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Abstract: The e-approximate degree of a function f: X — {0, 1} is the least degree of a
multivariate real polynomial p such that |p(x) — f(x)| < € for all x € X. We determine the
e-approximate degree of the element distinctness function, the surjectivity function, and
the permutation testing problem, showing they are @(n2/3log!/3(1/¢)), ®(n*/*1og'/*(1/¢)),
and ©(n'/?1og>/3(1/€)), respectively. Previously, these bounds were known only for con-
stant €.

We also derive a connection between vanishing-error approximate degree and quantum
Merlin—Arthur (QMA) query complexity. We use this connection to show that the QMA
complexity of permutation testing is Q(nl/ 4). This improves on the previous best lower
bound of Q(n'/°) due to Aaronson (Quantum Information & Computation, 2012), and comes
somewhat close to matching a known upper bound of O(nl/ 3.

1 Introduction

The e-approximate degree of a function f: X — {0,1}, denoted deg,(f), is the least degree of a
multivariate real-valued polynomial p such that |p(x) — f(x)| < € for all inputs x € X. Lower bounds on
approximate degree have many applications in theoretical computer science, ranging from quantum query
and communication lower bounds, to oracle separations and cryptographic secret sharing schemes. Upper
bounds on approximate degree have important algorithmic implications in learning theory and differential
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privacy, and underlie state-of-the-art circuit and formula size lower bounds. The interested reader can
find a bibliographic overview of these applications in [12, 21].

This paper focuses on three well-studied functions whose approximation by polynomials has applica-
tions to quantum computing and beyond. The first function is element distinctness ED,,, where the input
is a list of n numbers from {1,2,...,n} and the objective is to determine if the numbers are pairwise
distinct. The second function is surjectivity SURJ,, ,, where the input is a list of n numbers from the range
{1,2,...,r} and the goal is to check whether every range element appears on the list. The canonical
setting is » = | cn| for some constant 0 < ¢ < 1. The third problem that we study is permutation testing
PTP, o, parameterized by a constant 0 < ¢ < 1. Here, the input is a list of n numbers from {1,2,...,n},
and the objective is to distinguish the case when the list contains every range element from the case when
the list contains at most ¢tn range elements. In the context of polynomial approximation, it is customary
to represent the input to these functions as a Boolean matrix x = [x; ;], where x; ; = 1 if and only if the ith
element on the list equals j.!

Vanishing-error approximate degree

Much work in the area has focused on bounded-error approximate degree, defined for a Boolean function
[ as the quantity deg, ;3(f). The choice of constant 1/3 here is arbitrary, as deg,(f) = ©(deg; 3(f)) for
all constants 0 < € < 1/2. In particular, the bounded-error approximate degrees of element distinctness,
surjectivity, and permutation testing are known to be ®(n%/3), @(n3/*), and @(n'/3), respectively [3, 4, 17,
1,21, 12].2 Our understanding of approximate degree with vanishing error, € = o(1), is far less complete.
Among the very few functions whose vanishing-error approximate degree has been determined is the
n-bit AND function, with the asymptotic bound deg,(AND,) = ©(n'/2log!/?(1/€)) due to Buhrman
et al. [11]. We give a new and entirely different proof of their result. Our technique further allows us
to settle the vanishing-error approximate degrees of the much more complicated functions of element
distinctness, surjectivity, and permutation testing:

Theorem 1.1. Let 0 < c < 1 and 0 < a < 1 be arbitrary constants. Then

1\ /3
deg.(ED,) =Q <n2/3 <10g 8) ) ,

N 1 1/4
deg, (SURJ,, ||) = & <n3/4 <10g8) ) ,

1\2/3
deg.(PTP, ¢) = Q <n1/3 <1og 8) )

This theorem is optimal with respect to all parameters. The lower bounds for element distinctness and
surjectivity match the vanishing-error constructions in [21], whereas the lower bound for permutation

forall1/3" <eg<1/3.

ISee [22, Section 3] for a detailed explanation of this convention and how it relates to applications of approximate degree
bounds.
2Throughout this manuscript, O, Q, and ® notation hides factors polylogarithmic in 7.
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testing is tight by a quantum query argument which we include as Theorem 3.8. A comment is in order
on g-approximate degree in the complementary range, € < 1/3". Routine interpolation gives an exact
representation for each of the functions in Theorem 1.1 as a polynomial of degree at most n. Theorem 1.1
shows that this upper bound is asymptotically tight, settling the e-approximate degree for € < 1/3" as
well.

We prove a result analogous to Theorem 1.1 for k-element distinctness ED',“Z, a well-studied general-
ization of ED,,. Specifically, we prove that if EDfl has bounded-error approximate degree Q(n"), then
it has e-approximate degree Q(n‘log' ~/(1/€)). The state-of-the-art lower bound on the bounded-error
approximate degree of ED is Q(n/4~1/(20)) [12], so this yields

k ~ 31 1 it
deg.(ED)) =Q | n* ™ % <log€> .

For large k, this comes close to the best known upper bound [21]:

1 1
3.1 1\ 4T agke
deg,(EDf) =0 (n“ 4@k (log 8) . 1)> .

Our techniques are quite general, and we are confident that they will find other applications in the
area. The technical core of our results establishes that for any function f that contains ANDy o f|,, /i as
a subfunction for each k < n, any bounded-error approximate degree lower bound for f automatically
implies a strong lower bound for the e-approximate degree of f.> This allows us to prove tight lower
bounds on the vanishing-error approximate degrees of AND,,, ED,,, EDﬁ, and SURJ, ,. To handle PTP,, q,
we generalize our technique to other outer functions. Our analysis is based on the so-called method of
dual polynomials, whereby one proves approximate degree lower bounds by constructing explicit dual
solutions to a certain linear program capturing the approximate degree of the given function.

In the remainder of the introduction, we focus on an application of Theorem 1.1 to quantum Merlin—
Arthur complexity.

The Merlin—Arthur model

The Merlin—Arthur (MA) model of query complexity features a function f and two asymmetric players,
Merlin and Arthur. Arthur’s goal is to compute f on some unknown input x while querying as few bits of
x as possible. Merlin, who knows x, can help Arthur compute f(x) by sending him a single witness, i.e.,
an arbitrary message of some bit length m. However, Merlin is untrusted. The model requires that, for any
x € f~1(1), there is some Merlin message causing Arthur to output 1 with probability at least 2/3, and
for any x € £~!(0), no Merlin message can cause Arthur to output 1 with probability more than 1/3. The
cost of the protocol is the sum of the witness length m and the number of bits of x queried by Arthur. In
quantum Merlin-Arthur (QMA) query complexity, the witness sent by Merlin is allowed to be an arbitrary
m-qubit quantum message, and Arthur is permitted to query bits of the input x in superposition. The MA
and QMA query models have important analogues in communication complexity and Turing machine

3When we say that f contains g as a subfunction, we mean that there is a restriction f’ of f such that the domain of g is a subset
of the domain of f’, and f’(x) = g(x) for all x in the domain of g.
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complexity. In the former setting, Arthur is replaced by two parties Alice and Bob, and the input x is split
between them.

The complexity class QMA is a quantum analog of NP and accordingly has received considerable
attention. It is well known that any QMA protocol can be simulated by an SBQP C PP protocol with
at most a quadratic blowup in cost, i.e., QMA(f) > Q(SBQP(f)'/?) [23].# In turn, the existence of an
SBQP query protocol that makes at most ¢ queries implies that the one-sided (1/3)-approximate degree of
f is at most O(c). Here, the one-sided €-approximate degree of f is the least degree of a real polynomial
p such that |p(x)| < € forall x € f~1(0), and p(x) > 1 —¢ for all x € £~!(1) [13] (observe that p(x) is
permitted to take very large values on inputs in £~!(1)). As a consequence, one can prove QMA query
lower bounds for f by lower bounding the one-sided approximate degree of f.

Only a handful of additional results are known about QMA query and communication complexity.
Raz and Shpilka [20] showed that AND,, has QMA query complexity ®@(/n). Klauck [15] showed that
the QMA communication complexity of the disjointness problem is Q(n'/?). Neither of these results
follows from a naive application of the bound QMA(f) > Q(1/SBQP(f)).

QMA complexity of permutation testing

The permutation testing problem PTP, 4 has played an important role in the study of interactive proof
systems because it possesses a simple non-interactive perfect zero knowledge (NIPZK) protocol of
logarithmic cost, yet is a hard problem in many other models. Hence, it has been used to prove a variety
of complexity class separations. In particular, Aaronson [1] showed that the QMA query complexity of
PTP, o is Q(nl/ 6), and thereby gave an oracle separating NIPZK from QMA. Bouland et al. [8] built on
Aaronson’s result to give an oracle separating non-interactive statistical zero knowledge (NISZK) from
the complexity class UPP, answering a question of Watrous from 2002. Gur, Liu, and Rothblum [14]
showed that the MA query complexity of PTP, 4 is Q(n]/ 4). Despite this progress, the precise QMA
complexity of PTP,, o has remained open, with the best upper bound being O(nl/ 3) [10, 1] and the best
lower bound being Aaronson’s Q(nl/ 6). We obtain a polynomially stronger lower bound.

Theorem 1.2. Let 0 < a < 1 be an arbitrary constant. Then any QMA query protocol for PTP, o with
witness length m has query cost Q(n/m)'/3. In particular, PTP, o has QMA complexity Q(n'/*).

This result quantitatively matches the MA lower bound of Gur et al. [14] but holds in the more powerful
quantum setting. Theorem 1.2 comes reasonably close to matching the known QMA query upper bound
of O(nl/ 3), which holds even if Merlin does not send any message to Arthur; see Theorem 3.8.

To prove Theorem 1.2, we derive a connection between QMA query complexity and vanishing-error
approximate degree for a class of functions that includes AND,,, ED,, and PTP, . This connection
amounts to the observation that, for these particular functions, the one-sided €-approximate degree is
equal to the g-approximate degree. Prior work on QMA complexity (e.g., [15]) has implicitly exploited
a similar observation in the special case of AND,,. Our analysis substantially generalizes the insights
of prior work, and makes explicit the key phenomenon at play, namely the equivalence of one-sided
vs. standard approximate degree for these functions. Combining this connection with our new vanishing-
error approximate degree lower bounds in Theorem 1.1 establishes Theorem 1.2.

4An SBQP protocol A is a quantum protocol for which there is some o such that A accepts every input in f~!(1) with
probability at least ¢, and every input in f~!(0) with probability at most ct/2 [16].
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2 Preliminaries

For a function f, we let dom f and im f stand for the domain and image of f, respectively. We view
Boolean functions as mappings f: X — {0, 1} for a finite set X. For functions g: X — Y and f: Y" — Z,
we let f o g denote the block-composition of f and g. In more detail, fog: X" — Z is the function that
maps (x,...,x,) € X" to f(g(x1),...,8(xs)). We generalize block-composition to the case when the
domain of f is properly contained in Y” by defining the domain of f o g as the set of (xj,...,x,) € X"
such that (g(x;),...,g(x,)) € domf.

2.1 Polynomial approximation

For a multivariate real polynomial p: R" — R, we let deg p denote the total degree of p, i.e., the largest
degree of any monomial of p. It will be convenient to define the degree of the zero polynomial by
deg 0 = —oo. For two functions f,y: X — R, let (f,¥) =Y cx f(x)w(x) denote the correlation of f and
v, and let || y||; = Y ex |W(x)|. For a real-valued function ¢ supported on a finite subset of R”, we define
the orthogonal content of ¢, denoted orth ¢, to be the minimum degree of a real polynomial p for which
(¢, p) # 0. We adopt the convention that orth ¢ = e if no such polynomial exists. For any real-valued
function y: X — R, its k-th tensor power yw®*: Xk — R is given by w®* (x1,...,x) = w(x1) - - w(x).

The e-approximate degree of a function f: X — R, denoted deg, (f), is the least degree of a polyno-
mial p: X — R such that |p(x) — f(x)| < € for all x € X. We emphasize that no restriction is placed on
the behavior of p at inputs outside f’s domain of definition, X. For most functions of interest to us, the
domain X is a proper subset of {0, 1}" and thus their approximating polynomials may take on arbitrary
values on {0, 1}"\ X. The following dual characterization of approximate degree is well known and can
be verified using linear programming duality.

Fact 2.1. Fixd > 0 and a function f: X — R. Then deg.(f) > d if and only if there exists a function
v: X — R such that

(fsw) > ellylh,
orthy >d.

The simplest function of interest to us is AND,: {0,1}" — {0,1}, given as usual by AND, (x) =
A x;. Its bounded-error approximate degree was determined by Nisan and Szegedy [19], as follows.

Theorem 2.1. Foralln> 1,
deg1/3(ANDn) =0(v/n).

2.2 Surjectivity

Let D, , stand for the set of Boolean matrices of size n x r in which every row has exactly one 1. Every
matrix x € D, , has a natural interpretation as specifying a mapping ¢: {1,2,...,n} — {1,2,...,r},
where ¢ (i) = j if and only if x; ; = 1. Our next three functions are defined on D, , and can thus be
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regarded as “function properties." To start with, the surjectivity problem with n elements and range size r
is defined as SURJ,,,: D, , — {0, 1}, where

S

SURJ,(x) = N\ / xij-
j=li=1

i

Thus, SURJ,, , takes as input an n X r Boolean matrix in which every row contains exactly one 1, and
evaluates to 1 if and only if every column of the input contains at least one 1. Interpreting the input
matrix as a mapping, SURJ,, , evaluates to 1 if and only if that mapping is surjective. This surjectivity
property is trivially false for » > n, and the standard setting of parameters is r = | cn| for some constant
0 < ¢ < 1. The choice of constant ¢ is unimportant because it affects deg;, /3(SURJMC,, |) by at most a
multiplicative constant. It was shown in [21] that the surjectivity function has bounded-error approximate
degree 0(n3/ ). Bun et al. [12] gave an alternate proof of this upper bound and additionally proved that it
is tight up to a polylogarithmic factor. We thus have:

Theorem 2.2. Let 0 < ¢ < 1 be an arbitrary constant. Then

deg; /3(SURI,, | ) = O(n**).

2.3 Element distinctness

Another well-studied function is element distinctness ED,, ,: D, , — {0,1}, defined by ED,, ,(x) = 1 if
and only if every column of the input matrix x has at most one 1. Switching to the interpretation of x as a
mapping, ED, ,(x) evaluates to true if and only if the mapping is one-to-one. This property is trivially
false for r < n. In the complementary case, Ambainis [4] proved that for any given &, the €-approximate
degree of ED,, , is the same for all » > n. This means that one may without loss of generality focus on the
special case r = n, with the shorthand notation ED,, = ED,, ,. Aaronson and Shi [3], Ambainis [4], and
Kutin [17] showed that ED,, has bounded-error approximate degree Q(nz/ 3), matching an upper bound of
Ambainis [5].

Theorem 2.3. Foralln > 1,

deg; 3(ED,) = ©(n*").
Element distinctness generalizes in a natural way to a function called k-element distinctness, denoted
EDk: Dy — {0,1}. This new function evaluates to true if and only if the input matrix has no column
with k or more 1s. Viewing the input as a mapping, ED‘,"Z evaluates to true if and only if no range element
occurs k or more times. With these definitions, we have ED,, = ED%. Bun, Kothari, and Thaler [12]

proved the following lower bound for ED?.

Theorem 2.4. Let k > 1 be any positive integer. Then
k = 3_ 1
deg1/3 <EDI1) — Q <n4 2k) .
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2.4 Permutation testing

The final problem of interest to us is a restriction of element distinctness ED,,. In more detail, fix an
integer n > 1 and a real number 0 < o < 1. The domain of the permutation testing problem PTP,, ¢ is
the set of all matrices x € D,, , in which the number of columns containing a 1 is either exactly n or
at most on. The function evaluates to true in the former case and to false in the latter. Equivalently,
PTP, o(x) = 1 if and only if x is a permutation matrix. In the regime of interest tous, 0 < o < l is a
constant independent of 7.

The permutation testing problem was introduced by Aaronson [1], who defined it somewhat differently.
In his variant of permutation testing, which we denote by PTP)’;V s5» one is given a matrix x € D, , that
is either (i) a permutation matrix, or (ii) disagrees from every permutation matrix in at least 6n rows.
The function evaluates to true in case (i) and to false in case (ii). As the following proposition shows,
Aaronson’s PTP; s 1s precisely the same function as our PTP, ;_5.

Proposition 2.5. Let 0 < 8 < 1 and n > 1 be given. Then as functions,
PTPZ’S =PTP, 5.
Specifically, the L.h.s. and r.h.s. have the same domain and agree at every point thereof.

Proof. This claim is easiest to verify by interpreting an input x € D,, , as a mapping ¢: {1,2,...,n} —
{1,2,...,n}. A moment’s reflection shows that ¢ disagrees from every permutation {1,2,...,n} —
{1,2,...,n} in at least n — |im ¢| points, and there is a permutation that achieves this lower bound.
Restating this in matrix terminology, a matrix x € D,, , disagrees from every permutation matrix in at
least on rows if and only if the number of columns of x containing a 1 is at most n — én. O

By adapting earlier analyses of element distinctness, Aaronson [1] obtained the following result.
Theorem 2.6. Let 0 < 6 < 1 be an arbitrary constant. Then
deg5(PTP; 5) = Q(n'?).

This result is stated in [1] specifically for § = 1/8, but the proof actually allows any 0 < § < 1. Combining
this theorem with Proposition 2.5 gives the following corollary.

Corollary 2.7. Let 0 < a0 < 1 be an arbitrary constant. Then
deg, 3(PTP, ) = Q(n'/?).

We close this section with a remark on input encoding. In this work, functions like SURJ, , take
as input a Boolean matrix x in which every row has exactly one 1. Some other works [7, 12] represent
the input as a list y;,...,y, € {0, 1}“"g "1, where y; encodes the location of the unique 1 in the i-th row
of the matrix representation x. Switching to this alternate representation affects the approximate degree
by at most a logarithmic factor. See [21] for a detailed treatment of the relationship between these
representations.
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3 Approximate Degree Lower Bounds

In this section, we study the vanishing-error approximate degree of element distinctness, surjectivity, and
permutation testing, and in particular settle Theorem 1.1 from the introduction. The core of our technique
is the following auxiliary result.

Proposition 3.1. For any € > 0 and any function f: X — R on a finite subset X of Euclidean space,
degq (£°F) > kdeg,(f), k=1,2,3,....
In particular, every function f: X — {0, 1} satisfies
deg.i (ANDy o f) > kdeg,(f), k=1,2,3,....

Proof. We may assume that deg, (f) # 0 since the proposition is trivial otherwise. Let y be an g-error
dual polynomial for f, as guaranteed by Fact 2.1:

(fsv) > ellylh,
orthy = deg, (f).
Then
(5w = (fw)f
> (ellylln)*
=& [y
Applying Fact 2.1 once again,
deg (f%F) > orth y®*
> korthy
> kdeg,(f).

Here, the penultimate inequality holds by the following reasoning. Let
p(xr,..x): XF - R
be any polynomial of degree less than korth y, where variable x; takes values in X. We must show that
(™, p) =0. 3.1)

Consider any monomial of p. We may express this monomial as [T_; p;(x;), where Y¥_, deg(p;) < deg(p).
By the pigeonhole principle, there is some i € {1,. ..k} such that deg(p;) < orth y, and hence (y, p;) = 0.
It follows that (w®* TT%_, pi(x;)) = T, (w, p:) = 0. Since p is a sum of monomials, Equation (3.1)
follows by linearity. O

The proof of Proposition 3.1 applies more generally to the conjunction of k distinct functions, but we will
not need this generalization.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 8
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3.1 Warmup

To illustrate our technique in the simplest possible setting, we consider the well-studied AND,, function.
Buhrman et al. [11] proved that its €-error approximate degree is @(y/nlog(1/¢€)). We give a new and
simple proof of their lower bound.

Theorem 3.2. Forall 1/3" <& <1/3,

deg.(AND,) = Q (\ / nlogi) . 3.2)

Proof. Fork=1,2,...,n, we have

deg37k (AND,,) > deg37k (ANDk o AND [n/k| )

> kdeg; ;3(AND 1))
n
—k-Q =
(Vi)
= Q(Vnk),
where the first, second, and third steps use the identity AND,, ,, = AND,, o AND,,, Proposition 3.1, and
Theorem 2.1, respectively. This directly implies (3.2). O

3.2 Element distinctness

Our next result is a tight lower bound on the vanishing error approximate degree of element distinctness,
matching the upper bound from [21].

Theorem 3.3. Forall 1/3" <e<1/3,

1\ 1/3
degg(EDn):Q<n2/3 (10g8> ) (3.3)

Proof. For any k= 1,2,3,...,n, we claim that AND; ocED, | is a subproblem of ED,. That is, we
identify a restriction f’ of f such that the domain of g is a subset of the domain of f’, and f'(x) = g(x)
for all x in the domain of g.

To see why, recall that the input to ED,, is an n X n Boolean matrix in which every row i contains
exactly one 1, corresponding to the value of the ith element. Now, fix k € {1,2,...,n} and consider the
restriction of ED,, to input matrices that are block-diagonal, with k blocks of size |n/k| each and an
additional block of n — k|n/k| ones on the diagonal. Each of the first k blocks corresponds to an instance
of ED|, /¢, and the overall problem amounts to computing the AND of these k instances. Therefore,
ANDy 0ED|,, /¢ is a subproblem of ED,,, and

dege (EDn) > degs (ANDk oED |n/k] ) (34)

forall eand all k =1,2,3,...,n.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 9
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The rest of the proof is closely analogous to that for AND,,. For k =1,2,...,n,

deg;«(ED,) > deg;—«(AND; 0ED|,, /)
- ko5 (ED, 1)
n\2/3
>k-Q(-
>k ()
— (3K

where the first three steps use (3.4), Proposition 3.1, and Theorem 2.3, respectively. This directly
implies (3.3). O

The previous proof shows more generally that AND; o EDan Jk| is a subfunction of ED] for any
k=1,2,...,n. As aresult, our analysis of element distinctness proves the following statement.

Theorem 3.4. Fix constants r > 2 and { € [0, 1] such that

deg, /3(ED;,) = Q(”Z)-

. ol I\ 1 1
deg.(ED))=Q [ n logg , 3—n§8§§.

Combining Theorem 3.4 with Theorem 2.4, we conclude that

(i 1\
deg, (ED)) =Q | n*~ 2 (logg)

for 1/3" < & < 1/3. Moreover, Theorem 3.4 will, in a black-box manner, translate any future improvement
in the bounded-error lower bound for ED, into an improved vanishing-error lower bound.

Then

3.3 Surjectivity

An instance x of the surjectivity problem SURJ,, , can be embedded inside a larger instance of surjectivity
in many ways, e.g., by duplicating a row of x or by forming a block-diagonal matrix with blocks x and 1.
These two transformations yield
deg,(SURJ, ;) < deg.(SURJ,41,), (3.5)
deg,(SURJ, ;) < deg.(SURJ 41 r+1), (3.6)

respectively. We will now prove an essentially tight lower bound on the vanishing-error approximate
degree of surjectivity, matching the upper bound from [21] up to a logarithmic factor.

Theorem 3.5. Let 0 < ¢ < 1 be an arbitrary constant. Then

. 1 1/4 1
deg, (SURI,, | o)) = Q | n*/* <10g8> : g SES

W =

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 10
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Proof. The proof is a cosmetic adaptation of the analysis of element distinctness. To start with, we claim
that for any positive integers n,r,k such that k | n and k | r, the composition AND; o SURJ, Jkr/k 18 @
subproblem of SURJ, ,. Indeed, the input to SURJ,, - is an n x r Boolean matrix in which every row i
contains exactly one 1. Consider the restriction of SURJ,, , to input matrices that are block-diagonal, with
k blocks of size n/k x r/k each. Each of these blocks corresponds to an instance of SURJ, Jk.r/k> and the
overall problem amounts to computing the AND of these k instances. This settles the claim.

Now let n be arbitrary. Then for all positive integers k < min{cn, (1 —c)n},

degs-« (SURJn Len| ) > degz -« (SURJnf(Lan —k|cen/k]).k|cn/k) )
> degS*" (SURJn—k,k len/k] )

> degs-« (SURJk(|n/k |- 1) k[en/k])
> deg; -« (ANDy o SURJ | k|~ 1| en/k])

> kdeg, /3(SURT /) 1, [en/k))
~ /n\3/4

>k-Q (-

240 ()

— Q)

where the first step uses (3.6); the second and third steps use (3.5); the fourth step applies the claim from
the opening paragraph of the proof; the fifth step is valid by Proposition 3.1; and the sixth step invokes
Theorem 2.2. This settles the theorem. O

3.4 Permutation testing

We now turn to the permutation testing problem, which requires a more subtle analysis than the functions
that we have examined so far. The difficulty is that permutation testing does not admit a self-reduction
with AND as an outer function. To address this, we will need to generalize Proposition 3.1 appropriately.
For areal 0 < a < 1 and an integer k > 1, we define ANDy 4 to be the restriction of AND; to inputs
whose Hamming weight is either k or at most ak. The following result subsumes Proposition 3.1 as the
special case a = (k— 1) /k.

Proposition 3.6. Fix a real number 0 < a < 1 and an integer k > 1. Then for any € > 0 and any function
f+ X —{0,1} on a finite subset X of Euclidean space,

deggr (11 (ANDg g0 f) = (Lak] +1) dege(f).

k—1
|k ]
In particular,

deg(s/z)k (ANDkﬂ o f) > Ockdegs (f) .
Proof. We may assume that deg, (/) # 0 since the proposition is trivial otherwise. Let y be an g-error

dual polynomial for f, as guaranteed by Fact 2.1:

(frw) > ellwl,
orthy = deg,(f).
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Abbreviate £ = | ak| and define ¥: X* — R by
k=1
Wlxn,x,-0m) = [Tw@) - [T (Fe) + () +-- + fla) —i).

i=1 i=0+1

Observe that ‘¥ is supported on the domain of ANDy o o f. Moreover, we have the pointwise inequality

k—1
W<y [T i
i=(+1
_ (k—1)!
=y 3.7)
Now
(¥,ANDy 40 f) = (P, £
= (k== 1)1 {y™, f25)
> (k—0—1)1e" |y
=(k—0— 1)‘8Hw®"\|1
v k=0~ )

k—1\

k

= v
8< l ) H Hl’

where the next-to-last step uses (3.7). Applying Fact 2.1 once again,

degsk/(k?) (ANDkﬂ of) > orth¥

> ({+1)orthy
— (0+1)deg, (). a

For m < n, a permutation testing instance ¢ : {1,2,...,m} — {1,2,...,m} can be extended in a natural
way to a larger instance ®: {1,2,...,n} — {1,2,...,n} by letting ®(i) =ifori=m+1,m+2,...,n
This gives

deg, (PTP,¢) < deg, (PTP,L@,OC +7) , m<n. (3.8)

We are now in a position to prove our lower bound on the £-approximate degree of permutation testing.

Theorem 3.7. Let 0 < a < 1 be a given constant. Then
s i 1\ 1 1
deg.(PTP, o) =Q | n <log 8> , e <e< 3 3.9

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 12


http://dx.doi.org/10.4086/cjtcs

VANISHING-ERROR APPROXIMATE DEGREE AND QMA COMPLEXITY

Proof. Let 0 < B < 1 be arbitrary. We claim that for any positive integers n and k with k | n, the
permutation testing function PTP, g contains

ANDy 320 PTP, i3/ (3.10)

as a subfunction. The proof is similar to that for element distinctness. Specifically, view instances
of (3.10) as block-diagonal matrices with k blocks of size n/k each. Then a positive instance of (3.10)
is a permutation matrix and therefore a positive instance of PTP, 5. A negative instance of (3.10), on

the other hand, features at least k — gk blocks from (PTP, /. g,2) ' (0) and therefore corresponds to a
mapping {1,2,...,n} — {1,2,...,n} with a range of size at most

() (1) o

In particular, any negative instance of (3.10) is also a negative instance of PTP, g. This completes the
proof of the claim.
Now for any € >0 and any k € {1,2,...,[on/2]}, we have

deg, (PTP,, o) > deg, (PTPy /i .0/2)
> deg,(ANDy ¢,/4 OPTP 4] a/4), (3.11)

where the first inequality uses (3.8), and the second inequality follows from the claim established in
the previous paragraph. The rest of the proof is analogous to those for AND,, and ED,,. For k =
1,2,....[an/2],

deg6—k (PTPna) > degG—k (ANDk,a/4 OPTPI_n/kJ7(X/4)
ok
> Tdegl/3(PTPLn/kj7a/4)
ok ny\1/3
=7 2(3)
— Q(Yll/3k2/3),

where the first three steps are valid by (3.11), Proposition 3.6, and Corollary 2.7, respectively. This
directly implies (3.9). g

We will now show that Theorem 3.7 is optimal with respect to all parameters. In fact, we will
prove the stronger result that permutation testing has an &-error quantum query algorithm with cost
0(n'*10g?3(1/€)). Our quantum algorithm is inspired by the well-known algorithm for the collision
problem due to Brassard et al. [10].

Theorem 3.8. Let 0 < o < 1 be a given constant. Then for alln > 1 and 1/3" < & < 1/3, the permutation
testing problem PTP, o has an €-error quantum query algorithm with cost 0(111/3 10g2/3(1/8)). In
particular,

1\ 23
degg(PTPn,a):0<nl/3 <10g£> ) (3.12)
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Proof. We give an algorithm whose only quantum component is Grover search. Specifically, we will only
use the fact that, given query access to N items of which M are marked, Grover search finds a marked
item with probability 2/3 using O(/N/M) queries (see, e.g., [10, 9]). We will follow the convention in
the quantum query literature and view the input to PTP, 4 as a function ¢: {1,2,...,n} — {1,2,...,n},
where the algorithm has query access to ¢.

Let s be an integer parameter to be determined later. Our algorithm starts by choosing a uniformly
random subset S C {1,2,...,n} of cardinality |S| = s. Next, we query ¢ at every point of S. If ¢ is not
one-to-one on S, we output “false.” In the complementary case, we execute Grover search log(1/¢€) times
independently, each time looking for a point i € S with the property that ¢ (i) € ¢(S). We output “false”
if such a point is found, and “true” otherwise.

If ¢ is a permutation, the described algorithm is always correct. In the complementary case when
|im¢| < an, there are at least (1 — a)n points i € {1,2,...,n} such that |¢ ~'(¢(i))| > 2. Call such points
special. We will henceforth assume that S contains at least (1 — a)s/2 special points, which happens with
probability at least 1 —exp(—®(s)), where the ®, notation hides factors that depend only on c. If ¢
is not one-to-one on S, the algorithm correctly outputs “false.” If ¢ is one-to-one on S and S contains
at least (1 — a)s/2 special points, then each of the Grover executions has > (1 — a)s/2 eligible points
to output from among a total of |S| = n — s possibilities; this means that each Grover execution finds an
eligible point with probability at least 2/3 using O(+/n/((1 — a)s)) queries, thereby forcing the correct
output. In summary, the described algorithm has error probability at most exp(—@(s)) + (1/3)le(1/¢)
and query cost s+ O(/n/((1 — a)s) -log(1/€)). In particular, error € can be achieved with query cost
0(n'*1og?(1/€)) by setting s = O(n'/*1og?3(1/¢)). This query bound in turn implies (3.12) using
the standard transformation of a quantum query algorithm to a polynomial; see, e.g., Beals et al. [6]. [

4 QMA Lower Bounds

The objective of this section is to “lift” the approximate degree lower bound of Theorem 3.7 to QMA
query complexity. As our first step, we generalize our lower bound to one-sided approximation. The
one-sided e-approximate degree of a function f: X — R, denoted deg{ (f), is the least degree of a
polynomial p: X — R such that |p(x)| < € for all x € £~1(0), and p(x) > 1 —¢ for all x € £~ !(1). Thus,
p approximates f uniformly on f~!(0) but may take on arbitrarily large values on f~1(1). It is clear from
the definition that deg] (f) < deg,(f). The gap between these quantities can be large in general, such
as 1 versus Q(+/n) for the bounded-error approximation of OR,,. However, we will show that these two
notions of approximation are equivalent for the permutation testing function.

Proposition 4.1. For all a, €, and n,
degg (PTP,,q) = deg, (PTP, q). 4.1)

This equality of approximate degree and one-sided approximate degree for permutation testing has the
important consequence that the lower bound of Theorem 3.7 applies to the one-sided setting as well. The
proof of Proposition 4.1 is based on the observation that any one-sided approximant for permutation
testing can be symmetrized to be constant on f~!(1), effectively making it a two-sided approximant.
This technique was used previously in [13, Theorem 2] to argue that deg, (ED,) = deg, (ED,,).
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Proof of Proposition 4.1. Let p be a one-sided approximant for PTP, , with error €, so that |p| < € on
PTP,Z}X(O) and p > 1 —¢€ on PTP, ;,(1). Define

p*(x) =Ep(ox71), 4.2)

where o, T are uniformly random permutations on {1,2,...,n}, and oxt denotes the matrix obtained
by permuting the rows of x according to ¢ and the columns according to 7. Then p* is also a one-sided
approximant for PTP, o because PTP, 1(0) and PTP, L (1) are closed under permutations of rows and
columns. Moreover, p* takes on the same value, call it M, at all x € PTP,; zx(l) because oxTin (4.2)is a
uniformly random permutation matrix in that case. As a result, the normalized polynomial p* / max{1, M}
approximates PTP, o pointwise within €. Finally, deg p* < deg p because p* is an average of polynomials,
each obtained from p by permuting the input variables. O

We will also need the following proposition, implicit in Marriott and Watrous’s proof [18] of Vyalyi’s
result [23] on QMA and SBQP. For completeness, we include its short proof.

Proposition 4.2. Suppose that f: X — {0,1} has a QMA query protocol with witness length m and
query cost q. Then there is a polynomial p: X — R such that

degp = O(mq), (4.3)
Ip(x)] <272 forallx e f~1(0), 4.4)
p(x) >27m! forallx e f~1(1). 4.5)

Proof. Marriott and Watrous [ 18] showed that the soundness and completeness errors of the QMA query
protocol for f can be driven down to 272" without an increase in witness length, and with only a factor
of O(m) increase in query cost. This yields a QMA protocol Q for f that has witness length m, query
cost O(mq), and soundness and completeness errors 2~2". That is, on any input in f~!(1), there exists a
witness that causes Arthur to accept with probability at least 1 —2~2", and on any input in £~!(0), for
every witness that might be sent by Merlin, Arthur accepts with probability at most 272",

Now run Q with the witness fixed to the totally mixed state. This yields a quantum query algorithm
A. On inputs in f~!(0), the acceptance probability of A is at most the soundness error of Q, which is at
most 272", On inputs in £~ (1), the acceptance probability of A is at least (1 —272").27" >2-m-1,
Now (4.3)—(4.5) follow from the well-known result of Beals et al. [6] that the acceptance probability of
any T-query quantum algorithm on input x is a polynomial p(x) of degree at most 27'. O

We have reached our main result on the QMA complexity of permutation testing, stated as Theorem 1.2
in the introduction. For the reader’s convenience, we restate the theorem here.

Theorem. Let 0 < o < 1 be an arbitrary constant. Then any QMA query protocol for PTP, o with
witness length m has query cost Q(n/m)'/3. In particular, PTP, o has QMA complexity Q(n'/*).

Proof. Fix a QMA query protocol for PTP, o with witness length m € [3,n] and query cost g. Then
Proposition 4.2 gives a polynomial p satisfying (4.3)—(4.5). It follows that 2"*! p approximates PTP, o
in a one-sided manner to error 2~ forcing deg; .1 (PTP, ) = O(mgq). On the other hand, taking
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€ = 27"*1 in Theorem 3.7 and Proposition 4.1 shows that deg;m 11 (PTP,, o) = Q(n'/3m?/3). Comparing
these complementary bounds on the one-sided approximate degree of permutation testing gives g =
Q(n/m)'/? and thus max{m,q} = Q(n'/*). O

We remind the reader that by virtue of Proposition 2.5, the variant of permutation testing studied in
this paper is equivalent to Aaronson’s permutation testing problem [1]. As a result, Theorems 1.2, 3.7,
and 3.8 and Proposition 4.1 remain valid with PTP, 4 replaced by PTP;,

nl—o-

5 Open Problems

A natural next step would be to close the gap between our Q(nl/ 4) QMA lower bound for permutation
testing and the known upper bound of O(nl/ 3). In addition, we highlight the well-known open question
of resolving the QMA communication complexity of set disjointness. The best known lower bound
here is Q(n'/3) [15], while the best upper bound is O(n'/?) due to [2]. We believe that both questions
highlight significant gaps in our understanding of QMA. Another natural open question is whether
the naive error-reduction method for approximate degree is optimal. Namely, it is well known that
deg,(f) < O(min{deg, ;5(f)log(1/€),n}) for every f: {0,1}" — {0, 1}, yet this bound is not known to
be tight for any such f with sublinear approximate degree. It is tight for some f whose domain is a proper
subset of {0, 1}", based for example on approximate counting [11].
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