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Abstract

This paper investigates solvability of fully coupled systems of forward–backward stochastic differ-
ntial equations (FBSDEs) with irregular coefficients. In particular, we assume that the coefficients of
he FBSDEs are merely measurable and bounded in the forward process. We crucially use compactness
esults from the theory of Malliavin calculus to construct strong solutions. Despite the irregularity of the
oefficients, the solutions turn out to be differentiable, at least in the Malliavin sense and, as functions
f the initial variable, in the Sobolev sense.
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1. Introduction

The main result of this work concerns the existence of a (strong) solution of the forward–
ackward stochastic differential equation (FBSDE){

X t = x +
∫ t

0 b(u, Xu, Yu, Zu) du +
∫ t

0 σ dWu

Yt = h(XT ) +
∫ T

t g(u, Xu, Yu, Zu)du −
∫ T

t Zu dWu
(1.1)

with b, g and h measurable in (t, x), and uniformly continuous in (y, z), see Theorem 2.1.
The proof of this result is partly inspired from results by Ma and Zhang [43] and Delarue
and Guatteri [17] on weak solutions of FBSDE under similar conditions. Our contribution in
this direction is to obtain strong solutions and allow irregularity of h. Because of the lack
of regularity of the coefficients, usual fixed point and Picard iterations techniques cannot be
applied here. Let us briefly describe our method:

We start as in [17,43] by approximating the functions b, g and h by smooth function, e.g. by
mollification. The FBSDE associated to these functions admits unique solutions (Xn, Y n, Zn)
and a so-called decoupling field vn which is the classical solution of an associated quasilinear
PDE. The function vn is called a decoupling field because it holds

Y n
t = vn(t, Xn

t ) and Zn
T = Dxvn(t, Xn

t )σ, (1.2)

which allows to decouple the system. The problem is now to derive strong limits for the above
sequences and to show that these limits satisfy the desired equation. Using classical a priori
estimations for such equations, (see e.g. [37] or the statements recalled in the Appendix) it can
be shown that for every δ > 0 and every t ∈ [0, T − δ] the sequence of functions vn admits
ome compactness properties allowing to derive a limit v for vn and a limit w for Dxvn . When

h is sufficiently regular, say Hölder continuous, δ can be taken equal to zero. In this setting,
the idea of [17,43] is to also gain sufficiently good control over the time-derivative and the
Hessian using e.g. Calderon–Zygmund theory. The approach proposed here is to rather use
ideas from Malliavin calculus, notably the compactness principle due to Da Prato et al. [13],
to find a limit X of the sequence (Xn) in the strong sense. Together with the representation
1.2), this allows to find strong limits for Y and Z (at least for t small enough). It remains to

verify that the limiting processes (X, Y, Z ) actually solve the desired equation.
We further study regularity properties of solutions. In fact, despite the singularity of the

coefficients, it turns out that the solutions enjoy satisfactory regularity, at least in the Malliavin
and Sobolev sense. These are interesting results in that, the convention in the field is that
solutions inherit the regularity properties of the coefficients [3,41].

FBSDEs are an essential tool in the investigation of stochastic control problems and
stochastic differential games. Due to Pontryagin’s stochastic maximum principle, they can
be used to characterize optimal controls and Nash equilibriums [11,38,55]. These equations
also provide a probabilistic approach to deal with quasilinear parabolic partial differential
equations via the nonlinear Feynman–Kac formula initiated by Pardoux and Peng [53] and
further developed notably in [8,16,33,54]. As a result, FBSDEs have received a lot of attention
in the applied probability community and appear in various applications, we refer for instance
to [12,21,23,24,49] and the references therein. When the coefficients of the equations, i.e. the
functions b, g and h are sufficiently smooth, solvability of (1.1) is well-understood. Refer for
instance to [15,42,56] for the case of equations with Lipschitz continuous coefficients and
to [36,41] for locally Lipschitz coefficients. When the coefficients are not regular enough,
while an SDEs theory is well-developed (see e.g. [5,35,46,47,50]) BSDEs with irregular
2
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coefficients are less well-studied. A notable exception is the notion of weak solution of FBSDE
(very analogous to weak solutions of SDEs) introduced by Buckdahn and Engelbert [10]
and further investigated in [17,43,44]. These solutions are constructed on a probability space
that is possibly different from the underlying probability space. On the other hand, more
recently, Issoglio and Jing [29] studied two new classes of multidimensional FBSDEs with
distributional coefficients. In many applications, for instance to the construction of feedback
solutions of stochastic control problems, it is important to have strong solutions, and to analyze
regularity properties thereof. More details on such applications to stochastic control theory are
given in Section 4.2.

The remainder of the paper is organized as follows: In Section 2, we make precise the
mathematical setting of the work and state the main results: Existence of strong solutions
for FBSDEs with rough coefficients. The proof is given in Section 3.1. The regularity of the
solutions of the FBSDE is analyzed in Section 3.2. We consider both regularity in the Malliavin
(variational) sense and in the Sobolev sense.

2. Setting and main results

Let T ∈ (0, ∞) and d ∈ N be fixed and consider a probability space (Ω ,F , P) equipped
with the completed filtration (Ft )t∈[0,T ] of a d-dimensional Brownian motion W . Throughout
he paper, the product Ω × [0, T ] is endowed with the predictable σ -algebra. Subsets of Rk ,
∈ N, are always endowed with the Borel σ -algebra induced by the Euclidean norm | · |. Let

s consider the following conditions:

(A1) The function b : [0, T ] × Rd
× Rl

× Rl×d
→ Rd is Borel measurable and it holds

|b(t, x, y, z)| ≤ k1(1 + |y|)

for some k1 ≥ 0 and every (x, y, z) ∈ Rd
× Rl

× Rl×d . Moreover, for each fixed
(t, x) the restriction of b(t, x, ·, ·) to BR(0) × Rl×d is continuous, with R := k3eT k2

and BR(0) := {(y, z) : |y| ≤ R}.
(A2) σ ∈ Rd×d and ξσσ ∗ξ > Λ|ξ |

2 for some Λ > 0 and for all ξ ∈ Rd . Here ∗ stands for
the transpose of a matrix.

(A3) The function g : [0, T ] ×Rd
×Rl

×Rl×d
→ Rl is measurable, uniformly continuous in

(y, z), uniformly in (t, x) ∈ [0, T ] × Rd and satisfies

|g(t, x, y, z)| ≤ k2(1 + |y| + |z|)

for some k2 ≥ 0, and for every (t, x, y, z) ∈ [0, T ] × Rd
× Rl

× Rl×d .
(A4) The function h : Rd

→ Rl is measurable and satisfies

|h(x)| ≤ k3

for some k3 ≥ 0 and for every x ∈ Rd .

he following is our first main result: In its statement, the space S2(Rd ) ×S2(Rl) ×H2(Rl×d )
s defined as follows: For p ∈ [1, ∞] and k ∈ N, denote by S p(Rk) the space of all adapted
ontinuous processes X with values in Rk such that ∥X∥

p
S p(Rk ) := E[(supt∈[0,T ]|X t |)p] < ∞,

nd by Hp(Rk) the space of all progressively measurable processes Z with values in Rk such
hat ∥Z∥Hp(Rk ) := E[(

∫ T
0 |Zu |

2du)p/2] < ∞.

heorem 2.1. Assume that the conditions (A1)–(A4) hold and that one of the following
ssumptions is satisfied:
3
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(B1) b and g are bounded in z, i.e. |b(t, x, y, z)|+ |g(t, x, y, z)| ≤ C(1+|y|) for all t, x, y, z
for some C ≥ 0.

(B2) h is Lipschitz continuous: |h(x) − h(x ′)| ≤ k3|x − x ′
| for every x, x ′

∈ Rd .

hen the FBSDE (1.1) admits a solution (X, Y, Z ) ∈ S2(Rd ) × S2(Rl) × H2(Rl×d ) such that

Yt = v(t, X t ), Z t = w(t, X t )σ P ⊗ dt-a.s.

or some measurable functions v : [0, T ] × Rd
→ Rl and w : [0, T ] × Rd

→ Rl×d .

The proof of Theorem 2.1 will be given in Section 3.1 where we further prove regularity
f the solutions both in the classical and variational sense. In particular, we will show that
he solution (X, Y ) is Malliavin differentiable, and if the generator g does not depend on x or
oes not depend on z, then (X, Y, Z ) is Malliavin differentiable. Moreover, looking at (X, Y ) as
unctions of the initial value of the forward process, with Probability one, this function belongs
o a weighted Sobolev space. See Propositions 3.4 and 3.5 for details.

. FBSDEs with measurable coefficients

.1. Proof of Theorem 2.1

This section is entirely dedicated to the proof of Theorem 2.1. Throughout, the conditions
A1)–(A4) are in force. Let (bn), (gn) and (hn) be sequences of smooth functions with
ompact support converging pointwise to b, g and h, respectively (e.g. obtained by standard
ollification). We can assume without loss of generality that for each n, the functions hn and

gn satisfy (A3)–(A4) in addition to being smooth and Lipschitz continuous (but with Lipschitz
onstant possibly depending on n). These sequences will be used throughout the proof. We
egin with the following simple lemma which shows that the sequence bn can be chosen so that
he convergence holds uniformly on a given compact in (y, z) and gn such that the convergence
olds locally uniformly in (y, z). The lemma is well-known, we provide a proof since we did
ot find a directly citable reference. This will be needed at the end of the proof of the theorem.

emma 3.1. The sequence of mollifiers (gn) converge to g almost surely in (t, x) and locally
niformly in (y, z). That is, for every t, x and every compact set K ⊆ Rl

× Rl×d it holds that

lim
n→∞

sup(y,z)∈K |gn(t, x, y, z) − g(t, x, y, z)| = 0.

imilarly, (bn) converges to b almost surely in (t, x) and locally uniformly in (y, z) ∈ BR(0) ×
l×d .

roof. We prove the result for some generic function f since the proof for g and b is the
ame. Moreover, since the dimension does not matter, we let for simplicity f : Rd

× Rl be
measurable function that is uniformly continuous in its second component. We consider the

tandard mollifiers φ1
n , φ

2
n respectively defined on Rd and Rl as

φ1
n (·) = c1ndϕ(n| · |), φ2

n (·) = c2nlϕ(n| · |)

here for any x ∈ Rd , ϕ(x) = exp(1/(|x |
2

− 1))1[0,1](|x |) and c1, c2 are two normalizing
onstants such that

∫
Rd φ1

n dx =
∫
Rl φ2

n dx = 1. Recall that the mollification fn is defined as

fn(x, y) :=

∫
f (x − x ′, y − y′)φ1

n (x ′)φ2
n (y′)dx ′dy′.
Rd×Rl

4
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It is well-known that fn converges to f almost surely. Let us show local uniform convergence
n the second variable. Let N ⊆ Rd bet a set of measure zero on the complement of which
fn converges to f , and let K ⊆ Rl be a compact set. Observe that for each n, the support of

1
n , φ

2
n is in the closure of the ball of radius 1/n. On the other hand, given ε > 0, by uniform

ontinuity of f (x, ·), x ∈ N c, there is η > 0 such that for y, y′
∈ Rl satisfying |y − y′

| ≤ η,
t holds that | f (x, y) − g(x, y′)| < ε. Let n ∈ N be sufficiently large. We have

supy∈K | fn(x, y) − f (x, y)|

= supy∈K |

∫
B1/n (0)×B1/n (0)

(
f (x ′, y′) − f (x, y)

)
φ1

n (x − x ′)φ2
n (y − y′) dx ′ dy′

|

≤ supy∈K |

∫
B1/n (0)×B1/n (0)

(
f (x ′, y′) − f (x ′, y)

)
φ1

n (x − x ′)φ2
n (y − y′) dx ′ dy′

|

+ supy∈K |

∫
B1/n (0)×B1/n (0)

(
f (x ′, y) − f (x, y)

)
φ1

n (x − x ′)φ2
n (y − y′) dx ′ dy′

|

≤ ε + supy∈K |

∫
B1/n (0)

(
f (x ′, y) − f (x, y)

)
φ1

n (x − x ′) dx ′
|.

For each n, there is yn ∈ K such that

supy∈K | fn(x, y) − f (x, y)| ≤ ε + |

∫
B1/n (0)

(
f (x ′, yn) − f (x, yn)

)
φ1

n (x − x ′) dx ′
| + 1/n.

Since K is compact, up to a subsequence we can assume that yn converges to some ȳ ∈ K .
Thus, taking n large enough such that |yn − ȳ| ≤ η we have

supy∈K | fn(x, y) − f (x, y)|

≤ ε + |

∫
B1/n (0)

(
f (x ′, yn) − f (x ′, ȳ)

)
+ f (x ′, ȳ) − f (x, yn)φ1

n (x − x ′) dx ′
| + 1/n

≤ 2ε + | fn(x, ȳ) − f (x, yn)| + 1/n.

Taking the limit as n goes to infinity and ε goes to zero to conclude. □

Step 1: Construction of an approximating sequence of solutions. Let n ∈ N be fixed. According
to [15, Theorem 2.6], for every (s, x) ∈ [0, T ] × Rd the FBSDE{

X t = x +
∫ t

s bn(u, Xu, Yu, Zu) du +
∫ t

s σ dWu

Yt = hn(XT ) +
∫ T

t gn(u, Xu, Yu, Zu)du −
∫ T

t Zu dWu t ∈ [s, T ]
(3.1)

admits a unique solution (X s,x,n, Y s,x,n, Z s,x,n) ∈ S2(Rd ) ×S∞(Rl) ×H2(Rl×d ). Denote by Ln

the differential operator

Lnv := bn(t, x, v, Dxvσ )Dxv +
1
2

trace(σσ ∗ Dxxv),

here Dx and Dxx denote the first and second derivatives acting on the space variable.
By [37, Theorem VII.7.1] (or see also [42, Proposition 3.3]) the PDE{

∂tvn(t, x) + Lnvn(t, x) + gn(t, x, vn(t, x), Dxvn(t, x)σ ) = 0
vn(T, x) = hn(x)

(3.2)
5
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admits a unique (classical) solution vn ∈ C1,2([0, T ] × Rd ) that is bounded and with bounded
gradient. Moreover, the solutions of (3.1) and (3.2) are linked through the identities (see [42])

Y s,x,n
t = vn(t, X s,x,n

t ) and Z s,x,n
t = Dxvn(t, X s,x,n

t )σ, t ∈ [s, T ]. (3.3)

The rest of the proof will consist in proving (strong) convergence of the above defined
equence of stochastic processes (X s,x,n, Y s,x,n, Z s,x,n) and to verify that the limiting process
atisfies the FBSDE with measurable drift. Our method will make use of a priori (gradient)
stimates for Sobolev solutions of parabolic quasilinear PDEs which can be found e.g. in [16]
r [37] and that we recall in Appendix. These estimates allow us to have:

emma 3.2. There is a constant R > 0 depending only on k2, k3, T (but not on n) and for
very δ > 0, α ∈ (0, 1) there are constants Cδ and Cα,δ depending on k1, k2, k3, σ, d, l and T ,
nd which do not depend on n such that

|vn(t, x)| ≤ R for all (t, x) ∈ [0, T ] × Rd ,

the derivatives satisfy

|Dxvn(t, x)| ≤ Cδ for every (t, x) ∈ [0, T − δ] × R (3.4)

and if h is α-Hölder continuous, then

|vn(t, x) − vn(t ′, x ′)| ≤ C(|t − t ′
|
α′/2

+ |x − x ′
|
α′

) (3.5)

or every (t, x), (t ′, x ′) ∈ [0, T ] × Rd and some α′
∈ (0, α]. Moreover, if h is Lipschitz

ontinuous, then (3.4) holds with δ = 0.

roof. The boundedness of vn is well-known. We provide it to explicitly derive the constant
R. We have

vn(t, x) = Y t,x,n
t = hn(X t,x,n

T )

+

∫ T

t

∫ 1

0
∂zgn(u, X t,x,n

u , Y t,x,n
u , λZ t,x,n

u ) dλZ t,x,n
u du −

∫ T

t
Z t,x,n

u dWu

+

∫ T

t
gn(u, X t,x,n

u , Y t,x,n
u , 0) du.

Therefore, by the Girsanov’s theorem, conditions (A3)–(A4) and Gronwall’s inequality we have

|vn(t, x)| ≤ k3eT k2 = R for all (t, x) ∈ [0, T ] × Rd .

The bounds (3.4) and (3.5) follow by Theorem A.1. Furthermore, since vn is a classical
solution of (3.2), i.e. vn ∈ C1,2([0, T ] × Rd ), it is in particular a Sobolev solution, and
vn ∈ W 1,2

d+1,loc([0, T ] × Rd ,Rl) (see definition in Appendix). Moreover, if h is Lipschitz
continuous then by definition of (hn), it holds |hn(x) − hn(x ′)| ≤ k3|x − x ′

| for every x, x ′
∈ Rd

and all n ∈ N. Therefore, the last claims follow by Theorem A.2.

Step 2: Candidate solution for the forward equation. In this step, we show that the sequence
(X s,x,n) converges in the strong topology of S2(Rd ). We first show existence of a weak limit.
To ease the presentation, we omit the superscript (s, x) and put

Xn
:= X s,x,n, Y n

:= Y s,x,n and Zn
:= Z s,x,n.
6
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Step 2a: Weak limit. It follows from Step 1 that the process Xn satisfies the forward SDE

Xn
t = x +

∫ t

s
bn(u, Xn

u , vn(u, Xn
u ), Dxvn(u, Xn

u )σ ) du +

∫ t

s
σdWu . (3.6)

emma 3.3. Consider the function b̃n : (t, x) ↦→ bn(t, x, vn(t, x), Dxvn(u, Xn
u )σ ). Under

ither of the conditions (B1) or (B2), the function b̃n is continuously differentiable and
niformly bounded, i.e. there is a constant C ≥ 0 which does not depend on n such that

|̃bn(t, x)| ≤ C for all (t, x) ∈ [0, T ] × Rd .

roof. That b̃n is continuously differentiable follows from the fact that bn is smooth and vn

s twice continuously differentiable. By (A1) and Lemma 3.2, if condition (B1) holds, then for
very (t, x) ∈ [0, T ] × Rd we have

|̃bn(t, x)| ≤ k1(1 + |vn(t, x)|)
≤ k1(1 + C).

hen condition (B2) holds, it follows by Lemma 3.2 that Dxvn is bounded. Thus the result
ollows from the linear growth of b, i.e. (A1).

Due to Lemma 3.3, it follows from standard SDE estimates that the sequence (Xn) satisfies

supn E
[
supt∈[s,T ]|X

n
t |

2
]

< ∞.

herefore (Xn) admits a subsequence which converges to some X̃ in the weak topology of
2(Rd ). This subsequence will be denoted again (Xn).

tep 2b: Strong limit. Since b̃n is Lipschitz continuous, the solution Xn of the SDE (3.6) is
alliavin differentiable and since b̃n is a smooth function with compact support, it follows

y [46, Lemma 3.5] that

E
[Di

t ′ X
n
r − Di

t Xn
r

2]
≤ Cd,T (∥b̃n∥∞)|t − t ′

|
α

≤ Cd,T (∥b̃∥∞)|t − t ′
|
α (3.7)

nd

sup0≤t≤T E
[Dt Xn

r

2]
≤ Cd,T (∥b̃n∥∞) ≤ Cd,T (∥b̃∥∞) (3.8)

or a strictly positive constant Cd,T (∥b̃n∥∞) such that Cd,T is a continuous increasing function,
nd with α = α(r ) > 0. Whereby, Di

t X denotes the Malliavin derivative of the random variable
X at time t in the direction of the Brownian motion W i and ∥x∥ denotes the Euclidean norm
f x irrespective of the dimension. Since the sequence b̃n is bounded (see Eq. (3.6)), it follows
hat the bounds on the right hand sides of (3.7) and (3.8) do not depend on n.

Therefore, it follows from the relative compactness criteria from Malliavin calculus of [13]
hat the sequence (Xn

r ) admits a subsequence (Xnk
r )k converging to some Xr in L2.

It remains to show that the choice of the subsequence (Xnk
r )k does not depend on r . That is,

or every t ∈ [s, T ], (Xnk
t )k converges to X t in L2. In fact, we will show that the whole sequence

onverges. This is done as in the proof of [47, Proposition 2.6]. Assume by contradiction that
or some t ∈ [s, T ], there is a subsequence (nk)k≥0 such that

∥Xnk
− X ∥ ≥ ε. (3.9)
t t L2

7
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Since (3.7) is proved for arbitrary n, it follows again by the compactness criteria of [13] that
(Xnk )k admits a further subsequence (X

nk1
t )k1 which converges in L2 to X t . But since we

showed in Step 2a that the whole sequence of processes (Xn) converges weakly to the process
X̃ , it follows that (X

nk1
t )k1 converges weakly to X̃ t and therefore, by uniqueness of the limit,

X̃ t = X t . Since by (3.9) it holds

∥X
nk1
t − X t∥L2 ≥ ε,

we have a contradiction. Thus,

Xn
t → X t in L2 for every t ∈ [s, T ].

Step 3: Candidate solution for the value process Y and the control process Z. In this part we
how that the sequence (Y n, Zn) converges strongly in H2(Rl) × H2(Rl×d ) to some (Y, Z ).

First recall that (Y n) is a bounded sequence in the Hilbert space H2(Rl). Thus, it admits
subsequence again denoted (Y n) which converges weakly in H2(Rl) to some Y . We will

how that the convergence is actually strong, provided that we restrict ourselves to a small
nough time interval. Let δ ∈ (0, T ) be fixed. By Lemma 3.2, the sequence of functions (vn) is
ounded and equicontinuous on [0, T − δ] ×Rd . Thus, by the Arzela–Ascoli theorem, there is
subsequence again denoted (vn) which converges locally uniformly to a continuous function

δ . Since by Lemma 3.2 the functions vn are Hölder continuous with a coefficient that does
ot depend on n and with common Hölder exponents α′ (in x) and α′/2 (in t), we have

E
[
|vn(t, Xn

t ) − vδ(t, X t )|
2]

≤ E
[
|vn(t, Xn

t ) − vn(t, X t )|
2]

+ E
[
|vn(t, X t ) − vδ(t, X t )|

2]
≤ C E

[
|X t − Xn

t |
2α′]

+ E
[
|vn(t, X t ) − vδ(t, X t )|

2]
→ 0.

(3.10)

herefore, Y n
t = vn(t, Xn

t ) converges to vδ(t, X t ) in L2 for each t ∈ [0, T − δ]. It then follows
y uniqueness of the limit that

Yt = vδ(t, X t ) for all t ∈ [0, T − δ]. (3.11)

t then follows by Lebesgue dominated convergence (in view of Lemma 3.2) that (Y n)
onverges to Y in H2(Rl) restricted to [0, T − δ], i.e.

lim
n→∞

E
[∫ T −δ

0
|Y n

t − Yt |
2 dt

]
= 0. (3.12)

q. (3.11) further shows that vδ does not depend on δ. Thus, we will henceforth write

Yt = v(t, X t ) for all t ∈ [0, T − δ] and for all δ > 0.

We now turn to the construction of the candidate control process Z . We want to justify
hat under both conditions (B1) and (B2) the sequence bn can be taken uniformly bounded.
n fact, if the function b satisfies (B1), and since (Y n) is uniformly bounded (this comes from
he representation vn(t, Xn

t ) = Y n
t and Lemma 3.2) it follows by uniqueness of solution that

Xn, Y n, Zn) also solves the FBSDE (3.1) with bn replaced by its restriction on [0, T ] ×Rd
×

BR(0) × Rl×d . Similarly, if condition (B2) holds, then (Y n) and (Zn) are bounded, and by
niqueness, (Xn, Y n, Zn) also solves the FBSDE (3.1) with bn replaced by its restriction on
0, T ] × Rd

× BR(0) × BR(0). In particular, we can assume without loss of generality that bn

s uniformly bounded, i.e. |bn(t, x, y, z)| ≤ C for all n, t, x, y, z and for some constant C > 0.
herefore, it follows by Theorem A.1 that for every δ > 0 and κ ∈ (0, 1) there is a constant
8
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δ,κ independent on the derivatives of the coefficient (which in particular does not depend on
n) such that for every t, t ′

∈ [0, T − δ] and x, x ′
∈ Rd it holds that

|Dxvn(t, x) − Dxvn(t ′, x ′)| ≤ Cδ,κ (|x − x ′
|
κ

+ |t − t ′
|
κ/2).

ow, let (δk) be a strictly decreasing sequence converging to 0. By Arzela–Ascoli theorem,
here is a subsequence wn,k := Dxvn |[0,T −δk ]×Rd which converges locally uniformly to some
unction wk on [0, T − δk] ×Rd . Since Zn

t = Dxvn(t, Xn
t )σ for all t ∈ [0, T ] (recall (3.3)) we

hen have Zn,k
t = wn,k(t, Xn

t )σ for every t ∈ [0, T −δk] and every k ∈ N, for some subsequence
f Zn . And arguing as in Eq. (3.10), we have

Znk
t = Dxwn,k(t, Xnk

t )σ → wk(t, X t )σ =: Z k in L2 for every t ∈ [0, T − δk].

ist (A2) and uniqueness of the limit (wk of the sequence (wn,k)n) show that wk = wk+1 on
0, T − δk] for every k. Thus, the function

w(t, x) := w1(t, x)1[0,T −δ1](t) +

∞∑
k=1

wk(t, x)1[T −δk ,T −δk+1](t)

s a well-defined Borel measurable function. In particular, the limit Z k does not depend on k.
n fact, putting

Z t := w(t, X t )σ, (3.13)

e have by Lebesgue dominated convergence that Zn,k
→ Z in H2(Rl×d ) restricted to the

nterval [0, T − δk]. In particular, it follows by Itô isometry that∫ T −δk

0
Zn,k

t dWt →

∫ T −δk

0
Z t dWt in L2 for every k. (3.14)

tep 4: Verification. The goal of this step is to show that the triple of processes (X, Y, Z )
onstructed above satisfies the coupled system (1.1). This part of the proof will be further
plit into 2 steps: We first show that (X, Y, Z ) satisfies the forward equation. This step uses the
epresentations Yt = v(t, X t ) and Z t = w(t, X t )σ in a crucial way. In fact, these representations
llow to obtain a solution X̄ of a decoupled SDE with measurable drift that we can then show
o coincide with the candidate solution X constructed above. In the last part we show that
X, Y, Z ) satisfies the backward equation.

tep 4a: The forward equation. Using either of the conditions (B1) or (B2), we can show
s above that the function x ↦→ b(t, x, v(t, x), w(t, x)σ ) is bounded. Therefore, [46] gives
xistence of a unique solution X̄ to the SDE

X̄ t = x +

∫ t

s
b(u, X̄u, v(u, X̄u), w(u, X̄u)σ ) du +

∫ t

s
σ dWu .

ence, in view of (3.11) and (3.13), it remains to show that X̄ t = X t P-a.s. for every t ∈ [s, T ]
o conclude that the forward SDE is satisfied, that is, that

X t = x +

∫ t

s
b(u, Xu, Yu, Zu) du +

∫ t

s
σ dWu . (3.15)

o that end, continuity of the paths of X and X̄ and uniqueness of the limit, it suffices to
how that for each fixed t ∈ [s, T ] the sequence (Xn) converges to X̄ in the weak topology
t t

9
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of L2(P). For any progressive and square integrable process q, we will use the notation

E(q · W )s,t := exp
(∫ t

s
qu dWu −

1
2

∫ t

s
|qu |

2 du
)
,

for the stochastic exponential of the martingale
∫

q dW . Since the set{
E(ϕ̇ · W )0,T : ϕ ∈ C1

b ([0, T ],Rd )
}

is dense in L2(P), in order to get weak convergence it is enough to show that (Xn
t E(ϕ̇u ·W )0,T )

onverges to X̄ tE(ϕ̇u ·W )0,T in expectation, for every ϕ ∈ C1
b ([0, T ],Rd ). Hereby C1

b ([0, T ],Rd )
enotes the space of bounded continuously differentiable functions on [0, T ] with values in Rd ,

and ϕ̇ is the derivative of ϕ. Put X̃n
t (ω) := Xn

t (ω + ϕ) and X̃ t (ω) := X̄ t (ω + ϕ). It follows by
he Cameron–Martin theorem, see e.g. [60] that X̃n satisfies the SDE

d X̃n
t =

(
bn(t, X̃n

t , vn(t, X̃n
t ), Dxvn(t, X̃n

t )σ ) + σ ϕ̇t
)

dt + σdWt .

n fact, for every H ∈ L2(P;Ft ), using Cameron–Martin–Girsanov (see for example [60]) it
olds

E[X̃n
t H ] = E

[
Xn

t H (ω − ϕ)E(ϕ̇u · W )s,T

]
= E

[(
x +

∫ t

s
bn(u, Xn

u , vn(u, Xn
u ), Dxvn(u, Xn

u )σ ) du + σ (Wt − Ws)
)

× H (ω − ϕ)E(ϕ̇u · W )s,T

]
= E

[(
x +

∫ t

s
bn(u, Xn

u , vn(u, Xn
u ), Dxvn(u, Xn

u )σ )(ω + ϕ) du

+ σ (Wt − Ws)(ω + ϕ)
)

H
]

= E
[(

x +

∫ t

s
bn(u, X̃n

u , vn(u, X̃n
u ), Dxvn(u, X̃n

u )σ )

+ σ ϕ̇u du + σ (Wt − Ws)(ω)
)

H
]
,

here the latter equality follows by applying once more the Cameron–Martin–Girsanov
heorem and the fact that Wt (ω + ϕ) = Wt (ω) + ϕt = Wt (ω) +

∫ t
0 ϕ̇u du since W is the

anonical process. This proves the claim. That X̃ satisfies

d X̃ t =
(
b(t, X̃ t , v(t, X̃ t ), w(t, X̃ t )σ ) + σ ϕ̇t

)
dt + σdWt

s proved similarly. Now put

un(t, x) := σ ∗(σσ ∗)−1bn(t, x, vn(t, x), Dxvn(t, x)σ ) and

u := σ ∗(σσ ∗)−1b(t, x, v(t, x), w(t, x)σ ).

ecall that the law of X̃n
t under the probability measure Qn with density E(un(r, X̃n

r )+ϕ̇r ·W )0,T
oincides with the law of x + σ Wt under P . Similarly, the law of X̃ t under the probability
easure Q with density E(u(r, X̃r ) + ϕ̇r · W )0,T coincides with the law of x + σ Wt under P .
o show X̄ t = X t P-a.s. for every t ∈ [s, T ] as needed, we will show that (Xn

t ) converges
eakly to X̄ t (in the weak topology of L2) and conclude by uniqueness of the limit. Thus, it

ollows by Girsanov’s theorem and the inequality |ea
− eb

| ≤ |ea
+ eb

||a − b|

E
[
Xn

t E(ϕ̇u · W )0,T
]
− E

[
X̄ tE(ϕ̇u · W )0,T

][ ( )]

= E (x + σ Wt ) E ({un(r, x + σ Wr ) + ϕ̇r } · W )0,T − E({u(r, x + σ Wr ) + ϕr } · W )0,T

10
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≤ C E
[
|x + σ · Wt |

2
] 1

2

× E
[(

E
({

un
(

r, x + σ Wr
)

+ ϕ̇r
}

· W
)

0,T
+ E

({
u
(

r, x + σ Wr
)

0,T
+ ϕ̇r

}
· W

)
0,T

)4] 1
4

×

{
E

[(∫ T

0

(
un

(
r, x + σ Wr

)
− u

(
r, x + σ Wr

))
dWr

)4]
+ E

[(∫ T

0

{
∥un(r, x + σ Wr ) + ϕ̇r ∥

2
− ∥u(r, x + σ Wr ) + ϕ̇r ∥

2
}

dr
)4]} 1

4

= I1 × I2,n × (I3,n + I4,n)1/4. (3.16)

hat I1 is finite is clear, by properties of Brownian motion. Since bn is bounded, so is un .
hus, by boundedness of ϕ̇, it holds that supn I2,n is finite.

Now if we show that the sequence (un) converges to u pointwise, it would follow by
Lebesgue’s dominated convergence theorem, to get that I3,n and I4,n converge to 0 as n goes
to infinity, hence concluding the proof. In fact, there is R > 0 such that |vn| ≤ R and there is
R′ such that4 for every t ∈ [0, T ), it holds that |Dxvn(t, x)| ≤ R′ for all n. Thus, by definition
of un and u, for almost every (t, x) ∈ [0, T ) × Rd we have

|un(t, x) − u(t, x)| ≤ C |bn(t, x, vn(t, x), Dxvn(t, x)σ ) − b(t, x, v(t, x), w(t, x)σ )|
≤ C |bn(·, vn, Dxvnσ ) − b(·, vn, Dxvnσ )|(t, x)

+ C |b(·, vn, Dxvnσ ) − b(·, v, wσ )|(t, x)
≤ Csupy∈BR (0),z∈BR′ (0)|bn(t, x, y, z) − b(t, x, y, z)|

+ C |b(t, x, vn(t, x), vn(t, x)σ ) − b(t, x, v(t, x), w(t, x)σ )|.

he first term converges to zero since bn converges to b locally uniformly in (y, z) (Lemma 3.1);
nd the second term converges to zero because vn and Dxvnσ converge to v and wσ

espectively, and the function b(t, x, ·, ·) is continuous on the ball BR(0) × BR′ (0). Therefore,
Xn

t ) converges to X̄ in the weak topology of L2, therefore X̄ = X satisfies the forward
q. (3.15).

tep 4b: The backward equation. In this final step of the proof we show that the process
X, Y, Z ) satisfies the backward equation. The argument is very similar to those of the Step 4a
nd also rely on the existence of the decoupling fields v and w and Girsanov’s transform.

By Steps 2 and 3 we know that (Xn
t ) converges to X t in L2 and (Y n,k, Zn,k) converges to

Y, Z ) in H2(Rl) × H2(Rl×d ) (restricted to the interval [0, T − δk]), where (Y n,k, Zn,k) is the
equence corresponding to (Y n, Zn) restricted to [0, T − δk]. Let k be fixed and let Xn,k be a
ubsequence corresponding to (Y n,k, Zn,k). For every n, k we have

Y n,k
t = Y n,k

T −δk +

∫ T −δk

t
gn(u, Xn,k

u , Y n,k
u , Zn,k

u ) du −

∫ T −δk

t
Zn,k

u dWu . (3.17)

ow, we would like to take first the limit in n and then limit in k on both sides. By Step 3,
he sequences of random variables Y n,k

t , Y n,k
T −δk and

∫ T −δk

t Zn,k
u dWu respectively converge to

Yt , YT −δk and
∫ T −δk

t Zu dWu in L2. Thus, it suffices to show that
∫ T −δk

t gn(Xn,k
u , Y n,k

u , Zn,k
u ) du

4 Under the condition (B1) and when t = T , the sequence (Dxvn) might not be bounded and (un) does not
necessarily converge to u but convergence for almost every t is enough.
11
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converges to
∫ T −δk

t g(u, Xu, Yu, Zu) du in L2. To this end, define

g̃n,k(t, x) := gn(t, x, vn(t, x), Dxvn(t, x)σ )|[0,T −δk ]
and

g̃(t, x) := g(t, x, v(t, x), w(t, x)σ ).

bserve that g̃n,k is uniformly bounded (this can be shown using similar arguments as in
emma 3.3) and converges to g almost surely on [0, T − δk] × Rd . In fact,

|̃gn,k(t, x) − g̃(t, x)| = |gn(t, x, vn(t, x), Dxvn(t, x)σ ) − g(t, x, vn(t, x), Dxvn(t, x)σ )|
+ |g(t, x, vn(t, x), Dxvn(t, x)σ ) − g(t, x, v(t, x), w(t, x)σ )|

≤ supy,z|gn(t, x, y, z) − g(t, x, y, z)|

+ |g(t, x, vn(t, x), Dxvn(t, x)σ ) − g(t, x, v(t, x), w(t, x)σ )| → 0,

here we used Lemma 3.1 and continuity of g in (y, z). Recall the representations Y n,k
u =

n(u, Xn,k
u ), Zn,k

u = Dxv
n(u, Xn,k

u )σ and Yu = v(u, Xu), Zu = w(u, Xu)σ . For any m ∈ N, we
ave

E
[∫ T −δk

t
|gn,k(u, Xn,k

u , Y n,k
u , Zn,k

u ) − g(u, Xu, Yu, Zu)|
2

du
]

= E
[∫ T −δk

t
|̃gn(u, Xn,k

u ) − g̃(u, Xu)|
2

du
]

≤ E
[ ∫ T −δk

t
|̃gn(u, Xn,k

u ) − g̃(u, Xn,k
u )|

2
+ |̃g(u, Xn,k

u ) − g̃m(u, Xn,k
u )|

2

+ |̃gm(u, Xn,k
u ) − g̃(u, Xu)|

2
du

]
≤ E

[
E
(̃
bn(u, x + σ Wu) · W

)
0,T

{∫ T −δk

t
|̃gn,k(u, x + σ Wu) − g̃(u, x + σ Wu)|2

+ |̃g(u, x + σ Wu) − g̃m(u, x + σ Wu)|2 du
}]

+ E
[∫ T −δk

t
|̃gm(u, Xn,k

u ) − g̃(u, Xu)|
2

du
]
,

here the last inequality follows by Girsanov’s theorem and where we used the notation

b̃n(t, x) := σ ∗(σσ ∗)−1bn(t, x, vn(t, x), Dxvn(t, x)σ ). (3.18)

herefore, using Hölder’s inequality the above estimation continues as

E
[∫ T −δk

t
|gn,k(u, Xn,k

u , Y n,k
u , Zn,k

u ) − g(u, Xu, Yu, Zu)|
2

du
]

≤ C E
[
E
(̃
bn(u, x + σ Wu) · W

)2
0,T

]1/2
E

[ ∫ T −δk

t
|̃gn(u, x + σ Wu) − g̃(u, x + σ Wu)|4

+ |̃g(u, x + σ Wu) − g̃m(u, x + σ Wu)|4 du
]1/2

+ E
[∫ T −δk

t
|̃gm(u, Xn,k

u ) − g̃(u, Xu)|
2

du
]
.

ince b̃n is bounded, the quantity E
[
E
(̃
bn,k(u, x + σ Wu) · W

)2
0,T

]
is bounded. Thus, letting m
xed and taking the limit as n goes to infinity we obtain by Lebesgue dominated convergence

12
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that

lim
n→∞

E
[∫ T −δk

t
|gn,k(u, Xn,k

u , Y n,k
u , Zn,k

u ) − g(u, Xu, Yu, Zu)|
2

du
]

≤ C E
[∫ T −δk

t
|̃g(u, x + σ Wu) − g̃m(u, x + σ Wu)|4 du

]
+ E

[∫ T −δk

t
|̃gm(u, Xu) − g̃(u, Xu)|2 du

]
.

etting m go to infinity it follows again by dominated convergence that the right hand side
bove goes to zero. (We also used that the normal distribution is absolutely continuous.) Thus∫ T −δk

t
gn(u, Xn,k

u , Y n,k
u , Zn,k

u ) →

∫ T −δk

t
g(u, Xu, Yu, Zu) du in L2.

ence, (X, Y, Z ) satisfies

Yt = YT −δk +

∫ T −δk

t
g(u, Xu, Yu, Zu) du −

∫ T −δk

t
Zu dWu P-a.s. for every k.

ext, we take the limit as k goes to infinity. Since δk
↓ 0, we only need to justify that (YT −δk )

converges to YT P-a.s. Indeed, since (Y n
T ) converges to YT in the weak topology of L2, there

xists a subsequence (Ỹ n
T ) in the asymptotic convex hull of (Y n

T ) such that (Ỹ n
T ) converges to

YT in L2. Moreover, Ỹ n
T satisfies

Ỹ n
T = Ỹ n

t −

∫ T

t
Gn

udu +

∫ T

t
Z̃n

u dWu

here (Ỹ n
t , Gn

u, Z̃n
u ) is the convex combination of (Y n

t , gn(u, Xn
u , Y n

u , Zn
u ), Zn

u ) corresponding
o Ỹ n

T . If the condition (B1) is satisfied, then |gn(u, Xn
u , Y n

u , Zn
u )| is dominated by |Y n

u | which
s bounded, and if the condition (B2) is satisfied, then Zn

u = Dxv
n(u, Xn

u )σ is bounded (by
emma 3.2), thus it follows by (A3) that |gn(u, Xn

u , Y n
u , Zn

u )| is bounded. Hence, Gn
u is bounded

nder both conditions. Therefore it follows by triangular inequality that for every k, n ∈ N it
olds that⏐⏐YT −δk − E[YT | FT −δk ]

⏐⏐
≤ C

(
|YT −δk − Ỹ n

T −δk | + |E[Ỹ n
T −δk − Ỹ n

T | FT −δk ]| + E[|Ỹ n
T − YT | | FT −δk ]

)
≤ C

(
|YT −δk − Ỹ n

T −δk | + E
[∫ T

T −δk
|Gn

u | du | FT −δk

]
+ E[|Ỹ n

T − YT | | FT −δk ]
)

≤ C(|YT −δk − Ỹ n
T −δk | + δk

+ E[|Ỹ n
T − YT | | FT −δk ])

or some constant C > 0. Since (Ỹ n
T ) converges to YT in L2, (Y n

T −δk ) converges to YT −δk in
L2 and Ỹ n

T −δk is the convex combination of Y n
T −δk , taking the limit first in n and then in k as

hey go to infinity shows that |YT −δk − E[YT | FT −δk ]| → 0 P-a.s. On the other hand, in our
ltration every martingale has a continuous version. Thus, E[YT | FT −δk ] → YT P-a.s. as k
oes to infinity. We can therefore conclude that YT −δk → YT P-a.s. when k goes to infinity,
hich yields

Yt = YT +

∫ T

g(u, Xu, Yu, Zu) du −

∫ T

Zu dWu .

t t

13
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It finally remains to show that YT = h(XT ). Since (Y n
T ) converges to YT in the weak topology

of L2 (see the beginning of Step 3) if we show that (Y n
T ) converges to h(XT ) in L2 then we

an conclude that YT = h(XT ). If (B2) holds, this is clear. In case (B1) holds, this is done
sing again a Girsanov change of measure and boundedness of b̃n (recall definition given in
3.18)). In fact, for every m ∈ N it holds that

E[|hn(Xn
T ) − h(XT )|2]

≤ C
(

E[|hn(Xn
T ) − h(Xn

T )|2] + E[|h(Xn
T ) − hm(Xn

T )|2] + E[|hm(Xn
T ) − h(XT )|2]

)
≤ C

(
E

[
E
(̃
bn(t, x + σ Wt ) · W

)
0,T

×

{
|h(x + σ WT ) − hm(x + σ WT )|2 + |hm(x + σ WT ) − h(x + σ WT )|2

}]
+ E[|hm(Xn

T ) − h(XT )|2]
)

≤ C
(

E
[
E
(̃
bn(t, x + σ Wt ) · W

)2
0,T

]1/2

× E
[
|h(x + σ WT ) − hm(x + σ WT )|4 + |hm(x + σ WT ) − h(x + σ WT )|4

]1/2

+ E[|hm(Xn
T ) − h(XT )|2]

)
.

ince b̃n is bounded, the first term on the right hand side above is bounded. Thus, fix m then
ake the limit n → ∞ and then the limit m → ∞ to get by dominated convergence

E[|hn(Xn
T ) − h(XT )|2] → 0.

his concludes the proof. □

.2. Regularity of solutions

In this section we investigate regularity properties of the solution (X, Y, Z ) of the FBSDE
1.1). We will consider two types of regularity properties. We start by proving Malliavin
ifferentiability of the solution. This follows as a direct consequence of the method of proof
f the existence result. Then, we continue to consider smoothness of the solution as function
f the initial position of the forward process. We will show that for each s ∈ [0, T ] and t ≥ s,
he mapping x ↦→ (X s,x

t , Y s,x
t ) belongs to a weighted Sobolev space for almost every path. The

ast result will be central for applications to PDEs.

.2.1. Malliavin differentiability
Let 0 ≤ s ≤ t ≤ T and x ∈ Rd . Let (X, Y, Z ) be the solution of FBSDE (1.1) given by

heorem 2.1. The next result gives the Malliavin differentiability of (X, Y, Z ). We additionally
onsider the following conditions:

A5) The function g(t, x, y, z) = g(t, x, y) does not depend on z and is Lipschitz continuous
in (x, y).

A6) The function g(t, x, y, z) = g(t, y, z) does not depend on x and is continuously

differentiable and Lipschitz continuous in (y, z).

14
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Proposition 3.4. Assume that the conditions (A1)–(A4) are satisfied.

(i) If (B1) is satisfied, then X t is Malliavin differentiable for all t ∈ [0, T ] and for every
δ > 0, Yt is Malliavin differentiable for all t ∈ [0, T − δ].

(ii) If (B2) is satisfied, then (X t , Yt ) is Malliavin differentiable for all t ∈ [0, T ].
(iii) If (B2) and either of the conditions 3.2.1 or 3.2.1 hold, then (X t , Yt , Z t ) is Malliavin

differentiable for all t ∈ [0, T ].

Proof. Consider the sequence (Xn) constructed in the proof of Theorem 2.1. Recall that under
both (B1) and (B2) we have

Xn
t → X t in L2 for every t ∈ [0, T ]

and (see Eq. (3.7) with t ′
= 0 therein) we have

E
[
|Dt Xn

s |
2
]

≤

d∑
i=1

E
[Di

t Xn
s

2
]

≤ dCd,T (∥b̃n∥∞)t

here b̃n is a uniformly bounded sequence. Therefore, by [51, Lemma 1.2.3] we conclude
that X t is Malliavin differentiable for all t ∈ [0, T ]. In particular, supt E[|Dt Xs |

2] < ∞. To
educe the differentiability of Y , recall that for every δ > 0 and every t ∈ [0, T −δ] the function

x ↦→ v(t, x) is Lipschitz continuous. Thus, it follows by chain rule (see [51, Proposition 1.2.4])
hat Yt is Malliavin differentiable for all t ∈ [0, T − δ].

When condition (B2) is satisfied, the function x ↦→ v(t, x) is Lipschitz continuous for every
∈ [0, T ]. In fact, it follows from Lemma 3.2 that vn is Lipschitz continuous with Lipschitz

onstant Cδ (see Eq. (3.4)) which does not depend on n. Thus, since vn converges pointwise
o v the claim follows. Again by chain rule, Yt is Malliavin differentiable for all t ∈ [0, T ].
hus, (X t , Yt ) is Malliavin differentiable.

If furthermore condition 3.2.1 holds, then in view of the identity∫ T

t
ZsdWs = h(XT ) − Yt +

∫ T

t
g(s, Xs, Ys)ds,

t follows from the chain rule and [53, Lemma 2.3] that Z t is Malliavin differentiable for
ll t ∈ [0, T ]. If we rather assume 3.2.1, then since X t is Malliavin differentiable, the
alliavin differentiability of (Yt , Z t ) follows from the chain rule and [30, Proposition 5.3]

ince
∫ T

0 E[|Dsh(XT )|2] ds < ∞.

.2.2. Weighted Sobolev differentiable flow
We now investigate differentiability properties of the solution with respect to the initial

ariable of the forward process. Let 0 ≤ s ≤ t ≤ T and x ∈ Rd . We denote by (X s,x , Y s,x , Z s,x )
he solution of the FBSDE{

X t = x +
∫ t

s b(u, Xu, Yu, Zu) du +
∫ t

0 σdWu

Yt = h(XT ) +
∫ T

t g(u, Xu, Yu, Zu)du −
∫ T

t Zu dWu t ∈ [s, T ]
(3.19)

iven by Theorem 2.1. The next result gives regularity of the function x ↦→ (X s,x , Y s,x ). We
ow introduce the Sobolev space where the derivatives will be defined. Let ρ be a weight
unction, that is, a measurable function ρ : Rd

→ [0, ∞) satisfying∫
(1 + |x |

p)ρ(x) dx < ∞

Rd

15
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for some p > 1. Let L p(Rd , ρ) be the weighted Lebesgue space of (classes) of measurable
unctions f : Rd

→ Rd such that

∥ f ∥
p
L p(Rd ,ρ) :=

∫
Rd

| f (x)|pρ(x) dx < ∞.

or functions f : Rd
→ Rl satisfying this integrability property we analogously define

he space L p(Rl , ρ). Further denote by W1
p(Rd , ρ) the weighted Sobolev space of functions

f ∈ L p(Rd , ρ) admitting weak derivatives of first order ∂xi f and such that

∥ f ∥W1
p(Rd ,ρ) := ∥ f ∥L p(Rd ,ρ) +

d∑
i=1

∥∂xi f ∥L p(Rd ,ρ) < ∞.

roposition 3.5. Assume that the conditions (A1)–(A4) are satisfied.

(i) If condition (B1) holds, then we have

X s,x
t ∈ L2(Ω;W1

p(Rd , ρ)
)

for every t ∈ [0, T ] (3.20)

and if l = 1, then for every bounded open set U ⊆ Rd we have

Y s,x
t ∈ L2(Ω;W1

1 (U )
)

for every t ∈ [0, T − δ] and every δ > 0. (3.21)

(ii) If condition (B2) holds and l = 1, then (3.20) and (3.21) hold with δ = 0.

roof. Recall from Theorem 2.1 that the solution (X, Y, Z ) of the FBSDE (1.1) satisfies Y s,x
t =

(t, X s,x
s ) and Z s,x

t = w(t, X s,x
t )σ for some bounded measurable function v : [0, T ]×Rd

→ Rl

nd a measurable function w : [0, T ] × Rd
→ Rl×d . Thus, X s,x satisfies

X s,x
t = x +

∫ t

s
b(u, X s,x

u , v(u, X s,x
u ), w(u, X s,x

u )σ ) du + σ (Wt − Ws).

nder both conditions (B1) and (B2) the function x ↦→ b(t, x, v(t, x), w(t, x)σ ) is bounded
nd measurable. Thus, it follows from [50, Theorem 3] that X s,x

t ∈ L2
(
Ω;W1

p(Rd , ρ)
)
.

To deduce differentiability of Y , recall that for every δ > 0 and every t ∈ [0, T − δ]
he function x ↦→ v(t, x) is Lipschitz continuous. Let ρ be the weight function given by
(x) := 1U (x). There is a measurable N ⊆ Ω such that X s,·

t (ω) ∈ W1
p(U ) for all ω ∈ N c

nd P(N ) = 0. Thus, since l = 1 it follows by the chain rule formula of [39, Theorem 1.1]
hat for every ω ∈ N c the function Y s,x

t (ω) = v(t, X s,x
t (ω)) belongs to the Sobolev space

1
1 (U ).
When condition (B2) is satisfied, the function x ↦→ v(t, x) is Lipschitz continuous for every

∈ [0, T ]. The claim (ii) then follows from the same arguments as above.

. Links to partial differential equations and stochastic control with rough coefficients

.1. Link to partial differential equation

Since the FBSDE under consideration is Markovian, it can be argued that the solvability to
1.1) is a direct consequence of existence and uniqueness of solution of the partial differential
quation (PDE){

∂tv(t, x) + Lv(t, x) + g(t, x, v(t, x), Dxv(t, x)σ ) = 0
(4.1)
v(T, x) = h(x)

16
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with

Lv := b(t, x, v, Dxvσ )Dxv +
1
2

trace(σσ ∗ Dxxv)

in the classical, or Sobolev sense. While such equations with b non-smooth are well-studied, see
.g. [31,32,34,52], it should be noted that all these references consider the linear case and most
mportantly, the terminal condition h is assumed to be smooth and the coefficients integrable
nough.

In the case of semilinear PDEs, the authors in [25] study existence of local solutions for a
ide class of non-smooth initial data and give sufficient conditions which guarantee the global

xistence of the solution to the PDE. Let us also mention the work [1] on general nonlinear
on-degenerate parabolic equations. In both of these works, the authors assume that the initial
ata is in some suitable Lq space, with q > 1. For the case of nonlinear heat equation with
ntegrable initial conditions, we refer the reader to [9,22,61,62] and references therein. Using
he notion of stable sets introduced in [57], many authors studied existence of global solution
f semilinear heat and wave equations. For example, in [26], those stable and unstable sets
ere characterized by the asymptotic behavior of solutions (as t ↦→ ∞) of the semilinear
DE with non-smooth initial condition (corresponding to terminal condition in the present
ase). When the initial condition is a Radon measure there has been a lot of work studying
ufficient conditions on the measure under which the PDE (degenerate or not) has a local or
lobal solution. See for example [2,27,58,59] and references therein. We also refer the reader
o the work [28] with the non-linear term containing a distribution coefficient in a Besov space.
bserve that the above works differ from ours in many ways: we do not assume any (weak)
ifferentiability or continuity of the non linear terms in (t, x). In addition, since the terminal
ondition is measurable and bounded and not automatically integrable the above techniques
re not directly applicable to our setup, and perhaps require additional technical localization
rguments.

Some works also consider stochastic PDEs (SPDEs) with irregular coefficients. In [20] an
PDE corresponding to the PDE studied in the present paper, but with multiplicative Brownian
oise is studied, and existence and uniqueness results are derived (see also [63] for the

L p-theory approach to the existence of such equations) assuming that the coefficients do not
epend on Dxv. The above results were generalized in [18] to the quasilinear SPDEs and the
uthors prove existence, uniqueness and L p-estimate for the weak solution. Their method relies
n a version of Moser’s iteration. In [14] quasilinear SPDEs for jump diffusions are investigated
nd comparison results are derived. In these works, the initial condition is assumed non-smooth.
ee also the work [19] for the case of SPDEs with obstacles. To the best of our knowledge

he case of SPDEs with coefficients satisfying the conditions in the current paper has not been
tudied and is beyond the scope of this work. It is possible that combining our ideas with those
ntroduced in [45] could allow to tackle this problem.

Having a non-smooth terminal condition pauses important difficulties as observed in the
roofs above. Restricting x to a compact space would make the coefficients integrable, but
n that case, boundary conditions should be added to the PDE (4.1) further complicating its
nalysis.

As the reader will have observed, PDEs still play an essential role in our argument since after
ollification of the coefficients of the FBSDEs, we derive a decoupling field via the solution

f the second order parabolic equation (3.2). A priori estimates on the gradient of the solution
f this equation were crucial. Notice, however, that since the terminal condition h is not taken
17
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regular, the gradient of the decoupling field is not necessary bounded on the whole interval
[0, T ]. This prevents us from obtaining compactness of the sequence of decoupling fields in
a Sobolev space. For instance, a solution to the PDE (4.1) would be hard to derive by such
direct arguments. Therefore, it is interesting to point-out that our results should allow to prove
existence of (4.1) (under conditions (A1)–(A4) and (B1) or (B2)) at least in the L p-viscosity
ense, and in one dimension.

.2. Link with stochastic control

In this final subsection, we explain, at least informally, how our results apply to the study
f optimal stochastic control of systems with rough coefficients.

Consider the control problem{
infα E

[
g(Xα

T ) +
∫ T

0 f (u, Xα
u , αu) du

]
d Xα

t = b(u, Xα
u , αu) du + σ dWt , Xα

0 = x,

where the infimum is over Rm-valued square integrable progressive processes α and b, f :

0, T ] × Rm
× Rm

→ R, and g are given Lipschitz continuous functions. In such a setting
here the coefficients b, f, g are not smooth functions, the maximum principle was established
y [6,7,48]. These authors showed that if an admissible control α̂ is optimal, then it holds

α̂t ∈ arg min
a∈Rm

H (t, X̂ t , Ŷt , a),

ith d X̂ t = b(t, X̂ t , α̂t ) dt + σ dWt , X̂0 = x , (Ŷ , Ẑ ) solves the adjoint equation

dŶt = −Dx H (t, X̂ t , Ŷt , α̂) dt + Ẑ t dWt , ŶT = Dx g(X̂T )

nd the function H is the Hamiltonian given by

H (t, x, y, a) := b(t, x, a) · y + f (t, x, a).

ince the functions b, f and g are only Lipschitz continuous, the derivatives Dx H and Dx g
re to be understood for almost every x . Under standard convexity conditions, it can be showed
hat α̂ = Λt (X̂ t , Ŷt ) for some Lipschitz continuous function Λ. Thus, it orders for an optimal
ˆ to exist, there must be a solution (X̂ , Ŷ , Ẑ ) of the FBSDE⎧⎪⎨⎪⎩

d X̂ t = b(t, X̂ t ,Λt (X̂ t , Ŷt )) dt + σ dWt

dŶt = −Dx b(t, X̂ t ,Λt (X̂ t , Ŷt )) · Ŷt − Dx f (t, X̂ t ,Λt (X̂ t , Ŷt )) dt + Ẑ t dWt

ŶT = Dx g(X̂T ) X̂0 = x .

(4.2)

When the drift, generator and terminal value of the above FBSDE are Lipschitz continuous,
then a unique solution exists, see works by Delarue [15], Ma et al. [42]. Lipschitz continuity
of the coefficients of the FBSDE require, in particular, the second derivatives of the functions
b, f and g to exist (at least almost surely) and to be bounded. When the second derivatives
of b and f are only assumed continuous, an existence result for FBSDEs as (4.2) is proved
y Antonelli and Hamadène [4]. However, this paper assumes Ŷ to be one-dimensional and the

generator monotone in y. Our main result requires only the first derivatives if the coefficient of
he control problem to exit and be bounded, Ŷ can be multi-dimensional and non monotonicity

ssumptions are needed.

18
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ppendix. A priori estimations for quasi-linear PDEs

For the reader’s convenience, in this appendix we collect some a priori estimations for quasi-
inear PDEs. These are fundamental for the proofs of our main results. Different versions of
hese estimates can be found e.g. in [16,40,43] or [37]. The results we present here are taken
rom [16,43].

Recall that the Sobolev space W1,2
p,loc((0, T ) × Rd ,Rl) is the space of all functions u :

(0, T ) × Rd
→ Rl such that for all r > 0,∫

(0,T )×Br (0)

(
|u|

p
+ |∂t u|

p
+ |Dx u|

p
+ |Dxx u|

p
)

dx dt < ∞

and consider the quasilinear parabolic PDE{
∂tv(t, x) + Lv(t, x) + g(t, x, v(t, x), Dxv(t, x)σ ) = 0
v(T, x) = h(x)

(A.1)

here L is the second order differential operator

Lv := b(t, x, v, Dxvσ )Dxv +
1
2

trace(σσ ∗ Dxxv).

heorem A.1 ([43, Theorem 3.1 & Lemma 6.2]). Assume that the conditions (A1)–(A4) are
atisfied, and further assume that the functions b, g and h are bounded, smooth and with
ounded derivatives. Let v be the unique classical solution of (A.1). Then for any δ > 0 there
re α ∈ (0, 1) and constants C, Cδ and Cδ,α depending on k1, k2, k3,Λ, T, l, m, and the bound
f b, g and which do not depend on the derivatives of b, g such that

(i) |Dxv(t, x)| ≤ Cδ for all (t, x) ∈ [0, T − δ] × Rd .
(ii) for all (t, x), (t ′, x ′) ∈ [0, T − δ] × Rd , it holds that

|Dxv(t, x) − Dxv(t ′, x ′)| ≤ Cδ,α(|x − x ′
|
α

+ |t − t ′
|
α/2).

(iii) for every bounded domain O ⊆ Rd and p ≥ 2 it holds∫ T −δ

0

∫
O

[
|Dxv(t, x)|p

+ |Dxxv(t, x)|p
]

dx dt ≤ C p
δ |O|,

where |O| is the Lebesgue measure of O.

f h is twice continuously differentiable with bounded first and second derivatives, then (i), (ii)
nd (iii) hold with δ = 0 and C0 may depend on ∥Dx h∥∞ and ∥Dxx h∥∞ as well.

heorem A.2 ([16, Theorems 1.3 & 2.9]). Assume that the conditions (A1)–(A4) are satisfied
nd that h is α-Holder continuous. Let v be a solution of (A.1) in the space W1,2 ((0, T ) ×
¨ d+1,loc
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f

R

Rd ,Rl). Then there are constants C > 0 and α′
∈ (0, α] depending only on k1, k2, k3,Λ, T, l

nd m such that

|v(t, x) − v(t ′, x ′)| ≤ C(|x − x ′
|
α′

+ |t − t ′
|
α′/2)

or every (t, x), (t ′, x ′) ∈ [0, T ] × Rd . If α = 1, then it holds that

|Dxv(t, x)| ≤ C for every (t, x) ∈ [0, T ] × Rd .
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