating and undo statement. We also make the undo
statements in the undo block conditional based on the bits in
this mask. In our example, after a call to mutex_lock (), we
set a bit in the mask variable. After a call to the corresponding
mutex_unlock (), we reset the same bit in the mask variable.
Then in the undo block of the bowknot, we check the bit. If
set, we execute the mutex_unlock () statement.

The third part of the instrumentation, which is used for
automatically-triggered bowknots, is the automatic redirection
of the execution to the undo block when a bug is triggered.
To do this, we add conditional goto statements (CGOTO) after
all statements. The goal of these statements is to redirect
the execution to the undo block in case of a bug. When a
crash happens or a bug is detected by the kernel sanitizer, the
execution is redirected to the kernel exception handler, which



#define CGOTO if (unlikely (current->bowknot_flag))
goto bowknot_label

1
2
3
4 long kgsl_ioctl_device_waittimestamp_ctxtid(

5 struct kgsl_device_private *dev_priv, unsigned int cmd,
6 void *data)

7 A

8 uint64_t bowknot_pairmask = 0;

10 struct kgsl_device_waittimestamp_ctxtid *param = data; CGOTO;
11 struct kgsl_device *device = dev_priv->device; CGOTO;

12 long result = -EINVAL; CGOTO;

13 struct kgsl_context *context; CGOTO;

15 mutex_lock (&device->mutex); CGOTO;
16 bowknot_set_bit (bowknot_pairmask, 2);

18 context =
19 kgsl_context_get_owner (dev_priv, param->context_id); CGOTO;
20 bowknot_set_bit (bowknot_pairmask, 1);

22 if (context == NULL) {
23 goto out;
24}

26 out:

27 kgsl_context_put (context); CGOTO;

28 Dbowknot_unset_bit (bowknot_pairmask, 1);
29 mutex_unlock (&device->mutex); CGOTO;

30 bowknot_unset_bit (bowknot_pairmask, 2);
31 return result;

33 if (bowknot_global_ always_false < 0) {

34 bowknot_label:

35 current->bowknot_flag = 0;

36 if (bowknot_check_bit (bowknot_pairmask, 2))

37 mutex_unlock (&device->mutex);

38 if (bowknot_check_bit (bowknot_pairmask, 1))
39 kgsl_context_put (context) ;

40 current->bowknot_flag = 1;

41 return -1;

42}

43 '}

45 long kgsl_ioctl(struct file *filep,
46 unsigned int cmd, unsigned long arg)
47 |

49 ret = kgsl_ioctl_device_waittimestamp_ctxid(...); CGOTO;

51 if (bowknot_global_always_false < 0) {
52 bowknot_1label:

54 return -1;
55 '}
56 }

15 mutex_lock (&device->mutex); CGOTO;
16 bowknot_set_bit (bowknot_pairmask, 2);

if kely (param == unexpected_ctx))
goto bowknot_label;
18 context =
19 kgsl_context_get_owner (dev_priv, param->context_id); CGOTO;

Figure 3: Example function in the Qualcomm KGSL
GPU device driver after instrumentation with a bowknot.
(Up) Automatically-triggered, (Down) Manually-triggered
bowknot. The blue and bold text highlights the automatically
added code. The green and italic text highlights the manu-
ally added lines. The code presented here is slightly modified
from the actual function code and from the one generated by
Hecaton for better readability.

we instrument. Our exception handler code sets the redirection
flag (bowknot_flag), which is a thread-specific flag, and then
returns the execution back to the function resulting in a jump
to the undo block. In the previous example, assume that param
is null and results in a crash at line 19. The exception handler
is then invoked, sets the flag, and resumes the execution in
the function (by skipping the crashing instruction), which
then executes the conditional goto statement in the same
line and jumps to the undo block. This condition is typically
false during normal execution in the kernel. Hence, we use the
compiler’s unlikely directive, which helps with performance
in normal execution by instructing the compiler to insert some
instructions in the binary to assist CPU’s branch prediction.

We also support automatic redirection for bugs detected by
a kernel sanitizer (if activated, e.g., during a fuzzing session).
In this case, we force-execute the kernel exception handler
for bugs detected by the sanitizers, e.g., memory safety bugs
detected by KASAN [11].

Note that automatically-triggered bowknots only get trig-
gered on system crashes and warnings generated by kernel
sanitizers. As a result, for non-crashing bugs that can poten-
tially result in kernel corruption, the security of automatically-
triggered bowknots depends on the appropriate use of kernel
sanitizers (e.g., KASAN and KMSAN) to catch the bug be-
fore the corruption happens. Although currently sanitizers are
enabled only during testing due to their memory and perfor-
mance overhead, there are recent efforts to enable efficient
sanitizers to be used in deployed products as well [40] [25].
Manually-triggered bowknots. There are two important
scenarios when manually-triggered bowknots are desired or
needed. First, some bugs do not result in a crash nor are
detected by a kernel sanitizer. However, the security analyst
knows the condition under which the bug is triggered. In
this case, the analyst can add an explicit condition to the
function containing the bug to redirect the execution to the
undo block before the bug is triggered. Figure 3 (Down)
shows an example. In this (hypothetical) case, if the param
parameter is equal to a known global object, the behavior is
buggy resulting in the corruption of the object. Therefore, the
analyst can add the conditional block between lines 17 and 18
to jump to bowknot’s undo block. The analyst does not need
to generate the bowknot nor figure out which undo statements
need to be called. She only needs to determine where and
under what conditions the bowknot needs to be executed.

Second, in some production systems, instrumenting the
kernel exception handler or deploying a kernel sanitizer (as
needed for automatically-triggered bowknots) might not be
acceptable. In such cases, manually-triggered bowknots can
be used, even for simple bugs such as crash bugs.

4.2 Recursive Undo of Call Stack

When a bug is triggered, bowknot executes the undo code for
the function the bug is in. It then needs to undo the effects of



the statements in the parent functions.

To do this, we undo the parent functions similar to the
buggy function. Figure 3 shows the parent function as well.
We perform the recursive undo through the use of the thread-
specific flag mentioned earlier (current->bowknot_flag).
When returning from the buggy function, this flag is set. More-
over, the parent function is also instrumented with the con-
ditional goto statements. Therefore, after returning from the
buggy function, the parent function jumps to its own bowknot
and executes its own undo code. This recursive undo contin-
ues until the syscall returns, at which point the flag is cleared.

It is important to note that the bowknots in the parent func-
tions are always automatically-triggered. Only the last func-
tion in the stack might need manual triggering of the bowknot.

Also, note that it is feasible to rely on the existing error
handling blocks in some functions rather than using bowknots.
We use this approach for the first few functions in the execu-
tion paths of a syscall, which receive a syscall and route them
to an underlying component to handle. As a practical guide-
line, when dealing with a bug in a specific kernel component,
e.g., a device driver, we only apply bowknots to the functions
in the path within the driver. When recursively undoing the
functions, the entry function in the kernel component sim-
ply returns an error, which is elegantly handled by existing
kernel code by routing the error to the user space. We take
this approach for two reasons. First, the functions parsing and
routing a syscall are triggered for every syscall and hence have
impact on the system’s performance. Second, these functions
are mature and have adequate error handling code, eliminating
the need to inject custom undo code for them.

5 Automatic Generation of Bowknots

In this section, we describe how Hecaton generates the undo
block of the bowknot automatically. Hecaton also automati-
cally instruments the designated kernel functions, which we
do not discuss further here.

We build Hecaton as a static analysis tool. It generates
the undo block by analyzing the entire kernel to infer the
relationship between state-mutating statements and their cor-
responding error handling undo statements. Hecaton achieves
so in two main steps: (7) generating a kernel-wide knowledge
database of function pairs and (if) generating the undo block
using the database as well as function-level analysis. We next
describe these two steps.

5.1 Function-Pair Knowledge Database

The goal of the function-pair knowledge database is to store
pairs of functions that mutate and undo the kernel state. In
other words, a state-mutating function and an undo func-
tion are paired, if the latter undoes the effect of the for-
mer. (kmalloc, kfree), (mutex_lock, mutex_unlock),
and (msm_camera_power_down, msm_camera_power_up)

are a few examples of such function pairs. The function-pair
knowledge database can be reused across various kernels,
e.g., the kernels of different Android devices, with minimal
changes. Therefore, our general approach is to automatically
extract function pair candidates, manually inspect them, and
add them to the database if verified. This approach provides
high confidence in the database. Moreover, since generating
the database is mostly a one-time effort, the manual effort
is not significant. (We provide some quantification of the
manual effort later in this section and in §7.2).

Identifying function pair candidates. Hecaton statically
analyzes the entire kernel to identify function pair candidates.
It uses two methods to identify the candidates. First, it uses
the function names. In this method, Hecaton considers a
function pair as a candidate, if the names of two functions
only differ in one word and the difference is one of the
following: (put, get), (put, create), (release, get),
(release, create), (remove, create), (deinit, init),
(unregister, register), (unlock, lock), (down, up),
(disable, enable), (sub, add), (dec, inc), (unset,
set), (clear, set), (free, alloc), (stop, start),
(suspend, resume), (disconnect, connect), (unmap,
map), (dequeue, enqueue), (unprepare, prepare), and
(detach, attach). Using this method, for example, Hecaton
found 540 pairs of function in the Linux kernel used in the
Pixel3 smartphone.

Unfortunately, not all function pairs differ in one word
only. As a result, Hecaton employs a second method, in
which it uses existing error handling blocks in the kernel
to identify undo functions and then match them to candidate
state-mutating functions in the same function using string
matching. More specifically, Hecaton marks all the functions
in error handling blocks as undo functions. Then, for each
undo function, it matches it with a candidate state-mutating
function in the same function using similarity in their names
and input/output variables. For the similarity score, Hecaton
calculates the sum of the lengths of all mutually-exclusive
substrings. To do so, Hecaton finds the longest common sub-
string (LCS) and adds its length to the similarity score. Then
it deletes the LCS from both strings and repeats the previous
steps recursively until there is no common substring with
more than two characters.

Towards this goal, Hecaton needs to be able to identify error
handling blocks in the kernel. Hecaton does so by looking for
common conditional statements used to identify and handle an
error in the kernel. By investigating a large amount of kernel
code, we have identified four such conditional blocks includ-
ing (i) if (rc < 0) {...} where rc is an integer, (ii) if
(IS_ERR(p)) {...}orif (p == NULL) {...}, wherep
is a pointer, (iif) i1f (...) {...; return ERROR;} where
ERROR is a constant negative integer, often one of the com-
monly used error numbers in the kernel such as ~-ENOMEM and
-EFAULT, and (iv) if (...) {...; goto LABEL;}. It also
considers simple variations of these four categories such as



checking within the else block rather than the then block
for categories (iii) and (iv).

Once it identifies the error handling blocks, Hecaton needs

to match the undo functions in them with state-mutating func-
tions. That is, it assumes that every undo function call state-
ment undoes the effects of a single state-mutating function
call in the same parent function. For example, kfree () is an
undo function statement that corresponds to the state-mutating
function statement kmalloc (). Hecaton uses the same heuris-
tic string matching discussed above to identify the candidates.
For example, kgsl_context_put (context) is paired with
context = kgsl_context_get_owner(...). To do this,
Hecaton calculates the string-based similarity score between
the undo statement and all statements prior to the correspond-
ing error handling block. It then chooses the function with the
highest similarity score. Using this method, for example, we
identified 1158 candidate pairs in the Pixel3 kernel (excluding
the pairs found using the previous method).
Manual inspection of function pair candidates. Not all
function pair candidates are true pairs of state-mutating and
undo ones. This is because the method discussed above, i.e.,
string matching, is not precise. Therefore, we perform manual
inspection on the candidates to identify the true pairs. In this
step, we use our knowledge of kernel code. In addition, we
use the frequency of appearances of a function pair candi-
date as a hint to facilitate the manual inspection. Pairs that
appear many times together in many functions are less likely
to be false pairs. Using manual inspection, in the case of the
Pixel3 kernel, we verified all 540 pairs identified using the
first method and 658 of the function pairs identified using
the second one, bringing the total number of function pairs
in the database to 1198. This manual inspection took one of
the authors 7 days to complete. However, as mentioned, this
is largely a one-time effort. Supporting a new version of the
kernel or a new device driver adds a small number of new
candidate pairs, which can be verified fast. As an example,
once we had the database for the Pixel3 kernel, we ran our
static analysis tool on a Nexus 5X driver that we needed to
test. Doing so resulted only in 9 new candidate pairs, which
we quickly inspected. We evaluate the amount of manual
effort for x86 kernels in §7.2.

5.2 Generating the Undo Block

To generate the bowknot’s undo block, we need to identify
all the state-mutating statements in the function, and generate
the corresponding block. Hecaton is not currently able to
generate an undo statement, as it might require fixing the
parameters passed to a function. Therefore, Hecaton tries to
reuse existing undo statements in a function and match them
with the state-mutating ones. If Hecaton does not find a match
for an undo statement in a function, or if it does not find a
match for a state-mutating one, it inserts a warning in the undo
blocks that it generates so that the analyst can manually fix

the problem. Simply reusing existing statements is adequate
in a large number of functions (§7.1.1).

As mentioned, Hecaton attempts to find all undo statements
in the function for which it generates the undo block. An undo
statement might be a function call or not. Hecaton uses the
knowledge database to identify all the undo function call state-
ments. For other undo statements, e.g., a counter decrement,
it relies on the error handling blocks in the function.

To identify the error handling block candidates, we use
the patterns often used for these blocks as discussed earlier.
In addition, we also inspect all blocks that have one of the
following jump statements in their bodies: break, continue,
return, and goto. If such a block contains an undo function
call (determined by consulting our knowledge database), we
mark that block as an error handling one as well. In addition
to the error handling blocks, some functions incorporate undo
statements prior to the return statement. For example, it is
common in kernel functions to allocate, acquire, enable, or
turn on a resource, perform a task on it and then free, release,
disable, or turn off that resource before returning a success
value. Hecaton reuses these undo statements as well.

Having all the undo statements, the next step is to find their
corresponding state-mutating statements. For error handling
statements that are function calls, Hecaton uses its knowledge
database. If there are multiple instances of the same state-
mutating function, Hecaton chooses the one that shares more
variables with the error handling statement. For all other types
of statements, Hecaton uses string matching to pair them with
state-mutating statements.

5.3 Incompleteness and Confidence Score

As mentioned, a small portion of bowknots generated automat-
ically by Hecaton are not complete and require manual amend-
ments. We analyze the underlying reasons for this incomplete-
ness through experiments and a case-by-case study. We enable
Hecaton to automatically detect features in functions that may
result in the generation of an incomplete bowknot. For each
generated bowknot, Hecaton provides a confidence score, in-
dicating the probability of its effectiveness. Also, in cases that
manual effort is necessary, Hecaton highlights the function(s)
in the call stack that have the most negative effect on the
confidence score and need manual corrections. Our experi-
ence and analysis show that six features play critical roles in
generating complete bowknots. We quantify these features
and linearly combine them into a single confidence score us-
ing adjustable coefficients. Finally, we tune these adjustable
coefficients using real bugs (§7.1.3).

The first feature we use is the location of the bug. Our
experience shows that if the last function of the call stack of
the bug is inside a kernel component (e.g., a device driver), it is
more likely that Hecaton could generate a complete working
bowknot. In cases that the bug is in core kernel, for example,
inside an inline function that manipulates kernel objects, it is



less likely that Hecaton could generate complete bowknots.

The second feature is the presence of missing undo state-
ments. As we discuss in §5.2, Hecaton currently cannot gener-
ate undo statements from scratch. We decrease the confidence
score when Hecaton does not find an undo match for a state-
mutating function found in its knowledge database.

The third feature is the method of error handling block
detection used in a function. As we discuss in §5.2 and §5.1,
Hecaton uses different patterns to identify error handling
blocks. Some of these patterns are used both in error handling
and non-error handling blocks and hence might produce false
undo statements. Therefore, we decrease the confidence score
if such patterns are used.

The fourth feature is the presence of function pointers.
As Hecaton currently cannot pair the state-mutating function
pointers with its correct undo statement using its knowledge
database, it solely relies on the string matching heuristic to
pair them. As a result, we decrease the confidence score in
the presence of such statements.

The fifth feature is the presence of multi-statement undo
code, where multiple statements are used to undo one or more
state-mutating statements. One important example is when
a loop is used to undo the effects of another loop. Another
important example is when a critical section is used in the
error handling block. Hecaton assumes a one-to-one mapping
between state-mutating and undo statements, and hence does
not currently automatically handle such cases.

Finally, to take the miscellaneous unknown sources of in-
accuracy in Hecaton’s static analysis into account, we de-
crease the confidence score as the number of state-mutating
statements in a function increases since having more state-
mutating statements to pair increases the error probability.

6 Implementation

Static analysis tool. We implement Hecaton in C++ and
Python with about 4,550 LoC. We use Clang for static analy-
sis in Hecaton as it allows us to perform the analysis at the
source code level. While we mainly test our solutions with
the Linux kernel of Android devices and upstream x86 Linux
kernels, we note that they are applicable to other OSes as well.
Our static analysis tool is implemented as a plug-in for the
Clang compiler. We use our plug-in alongside Android Clang
version 5.0.1 for our Android devices, and we use the same
plug-in (with a small modification to make it compatible with
the newer version of Clang) alongside Clang version 11.0.0
for our upstream x86 Linux kernels.

We perform our analysis on the Abstract Syntax Tree
(AST). When using the AST, we do not need to worry about
parsing and lexing the source code. Moreover, we have high-
level information of the source code needed for our analy-
sis, such as functions and variables names. In addition, the
organized structure of the AST facilitates finding the error
handling blocks. In AST, all the statements and expressions

are organized in a hierarchical structure as nodes of a tree, and
Clang provides many helper functions to traverse the AST in
an efficient way. There are also many helper functions to ob-
tain attributes of each node of the AST. To obtain the AST of
the source code, we use ASTFrontendAction with a custom
ASTConsumer. We override the VisitFunctionDecl func-
tion of our custom ASTConsumer to obtain all the function
declaration nodes in the AST. All the statements in the body
of each function appear as children nodes of the function dec-
laration node. To perform our analysis, we recursively visit
all the children nodes in several passes. In these passes, using
AST, first, we identify and pair undo nodes and state-mutating
nodes to generate a bowknot for each function. As discussed
in §4.1, a bowknot includes a generic undo block, several con-
ditional goto statements, and several mask update statements.
Then, using the AST helper function, get SourceRange, we
identify the locations of these nodes in the source files. Finally,
using Clang’s Rewriter tool, we directly inject the generated
bowknot into the source code.

Exception handler. We have implemented Hecaton with
automatically-triggered bowknots for two Android devices
naming Pixel3 and Nexus 5X and various versions of three
x86 kernel branches naming upstream Linux kernel, Google’s
KMSAN kernel, and Linux-Next kernel. Nexus 5X runs
CyanogenMod-13 Android OS with Linux kernel 3.10.73,
Pixel3 runs Android-9.0.0 r0.43 with Linux kernel 4.9.96,
and the x86 Linux versions vary between 5.5.0 and 5.8.0.

As discussed in §4.1, to support automatically-triggered
bowknots, we need to instrument the kernel’s exception han-
dler. First, we need to distinguish between bowknot-supported
faults and normal faults. To achieve this goal, we statically dis-
assemble and parse the kernel image and extract the address
ranges of bowknot-supported functions and save them into a
header file. When any exception occurs, we use this header
file to execute our modified exception handler for bowknot-
supported faults and execute the unmodified exception han-
dler otherwise. In our modified exception handler, after setting
bowknot_flag, before returning to the buggy function, we
advance the Program Counter (PC) register to skip the crash-
ing instruction. In ARM architecture, all instructions have the
same length, and we simply advanced the PC register by four.
However, x86 instructions have variable lengths. As a result,
we need to decode the current instruction’s length to advance
the PC to the next instruction. We use Zydis for this purpose,
which is a lightweight open-source disassembler library for
x86 and x86-64 instructions implemented in C [4]. Since Zy-
dis is implemented with no third-party dependency (not even
1libC), we can build Zydis as a part of the Linux kernel. To
minimize code added to the kernel, we only port parts of the
Zydis necessary to decode the instructions’ length.

For ARM, we add 72 lines of C code and 42 lines of as-
sembly code to the kernel exception handler. For x86, we add
136 lines of C code to the kernel exception handler and port
4677 lines of C code from the Zydis library.



7 Evaluation

7.1 Effectiveness
7.1.1 Effectiveness in Bug Mitigation

Methodology. To test the effectiveness of Hecaton and
bowknots, we test our bug workaround against 113 bugs in
Android and x86 Linux kernel consisting of real CVEs, un-
patched real bugs, and injected bugs. Using a combination of
real and synthesized bugs to evaluate the effectiveness of fault-
tolerant systems is a common practice [18] [21]. However,
previous similar work, Talos [18], only used 11 real-world
vulnerabilities and FGFT [21] tested no real-world bugs. In
contrast, we use 39 real-world bugs. Similar to Talos and
FGFT, to evaluate the effectiveness of bowknots, we measure
two factors for each bug. First, whether the bug is success-
fully mitigated, and second, whether the system including the
buggy module remains functional after the undo.

In our experiments, we use PoCs to trigger the bugs. In a
successful mitigation, we make sure that the PoC still triggers
the bug after bowknots insertion but that the execution of
bowknots neutralizes the syscall that triggers the bug in a way
that prevents the system from crashing, freezing, or generating
further warnings by kernel sanitizers.

In addition, we test the functionality of the buggy module
after the execution of bowknots as a result of triggering each
bug. For our functionality test, we use standard benchmarking
and self-test programs when they are available for a kernel
module (e.g., GPU benchmarking application or Linux self-
tests for a file system). Self-tests are small test programs that
kernel developers have designed to exercise individual code
paths in the kernel and report whether or not they achieve
the expected outcomes. If no standard benchmark or self-test
is available for a module, we manually test the underlying
device of the buggy device driver in different configurations
(e.g., taking pictures and videos in different settings to make
sure the camera is functional.)

For comparison, we also test and report mitigation and
functionality preserving for each bug using Talos [18], which
uses code disabling (§2.3). Since Talos disables parts of the
code, it might seem unnecessary to test Talos workarounds for
functionality. However, in some cases, the disabled function
does not play a crucial role in the functionality of the device,
for example, when the bug is located in a function that logs the
device driver’s events. In these cases, code disabling (Talos)
might preserve the functionality of the device.

As we discuss in §9, bowknots cannot be used for the bugs
located in the kernel’s clean-up paths. Hence, we only mea-
sure and report (in §9) how common this limitation is, and we
do not consider them in our effectiveness evaluations.

We also evaluate the effectiveness of Hecaton in generating
complete bowknots. First, we report whether the bowknots
get executed automatically or if we manually encode the con-
dition for its execution. Second, we report whether the auto-

matically generated bowknots are complete or if we manually
add statements to complete them. For each bug, we limit the
amount of manual effort to complete its bowknots to 2 hours.
If we could not fix a bowknot manually in 2 hours, we record
it as unsuccessful.

CVEs and Real Bugs in Android To evaluate the effec-
tiveness of bowknots and Hecaton in mitigating real bugs
and vulnerabilities of Android devices, we use 9 real bugs
and reported CVEs in four kernel components of the Pixel3
smartphone: binder IPC, camera driver, GPU driver, and the
TCP layer in the network stack (used with WiFi).

Table 1 shows the result. It shows that bowknots are ef-
fective in mitigating the bugs and vulnerabilities in 100% of
cases and maintain the system functionality in 100% of these
cases. 88.9 % of bowknots use automatic triggers and only
one case uses manual triggers. Moreover, Hecaton is capa-
ble of generating complete bowknots in 55.6% of cases. In
contrast, Talos can only mitigate the bugs in 66.7% of cases
and preserve the functionality in 22.2% of these cases. We
discuss five of these vulnerabilities in Appendix.
Unpatched Real Bugs in x86 Linux kernel To further eval-
uate the applicability of bowknots and Hecaton to different
targets and unpatched bugs, we use 30 real bugs in x86 Linux
kernels reported by Syzbot [12]. We choose the 30 latest un-
patched bugs (as of July 2020), which have reproducer PoC
programs. The 30 bugs we test are located in various parts of
the Linux kernel such as network stack, file system, memory
management, HCI Bluetooth driver, and TTY driver.

Table 2 shows the results. It shows that bowknots are ef-
fective in mitigating the bugs and vulnerabilities in 90% of
cases and maintain the system functionality in 90% of these
cases. Moreover, Hecaton is capable of generating complete
bowknots in 60% of cases. In contrast, Talos can only miti-
gate the bugs in 66.7% of cases and preserve the functionality
in 26.7% of these cases.

Injected Bugs in Android To further test the ability of
bowknots in maintaining the system functionality, and test
the robustness of Hecaton against the location of the bugs in
the kernel functions, we use bug injection. More specifically,
we inject 41 bugs in the camera driver of Pixel3 and 33 bugs
in its binder IPC subsystem. To avoid any bias in favor of
or against Hecaton, we randomly choose the bug injection
location. To do so, first, we fuzz each module using Syzkaller
to identify all lines of code reachable through the syscall in-
terface. Next, after excluding the locations in the kernel’s
clean-up paths (see §9), we randomly choose one of the reach-
able lines and insert an explicit BUG () function there. Since
the inserted BUG () ’s location is random, an arbitrary number
of state-mutating statements might get executed prior to the
bug, which needs to be undone by a bowknot. As a result,
this evaluates the ability of Hecaton in generating effective
bowknots in various cases. We then generate bowknots using
Hecaton and apply them for each bug. Table 3 shows the re-
sults. It shows that bowknots are effective in mitigating the



Talos Bowknot Bowknot Hecaton’s
Kernel Bug/ Talos Bowknot .
Modules Vulnerability Mitigate? Preser.ve Mitigate? Preser've Trigger Generated
" | Function? " | Function? | Mode Bowknots
Bind CVE-2019-2215 X Manual Not-Complete
IP‘E e CVE-2019-1999 X7 Automatic | Complete
CVE-2019-2000 X X Automatic | Complete
CVE-2019-2284 X X Automatic | Not-Complete
Camera - -
Driver bug: msm_camera_power_down | X X Automatic | Not-Complete
CVE-2019-2293 X Automatic | Not-Complete
GPU CVE-2019-10529 X* Automatic | Complete
Driver CVE-2018-5831 Automatic | Complete
[ Network (TCP) | CVE-2019-18805 { { { { | Automatic | Complete \

Table 1: CVEs and real kernel bugs tested with bowknots. (* In these cases, the system was functional right after mitigation by
Talos, but it stopped working after a while due to a memory leak resulting from code disabling.)

# mitigated | # function | # mitigated | # function # automatic | # complete | Avg.# added undo sta-
Total # of ¢
tested Bugs by preserved | by preserved bowknot bowknots tements for incomplete
Talos by Talos bowknots by bowknots | trigger by Hecaton | bowknots by Hecaton
30 [ 20 | 8 | 27 | 27 [ 30 | 18 [ 2 \

Table 2: Unpatched bugs experiments (x86 Linux kernel bugs reported by Syzbot).

bugs in 94.6% of cases and maintain the system functionality
in 85.1% of these cases. Moreover, Hecaton is capable of
generating complete bowknots in 70.4% of cases. In con-
trast, Talos can only mitigate the bugs in 64.9% of cases and
preserve the functionality in 23.9% of these cases.

For all bugs for which Hecaton’s bowknots were incom-
plete (injected bugs as well as real bugs and vulnerabilities),
we needed to add on average 3 statements.

7.1.2 Effectiveness of Syscall Undo

We perform a detailed case study to evaluate bowknots’
syscall undo capability. We perform a manual line-by-line
investigation on the execution path of 10 real bugs (5 Android
kernel and 5 x86 Linux bugs randomly chosen from the bugs
discussed in §7.1.1). In this investigation, we search for any
statement that changes the global state of the system but is
not undone by bowknots. The result of this analysis shows
that, to the best of our knowledge, for 6 cases the undo was
complete and there were no changes to the system global state
that did not get undone by the bowknots. Additionally, in 3 of
the 4 failed cases, we could manually add the undo statements
for the missed state-mutating statements and complete the
bowknot in less than 2 hours. In the remaining one case, the
state gets corrupted in a way that we even could not generate
a complete bowknot manually. We discuss this case-by-case
analysis in detail in the Appendix.

7.1.3 Effectiveness of Confidence Score

To evaluate Hecaton’s confidence score, we use our corpus
of 30 unpatched real bugs in x86 Linux kernel, which we

discussed in §7.1.1. As mentioned in §5.3, Hecaton generates
a confidence score for each bowknot instrumented function.
Even if only one bowknot fails to undo the side effects of
a partially executed function, the system state might remain
inconsistent. As a result, to evaluate each bug, we consider
the minimum confidence score for the bowknot instrumented
functions in its call stack. We divide these 30 bugs into two
sets of 20 and 10 bugs for respectively tuning and testing our
confidence score. We tune the six coefficients of the confi-
dence score (§5.3) in a way that it best separates the tuning
set of bugs into two groups, one with complete bowknots and
one that needs manual effort. Then we measure how well the
tuned confidence score can predict the completeness of the
bowknots Hecaton generates for 10 bugs in the testing set.
Note that a false negative prediction is more acceptable than
a false positive because in the case of a false negative the
confidence score predicts an incomplete bowknot, which ends
up being complete. Figure 4 shows that the confidence score
works for 95% of the cases in the tuning set, and it predicts
the completeness of generated bowknot with 90% accuracy in
the testing set. Please note that there is no false positive in the
results. In other words, whenever the minimum confidence
score is greater than 50, the bowknots are complete.

7.2 Manual Effort for the Pair Database

We measure how much manual effort is needed to keep Heca-
ton’s function-pair knowledge database updated with the on-
going updates in the kernel. For this purpose, we use Hecaton
to generate the databases for 9 consecutive versions of x86
upstream Linux kernel, i.e., v5.0 to v5.8. As we discuss in
§5.1, this database needs to be manually inspected and veri-



. # mitigated | # function | # mitigated | # function # automatic | # complete | Avg. # added undo sta-
Kernel # Injected .
Modules | Bugs by preserved | by preserved bgwknot bowknots tements for incomplete
Talos by Talos bowknots by bowknots | trigger by Hecaton | bowknots by Hecaton
[ Camera [ 41 | 34 [ 5 | 40 | 33 [ 33 | 26 [ 2
| Binder [ 33 | 14 [ 12 [ 30 [ 30 | 26 | 24 | 4
Table 3: Bug injection experiments (camera device driver and Binder IPC).
[ device [ driver | version [ bugs [ U.reboots [ U.uptime | U.fuzztime | B.reboots [ B.uptime | B.fuzztime |
Pixel3 Camera | 2018-08-22 3 1035+ 60 24h 12h18m+9m | 983+ 114 24h 22h49m + 1h5m
Nexus 5X | Camera | 2016-10-13 6 622.3+48 24h 12h10m+=19m | 12.0+0.0 24h 23h19m =+ 1m

Table 4: Effective fuzzing time. U. and B. refer to using unmodified kernel vs. a kernel updated with bowknots. The number of
reboots are per hour. Up time is the overall time during which the fuzzer is running including wasted reboot time. Fuzz time (i.e.,
effective fuzz time) is the time during which the fuzzer is actually fuzzing the kernel of the device.
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Figure 4: Hecaton Confidence score prediction for Tuning
and Testing sets

fied. Our measurements show that when we move from one
kernel version to the next, on average 115+ 18 additional
function pairs need to be verified, which in our experience
takes between 2 to 3 hours.

7.3 Performance Overhead

We measure the overhead of bowknots on the normal perfor-
mance of the system. To do so, we measure how the perfor-
mance overhead increases as the number of executed func-
tions with bowknot instrumentation increases. To test the per-
formance overhead of bowknots in our ARM implementation,
we use two benchmark applications, “GPU Mark benchmark”
that measures the output frame-rate of GPU renderings, and
“Tamosoft Throughput Test” that measures the downlink TCP
throughput. To test the performance overhead of bowknots in
our x86 implementation, we use iPerf tool [1] in Linux kernel
to measure the downlink TCP throughput.

Each benchmark results in the execution of many functions
in their corresponding kernel components. First, we detect all
these triggered functions (410 functions in the Pixel3 GPU
driver, 390 functions in the Pixel3 networking stack, and 370
functions in x86 Linux networking stack). We then randomly
choose a number of these functions and instrument them with
bowknots. For all modules, we either instrument 100, 200, or
all available functions in them. We run the benchmarks 10
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Figure 5: GPU and TCP performance as the number of ex-
ecuted bowknots increase. (a) Pixel3 GPU , (b) Pixel3 TCP,
(c) x86 upstream Linux (running in QEMU) TCP.

times and show the average+stdev throughput in Figure 5.

The results show that there are no statistically noticeable
performance drops even if all executed functions are instru-
mented with bowknots.

7.4 Use-Case Evaluation

As discussed in §2.2, by neutralizing bug-triggering syscalls,
bowknots can help reduce the number of repetitive reboots
during a fuzzing session. We evaluate the benefits of bowknots
for fuzzing in this section. We fuzzed 13 device drivers and
kernel components (camera driver, GPU driver, audio driver,
WiFi driver, ION, Binder, and Ashmem) in three smartphones
(Pixel3, Nexus 5X, and Samsung S7). Out of these, 5 of them
showed repetitive reboots due to easily-triggered bugs. Out
of these 5 drivers, 2 of them had easily-triggered bugs that
bowknots could effectively mitigate. We show the results for
these two drivers: the camera device driver of Pixel3 and the
camera device driver of Nexus 5X. We note that bowknots
cannot provide any benefits for the other three drivers.

We use the following experimental methodology. We run
each fuzzing experiment for 24 hours as suggested by Klees
et al. [23]. Moreover, we repeat each experiment 3 times and
report averages and standard deviations. To implement this
methodology, we faced and solved a practical challenge. More
specifically, running 24-hour kernel fuzzing experiments on



Figure 6: The setup used in our fuzzing experiments.
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Figure 7: (a) Total executed fuzzing programs. (b) Covered
basic blocks (code coverage percentage is also reported on
top of each bar).
smartphones proved to be challenging due to unreliability
of the Android Debug Bridge (ADB). Occasionally, ADB
would malfunction and the desktop machine running the
fuzzer would lose its connection to the device, disrupting
the experiment. This phenomenon happened more frequently
when the device was rebooted more often. Our first attempt
to address this problem was to restart the experiment from
scratch when this issue happened. Given that experiments
are 24 hours long, this proved to be a very lengthy process.
Therefore, we built a custom hardware-software framework
to programmatically and forcefully reboot the device using
its power button when the connection to the device was lost.
Figure 6 shows this setup. We 3D printed the cover to hold
the smartphone in place, used a 45 Newton linear solenoid to
press and hold the power button, and used an Arduino Uno
board to control the solenoid from the fuzzer.
Increased fuzzing time. Table 4 shows the effective fuzzing
time achieved when fuzzing the unmodified driver and the
driver with bowknots. As the table shows, bowknots increase
the effective fuzzing time by 88.6% +4.6%.
Executed programs. Figure 7a shows the total number
of executed fuzzing programs. Bowknots eliminate wasted
fuzz time and hence the fuzzer executes more programs. Our
results show that we manage to execute 723.5% =+ 124% more
fuzzing programs on average with bowknots.
Code coverage. Figure 7b shows the code coverage in the
driver under test. As can be seen, the higher number of ex-
ecuted programs and fewer reboots result in 54.3% 4+ 6.1%
higher code coverage.
Comparison with Talos. We compare the effectiveness of
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Figure 8: Time taken for the fuzzer to discover a bug (i.e.,
trigger a bug for the first time). Each x-axis tick represents a
unique bug.The points with no error bars represent bugs only
found once during experiments

Bug Basic B.asic blocks
triggered b!OCkS disabled by Talos
by fuzzer disabled | & covered by
by Talos | bowknots
msm_actuator_subdev_ioctl 141 129
msm_camera_io_w_mb 2 2
msm_camera_io_r 2 2
msm_flash_config 91 82
msm_csid_config 37 35
msm_cpp_subdev_ioctl 785 459
cam_ife_mgr_acuire_hw 71 45
cam_sensor_core_power_up | 109 67
msm_camera_power_down 52 32

Table 5: Bowknots vs. code disabling (Talos) for fuzzing.

our approach in improving the fuzzing efficiency with Talos.
To do this, we apply Talos to buggy functions in our fuzzing
experiments. Our analysis shows that Talos, as a result, dis-
ables a large number of basic blocks, effectively lowering the
code coverage. Moreover, our analysis shows that bowknots,
when applied to the kernel, allow the fuzzer to cover a large
part of the basic blocks that Talos disables. Table 5 shows the
results. The results are insightful. Talos’ approach disables the
code unconditionally resulting in disabling 1290 basic blocks
overall. However, bowknots only undo the syscall when they
are triggered. Therefore, they allow the code to be executed
with good inputs, i.e., those that do not result in triggering
the bug. This proves to be critical for achieving good code
coverage when fuzzing. As a result, bowknots help cover 66%
of the basic blocks disabled by Talos.

Faster and more effective bug detection. By eliminating
reboots with bowknots, we manage to find bugs faster. Fig-
ure 8 shows the list of all the bugs found in the two drivers. It
shows on average the time it takes to find the bug in drivers
with and without bowknots. As the results show, bowknots
help us find all these bugs faster. On average, we find the same
bugs faster by 42.6 minutes. This speed-up varies between 6
minutes to 162 minutes for different bugs.



8 Other Related Work

Automatic fault recovery. FGFT provides fine-grained re-
covery for faults in device drivers [21]. To do so, it check-
points the memory and I/O device state on select entry points
and restores them when a fault is detected. FGFT’s key tech-
nique is to checkpoint and restore device state using existing
power management code in device drivers. There are two
important limitations that make this solution unsuitable to
be used as a generic kernel bug workaround solution. First,
checkpointing the state of an I/O device using power manage-
ment facilities is not feasible for all I/O devices. In fact, some
of the devices that we tested in our evaluation (e.g., the cam-
era of Nexus 5X smartphone) do not support this. Moreover,
a checkpointing solution for the kernel memory is difficult to
integrate into existing kernels. Virtual machine checkpointing
exists; however, that does not apply to the kernels of real sys-
tems. Second, checkpointing the state of the system before
every syscall is costly.

ASSURE uses rescue points for automatic recovery from
faults in an application [39]. Rescue points are sites within
an application that handle known errors. When faced with an
unknown error, ASSURE restores the state of the application
to a suitable and close rescue point, which then returns an
error. However, ASSURE requires checkpointing the state at
rescue points, which is expensive for syscalls and not feasible
for all the hardware state.

Akeso uses recovery domains to undo a syscall or interrupt
upon a fault [24]. Recovery domains log modifications to the
kernel state and commit only upon successful execution. This
allows the domains to undo the effects when facing a fault.
Similar to Hecaton, Akeso can undo a syscall that ends up in
a bug trigger. However, Akeso’s approach is not suitable for
a bug workaround either. First, Akeso has significant perfor-
mance overhead (1.08x to 5.6x). Second, Akeso does not
support “code that write directly to external devices”, which
includes important parts of device drivers.

RCYV automatically recovers from null pointer dereference
and divide-by-zero errors [27]. It does so by handling the
corresponding signals, repairs the execution by performing
a default operation (e.g., return zero to a read from a zero
address), monitors the effects of the repair in order to contain
its effects within the application process, and detaches from
the application when the effects are flushed. RCV is suitable
for deployed applications as it helps them survive otherwise
fail-stop errors. However, it does change the behavior of the
application (even if slightly) and hence is not appropriate as a
workaround solution.

Input filtering. Another possible approach to work around
a bug in the kernel is to filter those syscalls that trigger it.
For example, VSEF uses execution-based filters to detect and
then prevent exploits of a known vulnerability [29]. Sweeper
monitors the execution of programs to detect attacks, analyzes
the attack, deploys an antibody to prevent future exploits, and

recovers the execution using the checkpoint/restore mecha-
nism [43]. Vigilante generates a filter for preventing worms
from exploiting vulnerable services [16]. However, there are
important limitations for this approach to be used as a bug
workaround. First, evaluating every syscall against a filter
causes performance overhead. Second, discovering the exact
condition and inputs under which a syscall triggers a bug is
challenging. Third, there is currently no syscall filtering so-
lution that can perform complex checks on the syscall input.
Seccomp provides kernel syscall filtering but does not allow
to maintain any state nor does it allow to check the arguments
passed in memory.

Automated patching. The goal of this line of work is to gen-
erate a correct patch for a bug automatically. Recent efforts
do so by using simulated genetic processes to fix program
faults [46], leveraging static analysis to patch race condi-
tions [20], policing invariants to curb heap buffer overflows
and control flow hijacks [33], utilizing the semantic analysis
of test suites to correct program states [30], and using code
annotations (contracts) to generate patch candidates [45]. In
contrast, we focus on a workaround for a bug. Our goal is
not to properly patch the bug, rather to provide a temporary
solution until a patch is ready. Hence, our work is orthogonal
to this line of work.

Hot-patching is a method for changing the behavior of bina-
ries at runtime, commonly used for delivering patches without
the need to reboot [41]. Linux kernel and kernel extensions
implement hot-patching by modifying the impacted functions
and redirecting the execution flows [3] [2]. Recently, the ur-
gent need for delivering security patches to fragmented An-
droid devices has become a hot research topic. KARMA [15],
VULMET [47], Instaguard [14], and Embroidery [48] extract
rules and specifications from existing patches, and generate
hot-patches for the fragmented Android kernel or user space
binaries that are poorly maintained. These hot-patching mech-
anisms work assuming that the patches are available. In con-
trast, a workaround tries to mitigate a bug before a patch is
available. Hence, our work is orthogonal to this line of work.
Error handling analysis. Several efforts have attempted
to identify defective error handlers. For example, CheQ [28]
locates security checks and error handlers in the kernel by
searching certain patterns, and leverages this information to
catch unhandled errors and other bugs. APEx [22] identi-
fies the error handlers based on the characteristics of error
paths. EPEx [19] symbolically executes the test programs
and explores error paths to find the mishandled exceptions.
ErrDoc [42] leverages both symbolic execution and func-
tion pair matching to identify error handlers, and it automat-
ically detects and then fixes incorrect or missing handlers.
Hector [35] walks the control graph to identify the miss-
ing release statements in the error handlers based on a list
of acquisition-release function pairs. EIO [17] and Rubio-
Gonzidlez, et al. [34] present a method that uses data-flow
analysis to detect unchecked errors as they propagate in the



file system code.

Hecaton identifies function pairs using a method similar to
PF-Miner [26] and ErrDoc [42], which utilize string matching
and path heuristics. However, there are two differences. First,
PF-finder uses Longest Common Substring (LCS) as a metric
as opposed to Hecaton’s string similarity score discussed in
§5.1. Second, PF-finder discards the paired functions with
the exact same name, which can result in errors. For example,
regulator_set_voltage function is used to both turn on
and turn off a device.

9 Other Limitations

Undetected corruptions. Bowknots’ effectiveness depends
on catching the errors before they corrupt the system and undo
the effect of the system call that causes the error. In some
cases, a crash as a result of a bug (e.g., out of bound write/read
to/from a non-allocated address) triggers the execution of
bowknots. However, in cases that the same bug does not result
in a crash, bowknots rely on kernel sanitizers (e.g., KASAN)
to catch the error before it corrupts the kernel. In cases where
there is no crash, kernel sanitizers do not catch the error, or
they are not enabled in the kernel for performance reasons, the
analyst needs to provide the check for triggering the bowknot,
otherwise the bowknots might not be secure and effective.
Bugs in clean-up paths. Bowknots are workarounds for
bugs designed based on the idea of undoing the effect of
partially executed syscalls. However, undoing the effect of
syscalls that are themselves designed for clean-up is not pos-
sible. Consider a syscall designed to destroy a few kernel
objects and free all the allocated memories. If a crash happens
in the middle of this syscall, where half of the kernel objects
are destroyed, no bowknot could re-create the exact objects
and undo the effect of this partially executed syscall. We stud-
ied the latest 100 bugs of Linux upstream kernel reported by
Syzbot (as of October 2020). Our study showed that 28% of
the bugs are located in clean-up paths and hence were not
amenable to bowknots.

10 Conclusions

We presented workarounds for kernel bugs, called bowknots,
which undo the in-flight syscall that triggers a bug. Bowknots
maintain the functionality of the system even when bugs
are triggered, are applicable to many kernel bugs, do not
cause noticeable performance overhead, and have a small
kernel footprint. Moreover, to simplify bowknots generation,
we introduced Hecaton, a static analysis tool that generates
bowknots automatically. Our evaluations show that bowknots
are effective in mitigating bugs and security vulnerabilities
and preserve the system functionality in most cases. More-
over, bowknots generated by Hecaton are complete in 64.6%
of the cases.
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Appendix

CVE-2019-2293 This vulnerability, which is rated as
medium security severity, is caused by a possible null
pointer dereference in Qualcomm camera ife module. A
null pointer dereference might happen because of lack of a
proper check on the isp_resource length variable before
calling cam_ife_mgr_acquire_hw_for_ctx (). There are
7 functions in this bug’s call stack. Hecaton overall gen-
erates 10 undo statements in these functions. Hecaton suc-
cessfully detects several types of state-mutating statements
and their corresponding undo statements including direct
function calls, function pointers, and global variable assign-
ments. However, our manual investigation shows that one
bowknot does not correctly undo the side effect of its func-
tion. In cam_context_handle_acquire_dev () function
ioctl_ops.acquire_dev (), which modifies the state of the
camera device driver is called, but it is not paired with its undo
function, ioctl_ops.release_dev () . Hecaton missed this
statement because the original error handling code was not
complete and did not call ioctl_ops.release_dev ().
After correcting the incomplete bowknot manually, when
we run the PoC of this vulnerability on the mitigated kernel,
all bowknots in the call stack get executed and successfully

undo the side effects of the PoC. The camera device remains
functional after this successful undo.

CVE-2019-1999 In function
binder_alloc_free_page (), there is a possible double-
free vulnerability due to improper locking. This vulnerability
is rated as high security severity because it could lead to
local escalation of privilege in the kernel with no additional
execution privileges needed. In 2 functions in the call
stack, there are 2 state-mutating statements, which Hecaton
automatically detects and uses to generate bowknots. Our
manual investigation shows that the generated bowknots
are complete. Also, Hecaton-generated bowknots preserve
the binder’s functionality after recovery. Hence, after the
recovery, the system is functional and successfully passes
a binder test program that we execute. Our test program
consists of two processes, a binder-server and a binder-client.
It checks for successful communication between these two
processes.

CVE-2019-10529 This is a use-after-free bug that can get
triggered with a race condition while attempting to mark the
entry pages as dirty using the function set_page_dirty ().
Use-after-free bugs in the kernel can cause a system crash,
put the system in an unexpected state, or be used in privi-
lege escalation exploits. Automated bowknots generated by
Hecaton mitigate this vulnerability and preserve the GPU
driver’s functionality. To test the GPU driver’s functionality,
we used the “GPU Mark BenchMark™ application, which tests
the GPU under the stress of rendering. We do not notice any
difference in the result before and after Hecaton mitigates
this vulnerability. Our manual investigation also shows that
bowknots undo worked correctly in this case.
CVE-2019-2000 This is a bug in the binder module of the
Pixel3 phone. There are 4 functions in this bug’s call stack.
Hecaton finds 6 state-mutating statements in these functions
and generate the undo code for them in their bowknots. Our
experiments show that the binder module remains functional
after triggering this bug and executing the bowknots. Our
manual investigation confirms that there are no other state-
ments that result in any change in the system’s state, which
leaks to non-local variables.

CVE-2019-2284: This is a bug in camera driver of Pixel3
phone. There are 4 functions in this bug’s call stack. Heca-
ton finds 10 state-mutating statements in these functions
and generates the undo code for them. However, our ex-
periments show that the Camera device loses its function-
ality after triggering this bug and executing the bowknots.
Our investigation shows that 2 out of 4 bowknots Heca-
ton generates for this bug’s functions are incomplete. In
cam_sensor_core_power_up () function, there is a loop in
which it turns on an array of voltage regulators. Although this
function has another for loop in its error handling path which
turns off the same array of the voltage regulators, Hecaton
currently does not support multi-statement undo, and only
produces a warning for the user. Our investigation shows that



the bowknot generated for cam_sensor_driver_cmd () is
also not complete. In this case, Hecaton fails to generate the
complete bowknot because of the incomplete error handling
code. Please note that after we manually add the missing
undo statements to the mentioned functions, the system and
the camera device remain functional after triggering the bug
and execution of bowknots.

Syzbot bug a11372b6c9b5fd4abelc266903bcb27e80e8f2bc
This is a bug in the TTY driver of the x86 Linux-Next
kernel. There are 5 functions in this bug’s call stack. Hecaton
locates two state-mutating functions and generates proper
undo code for them. It pairs kmalloc () with kfree()
and console_lock() with console_unlock() in the
con_font_get () function. The system and TTY module
remain functional after triggering this bug and execution
of bowknots. Our manual investigation shows that in one
of the functions, fbcon_get_font (), there are changes to
a data structure called font, which is not a local variable
of fbcon_get_font () and is provided as an input variable.
Since there is no undo code to revert changes of the font
data structure, at first glance, it seems that the bowknot
does not completely undo the driver’s state. However, our
further analysis shows that font data structure is not a global
variable of the driver and is defined as a local variable in
con_font_get () function, which is the parent function of
fbcon_get_font (). As a result, changes to the font data
structure do not leak to the other parts of the kernel before
bowknot’s execution. Hence, our manual investigation shows
that Hecaton-generated bowknots correctly undo the effects
of partially-executed system call, which confirms the result
of the functionality test.

Syzbot bug 9ad0eb3691bac24fd21ae3d8add8c08014a69f57
This is a bug in the file system of the upstream x86 Linux
kernel. There are 10 functions in this bug’s call stack.
Hecaton finds one state-mutating statement and pairs it with
its undo statement. This pair is blk_start_plug() and
blk_finish_plug(), which appears twice in the execution
path of this function. The file system functionality tests,
including kernel self-tests for the file system, successfully
pass after triggering the bug and execution of bowknots. In
two functions in the call stack, we observe statements that
change the non-local variables of those functions. However,
similarly to the previous case, our detailed analysis shows
that these non-local variables are not part of the global state
of the system or the file system; they are local variables
defined in the parent functions in the call stack. There is no
change to the system’s state, which does not have undo code
in the bowknots. As a result, our manual investigation is in
agreement with the functionality test.

Syzbot bug d708485af9edc3af35f3b4d554e827c6c8bf6b0f
This is a bug in HCI Bluetooth driver of the x86 Linux-Next
kernel. There are three functions in the call stack of this
bug. Hecaton successfully pairs 4 state-mutating statements
with their undo code in these functions’ bowknots. We test

the functionality of HCI Bluetooth driver with a user-space
program that uses this driver and with the network stack
self-tests of Linux kernel. The HCI Bluetooth driver and
the network stack remain functional after triggering the
bug and execution of bowknots. Our manual investigation
shows that, in addition to the 4 state-mutating statements
that Hecaton finds, there are three other function calls
that can potentially change the state of the system. One is
hci_req_cmd_complete (), which manipulates the hdev
the driver data structure. However, our further analysis shows
that this function does not get executed in the execution path
of this bug. As a result, it is not a concern. The two other
function calls, which can possibly change the state of system,
are hci_send_to_sock() and hci_send_to_monitor ().
Sending data over HCI socket changes the state of system and
it is not reversible. However, our deeper analysis shows in the
case of triggering this bug, these two functions return at the
beginning and do not reach to the point that they change the
state of system. As a result, the success of functionality test
indicates the correct undo of system state in this case, too.
Syzbot bug f0ec9a394925aafhdf13d0a7e6af4cff860f0ed6
This is a bug in a network driver of the upstream x86 Linux
kernel. The bug is located in HCI Bluetooth driver. There
are 11 functions in this bug’s call stack. Although Hecaton
generates complete bowknot for 10 out of the 11 functions in
the call stack for this bug, the remaining incomplete bowknot
results in unsuccessful recovery. The last function in the call
stack of this bug, the __1ist_add () function, is designed to
add an entry to a specified location of a doubly linked list in
the kernel. It modifies the two nodes that it wants to insert
a new node in between. The bug occurs after processing of
the first node but before the second node. At this point, the
doubly link list is corrupted and there is no code to undo this
corruption. We could not fix this problem in the two-hour
window that we allow for manual work for each bug.
Syzbot bug 0d93140da5a82305a66a136af99b088b75177b99
This is a bug in a network driver of the upstream x86 Linux
kernel. The bug is located in HCI physical layer driver. There
are 11 functions in this bug’s call stack. Hecaton pairs 5 state-
mutating statements with their undo code in these function’s
bowknots. However, the network self-test result changes after
triggering the bug and execution of the bowknots. Hence, the
functionality test for the automatically-generated bowknot
fails for this function. Our investigation shows that there is
one pair of state-mutating and undo functions, which Hecaton
missed because of its database’s incompleteness. When
we manually add hci_conn_drop () to the bowknot of the
function hci_phy_link_complete_evt () to reverse the
effect of hci_conn_hold (), the bowknots become complete
and the functionality test passes successfully.
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