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Abstract: The goal of learning from demonstrations is to learn a policy for an
agent (imitator) by mimicking the behavior in the demonstrations. Prior works
on learning from demonstrations assume that the demonstrations are collected by
a demonstrator that has the same dynamics as the imitator. However, in many
real-world applications, this assumption is limiting — to improve the problem
of lack of data in robotics, we would like to be able to leverage demonstrations
collected from agents with different dynamics. This can be challenging as the
demonstrations might not even be feasible for the imitator. Our insight is that
we can learn a feasibility metric that captures the likelihood of a demonstration
being feasible by the imitator. We develop a feasibility MDP (f-MDP) and derive
the feasibility score by learning an optimal policy in the f-MDP. Our proposed
feasibility measure encourages the imitator to learn from more informative demon-
strations, and disregard the far from feasible demonstrations. Our experiments on
four simulated environments and on a real robot show that the policy learned with
our approach achieves a higher expected return than prior works. We show the
videos of the real robot arm experiments on our website.
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1 Introduction

Imitation learning aims to learn a well-performing policy from demonstrations. Standard imitation
learning algorithms usually assume that the demonstrator (the agent that generates the demonstrations)
and the imitator (the agent that is learning a policy) share the same dynamics, i.e., the transition
functions are the same [1, 2, 3, 4]. Specifically, in a given state, with the same action, both the
demonstrator and the imitator transition to the same distribution of next states. However, this
assumption limits the usage of already collected demonstrations. Imagine a setting, where a set of
demonstrations are collected on a 7 Degrees of Freedom (DoF) robot arm shown in Fig. 1 to place a
book on the empty area of the shelf (on the left) without colliding with the books that are already
placed on the right side of the shelf. Later, we might decide to buy a different arm with 3 DoF (e.g.,
only the joints circled in green as shown in the figure are used). We would like to learn a policy for
this 3 DoF robot arm that can achieve the same task—placing the book on the empty region of the
shelf—using the originally collected demonstrations on the 7 DoF arm. In general, our goal is to
enable using and reusing data collected on robots with different dynamics or embodiments to tackle
the problem of lack of in-domain data in robotics. The 3 DoF robot arm should still be able to learn a
policy based on feasible or nearly feasible demonstrations from an agent with different dynamics,
e.g., using the trajectories that go over the bookshelf in Fig. 1. Motivated by this example, we relax
the assumption of shared dynamics between the imitator and demonstrator so that the data can be
collected from demonstrators with the same state space but different dynamics from the imitator, e.g.,
demonstrators with different embodiments, body schemas, joints, or rigid body structures.
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Figure 1: An example of imitating demonstrators with feasibility. The left image shows that a set of demonstra-
tions (blue and red trajectories) are available for the 7 DoF robot arm. We aim to learn a policy for the 3 DoF
robot (joints are circled in green) by learning from the demonstrations of the 7 DoF robot (blue is feasible and
red is infeasible). We learn a feasibility score to reweight each demonstration to conduct imitation learning.

Prior works in imitation learning from demonstrators with different dynamics typically rely on
state-only demonstrations and learn a policy to maximally follow the sequence of states in demonstra-
tions [5, 6]. Such learning techniques assume that all of the collected demonstrations are useful for
the imitator. However, it is possible that demonstrations drawn from agents with other dynamics can
be useless or even harmful for the imitator because they may not be feasible for the imitator. Going
back to the example in Fig. 1, the red trajectories that move around the stack of books are not feasible
for the 3 DoF robot arm. Imitating such trajectories may cause the 3 DoF robot arm to maximally
follow these trajectories and even collide with the existing stack of books. Therefore, it is crucial to
identify and avoid trajectories that are far from feasible for the imitator, and instead learn more from
useful demonstrations, e.g., the blue trajectories that go over the shelf that are still feasible for a robot
with 3 DoF.

To avoid the influence of useless or harmful demonstrations from agents with different dynamics,
we rely on a feasibility score, which measures how feasible a trajectory is for the imitator, and
select trajectories with high feasibility to imitate. For example, the blue trajectories should have
higher feasibility than the red trajectories in Fig. 1. Prior work such as Cao and Sadigh [7] estimate
the feasibility score by computing the distances of demonstrations and corresponding trajectories
but the performance highly relies on the accuracy of the inverse dynamics model, which can be
difficult to learn. Our key idea is to directly learn a feasibility score for the imitator based on the
collected demonstrations. Specifically, we model the imitator environment as an MDP and build
a feasibility Markov Decision Process (f-MDP) based on the imitator’s MDP and the trajectories
provided by the demonstrator. The optimal policy for the f-MDP maximally follows the behavior
of the demonstrations but is limited by the imitator’s environment. This optimal policy helps assign
a feasibility score over the demonstrations. We conduct imitation learning on the demonstrations
re-weighted by the feasibility score to learn the final policy for the imitator. We experiment with
several simulation environments and a manipulation task with a Panda Franka arm. We show that
the policy learned from demonstrations re-weighted by our feasibility achieves higher performance
compared to other methods.

2 Related Works

Imitation Learning. Imitation learning seeks a policy that best imitates demonstrations. Current
imitation learning methods can be roughly divided into Behavior Cloning (BC), Inverse Reinforcement
Learning (IRL) and Generative Adversarial Imitation Learning (GAIL). BC directly learns the policy
from a sequence of state-action pairs via supervised learning [8], where dataset aggregation [9] or
policy aggregation [10, 11] are proposed to address the compounding errors problem. IRL first learns
a reward function that best matches demonstrations and then finds a policy through reinforcement
learning to maximize the recovered reward [1, 12, 2, 13]. GAIL learns the expert policy by matching
the occupancy measure between the policy and the demonstrations [4].
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However, most imitation learning works require that the demonstrations consist of a sequence of
states and actions. When only state observations are available, new imitation learning algorithms are
proposed to address the lack of actions. Torabi et al. [14] recover the actions between consecutive
states through an inverse dynamics model. GAIL-based works directly match the state occupancy
measure between the demonstrations and the policy [15, 16, 17]. However, imitation learning methods
learned from either state-action or state-only demonstrations assume that the demonstrator and the
imitator have the same dynamics. Since demonstrations from different dynamics may not be feasible
for the imitator, directly imitating cannot achieve the same optimal behavior, and may cause unknown
suboptimal outcomes. Thus, standard imitation learning algorithms do not fit our problem setting.

Learning from Demonstrations with Different Dynamics. Early works model this problem as a
correspondence problem between the demonstrator and the imitator, and map states and actions in
demonstrations to the imitator’s states and actions [18, 19]. Englert et al. [20] align the state trajectory
distributions to address the correspondence problem. Calinon et al. [21] model the demonstrations as
a Gaussian mixture model within a projected lower-dimensional subspace. Eppner et al. [22] learn a
task description. Domain randomization methods learn the correspondence as an invariant latent space
by randomizing domains [23, 24, 25]. Zhang et al. [26] learns a translation mapping to model the
correspondence. However, modeling correspondence requires that there exists a strict correspondence
between the MDP of the demonstrator and the imitator. Recent works instead only assume the shared
state space between the demonstrator and the imitator, and address the different dynamics problem by
encouraging the imitator to maximally follow the state trajectory of the demonstrator [5, 27, 28, 6].
However, all these works ignore an important challenge—that is the demonstrations may be far from
feasible for the imitator. Enforcing the imitator to follow such trajectories may lead to unknown
behavior. We focus on this challenge and develop a feasibility score to down-weight demonstration
trajectories that are far from feasible for the imitator. Compared to the works that learn feasibility to
filter infeasible trajectories [7], we do not require the inverse dynamics model, which can make our
setting more generalizable to different environments.

3 Problem Statement

In our problem setting, an imitator aims to learn from demonstrations collected from N demonstrators
with various dynamics. We formalize the demonstrators and the imitator each as a standard Markov
decision process (MDP). For each demonstrator j, (1 ≤ j ≤ N), the MDP is formalized as
Md

j = ⟨S,Ad
j , p

d
j ,R, ρ0, γ⟩. The MDP for the imitator is Mi = ⟨S,Ai, pi,R, ρ0, γ⟩. S is the

shared state space for all environments. Ad
j andAi are the action spaces and pdj : S×Ad

j×S → [0, 1]

and pi : S ×Ai × S → [0, 1] are the transition probabilities for each demonstrator and the imitator
respectively. Note that in our problem setting, we use the transition function p to denote dynamics
and the demonstrators and the imitator may have different dynamics and action spaces. ρ0 is the
shared initial state distribution for all MDPs. R : S × S → R is the reward function. Note that we
make the assumption that the reward function is based on state transitions and is shared between
the demonstrators and the imitator, which is a common assumption used in prior work [5, 7], and is
usually satisfied since the demonstrators and the imitator conduct the same task in the same context.
γ is the shared discount factor. A policy for the imitator πi : S ×Ai → [0, 1] defines a probability
distribution over the space of actions in a given state. An optimal policy π∗ maximizes the expected
return ηπi = Es0∼ρ0,πi [

∑︁∞
t=0 γ

tR(st, at, st+1)], where t indicates the time step.

We aim to learn a policy πi for the imitator, given a set of demonstrations from different demonstrators
Ξj = {ξj1, . . . , ξ

j
D}j∈{1...N} where each trajectory is a sequence of states ξ = {sd0, sd1, . . . , sdH}. We

assume that the optimal policy can be learned by imitating the useful demonstrations, which is a
general assumption adopted by prior imitation learning works [8, 4, 5, 7]. The violation of this
assumption, as shown in prior works, leads to learning a suboptimal policy. Note that we discard
actions from the demonstrations instead of imitating the state-action trajectories because different
action spaces between the demonstrators and the imitator make it impossible to imitate the actions.
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Figure 2: The illustration and comparison of one-step f-MDP and trajectory f-MDP. The blue state transition
and trajectory are from the demonstrations while the orange state transition and trajectory are rollouts in the
f-MDP. One-step f-MDP collects the states in the Former Set and uses the uniform distribution over the states
as the initial state distribution. Trajectory f-MDP collects the initial state of all the demonstrations and uses a
uniform distribution over them as the initial state distribution.

Challenges. The core challenges of imitation learning from demonstrations with different dynamics
are: (1) How to imitate useful demonstrations with different dynamics, (2) How to avoid harmful
demonstrations misleading the imitator. Prior works have studied and made progress for the first
challenge [5, 6], but the second challenge is still under-studied. Strong assumptions such as access to
or learning an accurate inverse dynamics model are needed to filter out harmful demonstrations [7].
We address the second challenge by learning a feasibility score that measures how likely it is for a
demonstration to be feasible for the imitator with minimal assumptions: only using the environment
of the imitator, i.e., we can collect interaction data in the environment but we do not know the exact
reward and transition function of the imitator.

4 Feasibility-Based Imitation Learning

The feasibility of a trajectory depends on the feasibility of each state transition in the trajectory, i.e.,
if (st, st+1) is feasible for all time steps. A state transition (st, st+1) is feasible when there exists
an action ait ∈ Ai such that pi(st, ait, st+1) = 1 for deterministic transitions or pi(st, ait, st+1) > 0
for stochastic transitions. In this section, we discuss the deterministic MDP setting and discuss the
stochastic setting in Appendix.

Feasibility can be directly measured by a perfect inverse dynamics model f : S × S → A that
takes a state transition (st, st+1) ∈ S × S as the input and outputs the action at ∈ A that achieves
the transition if feasible or outputs ‘Infeasible’. However, having access to this model is often
non-trivial and such a binary feasibility measurement as f discards all infeasible demonstrations
without considering any useful information from slightly infeasible trajectories.

Our goal is to learn a policy πi : S → Ai for the imitator to maximally achieve the state transitions in
the demonstrations. This means that if the state transition (sdt , s

d
t+1) from a demonstration is feasible,

the next state produced by πi, i.e., sit+1 = pi(sdt , π
i(sdt )) should be equal to sdt+1. Otherwise, we

would like the policy to output an action that ensures the next state sit+1 is as close as possible to the
next state from the demonstration sdt+1. Therefore, the distance between sit+1 and sdt+1 can serve as a
measure of feasibility, where a smaller distance corresponds to a higher likelihood of feasibility. To
learn this policy, we design a feasibility MDP (f-MDP), where we ensure that the optimal policy of
the f-MDP satisfies the above requirement. f-MDP is defined as Mf = ⟨S,Ai, pi,Rf , ρf0 , γ

f ⟩. We
will now discuss our choices for the components of f-MDP.

One-step f-MDP. First, recall that our goal is to learn a policy for the imitator to maximally achieve
the state transitions in the demonstrations. So the policy should be learned in an environment with the
same state-action space and transition probability as the imitator. We would like the reward of the f-
MDP to encourage maximally achieving the state transitions in the demonstrations. Let us first collect
all the state transitions T = {(sdt , sdt+1)} in all of the demonstrations. We define the Former Set to be
the set of states in the demonstrations that one can transition from: TF = {sdt : (sdt , s

d
t+1) ∈ T}. The
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initial state distribution ρf0 can be defined uniformly over the Former Set as Uniform(TF ). Here, we
assume that all the states in the Former Set can be visited by the imitator. We define the reward of a
One-step f-MDP so that it matches the one-step transitions from the Former Set:

sdt ∼ Uniform(TF ), s = sdt , s′ = pi(s, a), Rf (s, a, s′) = −fdis(s
′, sdt+1), (1)

where (sdt , s
d
t+1) is a state transition in the demonstrations and a ∈ Ai is sampled from the action

space of the f-MDP. fdis is a function that measures the distance between the states (e.g., the L2
distance). We define the reward to penalize the distance between s′ and sdt+1.

Trajectory f-MDP. The one-step f-MDP suffers from an important shortcoming: the assumption that
all states in the Former Set must be visited by the imitator can be violated, because the demonstrators
have different dynamics from the imitator and some demonstration states can never be reached by the
imitator. So we cannot set Uniform(TF ) as the initial state distribution for the f-MDP. We instead
collect the initial state sd0 of all the demonstrations, T0 = {sd0}, and define the initial state distribution
of the Trajectory f-MDP as Uniform(T0). Since all the demonstrators and the imitator share the initial
state distribution, all states in T0 can be visited by the imitator. We define the reward as:

sd0 ∼ Uniform(T0), s0 = sd0, st+1 = pi(st, a), Rf (st, a, st+1) = −fdis(st+1, s
d
t+1), (2)

We use the L2 distance for fdis in our experiments. Similar to the one-step f-MDP a ∈ Ai is sampled
from the action space of the imitator.

Learning Feasibility. Given the Trajectory f-MDP defined above, for each demonstration trajectory
ξ, the highest reward achieved in this f-MDP reflects the feasibility score of the trajectory. We use
reinforcement learning to learn the optimal policy of the Trajectory f-MDP, π∗. We then derive the
feasibility of each demonstration trajectory ξ as a function of the trajectory f-MDP reward:

w(ξ) = exp

(︄
−
∑︁N

t=1(γ
f )tfdis(st, s

d
t )− C

σ

)︄
. (3)

st is the state at step t in the rollout derived by the policy π∗. We use an exponential function of the
cumulative reward since the cumulative reward is always negative and the exponential function can
bound the feasibility in the range of [0, 1]. The parameter C is used to shift the function to avoid the
situation where the cumulative reward is extremely negative, while the parameter σ controls how low
the reward can be, and when a demonstration can be fully filtered out by assigning a feasibility of
close to 0. In practice, C is usually set as the maximal cumulative reward over all demonstrations to
ensure the maximal feasibility is 1.

For the feasibility of each state transition (sdt , s
d
t+1), we use the feasibility of the trajectory it belongs

to: w((sdt , s
d
t+1)) = w(ξi), where (sdt , s

d
t+1) ∈ ξi. We do not use the state distance at each time step

between st+1 and sdt+1 as in the One-step f-MDP because such measurement suffers from the fact that
within a trajectory, the reward of later steps are influenced by former steps. For example, if st diverges
from sdt , st+1 will diverge more from sdt+1. So the per-step reward is an unfair measure of feasibility
for the state transition (sdt , s

d
t+1) at different time steps t. Therefore, we use the accumulative reward

of the whole trajectory as our feasibility measure, where all the state transitions share the same value.

The discount factor γf is usually set as γf < 1 to reduce compounding errors. Specifically, the
length of a rollout in the f-MDP is the same as the corresponding demonstration, which can be very
long. If the state in the rollout starts to diverge from the demonstration trajectory at t, meaning that
∥st − sdt ∥ > 0, the steps after time step t even diverge more from the demonstration. This makes the
trajectory reward for all the infeasible trajectories very low and does not allow for discriminating
among different infeasible trajectories. Therefore, we set a discount factor of γf < 1 to discount or
even ignore the trajectory reward at later steps.

Leveraging our Trajectory f-MDP design, feasible trajectories still receive the maximal reward of 0
since each state in the rollout will perfectly match the demonstration thus having a feasibility of 1
as in Eqn. (3). Instead, infeasible trajectories receive negative rewards leading to smaller feasibility
scores, which reflects how far away the demonstration is from the closest feasible trajectory.
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One may worry about the time complexity of our approach since we need an additional RL training
to learn an optimal policy for the f-MDP. However, the f-MDP is a lot simpler compared to the
imitator’s MDP since the initial distribution is reduced from the distribution of all possible states in
the demonstration set to a discrete distribution over the initial states of the demonstrations. This can
simplify the time complexity of finding the optimal policy for the f-MDPs.

Algorithm. Using the feasibility metric in Eqn. (3), we assign each state transition with the same
feasibility of the trajectory it belongs to. Directly weighing the imitation loss as [29] may lead to
gradients that are close to 0 if a batch of data all have low feasibility. This can make the algorithm
inefficient by wasting samples from many iterations. Instead, for a more efficient training, we define a
discrete probability distribution pw over the collection of state transitions in all the demonstrations: T ,

where the probability of a state-transition (sdt , s
d
t+1) as pw((sdt , s

d
t+1)) =

w((sdt ,s
d
t+1))∑︁(︃

sd
t′

,sd
t′+1

)︃
∈T

w((sd
t′ ,s

d
t′+1

))
.

State transitions with larger feasibility will be sampled more often. Using the sampling distribu-
tion pw, we can embed our method into any imitation learning algorithm to enable learning from
demonstrations with different dynamics. We show the algorithm block in the Appendix.

Sampling More Demonstrations with the Feasibility Score. When the existing useful demonstra-
tions are too scarce to learn a well-performing imitation learning policy, we need to acquire more
demonstrations from the demonstrators. But collecting new demonstrations can be expensive, so we
often can only acquire a limited budget of demonstrations. We thus need to collect the most useful
demonstrations within this limited budget. The proposed feasibility metric provides a criterion to
decide the similarity between the imitator and each demonstrator. If a demonstrator has a higher
similarity, we sample more from this demonstrator because its demonstrations are more likely to be
feasible. Specifically, we create a probability distribution pj over all demonstrators:

pj =

1
|Ξj |

∑︁
ξj∈Ξj w(ξj)∑︁N

j=1
1

|Ξj |
∑︁

ξj∈Ξj w(ξj)
. (4)

We repeatedly and independently query the demonstrator j according to pj and collect a demonstration.
The proposed sampling strategy samples more demonstrations from closer demonstrators. We
empirically show that the sampling strategy derived from our feasibility performs better than uniform
sampling or using other feasibility metrics as in [7].

5 Experimental Results

We experiment with four MuJoCo environments, a simulated Franka Panda Arm, and a real Franka
Panda Arm. We also show results on various compositions of demonstrations of different dynamics
and the performance gain when we are given a larger budget to collect demonstrations. We compare
our approach with a standard imitation learning algorithm: GAIL [4], imitation learning from
demonstrations with different dynamics methods without a measure of feasibility: SAIL [5], and with
a feasibility score: ID-Feas [7], which uses an inverse dynamics model to estimate feasibility.

5.1 MuJoCo Experiments

Swimmer. The swimmer agent has three links and two joints. The goal of the agent is to move
forward by rotating the joints. As shown in Fig. 3(a), we create different dynamics by setting the
joint limit of the front and the back joints, denoted by (αf , αb). The original Swimmer environment
has (αf , αb) = (100◦, 100◦). We create four demonstrator environments (αf , αb): (i) (100◦, 12◦),
(ii) (100◦, 20◦), (iii) (100◦, 100◦), and (iv) (10◦, 100◦). We also create the imitator environment by
setting (αf , αb) = (100◦, 10◦). The demonstrators (i) and (ii) are closer to the imitator in terms of
their dynamics, while the demonstrators (iii) and (iv) are farther.

Walker2d. The Walker2d is an agent with two legs where each leg consists of 3 joints. We create
different dynamics by using different frictions β for the feet, i.e., the link that touches the ground. The
original Walker2d uses β = 0.9. We create two settings to show high friction and low friction of the
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(f) Walker2d Results
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(g) HalfCheetah Results
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(h) Hopper Results
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Figure 3: Illustration of different dynamics in (a) Swimmer: varying the joint limit of the front and back joints
(αf and αb). (b) Walker2d: varying the friction of the feet (β). (c) HalfCheetah: varying the joint control force
of the front and back joints by multiplying a factor γf and γb with the front and back joint force. (d) Hopper:
varying the gravitational constant respectively (e-h) show the expected return in these four environments.

imitator with a mix of frictions for the demonstrators. In the first setting, there are four demonstrators:
(i) β = 19.9, (ii) β = 9.9, (iii) β = 0.9, and (iv) β = 0.7. The imitator has β = 24.9. In the second
setting, there are four demonstrators: (i) β = 29.9, (ii) β = 19.9, (iii) β = 1.1, and (iv) β = 0.7. The
imitator has β = 0.9.

HalfCheetah. The HalfCheetah is an agent with two legs at the front and back of the body, where
each leg consists of three joints. We create different dynamics by varying the control force limit
of joints of the front leg and back leg, where we multiply a factor γf with the original control
force limit of the front leg and multiply γb with the limit of the back leg. We create two settings,
where the demonstrators have low and high similarity with each other. In the first setting, there
are four demonstrators with (γf , γb): (i) (0.05, 1), (ii) (0.5, 1), (iii) (1, 0.5), and (iv) (1, 0.05). The
imitator has (γf , γb) = (0.01, 1). In the second setting, there are four demonstrators with (γf , γb):
(i) (0.01, 1), (ii) (0.05, 1), (iii) (1, 0.05), and (iv) (1, 0.01). The imitator has (γf , γb) = (0.01, 1).

Hopper. The Hopper is an agent with one leg consisting of 3 joints. We create different dynamics
by using different gravitational constants g. The original Hopper uses g = 9.81. We create four
demonstrator environments: (i) g = 20.0, (ii) g = 9.81, (iii) g = 5.0, and (iv) g = 2.0. We also
create the imitator environment by setting g = 15.0.

The detailed composition of demonstrations for all four environments is included in the Appendix.
For all the Mujoco environments, we evaluate the expected return of each policy by rolling out 100
trajectories in the environment with the policy and compute the average expected return of the 100
trajectories. We run each experiment for 5 times and show the mean and the standard deviation.

Results. We show the expected return with respect to the number of steps for the four different envi-
ronments in Fig. 3. We show the results of the second setting for the Walker2d and the HalfCheetah
in the Appendix. We observe that our proposed feasibility achieves the best performance among
all the methods. The highest p-value comparing our method to baselines is 0.116 with ID-Feas for
Swimmer, 2.55e− 14 with GAIL for Walker2d, 0.188 with ID-Feas for HalfCheetah, and 0.026 with
GAIL for Hopper. In particular, our method outperforms ID-Feas, which indicates that the proposed
feasibility more accurately filters out far from feasible demonstrations. SAIL performs even worse
than GAIL, this is because SAIL can more strictly follow the state sequences of demonstrations than
GAIL including those far from feasible demonstrations. Our demonstration set is composed of a high
percentage of demonstrations from unrelated dynamics, which can mislead SAIL’s learned policy.
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Figure 4: (a) Illustration of different dynamics in the real robot arm environment. (b-c) The bar plots show the
expected return and success rate compared to other methods. (d) Sampled trajectories using different methods.
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Figure 5: (a-d) The expected return when increasing the number of demonstrations from agents with unrelated
dynamics. The results in Fig. 3 correspond to using 500 demonstrations from each unrelated dynamics. In both
of these settings, there will also be a fixed number of demonstrations from agents with related dynamics as
shown in Appendix.

5.2 Simulated and Real Robot Arm Experiments

Setup. We create a simulated robot arm based on a Panda Robot Arm implemented in the PyBul-
let [30] and a real robot arm environment using a Franka Panda Arm1. We include the results for
the simulated robot arm in the Appendix. As shown in Fig. 4(a), we create a task of moving a book
to the shelf but the closest region on the shelf is full. So we need to move the book to the empty
area of the shelf without colliding with the shelf and the existing books on the shelf. We create two
dynamics for the robot arm: using a 7-DoF control which can move freely in the 3D space, and using
a 3-DoF control, which is limited to moving on the red plane area. We collect demonstrations from
both 7-DoF and 3-DoF controllers and aim to learn an optimal policy for the 3-DoF robot.

For evaluation, we use two metrics: (1) The expected return based on a reward penalizing collision
with the shelf and existing books while rewarding the successfully moving the book to the empty
area of the shelf within the time limit. More detail on the reward is in the Appendix. (2) The success
rate of finishing the task over 100 trials.

We observe that the proposed approach outperforms the baseline methods both in expected return and
success rate as shown in Fig. 4. The highest p-value for the expected return is 2.432× 10−7 and for
the success rate is 3.534× 10−8 (both with ID-Feas), which are statistically significant.

5.3 Analysis

We conduct experiments with varying compositions of demonstrations and investigate the performance
of different approaches when we have the budget to acquire additional demonstrations. We show the
results of varying the number of demonstrations from all demonstrators in the Appendix.

Varying the Number of Demonstrations from each Unrelated Demonstrator. For the first three
experiment settings in the Mujoco environment, we have two demonstrators with similar dynamics to
the imitator and two demonstrators with far apart dynamics. We vary the number of demonstrations

1https://www.franka.de
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from the far apart demonstrators to investigate their influence on the different methods. We conduct
experiments on the first setting for the Swimmer, Walker2D, HalfCheetah, and Hooper and report the
results in Fig. 5(a), 5(b), 5(c) and 5(d). With an increasing number of demonstrations from the far
apart demonstrators, the expected return of all the methods decreases, while our method shows the
best performance consistently across different numbers of demonstrations. This demonstrates that
our feasibility can effectively filter out far from feasible demonstrations and ensure the policy learns
from useful demonstrations.

6 Conclusion

Summary. We propose an algorithm to learn a feasibility metric to imitate demonstrations drawn from
agents with different dynamics. Our feasibility metric captures how likely it is for each demonstration
to be feasible for the imitator. We develop a feasibility MDP (f-MDP) and derive the feasibility by
learning the optimal policy for the f-MDP. We show that the policy learned from the demonstrations
reweighted by the proposed feasibility score outperforms other imitation learning methods in various
environments and different compositions of demonstrations.

Limitations and Future Work. Our work only addresses the problem of filtering out far from
feasible demonstrations, but does not solve the problem of learning a policy from those feasible
but suboptimal or nearly feasible demonstrations from different dynamics. There are situations
where demonstrations are feasible but not optimal for the imitator, especially when the ability of the
demonstrator is more restricted than the imitator. In the future, we aim to study these more general
settings.
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In this Appendix, we provide the proposed method under stochastic MDPs in Sec. A. We provide the
details of the algorithm in Sec. B. We further explain our experimental details in Sec. C. Finally, we
show some extra experimental results in Sec. D.

A The Extension to Stochastic MDPs

In our main text, we discussed the deterministic MDP setting as all our experiments are in the
deterministic setting, but here we would like to extend the discussion to the stochastic MDP case.
In a stochastic MDP, our goal is still to learn a policy πi : S → Ai for the imitator to maximally
achieve the state transitions in the demonstrations. This means that if the state transition (sdt , s

d
t+1)

from a demonstration is more likely to be feasible, the expected distance between the next state sit+1

produced by πi and sdt+1 should be small, i.e., Esit+1∼pi(sdt ,π
i(sdt ))

[fdis(s
i
t+1, s

d
t+1)] should be small.

Therefore, the expected distance between sit+1 and sdt+1 can serve as a measure of feasibility, where
a smaller distance corresponds to a higher feasibility.
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Under a feasibility metric defined by the expected distance, we can use the same design of f-MDP as
the deterministic MDP case: Mf = ⟨S,Ai, pi,Rf , ρf0 , γ

f ⟩. The state space, the action space and
the transition probability are all the same as the imitator’s. The initial state distribution is defined as
Uniform(T0). The reward is defined as:

sd0 ∼ Uniform(T0), s0 = sd0, st+1 = pi(st, a), Rf (st, a, st+1) = −fdis(st+1, s
d
t+1). (5)

Maximizing the expected return in the f-MDP in such a design will minimize the expected state
distance between the learned policy and the demonstrations, which matches our definition of feasibility.
After we learn the optimal policy π∗ for the f-MDP, we can derive the feasibility for each trajectory ξ
with the expected state distance between the demonstration and the policy:

w(ξ) = exp

⎛⎝−Est∼π∗

[︂∑︁N
t=1(γ

f )tfdis(st, s
d
t )
]︂
− C

σ

⎞⎠ . (6)

In our experiments, we only consider the case where the MDP is deterministic.

B Algorithm

We go through the steps of the algorithm of learning feasibility to imitate demonstrators with different
dynamics in Algorithm 1. For the state-based imitation learning algorithm used to learn the final
policy from reweighted demonstrations, we use the state-based GAIL as [7]. Lines 1-6 show the
process of constructing N f-MDPs (one for each demonstrator) and training the optimal policy for
each f-MDP. Line 7 shows how to compute feasibility with the optimal policy for each f-MDP. Lines
8-11 show imitation learning over the newly reweighted demonstrations.

Algorithm 1: Algorithm

Input: Demonstrations Ξj from each demonstratorMd
j , (1 ≤ j ≤ N).

for j=1 to N do
Construct the trajectory f-MDP Mf

j based on the demonstration set Ξj according to Eqn. (2);
Train an optimal policy π∗

j for the trajectory f-MDP Mf
j ;

Compute the feasibility w(ξj) for each trajectory ξj ∈ Ξj as in Eqn. (3);
Assign the feasiblity w(ξj) to each state transitions in ξj ;

end

Compute pw((s
d
t , s

d
t+1))←

w((sdt ,s
d
t+1))∑︁(︃

sd
t′

,sd
t′+1

)︃
∈T

w((sd
t′ ,s

d
t′+1

))

while not converging do
Sample a batch of state transitions from pw;
Train π with the sampled batch of state transitions by an state-based imitation learning

algorithm: state-based GAIL

min
θπ

max
θd

E(st,st+1)∼π(log(D(st, st+1))) + E(st,st+1)∼pw
(1− log(D(st, st+1))), (7)

where θπ is the parameter of π and θd is the parameter for the discriminator D in
state-based GAIL;

end
Output: Learned optimal policy π∗ forMi.

Currently, we consider the state transitions in each trajectory share the same feasibility but do not
consider the case where parts of the trajectories are more feasible than some other parts. This is
because the state-based GAIL in our algorithm as well as many standard imitation learning algorithms
rely on learning from the full trajectory from the start to the end state. If a segment of the trajectory is
far from feasible or harmful, then the remaining part is also not going to be useful for our algorithm.
Therefore, we only learn from trajectories that are helpful in all parts.
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C Experiment Details

In this section, we discuss experimental details for all of our environments. In addition, we discuss
the choice of our discount factor γf in C.3

C.1 Mujoco

Table 1: The composition of demonstrations for each environment

Environment Number of Demonstrations

i ii iii iv

Swimmer 50 50 500 500
Walker2d (first setting) 50 50 500 500

Walker2d (second setting) 500 500 10 10
HalfCheetah (first setting) 25 25 500 500

HalfCheetah (second setting) 500 500 25 25
Hopper 50 50 500 500

Composition of Demonstrations. The composition of demonstrations in each environment is shown
in Table 1. We design the composition of demonstrations to ensure that directly performing imitation
learning on all the demonstrations cannot learn an optimal policy as otherwise we do not need to
consider the problem of learning from demonstrations from agents with different dynamics.

Implementation Details. To implement our algorithm, we use TRPO [31] as the RL algorithm to
learn the optimal policy from f-MDP, and we use the GAIL from Observation algorithm [16] as our
imitation learning technique to learn the optimal policy from the reweighted demonstrations. For
each demonstrations, we create a separate f-MDP for its demonstrations and train an optimal policy
for the f-MDP to generate the feasibility for its demonstrations.

Compared to the final imitation learning algorithm, which requires about 7× 107 interactive steps
with the environment to converge, learning the optimal policy from f-MDP only needs about 5× 105

time steps, which is significantly smaller. This indicates that the proposed feasibility learning is
efficient even with an additional RL learning process.

C.2 Simulated and Real Robot Arm

Reward Function. In the main text, we evaluate our policy for the two robot arm environments
using the expected return. We introduce the details of the reward function here. The exact formula of
the reward function is r = −s− 10000h+ 5000g, where r is the reward, s is the number of steps,
h ∈ {0, 1} represents whether the robot hits any object in the environment, and g ∈ {0, 1} represents
whether the robot achieves the goal.

Composition of Demonstrations. The demonstration set composed of 5 trajectories from the 3 DoF
Panda robot arm with disabled joints and 43 trajectories from the 7-DoF Panda arm for both the
simulated and the real arm environments.

Implementation Details. To implement our algorithm, we use TRPO [31] as the RL algorithm to
learn the optimal policy from f-MDP. To learn the optimal policy from the reweighted demonstrations,
we learn a beta-VAE [32] to imitate the state transition sampled from the reweighted distribution of
state transitions pw. After learning the state transitions, we recover the joint actions from the changes
of the end-effector’s position using inverse kinematics.

Compared to learning the beta-VAE model, which requires about 2.56× 104 interactive steps with
the environment to converge, learning the optimal policy from f-MDP only needs about 5.12× 103

time steps, which is negligible with respect to the imitation learning algorithm. This indicates that the
proposed feasibility learning is efficient even with an additional RL learning process.
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Figure 6: (a-b) show the expected return for the second setting for the Walker2d and the HalfCheetah
environments respectively. (c) The expected return with varying budget of additional demonstrations
in Swimmer.

C.3 Choice of Discount Factor

The choice of the discount factor γf depends on how fast the compounding error increases with
respect to the number of steps in the environment. Faster increasing compounding errors need smaller
γf . In practice, this depends on the scale of the ‘movement’ of the agent at each step. For example,
for a robot arm, if each joint can only move at a small angle at each step, we can set γf to be larger
or if each joint can move at a larger angle at each step, γf should be set smaller. In our experiments,
we fix the γf = 0.9 and empirically it works well for all the environments.

D Experimental Results

In this section, we provide a number of additional experiments and results including additional results
in the Mujoco environment and the simulated robot (D.1, D.3), results demonstrating the effects of
varying the number of demonstrations (D.4), discussion and additional results with varying choices
of distance metrics (D.5), comparison with a mapping-based method (D.6), and comparison of the
expected return of our method with the expected return of the originally collected demonstrations
(D.7).

D.1 More Results for Mujoco Environments

We show the results of the second setting for the Walker2d and the HalfCheetah in Fig. 6. We observe
that our proposed feasibility achieves the best performance among all the methods. The highest
p-value comparing our method to baselines is 0.297 with ID-Feas for the Walker2d environment, and
0.0037 with ID-Feas for the HalfCheetah environment (statistically significant) respectively.

D.2 Performance with a Budget of Additional Demonstrations.

We now consider a setting, where we start with a limited set of demonstrations, but acquire more
demonstrations under a limited budget. Our feasibility metric can assess how likely it is for a
demonstrator to produce feasible demonstrations, and hence can help us select which demonstrator
to query for more demonstrations. We start with one demonstration from each demonstrator in the
Swimmer environment and evaluate the performance as we add demonstrations. For our method and
ID-Feas, we can acquire demonstrations proportional to the computed feasibility score. We compare
the expected return with demonstrations selected based on feasibility (Ours, ID-Feas) to the expected
return with demonstrations uniformly acquired from each demonstrator (Ours-Uniform, ID-Feas-
Uniform). We further compare with SAIL and GAIL, where no feasibility is defined and we uniformly
acquire demonstrations. As shown in Fig. 6(c), Ours outperforms ID-Feas, which demonstrates
that the proposed feasibility can better reflect how likely each demonstrator produces feasible
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Figure 7: (a) The illustration of different dynamics in the simulated robot arm environment. The
7 DoF robot arm can move in the whole 3D space while the 3 DoF arm can only move in the red
plane; (b-c) The bar plot for the expected return and the success rate for the simulated robot arm
environment; (d) Sampled trajectories for different methods in the simulated robot arm environment.

demonstrations and acquire more demonstrations from helpful demonstrators. Ours outperforms
all the other methods including Ours-Uniform (although not with statistical significance), which
indicates that the demonstrations acquired based on the feasibility gain more useful information.

D.3 Results on the Simulated Robot

As shown in Fig. 7, We observe that the proposed approach outperforms the baseline methods both
in terms of the expected return and the success rate. The highest p-value for the expected return is
7.252×10−9 and for the success rate is 1.047×10−8 (both with ID-Feas), which are both statistically
significant. The sampled trajectory show that the proposed approach achieves an efficient trajectory
successfully moving the book to the empty area of the shelf.

Table 2: The performance of varying percentage of demonstrations used with respect to the original
setting.

Method Swimmer Walker2d HalfCheetah Hopper

20% 50% 100% 20% 50% 100% 40% 60% 100% 20% 50% 100%

GAIL 40.0±34.3 37.9±35.2 30.9±23.5 276.9±18.3 313.1±63.0 261.1±5.6 2464.9±460.2 2597.2±399.0 2443.6±440.7 2798.3±351.1 2996.6±623.2 3009.6±362.4
SAIL -7.7±19.7 -5.5±24.6 -3.0±28.4 8.5±17.5 -5.3±56.4 19.0±30.1 -556.7±365.8 -503.3±299.3 -603.0±389.6 -252.6±432.6 -1622.2±1780.1 -7.00±11.4
RAL 23.1±33.9 30.6±28.1 48.2±39.0 244.3±27.4 261.0±46.7 227.0±24.2 2604.4±423.1 2515.3±311.0 2594.4±508.7 2040.3±408.3 2108.9±611.9 1916.1±750.4
Ours 68.2±24.7 76.4±22.1 74.3±20.1 3137.6±50.2 3127.0±30.7 3144.3±23.5 2716.7±301.6 2812.4±261.2 2830.6±292.6 3273.3±180.2 3351.0±146.3 3329.6±115.2

D.4 Varying the Number of All Demonstrations

We vary the number of demonstrations from all demonstrators. We conduct experiments on the first
setting of the all the Mujoco environments. For the Swimmer and Walker2d environments, we test
with 20% and 50% of the original demonstrations. For the HalfCheetah environment, we test with
40% and 60% of the original demonstrations since we have much less demonstrations (25 vs 50)
from the demonstrators similar to the imitator. As shown in Table 2, we observe that our approach
outperforms all the other methods when having access to different number of demonstrations.
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Figure 8: The expected return with respect to the
number of steps with different choices of distance
metrics.

Method Expected Return

GAIL [4] 31.20±22.25
SAIL [5] 0.56±4.27
DCC [26] 5.32±3.43

ID-Feas [7] 48.96±38.50
Ours 74.89±19.68

Table 3: The expected return of the learned pol-
icy in the Swimmer environment (with standard
deviation).

D.5 Discussion of the Choice of Distance Functions

We use L2 distance between states in the reward function in Eqn. (2) and (3) in the main text and in
all the experiments. This is because in all our environments, the L2 distance can accurately measure
the distance between states. However, this does not mean that the distance metric in our reward of
f-MDP is restricted to the L2 distance. We can change the distance depending on the specific state
space. For example, for a state space with unit vectors, we can use the cosine distance as the distance
metric.

In Fig. 8, we show the expected return of our method by using different distances in the Swimmer
environment. We use L1 distance and Cosine distance (the cosine of the angles between two state
vectors) as examples. We observe that L1 distance, which is another distance derived by norm,
performs close to L2 distance, but Cosine distance performs worse than L2 distance because Cosine
distance only cares about the distance on angle but ignores the scale of the vectors, while in Swimmer,
the scale of the states is also important. The results show that the choice of this distance function is
flexible and depends on the specific choice of the state space in our problem.

D.6 Comparison with Mapping-Based Methods

Mapping-based methods translate the demonstrations across different environments by learning state
mappings and action mappings [26], which can be used in our problem setting by mapping the source
demonstrations to the target environment. However, our problem setting does not ensure that there
exist a mapping between the demonstrators and the imitator, which violates the assumption of the
mapping-based methods. We thus do not include any mapping-based methods in our experiments in
the main body of our work. However, here as an additional experiment, we compare our method with
the state-of-the-art mapping-based method, DCC [26].

DCC requires random trajectories from both the demonstrators and the imitator to learn a mapping,
but we do not have access to the demonstrators’ environment and only have access to demonstrators’
demonstrations. So we use the demonstrations and the imitator’s random trajectories as the input
to DCC. As shown in Table 3, the performance of DCC is much worse than our method and even
worse than GAIL. This is because DCC itself is a good mapping-based method but mapping-based
methods are not quite suitable for our problem setting. In fact, there should not exist a mapping
between demonstrations and the imitator’s random trajectories. Building such a mapping causes
severe mismatch between states and actions of different environments and makes the translated
demonstrations distort the original demonstrations.

D.7 Comparison with the Collected Demonstrations

We compare the expected return of our approach with the demonstrations in Table 4. We observe that
in the first setting of Walker2d environment, Hopper environment, the simulated robot and the real
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Table 4: The average expected return of demonstrations in different environments and the expected
return of our method.

Swimmer Walker2d HalfCheetah Hopper Simulated
Robot

Real
RobotFirst Second First Second

Demonstrations 106±3 3098±118 3720±336 3229±170 3337±67 3460±87 1823±110 2531± 362
Ours 75±20 3147±10 3424±645 2832±291 3142±89 3330±115 2127±5053 2746±2712

robot environments, our approach performs comparably to the expected return of demonstrations,
which are optimal demonstrations for different demonstrators. In the Swimmer, the second setting of
Walker2d and the HalfCheetah environments, the performance is worse than the demonstrations. This
is because only a few demonstrations are feasible for the imitator and that may not be enough to learn
an optimal policy. However, the margin between our approach and the demonstrations is still not
large. The results show that the proposed feasibility can select useful demonstrations for the imitator
to imitate.
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