
APReL: A Library for Active
Preference-based Reward Learning Algorithms

Erdem Bıyık
Electrical Engineering

Stanford University
ebiyik@stanford.edu

Aditi Talati
Computer Science
Stanford University
atalati@stanford.edu

Dorsa Sadigh
Computer Science & Electrical Engineering

Stanford University
dorsa@cs.stanford.edu

Abstract—Reward learning is a fundamental problem in
human-robot interaction to have robots that operate in alignment
with what their human user wants. Many preference-based
learning algorithms and active querying techniques have been
proposed as a solution to this problem. In this paper, we
present APReL, a library for active preference-based reward
learning algorithms, which enable researchers and practitioners
to experiment with the existing techniques and easily develop
their own algorithms for various modules of the problem. APReL
is available at https://github.com/Stanford-ILIAD/APReL.

Index Terms—reward learning, active learning, software li-
brary, preference-based learning

I. INTRODUCTION

As robots enter our daily lives, we want them to act in ways
that are aligned with our preferences and goals. Learning a
reward function that captures human preferences about how a
robot should operate is a fundamental robot learning problem
that is the core of the algorithms discussed in this work.

There are a number of different information modalities
that can be avenues for humans to convey their preferences
to a robot. These include demonstrations [1, 2], physical
corrections [3, 4], observations [5], language instructions and
narrations [6], ratings [7, 8], comparisons and rankings [9, 10,
11], each of which has its own advantages and drawbacks.
For example, demonstrations are difficult to collect when the
robot has high degrees of freedom, and physically providing
corrections on a robot can pose safety challenges. Observations
are difficult to learn from, as they are provided by agents with
different dynamics and/or objectives. Language instructions
and narrations do not provide detailed information about how
the task should be done. While ratings do not suffer from
these issues, they introduce higher cognitive loads on the
users compared to comparisons and rankings. Learning human
preferences using comparisons and rankings is well-studied
outside of robotics [12], and the paradigm of learning human
preferences based on comparisons and rankings shows promise
in robotics applications as well [13, 10, 11].

However, preference-based learning poses another important
challenge: each comparison or ranking gives a very small
amount of information. For example, a pairwise comparison
between a trajectory of a car that speeds up at an intersection
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with another trajectory that slows down gives at most one
bit of information. Hence, it becomes critical to optimize for
what the user should compare or rank. To this end, prior works
have developed several active learning techniques to improve
data-efficiency of preference-based learning by maximizing
the information acquired from each query to the user. In this
paper, we present a novel and unified Python library, APReL,
that enables researchers and practitioners to easily use and
experiment with many existing active preference-based reward
learning techniques that effectively query humans and are used
in robotics applications. Therefore, it is very relevant to both
human-robot interaction and robot learning fields. For the ease
of use, APReL enables these various techniques to be applied
on any simulation environment that is compatible with the
standard OpenAI Gym structure [14].

We first go over the techniques included in APReL in
Section II. We also discuss more recent studies that we
are actively working to include in later versions of APReL.
Next, Section III presents a unifying notation, and Section IV
briefly reviews the techniques. Section V presents the modular
structure of APReL to guide the researchers for implementing
new techniques. Finally, Section VI concludes the paper.

II. RELATED WORK

In this section, we go over prior work that APReL supports,
and discuss more recent studies which we plan to include in
APReL’s later versions.
Active Preference-Based Learning. Active preference-based
reward learning is a well-studied problem in machine learn-
ing and robotics. Sadigh et al. [9] modeled the reward as
a linear function of some trajectory features and proposed
using a volume removal based acquisition function to select
pairwise comparison queries, which are in the form of “do
you prefer trajectory A or B?”. Katz, Le Bihan, and Kochen-
derfer [15] formulated the query selection as a multi-objective
optimization problem to maximize both the likelihood and the
disagreement between trajectories.

While the disagreement-based method was only for pairwise
comparisons, Palan et al. [16] and Biyik et al. [17] extended
the volume removal method to best-of-K queries: “which of
the K trajectories is the best?”. Later, Biyik et al. [18] found
the volume removal optimization is ill-posed and identified
failure cases. They proposed maximizing mutual information
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between the response to the query and the reward function.
Finally, Wilde, Kulić, and Smith [19] and Tucker et al. [20],
again focusing on pairwise comparisons only, developed alter-
native acquisition functions based on a regret formulation and
Thompson sampling, respectively. These further improve the
data-efficiency when the goal is to find the optimal trajectory
rather than the underlying reward function. Although APReL
focuses on reward learning, we include these acquisition
functions in the library as additional benchmarks.

Batch Active Learning. While these works focus on the data-
efficiency of learning, another line of work built upon them
to improve time-efficiency by generating batches of queries at
a time. This reduces the time taken to generate each query
at the expense of increased number of queries needed to
learn the reward function. When generating a batch, however,
simply selecting the top few queries in terms of the acquisition
functions will create a batch of nearly-identical queries. Most
of these queries will be redundant after the user responds to
one of them, and the data-efficiency will significantly decrease.
To handle this problem, Biyik and Sadigh [21] adopted various
heuristic methods to jointly maximize informativeness and
diversity. They later developed a method based on Determi-
nantal Point Processes (DPP) [22] which are used for tractably
sampling informative and diverse batches in a more formal
way [23]. APReL enables both the heuristic methods and the
DPP method in addition to the non-batch setting.

Integrating Comparisons and Demonstrations. Finally, re-
cent works attempted to combine other sources of information
with comparisons and rankings. Palan et al. [16] and Biyik
et al. [13] integrated expert demonstrations into the prior to
further improve data-efficiency. Using their methods based on
Bayesian inverse reinforcement learning [24], APReL enables
researchers to optionally include demonstrations (or other
forms of offline data) into the learning pipeline and still use
all other functionalities.

Although APReL covers many of the techniques in the
literature, preference-based reward learning is still an active
research field. Hence, there exist recent methods that we
are actively working towards adding into the library. These
include scale feedback questions [25]; reward functions that
are non-stationary [26], multimodal [27], modeled as Gaussian
processes [28] (which was later combined with ordinal data by
Li et al. [29]) or neural networks [30]; and a new acquisition
function that enables the robot to reveal what it has already
learned, while asking questions [31].

III. PROBLEM FORMULATION

APReL synthesizes various techniques discussed in Sec-
tion II. To this end, we start with formulating the problem
with a unifying notation.

MDP. We describe the evolution of the agent as a discrete-
time Markov Decision Process (MDP) M = ⟨S,A, f, r⟩. At
each time step t, the agent is at state st ∈ S and takes action
at ∈ A. Then, f represents the agent’s dynamics distribution
such that st+1 ∼ f(st, at). Finally, r is the reward function, so

that at every time step t, the agent receives a reward r(st, at).
A trajectory ξ ∈ Ξ in this MDP is a sequence

(︁
(st, at)

)︁
t

of
state-action pairs that correspond to a roll-out in the MDP. The
goal of the MDP agent is to maximize the expected cumulative
reward over its trajectories.

Reward. The reward function is what we are trying to learn,
as it encodes how the human wants the agent to behave. We
assume it is linear in some state-action features that are known:
r(st, at) = ω⊤ϕ(st, at).1 The reward of a trajectory ξ is then
based on the cumulative features:

R(ξ) =
∑︂

(s,a)∈ξ

r(s, a) = ω⊤
∑︂

(s,a)∈ξ

ϕ(s, a) = ω⊤Φ(ξ) . (1)

In fact, as we elicit user preferences by asking them to
compare or rank trajectories, rather than states or actions, this
formulation allows us to define the features more generally.
As an example, one can directly design Φ, which might treat
states at different time steps differently, rather than designing
ϕ. Since Φ is given, we only have to learn the weights ω.

Preferences. The human gives information by selecting their
preference among a query Q = {ξ1, ξ2, . . . , ξK} of K
trajectories. The human noisily picks their favorite q ∈ Q,
which optimizes their reward function. In addition, differently
from the existing work, APReL also allows users to give full
rankings of the trajectories in Q. We use these preferences and
rankings to learn the human’s reward function.

Demonstrations. Expert demonstrations of the optimal behav-
ior may also be available to initialize the learning process.
Each demonstration is a trajectory ξD, and the human may
input a set of demonstrations as D.

Problem. Our overall objective is to learn the reward function
with as few data points as possible. For this, we should:

• Learn from user preferences after optionally initializing
our model based on expert demonstrations,

• Actively generate preference/ranking queries that are op-
timized to be informative for the learning model, and

• Actively generate batches of queries to alleviate the
computational burden of active query generation.

IV. METHODS

In this section, we briefly review the methods included in
APReL to solve each of the three parts of the problem.

A. Learning from Demonstrations and Preferences

Biyik et al. [13] proved that it is optimal to initialize the
reward prior with demonstrations and then shift to actively
collected preference data to update the posterior. Hence, we
start with the demonstrations D, which are collected offline,
to generate a prior belief over the true reward weights ω:

ρ0(ω) ∝ P (D | ω)P (ω) = P (ω)
∏︂

ξD∈D

P (ξD | ω) , (2)

1This is a common assumption to make the Bayesian learning approaches
tractable. We are actively working on extending these to more expressive
reward models in APReL. See, for example, [10, 28, 30].



where the assumption is that these demonstrations are con-
ditionally independent. The probability of a demonstration,
i.e., P (ξD | ω), is modeled with a computational user model,
selected by the system designer.

Then, the belief distribution is updated with proactively
generated preference/ranking queries. We first look at how
we update the model given these query responses. We will
consider how to generate the queries in the next subsection.

The robot asks a new query at each iteration i, starting
from i = 0. We denote the ith query to be Qi, and the human
response to that query qi. Then, using Bayes’ theorem and
again with the conditional independence assumption,

ρi+1(ω) ∝ P (qi | Qi, ω) · ρi(ω) , (3)

which again requires a computational human response model
for P (qi | Qi, ω). APReL allows implementing and exper-
imenting with different human models. After learning from
the query responses, the posterior belief keeps a distribution
for the reward function (or more generally, the human model),
which can be used to optimize the robot’s behavior.

APReL allows users the option to provide demonstrations
to initialize our belief, or to learn solely from preferences,
without any provided demonstrations, in which case ρ0(ω) =
P (ω). Having presented the way the initial belief is generated
from the demonstrations and updated with the human re-
sponses to the queries, we now proceed to the second problem
to consider how to actively generate the queries.

B. Actively Generating Queries

The goal of the robot is to generate queries that accurately
and efficiently update its estimate of ω, so it should minimize
the number of questions the user must answer.

In addition to allowing the implementation of new acqui-
sition functions, APReL readily provides multiple different
options for this active learning problem: volume removal, dis-
agreement, information gain, regret and Thompson sampling.
We would ideally find the best adaptive sequence of queries
for the robot to get accurate, fine-grained information about
ω. However, since adaptively reasoning about a sequence of
queries is an NP-hard problem [32], the techniques in the
literature proceed in a greedy fashion: at each iteration i, we
choose Qi while considering only the next posterior ρi+1.

Volume Removal. Volume removal is a strategy for selecting
queries that maximize the expected difference between the
prior and the unnormalized posterior [9, 17]. Intuitively, it
searches queries Qi where each possible answer qi is equally
likely given our current belief over ω, which corresponds to
the queries where we are most uncertain about which behavior
the human will prefer.

Disagreement. By trying to generate uncertain queries for the
human, volume removal formulation often presents queries
with very similar trajectories. To overcome this, Katz, Le
Bihan, and Kochenderfer [15] proposed a multi-objective
approach based on a disagreement metric, particularly for
pairwise comparison queries. In that approach, the goal is

to select two ω’s to maximize both their likelihood and
disagreement. The optimal ω’s are then given to a planner, e.g.,
a reinforcement learning algorithm, which gives the optimal
trajectories with respect to those ω’s. These trajectories form
the optimal disagreement query. While APReL handles the
intermediate planning problem by selecting the trajectories
from a predefined trajectory set, its modular structure allows
users to implement their own planners.

Mutual Information. Motivated by the same issue of trajec-
tories being too similar with volume removal, Biyik et al. [18]
identified failure cases and proposed maximizing the mutual
information between the user response and the reward function
instead, which they showed to yield both informative and easy-
to-answer questions.

In addition, they showed the learning efficiency can be
improved if the users are allowed to respond “About Equal”
to the pairwise comparison queries (called weak comparison
queries) and these responses are also utilized for learning.
APReL also allows having weak comparison queries.

Regret. For a slightly different formulation, where the goal
is to find the optimal behavior rather than learning the re-
ward function, Wilde, Kulić, and Smith [19] proposed using
pairwise comparison queries that maximize a measure of
regret between the ω’s that lead to the trajectories in the
query. Similar to the disagreement formulation, this acquisition
function first optimizes ω’s and then uses a planner to get the
trajectories in the query.

Thompson Sampling. Finally for a similar modified problem,
Tucker et al. [20] proposed using a Thompson sampling
approach so that the regret will be minimized during the
querying process, which implies the optimal trajectory will
be quickly learned.

C. Generating Batches of Queries

When we are fine-tuning our estimate of ω, we want to
do so in a way that minimizes the time spent by the human
expert. When we generate a new query in between each user
response, we spend a significant amount of time to generate
the next query. A more time-efficient option is to generate
batches of queries at once, so that the time cost will reduce.

APReL has a variety of options for which batch method to
use if we are generating batches of queries. We define b to
be the number of queries in our batch, and briefly go over
each method. First four methods were proposed by Biyik and
Sadigh [21], and the DPP-based method by their follow-up
work [22].

Greedy. The top b queries that individually optimize the acqui-
sition function form batch. Though computationally efficient,
this causes redundancy as we previously discussed.

Therefore, the other batch methods try to increase the
diversity in the queries. For this, they first take the top B
queries with respect to the acquisition function (so that non-
informative queries will not be selected). Then, they try to
select b queries out of this reduced set that maximize the total



Fig. 1. APReL assumes a human model for how the human provides
demonstrations and responds to the queries. Optionally, some passive
data from the actual human, e.g., demonstrations, are used to initialize
a belief distribution. Based on this belief, query optimizer then
outputs a query that will give the most information about actual
human. This query is asked to the human, and their response is
used to update the belief, which completes the active learning loop
(orange arrows). Finally, the quality of the learned model is assessed
in comparison with the actual human.

dissimilarity between them with respect to a given distance
measure between the queries.
Medoids. This method partitions the reduced query set into b
clusters based on the given distance measure using k-medoids
algorithm [33, 34]. Then the medoid of each cluster (similar
to centroids in k-means algorithm) is taken into the batch.
Boundary Medoids. This method further improves the diver-
sity of the medoids algorithm by applying k-medoids only on
the boundary of the convex hull of the reduced set. We note
that efficiently finding the boundary of the convex hull may
not always be possible. Hence, this method works only when
the queries can be mapped into an Euclidean space, as in [21].
Successive Elimination. The successive elimination algorithm
starts with the reduced set and iteratively removes the queries
until b of them are left, which are taken as the batch. The
removal rule is as follows. It first finds the pair of queries
with the shortest distance between them. It then removes the
one with the worse acquisition function value out of this pair.
Among the heuristic batch selection methods, this often gives
the highest data-efficiency.
DPP. Finally, the DPP method builds a k-DPP [23] given the
distance between the queries and their acquisition function val-
ues. The (approximate) mode of this k-DPP distribution, which
optimally maximizes the diversity and the informativeness, is
then taken as the batch.

V. APREL STRUCTURE AND USAGE

APReL implements multiple modules to provide the re-
searchers with easy experimentation. These modules include:
query types, user models, belief distributions, query optimizers
and different acquisition functions. An overview of APReL’s
general workflow is shown in Figure 1. We next briefly go
over the modules.
Basics. APReL implements Environment and Trajectory
classes. An APReL environment requires an OpenAI Gym

environment and a features function that maps a given se-
quence of state-action pairs to a vector of trajectory features
as in Eq. (1). Trajectory instances then keep trajectories of the
Environment along with their features.
Query Types. As discussed earlier, researchers developed and
used several comparison and ranking query types. Among
those, APReL readily implements preference queries, weak
comparison queries, and full ranking queries. More impor-
tantly, the module for query types is customizable, allowing
researchers to implement other query types and information
sources. As an example, demonstrations are already included
in APReL.
User Models. Preference-based reward learning techniques
rely on a human response model, e.g. the softmax model,
which gives the probabilities for possible responses condi-
tioned on the query and the reward function. APReL allows
to adopt any parametric human model and specify which
parameters will be fixed or learned.
Belief Distributions. After receiving feedback from the human
(Human in Fig. 1), Bayesian learning is performed based on
an assumed human model (Human-hat in Fig. 1) by a belief
distribution module. APReL implements the sampling-based
posterior distribution model that has been widely employed by
the researchers. However, its modular structure also allows to
implement other belief distributions, e.g., Gaussian processes.
Query Optimizers. After updating the belief distribution with
the user feedback, a query optimizer completes the active
learning loop by optimizing an acquisition function to find the
best query to the human. APReL implements the widely-used
“optimize-over-a-trajectory-set” idea for this optimization, and
allows the acquisition functions that we discussed earlier.
Besides, the optimizer module also implements the batch
optimization methods that output a batch of queries using
different techniques. All of these three components (optimizer,
acquisition functions, batch generator) can be extended to
other techniques.
Assessing. After (or during) learning, it is often desired to
assess the quality of the learned reward function or user model.
The final module does this by comparing the learned model
with the information from the human.

A. Example
An example runner script is included in APReL that ex-

plains how to use the library and the available options. We
refer the readers to https://github.com/Stanford-ILIAD/APReL
for installation and running instructions.

VI. CONCLUSION

In this paper, we introduced our novel Python library
APReL, which provides a modular framework for experiment-
ing with and developing active preference-based reward learn-
ing algorithms. In short term, we are planning to implement
more techniques and features, as we discussed in Section II.
By accepting contributions from the community, our goal is
to keep APReL up-to-date with state-of-the-art methods, and
possibly extend it to non-Bayesian learning methods.
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