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Effects of Dynamic Vegetation on Global Climate Simulation Using the NCEP GFS

1. Introduction
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ABSTRACT

Two global experiments were carried out to investigate the effects of dynamic vegetation processes on numerical
climate simulations from 1948 to 2008. The NCEP Global Forecast System (GFS) was coupled with a biophysical
model, the Simplified Simple Biosphere Model (SSiB) version 2 (GFS/SSiB2), and it was also coupled with a bio-
physical and dynamic vegetation model, SSiB version 4/Top-down Representation of Interactive Foliage and Flora
Including Dynamics (TRIFFID) (GFS/SSiB4/TRIFFID). The effects of dynamic vegetation processes on the simula-
tion of precipitation, near-surface temperature, and the surface energy budget were identified on monthly and annual
scales by assessing the GFS/SSiB4/TRIFFID and GFS/SSiB2 results against the satellite-derived leaf area index
(LAI) and albedo and the observed land surface temperature and precipitation. The results show that compared with
the GFS/SSiB2 model, the temporal correlation coefficients between the globally averaged monthly simulated LAI
and the Global Inventory Monitoring and Modeling System (GIMMS)/Global Land Surface Satellite (GLASS) LAI
in the GFS/SSiB4/TRIFFID simulation increased from 0.31/0.29 (SSiB2) to 0.47/0.46 (SSiB4). The correlation coef-
ficients between the simulated and observed monthly mean near-surface air temperature increased from 0.50 (Africa),
0.35 (Southeast Asia), and 0.39 (South America) to 0.56, 0.41, and 0.44, respectively. The correlation coefficients
between the simulated and observed monthly mean precipitation increased from 0.19 (Africa), 0.22 (South Asia), and
0.22 (East Asia) to 0.25, 0.27, and 0.28, respectively. The greatest improvement occurred over arid and semiarid
areas. The spatiotemporal variability and changes in vegetation and ground surface albedo modeled by the GFS with
a dynamic vegetation model were more consistent with the observations. The dynamic vegetation processes contrib-
uted to the surface energy and water balance and in turn, improved the annual variations in the simulated regional
temperature and precipitation. The dynamic vegetation processes had the greatest influence on the spatiotemporal
changes in the latent heat flux. This study shows that dynamic vegetation processes in earth system models signific-
antly improve simulations of the climate mean status.

Key words: NCEP Global Forecast System (GFS), Simplified Simple Biosphere Model version 4/Top-down Repres-
entation of Interactive Foliage and Flora Including Dynamics (SSiB4/TRIFFID), global climate simula-
tion, effects of dynamic vegetation
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al., 2009; Zeng et al., 2017). Numerical studies have

Vegetation has a close relationship with both precipit-
ation and temperature (Wang et al., 2008; Zhong et al.,
2010; Cao et al., 2011; Claussen et al., 2013) and can af-
fect climate processes and climate variability (Wang et
al., 2004; Crucifix et al., 2005; Zeng et al., 2008; Zhi et

been carried out to identify vegetation—climate relation-
ships. For example, by using the NCEP Global Forecast
System (GFS), the effects and mechanisms of the bio-
physical processes of vegetation on summer precipita-
tion have been explored on both global and continental
scales (Xue et al., 2004, 2010; Xue, 2006). These results
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showed that the feedbacks between vegetation and the at-
mosphere have an important role in the global and re-
gional water cycle, particularly in monsoon regions and
some of the larger continents, such as North America.
Although differences between the dry and wet seasons
can be identified in these areas, the developmental pro-
cesses of monsoons, such as the northward jump in early
stages of the East Asian monsoon, cannot be reproduced
if the biophysical processes of vegetation are not in-
cluded in the GFS.

The importance of vegetation to climate, especially
their two-way interactions, has been identified in a num-
ber of studies (Levis and Bonan, 2004; Delire et al.,
2011; Wang et al., 2011; Wu et al., 2016; Yu et al., 2016;
Shi et al., 2018). Using a prognostic leaf area index
(LAI) parameterization, Levis and Bonan (2004) found
that the observed reduction in the springtime warming
trend over the Northern Hemisphere was only simulated
when photosynthesis, stomatal conductance, and leaf
emergence were synchronized with the surface climate.
Zeng et al. (1999) found that dynamic vegetation pro-
cesses could enhance the low-frequency variability of
rainfall in the Sahel region. Wang et al. (2011) presented
evidence from a numerical model that vegetation dynam-
ics might have contributed to the observed low-fre-
quency variability of precipitation in the Amazon basin.
Delire et al. (2004) showed that this enhancement of the
low-frequency variability of precipitation by vegetation
dynamics was most likely to occur in the transition zone
between dry and wet climates.

The characteristics of this feedback have been invest-
igated. Delire et al. (2011) summarized their modeled ve-
getation—atmosphere feedback as positive temperature
feedback at mid to high latitudes and negative feedback
in semiarid regions, as well as positive precipitation feed-
back in semiarid regions. Using a regional earth system
model coupled with an interactive vegetation—atmo-
sphere model in the representative concentration path-
way (RCP) 8.5 future climate scenario, Wu et al. (2016)
found that vegetation-mediated feedbacks in Africa were
generally negative with respect to temperature and posit-
ive with respect to precipitation, enhancing the reduction
in rainfall over the rainforest areas (Wu et al., 2016). In
another African study, Yu et al. (2016) used a regional
climate model with dynamic vegetation processes to in-
vestigate the role of vegetation feedback in future cli-
mate change in West Africa. A high sensitivity of cli-
mate projection to dynamic vegetation feedback was
found mainly in the semiarid areas of West Africa, but
there was little signal in the wet tropics (Yu et al., 2016).

Using the Regional Climate Model (RegCM) coupled
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with the Community Land Model (CLM), including
modules of carbon—nitrogen cycling (CN) and vegeta-
tion dynamics (DV), Shi et al. (2018) evaluated the per-
formance of the model with different capacities to repres-
ent vegetation processes in simulating the present day
climate over China. They found that relative to RegCM-
CLM, both RegCM-CLM-CN and RegCM-CLM-CN-
DV performed better in simulating the interannual vari-
ability of temperature and the spatial distribution of mean
precipitation, but produced larger biases in the mean tem-
perature field as a result of an overestimation of the LAI
and/or an underestimation of the vegetation cover (Shi et
al., 2018).

To assess the ability of current dynamic vegetation
models to produce the observed vegetation dynamics and
to contribute to bias in climate simulations, an offline
study using the Simplified Simple Biosphere Model ver-
sion 4 (SSiB4)/Top-down Representation of Interactive
Foliage and Flora Including Dynamics (TRIFFID) model
was conducted (Zhang et al., 2015; Liu et al., 2019).
Meteorological forcing was used to drive the SSiB4/
TRIFFID simulation without feedback to the atmosphere
in order to identify the major factors underlying the con-
nections between vegetation dynamics and climate vari-
ability. The spatial distribution and temporal variability
of vegetation on seasonal to decadal scales were investig-
ated over North America (Zhang et al., 2015). The
SSiB4/TRIFFID simulation reproduced the main fea-
tures of North America as well as the global distribution
of dominant vegetation types, the vegetation fraction, and
the LAI including its seasonal, interannual, and decadal
variabilities (Zhang et al., 2015; Liu et al., 2019).
However, an investigation of the fully coupled two-way
interaction is required to more comprehensively under-
stand the effects of dynamic vegetation processes on cli-
mate modeling.

By taking advantage of the improved SSiB4/TRIFFID
model, the SSiB4/TRIFFID and SSiB2 models were
coupled with the GFS to investigate vegetation—atmo-
sphere feedback and the effects of dynamic vegetation
processes on global climate simulations. Two experi-
ments were conducted globally by integrating the GFS/
SSiB4/TRIFFID and GFS/SSiB2 simulations from 1948
to 2008. The coupled GFS/SSiB4/TRIFFID model in-
cludes dynamic vegetation processes, whereas the other
model does not include a dynamic vegetation component.

By assessing the GFS/SSiB4/TRIFFID and GFS/SS-
iB2 results against the satellite-derived LAI and albedo,
as well as the observed land surface temperature and pre-
cipitation, the effects of dynamic vegetation processes on
the simulation of precipitation, near-surface temperature,
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and the surface energy budget were identified on monthly
and annual scales.

2. Model and methods

2.1 SSiB4/TRIFFID model

TRIFFID has been widely used in vegetation—climate
interaction studies (Cox et al., 2000; Harper et al., 2016).
In TRIFFID, the vegetation coverage, LAI, and canopy
height of each plant functional type (PFT) are updated
based on the carbon balance. The changes to vegetation
cover are driven by the assimilation, distribution, and ac-
cumulation of carbon, and competition between PFTs.
For a specific PFT, the carbon density (C,) calculation is
based on the carbon balance and competition with other
PFTs:

dc
dt

where [T is the net primary productivity, A is the portion
of carbon used for PFT fraction expansion, and A, is the
local litterfall rate.

The fractional coverage (v) for each PFT is calculated
by:

Y= (1-DI-A,, (D)

C,— —/le*( ZC,]VJ) Yy Cy, 2)

where v, = max{v, 0.01}, y, is the large scale disturb-
ance rate, v; is the coverage of plant type j (j = 1-6), and
Cij is a competition coefficient between the ith plant type
and the jth plant type, which is determined by the com-
petition equation based on the Lotka—Volterra approach.

The original TRIFFID model defines the pattern of ve-
getation at a grid point as being composed of five PFTs.
A new type (tundra shrub) has been added to the TRIF-
FID model to simulate the vegetation in cold regions. SS-
iB4/TRIFFID therefore categorizes global vegetation into
six major PFTs: broadleaf forest, coniferous forest, C3
grasses, C4 plants, shrubs, and tundra shrubs (Cox, 2001;
Xue, 2006; Zhang et al., 2015).

The SSiB model has been widely used in global and
regional climate studies (Xue et al., 1991). It provides
calculations for runoff, radiation, momentum, sensible
heat flux, and latent heat flux. The offline version of SS-
iB has been tested by using data from different sites and
different types of vegetation around the world (Xue et al.,
2001). A photosynthesis model has been implemented
into SSiB to calculate carbon assimilation, forming SS-
iB2 (Zhan et al., 2003). To investigate the interactions
between vegetation and climate, the TRIFFID model
(Cox, 2001) was coupled to SSiB4 (SSiB4/TRIFFID)

Zhang, Z. Q., Y. K. Xue, P. M. Zhai, et al.
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(Xue, 2006). A large number of tests have been conduc-
ted at sites and on regional and global scales to evaluate
the capabilities of the SSiB4/TRIFFID model (Xue,
2006; Zhang et al., 2015; Liu et al., 2019; Liu and Xue,
2020). In the coupled SSiB4/TRIFFID model, SSiB4
provides estimates of the net plant photosynthesis assim-
ilation rate, autotrophic respiration, and other surface
conditions (e.g., soil moisture and canopy temperature)
for TRIFFID. TRIFFID calculates the vegetation dynam-
ics, including the relevant land surface characteristics of
the vegetation cover and structure (e.g., plant height and
LAI) for SSiB4.

2.2 Dataset and experimental design

2.2.1 Dataset
2.2.1.1 Satellite-derived LAI data

Two widely used LAI products were used as a refer-
ence to validate the simulation ability of the GFS/SSiB4/
TRIFFID model: the Global Inventory Monitoring and
Modeling System (GIMMS) Boston University
(GIMMSBU) LAI with a spatial resolution of 0.25° and a
temporal coverage from 1982 to 2011 (Pinzon et al.,
2005; Zhu et al., 2013), and the Global Land Surface
Satellite (GLASS) LAI with a spatial resolution of 0.5°
and a temporal coverage from 1981 to 2012 (Xiao et al.,
2016). These two global biophysical land surface data-
sets are processed as monthly averages.

The GLASS LAI product is generated from time series
of the Moderate Resolution Imaging Spectroradiometer
(MODIS) and Advanced Very High Resolution Ra-
diometer (AVHRR) reflectance data using a general re-
gression neural network method (Xiao et al., 2016). The
GIMMS normalized difference vegetation index product
uses the original raw AVHRR rather than the Pathfinder
corrected bands. Because these two datasets provide in-
valuable surface vegetation information and a measure of
the uncertainty in the satellite products, both the LAIs are
used to evaluate the model simulations.
2.2.1.2 GLC2000

The global land cover database for the year 2000
(GLC2000) was used to compare the vegetation types.
GLC2000 contains two levels of land cover information:
detailed, regionally optimized land cover legends for
each continent and a less thematically detailed global le-
gend that harmonizes the regional legends into one con-
sistent product. The land cover maps are all based on
daily data from the VEGETATION sensor onboard the
SPOT 4 satellite, although mapping of some regions in-
volved the use of data from other earth-observing sensors
to resolve specific issues (Bartholomé and Belward,
2005). This dataset has a spatial resolution of 1 km and
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22 classifications of vegetation types. For comparison
with the vegetation types produced by the model, the
GLC2000 Global Product was downloaded and pro-
cessed at spatial resolution T62 (about 2.0°) by statistic-
ally accounting for the number of vegetation types in
GLC2000 in the T62 grid and taking a large number of
the same types of vegetation as the dominant vegetation
type. To better compare the modeled vegetation types
with the observations, the vegetation types of GLC2000
were reclassified into 10 types (Table 1).
2.2.1.3 MODIS albedo data

We used the MODIS albedo products. These data
products are currently available at 500-m resolution in
the sinusoidal projection and 0.05° in the latitude/longit-
ude projection for every 8 days since early 2000 (Schaaf
et al., 2002; Gao et al., 2005). The MCD43C product
provides both the black sky albedo (BSA) and the white
sky albedo (WSA). The BSA is a function of the solar
zenith angle and is defined as the albedo without the dif-
fuse radiation component. The WSA is independent of
the solar zenith angle and is defined as the albedo
without the direct radiation component. The all-sky al-
bedo is calculated by combining the BSA and WSA
(Lucht et al., 2000):

a = (1 = faif)aps + fait@ws, 3)

where a is the all-sky albedo, f;;¢ is the diffuse skylight
fraction, and ay, and a,,, are the BSA and WSA, respect-
ively. In previous papers, the diffuse skylight fraction has
not been taken into consideration when calculating the
all-sky albedo (Zhang et al., 2010). He et al. (2014),

Table 1. Comparisons of different land cover classification schemes
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however, used the monthly diffuse and direct downward
radiation from the NCEP reanalysis dataset to calculate
the diffuse skylight fraction and found that the diffuse
skylight fraction varied over both time and space. Qiu et
al. (2016) used monthly diffuse and direct downward ra-
diation data from the NCEP dataset to calculate the dif-
fuse skylight fraction. We used the MODIS albedo data
from Qiu et al. (2016).
2.2.1.4 Near-surface air temperature and precipitation

The Global Historical Climatology Network and Cli-
mate Anomaly Monitoring System (GHCN_CAMS)
Gridded 2 m Temperature (Land) model was used to
compare the difference in air temperature simulated by
the GFS. This dataset consists of high-resolution ana-
lyzed global land surface temperatures from 1948 to near
the present day, with a spatial coverage of 0.5° latitude x
0.5° longitude on a global grid (360 x 720) (Fan and van
den Dool, 2008). The Climate Prediction Center Merged
Analysis of Precipitation (CMAP) rain dataset was also
used. This provides monthly and pentad global gridded
precipitation means and has a temporal coverage from
1979 to the present day, with a spatial coverage of 2.5°
latitude x 2.5° longitude on a global grid (144 x 72) (Xie
and Arkin, 1997).
2.2.2  Experimental design

We used the NCEP GFS to investigate the mechanism
of the interaction between dynamic vegetation processes
and climate. The SSiB2 and SSiB4/TRIFFID models
were incorporated into the NCEP GFS (the NCEP
GFS/SSiB2 and the NCEP GFS/SSiB4/TRIFFID). Using
the GFS/SSiB2 and GFS/SSiB4/TRIFFID models, two

SSiB4/TRIFFID GLC2000
Class Description Class Description
1 Tree cover, broadleaf, evergreen
1 Broadleaf trees 2 Tree cover, broadleaf, deciduous, closed
3 Tree cover, broadleaf, deciduous, open
4 Tree cover, needleleaf, evergreen
2 Needleleaf trees 5 Tree cover, needleleaf, deciduous
3 C3 grasses 13 Herbaceous cover, closed—open
4 C4 plants 15 Regularly flooded shrub and/or herbaceous cover
5 Shrubs 11 Shrub cover, closed—open, evergreen
14 Sparse herbaceous or sparse shrub cover
6 Tundra shrubs 12 Shrub cover, closed—open, deciduous
7 Bare land 19 BarF: areas .
22 Artificial surfaces and associated areas
8 Crops 16 Cultivated and managed areas
6 Tree cover, mixed-leaf type
7 Tree cover, regularly flooded, fresh water
8 Tree cover, regularly flooded, saline water
9 Mixed forest 9 Mosaic: tree cover/other natural vegetation
10 Tree cover, burned
17 Mosaic: cropland/tree cover/other natural vegetation
18 Mosaic: cropland/shrub and/or grass cover
10 Snow and ice 21 Snow and ice

11 Water 20

Water bodies
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simulations were conducted from 1948 to 2008 with the
same initial conditions using the NCEP reanalysis data-
set, including sea ice, sea temperature, and the land sur-
face conditions. In the simulation, the sea ice and sea
temperature were taken as climate averages from the
NCEP reanalysis dataset for the same period of the calcu-
lation. For the initial land condition, the values of the re-
lated variables were taken from the climate averages.

The model spatial resolution is T62 (192 x 94), the
time step is 20 min, and the output interval is 6 h. To cal-
culate the correlation coefficients, the data were pro-
cessed as monthly and yearly means, the same as the
satellite-derived data. The spatial resolution was interpol-
ated into T62. The temperature, precipitation, and satel-
lite-derived LAI and albedo were averaged in the grid
from a fine resolution and the dominant vegetation types
were calculated statistically based on the percentage of
vegetation types in the grid.

In GFS/SSiB2, the monthly LAI is specified as an in-
put and is obtained from a Simple Biosphere Model ver-
sion 2 (SiB2) vegetation parameter table. The table
provides the monthly LAI for 13 land cover types and is
based on satellite measurements, ground measurements,
and literature data (Sellers et al., 1996; Xue et al., 1996).
Because the LAI in SSiB2 is based on a table and the
LAI is determined based on the land cover type, the LAI
dataset itself has no spatial resolution (the spatial resolu-
tion is determined by the GFS model grid). The LAI in
the table is changed every month (i.e., the temporal resol-
ution is monthly). However, the data have no interannual
variation. The results from GFS/SSiB2 were used as a
control and compared with the results from the GFS/
SSiB4/TRIFFID model to identify the effects of dynamic
vegetation processes on the modeled climate.

The LAI is an essential parameter used to monitor
global vegetation. Unlike SSiB2, the SSiB4/TRIFFID
model has multiple PFTs within each model grid cell. To
compare the simulated LAI with GIMMS and GLASS,
the total simulated LAI was calculated as the area-
weighted average LAI among different PFTs:

6
LAI = Z fLAL, @)
i=1

where f; (i = 1-6) is the vegetation fraction for each ve-
getation type and LAI; is the LAI for each vegetation
type modeled by SSiB4/TRIFFID.

To investigate the effects of dynamic vegetation pro-
cesses on the regional climate, the globe was divided into
eight sub-regions (Xue et al., 2010). The definitions of

these sub-regions are given in Table 2 and the corres-
ponding boundaries are shown in Fig. 1. To facilitate the
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calculations, the regions were divided into rectangular re-
gions. The sub-regions may therefore not be exactly the
same as the geographical divisions of the world. In addi-
tion to the sub-regions, Fig. 1 also shows the fractional
distribution of different vegetation types modeled by SS-
iB4/TRIFFID; the vegetation fraction is averaged over
the last 10 years of the simulation (1998-2008).

Figure 1 shows that after 50 years of model adjust-
ment, the spatial distribution patterns of tundra shrubs,
shrubs, and needleleaf trees produced by the SSiB4/
TRIFFID model over mid to high latitudes are very sim-
ilar to those in the GLC2000 map (Latifovic et al., 2002;
Mayaux et al., 2004). The distributions of simulated
broadleaf trees, C3 grass, and C4 plants are also gener-
ally consistent with the published distribution of vegeta-
tion (e.g., DeFries and Townshend, 1994; Woodward et
al., 2004; MacDonald, 2010).

Figure 2 compares the dominant vegetation types sim-
ulated by the GFS/SSiB4/TRIFFID model with those of
the GLC2000 model. The GLC2000 model includes cro-
plands, whereas the SSiB4/TRIFFID has only natural ve-
getation types with no agricultural land. Figure 2 shows
that in general, the dominant vegetation types produced
by the model agree with the observations. The simulated
land cover of broadleaf and needleleaf trees generally
agree with the observations, but some differences occur
in and around semiarid areas and in some non-forest re-
gions. The SSiB4/TRIFFID model used here did not pro-
duce West African shrubland well, but this has been im-
proved in a later version (Liu et al., 2019). The GLC2000
model was unable to show the South African Kalahari
and Australian deserts, which were produced by the SS-
iB4/TRIFFID model. Overall, the SSiB4/TRIFFID model
produced a reasonable distribution of the spatial patterns
of forest, tundra shrubs, shrubs, and C3 and C4 plants,
consistent with the GLC2000 map (Latifovic et al., 2002;
Mayaux et al., 2004) and other published distributions of
vegetation (e.g., DeFries and Townshend, 1994; Wood-
ward et al., 2004; MacDonald, 2010).

Table 3 compares the percentage of global coverage
for each dominant vegetation type among the GLC2000,
SSiB4/TRIFFID, and SSiB2 models. Note that the calcu-
lation has masked out the areas of types 8 (crops), 9
(mixed forest), 10 (land ice), and 11 (water) of GLC2000
in Table 1. The SSiB4 model has no mixed forest PFT.
Table 3 shows that the model biases of C4 plants, shrubs,
tundra shrubs, and bare lands simulated by the
SSiB4/TRIFFID model are substantially reduced, whereas
other types are similar, indicating that the vegetation dy-
namics improve the ability of the model to simulate the
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Fig. 1. Simulated vegetation fractions (%) for different PFTs averaged from 1998 to 2008. The black boxes are the eight regions defined in Table 2.

spatial coverage of vegetation types.

3. Comparison of the simulation results with
observations

3.1 Comparison of the simulated LAI with satellite-de-

rived LAI
Figures 3 and 4 compare the observed (GIMMS and

Table 2. Domain coordinates of the regions for statistical calculations

Region No. Name Longitude Latitude
1 Africa 20°W-50°E 35°S-37°N
2 South Asia 60°—95°E 0°-37°N
3 Southeast Asia 95°-141°E 10°S-27°N
4 East Asia 95°-170°E 27°-70°N
5 North America 170°-20°W 0°-85°N
6 South America 90°-30°W 60°S-0°
7 Europe 0°-67°E 45°-72°N
8 Australia 113°-153°E 42°-10°S

GLASS) and simulated LAI and the prescribed LAI
(Sellers et al., 1996) in the run without dynamic vegeta-
tion. The winter (DJF), summer (JJA), and annual (ANN)
LAI are averaged over the time period 1982-2008. The
differences between two seasons (JJA minus DJF) are
also shown to delineate the seasonal variability.

Although the four sets of LAI show some generally
similar spatial distribution patterns, there are important
differences between SSiB2 and the other simulations.
The greatest differences appear in JJA (Figs. 3b;—by)
over the high latitudes of the Northern Hemisphere, Aus-
tralia, and South and East Asia. The LAIs from the
GFS/SSiB4/TRIFFID, GIMMS, and GLASS simulations
are generally consistent. The spatial correlation coeffi-
cients between the annual averages produced by the
GFS/SSiB4/TRIFFID and GIMMS/GLASS simulations
are 0.61 and 0.61.
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Fig. 2. Comparisons of the dominant vegetation types between the GFS/SSiB4/TRIFFID simulation and satellite products. 1: Broadleaf trees, 2:
needleleaf trees, 3: C3 grass, 4: C4 plants (savanna), 5: shrubs, 6: tundra shrubs, 7: bare land, 8: cropland, 9: mixed forest, and 10: ice and snow.

Table 3. Area percentages of dominant vegetation types

Vegetation type Broadleaf tree Needleleaf tree C3 grass C4plant  Shrub Tundra shrub Bare land
GLC2000 22 26 4 2 27 8 11
SSiB4/TRIFFID 21 20 11 7 23 9 9
SSiB2 21 20 4 16 17 18 4

Table 4 shows the spatial averages of the correlations
and standard deviations between the simulated and
GLASS monthly mean LAIs from 1982 to 2002 for dif-
ferent regions. The LAI correlations between the SSiB4/
TRIFFID and GLASS simulations are relatively higher
than those between the SSiB2 and GLASS simulations
for different regions. The standard deviations of the SS-
iB4/TRIFFID simulation are closer to those of the
GLASS simulation than to those of the SSiB2 simulation
for different regions. The correlation coefficients be-
tween the GFS/SSiB2 and GIMMS/GLASS simulation
are 0.58/0.57 (Fig. 3), respectively. The ratio of the total
amount of bare land area in the global land area is larger
in the GFS/SSiB2 simulation (about 65%) than in the
other three simulations over high latitudes, South Asia,
and the dry regions of Australia (Table 5), where they are
only 52%, 42%, and 40% for the GFS/SSiB4/TRIFFID,
GIMMS, and GLASS simulations, respectively.

Large seasonal changes in the LAI occur in the North-
ern Hemisphere in the satellite observations. Figures
3d,—d, compare the spatial correlation coefficients for
JJA — DIJF. Although the correlations between the
GFS/SSiB4/TRIFFID and GIMMS/GLASS simulations
are 0.79/0.81, the correlation coefficients between the
GFS/SSiB2 and GIMMS/GLASS simulations are only
0.60/0.65 (Fig. 3). The spatial correlation coefficients are
statistically significant at the significance level of 0.01.
The vegetation specified in the GFS/SSiB2 simulation is
unable to catch the features simulated by the GFS/
SSiB4/TRIFFID simulations. In addition, the latitudinal
variations of the zonally averaged LAI in Figs. 4a—d also
show that the GFS/SSiB4/TRIFFID simulation is closer

to the observations.

Figure 5 compares the temporal correlations between
the monthly LAI in the SSiB2 simulation and the LAI in
the GIMMS and GLASS simulations from 1982 to 2008.
In the SSiB2 simulation, the LAI has a monthly but not
an interannual variation. The LAI data are extended by
repeating the 12 monthly values for each year for the en-
tire period.

Figure 5 shows that the global spatial correlation
between the GFS/SSiB4/TRIFFID LAI and the satellite-
derived LAI is consistently higher than that between the
GFS/SSiB2 LAI and the satellite-derived LAI in every
year. The temporal correlation coefficients between the
globally averaged monthly GFS/SSiB2 LAI and the
GIMMS/GLASS LAI are only 0.31/0.29, respectively,
although the correlation coefficients for the GFS/SSiB4/
TRIFFID simulations are 0.47/0.46, respectively. The
correlation coefficients increase by about 51% and 58%,
respectively. The high correlations mainly occur in the
Northern Hemisphere. The GFS/SSiB4/TRIFFID and
GFS/SSiB2 simulations give similar results over the
Amazon region, which is covered by dense evergreen
forest with limited monthly variation, and the global dry
arid regions with a small LAL

Figure 6 shows the interannual variations in the spa-
tial correlations of the global annual LAI between the
simulations and GLASS and the root-mean-square error
(RMSE). The correlation coefficient between the
GIMMS and the GLASS data is about 0.95. The correla-
tion coefficient between the LAI produced by the GFS/
SSiB4/TRIFFID simulation and the GLASS data is about
0.57, which is closer to the observations than the
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Fig. 3. Simulated and satellite-derived LAI averaged from 1982 to 2008. (a;, by, ¢, d;) GFS/SSiB4/TRIFFID simulation, (a,, b,, ¢,, d,) spe-
cified in GFS/SSiB2, (a3, bs, ¢3, d3) GIMMS, and (ay, by, ¢4, d;) GLASS for DJF, JJA, annual average, and difference between summer and
winter. The values in parentheses in the subtitle of each panel in two left-hand columns are the global spatial correlations between the simulated
LAI and the GIMMS/GLASS LALI, respectively.

Table 4. Spatially averaged correlation coefficients between the simulated LAI by the SSiB4/TRIFFID (S4)/SSiB2 (S2) and GLASS LAI (G)
simulations and the standard deviations from 1982 to 2002 for different regions

Region 1 2 3 4 5 6 7 8 Globe

Correlation coefficient S4 0.32 0.20 0.17 0.78 0.50 0.20 0.64 0.06 0.46
S2 0.11 0.08 0.15 0.53 0.46 —0.02 0.47 0.05 0.29
G 0.33 0.30 0.58 0.72 0.52 0.48 0.80 0.19 0.45

Standard deviation S4 0.22 0.17 0.23 0.68 0.21 0.28 0.84 0.25 0.19
S2 0.13 0.09 0.15 0.56 0.15 0.20 0.55 0.08 0.13

Table 5. Comparisons of the amount of bare land area (%) between the simulations and observations (GIMMS and GLASS)

Season GFS/SSiB4/TRIFFID GFS/SSiB2 GIMMS GLASS

DJF JJA DJF JJA DJF JJA DJF JJA
Southeast Asia 75 75 76 77 48 48 34 33
Australia 66 58 86 86 37 37 31 32
30°-65°N 53 52 68 65 49 42 54 40

GFS/SSiB2 simulation. The spatial RMSE between the 3.2  Evaluation of the simulated surface albedo

GFS/SSiB4/TRIFFID simulation and the satellite-de- The change in the land surface albedo is highly correl-
rived LAI is consistently smaller than that for the GFS/  ated with the vegetation cover (Brovkin et al., 2013). Be-
SSiB2 simulation. cause there is an interannual variation in the vegetation
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Fig. 4. Comparisons of the zonal mean JJA and DJF LAI between the simulations and satellite products averaged over the time period
1982-2008.

(a;) LAI correlation between SSiB2 and GIMMS (0.31)

60N 1 2% 60N T2
30N - 30N
EQ 4 EQ 4
308 4 308 4
608 | 608 |
180 120W  60W 0 60E 120E 180 180 20W 60w 0 60E 120E 180

(a,) LAI correlation between SSiB4 and GIMMS (0.47) (b,) LAI correlation between SSiB4 and GLASS (0.46)

60N _.§ = = o = : 60N _%‘ _—= : - B 'T-_t; - -
30N S 3N ' ¢ 3
EQ A EQ A -
308 4 . 308 - &2
60S <- . 60S - £- -
180 120W  60W 180 120W  60W 0 60E  120E 180
0.25 03 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 5. Correlations of the monthly LAI between the SSiB2 and (a;) GIMMS/(b,) GLASS simulations and between the SSiB4/TRIFFID and (a,)
GIMMS/(b,) GLASS simulations during the time period 1982-2008.

cover and other vegetation conditions on the land sur- ences between the simulations and observations. The res-
face in the GFS/SSiB4/TRIFFID simulation, the surface ults are calculated based on monthly data at every grid
albedo, roughness, and ground evaporation are also point from 1982 to 2008. Figure 7 shows that the albedo
changed. produced by the GFS/SSiB4/TRIFFID and MODIS al-

Figure 7 shows the correlations, RMSE, and the differ- bedo have relatively high correlations compared with the
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Fig. 6. Comparison of the spatial correlations between the simulated
global annual LAI and the GLASS simulation.
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GFS/SSiB2 albedo, especially at midlatitudes in the
Northern Hemisphere, and a relatively low RMSE. The
large RMSE between the albedo produced by the
GFS/SSiB2 and the MODIS albedo occurs at high latit-
udes in the Northern Hemisphere, which may be attrib-
uted to the snow cover and snow-masking effects of
trees.

Figure 7 shows that, in general, the correlation coeffi-
cient between the GFS/SSiB4/TRIFFID and MODIS al-
bedo increases, but there are still some areas in which the
coefficient decreases. The area with a large negative
coefficient occurs in Australia, corresponding to a large
RMSE. As seen from the statistics in Table 6, the simu-
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Fig. 7. Comparisons of (a;) the correlations between the GFS/SSiB2 simulated monthly albedo from 1982 to 2008 and MODIS, (b,) the correla-
tions between the GFS/SSiB4/TRIFFID simulated monthly albedo and MODIS, and (c,) the difference between (b;) and (a;). RMSE for (a,)
GFS/SSiB2, (b,) GFS/SSiB4/TRIFFID, and (c,) the difference between (b,) and (a,).
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lated regional average albedo of the GFS/SSiB4/TRIF-
FID simulation is lower by about 3% than that of the
GFS/SSiB2 simulation, which may be caused by the
overestimation of the LAI (Figs. 3a;,—d,).

3.3 Assessing the simulated surface air temperature and
precipitation

A more realistic LAI and albedo should produce bet-
ter climate simulations. This section compares the simu-
lated atmospheric results from the GFS/SSiB4/TRIFFID
and GFS/SSiB2 simulations with the observations.

3.3.1 Correlation between simulated surface air tem-
perature and CAMS temperature

To evaluate the relationship between the simulated
near-surface air temperature and the observations, the
correlations between the air temperature at 2 m above the
ground simulated by the GFS/SSiB4/TRIFFID and
GFS/SSiB2 models and the near-surface air temperature
of GHCN_CAMS at 2 m were calculated (Fig. 8).

After including the dynamic vegetation processes, the
correlation between the temperature modeled by the
GFS/SSiB4/TRIFFID simulation and the temperature of
GHCN_CAMS increases (Fig. 8c). Apart from the re-
gion near the equator, where in some areas, the correla-
tion is reduced after considering the dynamic vegetation,
the correlation increases in southern Africa, southern

(a) Correlation between SSiB2 and CAMS
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Asia, and most of the midlatitudes of the Northern and
Southern Hemispheres. These results suggest that incor-
porating dynamic vegetation processes in land surface
models improves the modeling of surface temperature,
especially over midlatitudes in both the Northern and
Southern Hemispheres.

The temporal correlation between the simulated
monthly surface air temperature and the GHCN_CAMS
temperature is also calculated for the different sub-re-
gions (as defined in Fig. 1) and the statistical results are
listed in Table 6. The correlation coefficients in Table 6
are statistically significant at a significance level of 0.01,
which shows the effects of the improvement in the dy-
namic vegetation processes on simulations of the surface
air temperature, in particular in Africa, Southeast Asia,
and South America. This will, in turn, improve the en-
ergy balance at the land surface.

3.3.2 Correlation between simulated precipitation and
CMAP precipitation

Figure 9 shows the correlations between the monthly
mean precipitation simulated by the coupled GFS/SSiB4/
TRIFFID and GFS/SSiB2 models and the CMAP precip-
itation. The correlation is calculated by using monthly
data from 1979 to 2008. Figure 9c shows the difference
between the GFS/SSiB4/TRIFFID and GFS/SSiB2 simu-
lations. In general, the incorporation of the dynamic ve-
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Fig. 8.
SSiB4/TRIFFID simulation, and (c) the difference between (b) and (a).
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Table 6. Comparison of the correlations between the simulated and CAMS monthly near-surface temperature (C1) and correlations between the
simulated and CMAP monthly precipitation (C2) from 1979 to 2008, and the average differences in the surface variables between the
SSiB4/TRIFFID and SSiB2 (D) simulations from 1982 to 2002 in different regions

Region 1 2 3 4 5 6 7 8 Globe

SSiB2 0.50 0.65 0.35 0.77 0.68 0.39 0.72 0.68 0.60

Cl SSiB4/TRIFFID 0.56 0.72 0.41 0.82 0.70 0.44 0.77 0.72 0.66
Increase (%) 12 11 17 7 3 13 7 6 10

SSiB2 0.19 0.22 0.21 0.22 0.19 0.25 0.11 0.14 0.19

C2 SSiB4/TRIFFID 0.25 0.27 0.22 0.28 0.19 0.27 0.12 0.15 0.22
Increase (%) 32 23 5 27 0 8 9 7 16

Precipitation (mm day ) 0.23 —-0.08 -0.21 -0.10 0.04 —-0.02 —-0.10 0.31 0.01

Latent heat flux (W m™2) 0.47 -0.71 -3.15 -1.76 0.84 0.83 =5.11 5.89 0.28

D Sensible heat flux (W m2) —-1.89 -0.85 0.64 —0.80 -0.55 —0.24 -1.36 1.69 —0.43

Near-surface temperature (°C) —0.30 -0.11 -0.23 —-0.70 -0.21 —-0.02 -0.72 0.52 -0.17

Albedo (%) 0.29 0.13 0.10 0.85 0.22 0.35 2.39 -3.02 0.09
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Fig. 9. Correlations between the CMAP monthly mean precipitation (1979—2008) and (a) the GFS/SSiB2 simulation, (b) the GFS/SSiB4/TRIF-

FID simulation, and (c) the difference between (b) and (a).

getation model into the land surface model improves the
simulation of precipitation, but the results vary among
different regions.

Table 6 lists the correlation for the monthly precipita-
tion from 1979 to 2008 for the eight sub-regions and the
whole globe. The correlation coefficients are lower than
those for temperature, but are still statistically significant
at the 0.01 significance level for different regions. There
is a significant improvement in precipitation over Africa,
eastern Asia, southern America, and Australia. The im-
proved LAI and surface albedo contribute to these im-
provements.

The dynamic vegetation model better describes the
seasonal and annual variation in vegetation. It has long
been known that there is strong vegetation—precipitation
feedback on both continental and global scales (Charney
et al., 1977; Xue et al., 1990, 2010; Wang et al., 2004;
Kucharski et al., 2013; Li et al., 2018). The results in Fig.
9 and Table 6 further demonstrate that including the dy-
namic vegetation processes can improve the correlation
between the simulated and observation precipitation in
the Sahel region.

3.4 Relationship between LAI and surface temperature

In the GFS/SSiB4/TRIFFID simulation, the paramet-
ers related to vegetation (e.g., the LAI and PFT fraction)

change with climate. The LAI in the SSiB4/TRIFFID
simulation interacts with the climate, whereas the LAI in
the SSiB2 simulation does not respond to climate variab-
ility. The temporal correlations between the surface tem-
perature and the observed, specified, and simulated LAIs
were analyzed by using the monthly mean data from
1982 to 2008 (Fig. 10). Figure 10 only shows the correla-
tion coefficients that reach the statistically significant
level of 0.01.

The correlation coefficient between the LAI and the
temperature modeled by the GFS/SSiB4/TRIFFID simu-
lation is significantly greater than that between the spe-
cified LAI and the temperature modeled by the GFS/SS-
iB2 simulation and is more consistent with the correla-
tions between the GLASS LAI and the GHCN CAMS
temperatures. A positive correlation mainly occurs in the
high latitudes of the Northern Hemisphere, whereas a
negative correlation mainly appears at low latitudes near
the equator. This result is in agreement with the general
consensus that the positive correlation at high latitudes
results from both warming enhancing the growth of ve-
getation and more vegetation (and therefore a lower al-
bedo) favoring warming. In the tropics, the negative cor-
relation results from the heat stress on vegetation and the
cooling effect of vegetation through evaporative cooling.
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Fig. 10. Correlations for the time period 1982-2008 (a) between the monthly surface temperature simulated by the GFS/SSiB2 and GFS/SSiB2
LAI models, (b) between the monthly surface temperature simulated by the GFS/SSiB4/TRIFFID and GFS/SSiB4/TRIFFID LAI models, and (c)
between the monthly GLASS LAI and CAMS temperature.
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4. Water and energy budgets

Land surface processes modulate the surface water and
energy cycles, which in turn, affect the atmospheric cir-
culation. Changes in the surface energy and water bal-
ance result in different results for the simulation of pre-
cipitation and surface temperature by the GFS/SSiB4/
TRIFFID and GFS/SSiB2 models.

Figures 11a and 11b show the average difference in
the simulated surface latent and sensible heat fluxes
between the GFS/SSiB4/TRIFFID and GFS/SSiB2 mod-
els from 1979 to 2008, respectively. In most parts of the
world (e.g., Africa, South America, and Australia), the
signs of the difference in sensible heat flux are the op-
posite to those of the difference in the latent heat flux. In
these areas, there is no large difference in the albedo and,
in turn, the net radiation, between these two runs (Fig. 7).
The dynamic vegetation processes therefore just produce
a different energy partitioning from the SSiB2 model.
However, in many other regions (e.g., areas of boreal
forest at mid and high latitudes in the Northern Hemi-
sphere), where the albedo shows substantial differences
(Fig. 7), the changes in both the sensible and latent heat
flux have a positive sign, suggesting an increase in net
radiation as a result of the difference in the albedo. Table
6 summarizes the changes in the surface energy compon-
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Fig. 11. Mean difference in the simulated land surface (a) latent heat
(LH) flux and (b) sensible heat (SH) flux between the GFS/SSiB4/
TRIFFID and GFS/SSiB2 simulations.
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ents.

Figure 12 shows the difference between the precipita-
tion modeled by GFS/SSiB4/TRIFFID and GFS/SSiB2
averaged over the time period 1979-2008. The largest in-
crease in precipitation appears over southern Africa,
Australia, large parts of South America, and the Great
Plains of North America. By contrast, precipitation de-
creases over the mid to high latitudes of the Northern
Hemisphere and Southeast Asia. A comparison of Figs.
12 and 11a shows that the positive and negative patterns
are very similar, suggesting that the change in the latent
heat flux has a dominant role in precipitation. This simil-
arity also reflects the effect of water limitation on the lat-
ent heat flux.

Modulation of the surface energy balance by the ve-
getation dynamics contributes to the difference in precip-
itation. A comparison with Figs. 5, 7, and 9 shows that
most of the areas with a large difference in precipitation
in Fig. 12 are coincident with the areas with an increased
correlation coefficient between the simulated and ob-
served precipitation (Fig. 9), as well as the simulated and
observed LAl/albedo (Fig. 5/Fig. 7). The inclusion of dy-
namic vegetation produces more consistent and realistic
surface conditions, which should contribute to a more
realistic simulation of precipitation.

5. Conclusions and discussion

This study used two general circulation models (1) the
NCEP GFS coupled with the biophysical model SSiB2
and (2) the NCEP GFS coupled with the biophysical and
dynamic vegetation models SSiB4/TRIFFID to investig-
ate the effects of dynamic vegetation processes on nu-
merical climate simulations. Two experiments were con-
ducted globally by integrating the GFS/SSiB2 and GFS/
SSiB4/TRIFFID simulations from 1948 to 2008. By
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Fig. 12. Mean difference in precipitation between the GFS/SSiB4/

TRIFFID and GFS/SSiB2 simulations.



1054

comparing the results from these two runs and observa-
tional datasets, the effects of dynamic vegetation pro-
cesses on the simulation of climate and its variability
were delineated.

The temporal correlation between the globally aver-
aged monthly LAI modeled by the NCEP GFS/SSiB4/
TRIFFID simulation and the satellite-derived LAI in-
creased by > 50% compared with the GFS/SSiB2 simula-
tion; for JJA and DJF, it increased by about 32% and
25%, respectively. The correlation coefficients between
the GFS/SSiB4/TRIFFID simulated LAl/surface albedo
and the satellite-derived LAl/albedo were significantly
higher than those of the GFS/SSiB2 simulation, which
specifies vegetation conditions based on a table. This
suggests that the land surface model including dynamic
vegetation processes can more realistically present land
surface processes and the surface energy balance and has
the potential to provide better land—atmosphere interac-
tions and climate simulations.

Our main conclusions are summarized as follows.

(1) After incorporation of the dynamic vegetation pro-
cesses, the interannual variation of vegetation cover can
be better simulated over many parts of the world, espe-
cially in semiarid regions where the climate is sensitive
to vegetation conditions.

(2) The near-surface temperature is better simulated
when using improved simulations in the surface vari-
ables and associated surface energy balance. The correla-
tions between the simulated and observed monthly mean
near-surface air temperature over Africa, Southeast Asia,
and South America increased by about 13%, 17%, and
16%, respectively.

(3) Dynamic vegetation processes can effectively
modulate local changes in precipitation, which are con-
sistent with the spatial patterns of changes in the surface
latent heat flux, suggesting that the evaporation is the
dominant factor in influencing the seasonal and interan-
nual variation of precipitation.
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