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Abstract

This paper investigates solvability of fully coupled systems of forward—backward stochastic differ-
ential equations (FBSDEs) with irregular coefficients. In particular, we assume that the coefficients of
the FBSDEs are merely measurable and bounded in the forward process. We crucially use compactness
results from the theory of Malliavin calculus to construct strong solutions. Despite the irregularity of the
coefficients, the solutions turn out to be differentiable, at least in the Malliavin sense and, as functions
of the initial variable, in the Sobolev sense.
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1. Introduction

The main result of this work concerns the existence of a (strong) solution of the forward—
backward stochastic differential equation (FBSDE)

X, =x+ [y bu, Xy, Yy Z)du + [y o dW,

1.1
Y, = h(Xr)+ [ g, X, Yo, Zodu — [ Z, dW, (1)

with b, g and & measurable in (¢, x), and uniformly continuous in (y, z), see Theorem 2.1.
The proof of this result is partly inspired from results by Ma and Zhang [43] and Delarue
and Guatteri [17] on weak solutions of FBSDE under similar conditions. Our contribution in
this direction is to obtain strong solutions and allow irregularity of k. Because of the lack
of regularity of the coefficients, usual fixed point and Picard iterations techniques cannot be
applied here. Let us briefly describe our method:

We start as in [17,43] by approximating the functions b, g and /4 by smooth function, e.g. by
mollification. The FBSDE associated to these functions admits unique solutions (X", Y", Z")
and a so-called decoupling field v, which is the classical solution of an associated quasilinear
PDE. The function v, is called a decoupling field because it holds

Y" =v,(t, X") and ZI = D,v,(1, X")o, (1.2)

which allows to decouple the system. The problem is now to derive strong limits for the above
sequences and to show that these limits satisfy the desired equation. Using classical a priori
estimations for such equations, (see e.g. [37] or the statements recalled in the Appendix) it can
be shown that for every § > 0 and every ¢t € [0, T — §] the sequence of functions v, admits
some compactness properties allowing to derive a limit v for v, and a limit w for D,v,. When
h is sufficiently regular, say Holder continuous, § can be taken equal to zero. In this setting,
the idea of [17,43] is to also gain sufficiently good control over the time-derivative and the
Hessian using e.g. Calderon—Zygmund theory. The approach proposed here is to rather use
ideas from Malliavin calculus, notably the compactness principle due to Da Prato et al. [13],
to find a limit X of the sequence (X") in the strong sense. Together with the representation
(1.2), this allows to find strong limits for ¥ and Z (at least for # small enough). It remains to
verify that the limiting processes (X, Y, Z) actually solve the desired equation.

We further study regularity properties of solutions. In fact, despite the singularity of the
coefficients, it turns out that the solutions enjoy satisfactory regularity, at least in the Malliavin
and Sobolev sense. These are interesting results in that, the convention in the field is that
solutions inherit the regularity properties of the coefficients [3,41].

FBSDEs are an essential tool in the investigation of stochastic control problems and
stochastic differential games. Due to Pontryagin’s stochastic maximum principle, they can
be used to characterize optimal controls and Nash equilibriums [11,38,55]. These equations
also provide a probabilistic approach to deal with quasilinear parabolic partial differential
equations via the nonlinear Feynman—Kac formula initiated by Pardoux and Peng [53] and
further developed notably in [8,16,33,54]. As a result, FBSDEs have received a lot of attention
in the applied probability community and appear in various applications, we refer for instance
to [12,21,23,24,49] and the references therein. When the coefficients of the equations, i.e. the
functions b, g and h are sufficiently smooth, solvability of (1.1) is well-understood. Refer for
instance to [15,42,56] for the case of equations with Lipschitz continuous coefficients and
to [36,41] for locally Lipschitz coefficients. When the coefficients are not regular enough,
while an SDEs theory is well-developed (see e.g. [5,35,46,47,50]) BSDEs with irregular
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coefficients are less well-studied. A notable exception is the notion of weak solution of FBSDE
(very analogous to weak solutions of SDEs) introduced by Buckdahn and Engelbert [10]
and further investigated in [17,43,44]. These solutions are constructed on a probability space
that is possibly different from the underlying probability space. On the other hand, more
recently, Issoglio and Jing [29] studied two new classes of multidimensional FBSDEs with
distributional coefficients. In many applications, for instance to the construction of feedback
solutions of stochastic control problems, it is important to have strong solutions, and to analyze
regularity properties thereof. More details on such applications to stochastic control theory are
given in Section 4.2.

The remainder of the paper is organized as follows: In Section 2, we make precise the
mathematical setting of the work and state the main results: Existence of strong solutions
for FBSDEs with rough coefficients. The proof is given in Section 3.1. The regularity of the
solutions of the FBSDE is analyzed in Section 3.2. We consider both regularity in the Malliavin
(variational) sense and in the Sobolev sense.

2. Setting and main results

Let T € (0,00) and d € N be fixed and consider a probability space ({2, F, P) equipped
with the completed filtration (F;);cf0.r] of a d-dimensional Brownian motion W. Throughout
the paper, the product £2 x [0, T'] is endowed with the predictable o-algebra. Subsets of R¥,
k € N, are always endowed with the Borel o-algebra induced by the Euclidean norm | - |. Let
us consider the following conditions:

(A1) The function b : [0, T] x R? x R! x R!*¢ — R? is Borel measurable and it holds
|b(t, x, y, )| < ki(1+|y])
for some k; > 0 and every (x,y,z) € RY x R x R'*?, Moreover, for each fixed
(¢, x) the restriction of b(t, x, -, -) to Bg(0) x R/*? is continuous, with R = ke’
and Bg(0) :={(y,2) : [y| < R}.
(A2) 0 € R¥*? and £00*E > A|£|* for some A > 0 and for all £ € RY. Here * stands for
the transpose of a matrix.

(A3) The function g : [0, T] x RY x R/ x R*¢ — R! is measurable, uniformly continuous in
(y, 2), uniformly in (¢, x) € [0, T] x R? and satisfies

lg(t, x,y, )| < k(1 + |y] + |z])

for some k, > 0, and for every (¢, x, y,z) € [0, T] x R x R x R/*4,
(A4) The function 4 : RY — R is measurable and satisfies

|h(x)] < k3
for some k3 > 0 and for every x € R?.
The following is our first main result: In its statement, the space S>(RY) x S?2(R!) x H>(R/*?)

is defined as follows: For p € [1, 00] and k € N, denote by S”(R¥) the space of all adapted
continuous processes X with values in R¥ such that ||X||§p(Rk) = E[(supte[OqT]|Xt|)”] < 00,

and by H”(R¥) the spac;: of all progressively measurable processes Z with values in R¥ such
that || Z|lp@ey = EL(fy 1Z4]*du)P’?] < oo.

Theorem 2.1. Assume that the conditions (Al)—(A4) hold and that one of the following
assumptions is satisfied:
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(Bl) b and g are bounded in z, i.e. |b(t,x,y,2)|+1g(t, x,y,2)| < C(1+|y|) forallt,x,y,z
for some C > Q.
(B2) h is Lipschitz continuous: |h(x) — h(x")| < k3|x — x'| for every x, x' € R%.

Then the FBSDE (1.1) admits a solution (X, Y, Z) € S*(R?Y) x S2(R!) x H2(R!*?) such that
Y =v(t, X)), Z;=w(, X))o P Qdt-a.s.
for some measurable functions v : [0, T] x R?Y - R and w: [0, T] x R? — RI*4,

The proof of Theorem 2.1 will be given in Section 3.1 where we further prove regularity
of the solutions both in the classical and variational sense. In particular, we will show that
the solution (X, Y) is Malliavin differentiable, and if the generator g does not depend on x or
does not depend on z, then (X, Y, Z) is Malliavin differentiable. Moreover, looking at (X, Y) as
functions of the initial value of the forward process, with Probability one, this function belongs
to a weighted Sobolev space. See Propositions 3.4 and 3.5 for details.

3. FBSDEs with measurable coefficients
3.1. Proof of Theorem 2.1

This section is entirely dedicated to the proof of Theorem 2.1. Throughout, the conditions
(A1)—(A4) are in force. Let (b,), (g,) and (h,) be sequences of smooth functions with
compact support converging pointwise to b, g and h, respectively (e.g. obtained by standard
mollification). We can assume without loss of generality that for each n, the functions &, and
gn satisfy (A3)—(A4) in addition to being smooth and Lipschitz continuous (but with Lipschitz
constant possibly depending on n). These sequences will be used throughout the proof. We
begin with the following simple lemma which shows that the sequence b, can be chosen so that
the convergence holds uniformly on a given compact in (y, z) and g, such that the convergence
holds locally uniformly in (y, z). The lemma is well-known, we provide a proof since we did
not find a directly citable reference. This will be needed at the end of the proof of the theorem.

Lemma 3.1. The sequence of mollifiers (g,) converge to g almost surely in (¢, x) and locally
uniformly in (y, 7). That is, for every t, x and every compact set K C R x R!*4 it holds that
hm Sup(y,z)el(lgn(tv X, Y, Z) - g(tv X, Y, Z)' = O
n—o00
Similarly, (b,) converges to b almost surely in (t, x) and locally uniformly in (y, z) € Br(0) x

Rlxd

Proof. We prove the result for some generic function f since the proof for g and b is the
same. Moreover, since the dimension does not matter, we let for simplicity f : R? x R! be
a measurable function that is uniformly continuous in its second component. We consider the
standard mollifiers ¢!, ¢2 respectively defined on R? and R’ as

¢L() = cinp(] - ), $2(¢) = con'p(n] - |)

where for any x € R? p(x) = exp(1/(|x|> — )1j0.1;(|x]) and c;, ¢, are two normalizing
constants such that [, ¢, dx = [ ¢7 dx = 1. Recall that the mollification f, is defined as

fulx,y) = / Fx—x',y =YX (y)dx'dy'.
R4 xR!

4



P. Luo, O. Menoukeu-Pamen and L. Tangpi Stochastic Processes and their Applications 144 (2022) 1-22

It is well-known that f;, converges to f almost surely. Let us show local uniform convergence
in the second variable. Let N/ € R? bet a set of measure zero on the complement of which
f converges to f, and let K € R’ be a compact set. Observe that for each n, the support of

1. ¢2 is in the closure of the ball of radius 1/n. On the other hand, given & > 0, by uniform
continuity of f(x,-), x € N, there is n > 0 such that for y, y' € R! satisfying |y — y'| < 7,
it holds that | f(x, y) — g(x,y")| < &. Let n € N be sufficiently large. We have

supy i | falx, y) — f(x, y)I

= sup, | (F&y) = G, ))h(x —xNpr(y — ¥ dx' dy'|
B1/n(0)x By, (0)
< supl (f&y) = F& ))a(x —xNpr(y — ¥ dx' dy'|
B1/n(0)xBy/,(0)
+ sup, | (f&x,y) = f, ))r(x —xNpr(y — ¥ dx' dy'|

B1/n(0)x By, (0)

<&+ sup, gl /B (£ 3 = FOr 1) — )]

1/n(0)
For each n, there is y, € K such that
supy ekl fulx, y) — f(x, Yl <€+ (f&s yn) = F(x, yn)) @, (x — x)dx'| + 1/n.
Bl/n(o)
Since K is compact, up to a subsequence we can assume that y, converges to some y € K.
Thus, taking n large enough such that |y, — y| < n we have
SUp, ek | fux, ¥) — f(x, V)|

<e+]| (f& ) = f& D)+ f&5) — fx, y)dy(x —x)dx'| + 1/n
B1/n(0)

<2+ |fulx,y) — fx, y)l + 1/n.

Taking the limit as n goes to infinity and & goes to zero to conclude. [

Step 1: Construction of an approximating sequence of solutions. Letn € N be fixed. According
to [15, Theorem 2.6], for every (s, x) € [0, T] x R? the FBSDE

!Xt = x + [ b, X, Yu, Z) du + [ 0 dW, G

Y, = ha(X7) + [ gulu, Xo, Yo, Z)du — [ Z,dW, 1 €[s,T]

admits a unique solution (X*", Y$*n zs*m) ¢ SHR?) x S®(R!) x H>(R*?). Denote by L"
the differential operator

1
L' :=b,(t,x,v, Dyvo)D,v + itrace(aa*Dmv),

where D, and D,, denote the first and second derivatives acting on the space variable.
By [37, Theorem VII.7.1] (or see also [42, Proposition 3.3]) the PDE

(3.2)

0 (t, x) + L, (t, x) + 8n(t, x, vy(t, X), Dyv,(t, x)o) =0
(T, x) = hy(x)
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admits a unique (classical) solution v, € C 12([0, T] x R?) that is bounded and with bounded
gradient. Moreover, the solutions of (3.1) and (3.2) are linked through the identities (see [42])

YOO = ,(t, X0 and  Z8Y" = Dyv,(t, X250, 1€ [s, T, (3.3)

The rest of the proof will consist in proving (strong) convergence of the above defined
sequence of stochastic processes (X**", Y**" Z%%") and to verify that the limiting process
satisfies the FBSDE with measurable drift. Our method will make use of a priori (gradient)
estimates for Sobolev solutions of parabolic quasilinear PDEs which can be found e.g. in [16]
or [37] and that we recall in Appendix. These estimates allow us to have:

Lemma 3.2. There is a constant R > 0 depending only on ky, k3, T (but not on n) and for
every 6 > 0, a € (0, 1) there are constants Cs and Cy s depending on ki, ky, k3, 0,d,l and T,
and which do not depend on n such that

lvu(t,x)| < R forall (t,x)€[0,T]xR?,
the derivatives satisfy

|Dyv,(t, x)] < Cs forevery (t,x)e[0,T —68] xR (3.4)
and if h is a-Holder continuous, then
“R g x—x) (3.5)

for every (t,x),(t',x") € [0,T] x R? and some o' € (0,a]. Moreover, if h is Lipschitz
continuous, then (3.4) holds with § = 0.

[v(t, x) — v, (', x")| < C(|t — 1)

Proof. The boundedness of v, is well-known. We provide it to explicitly derive the constant
R. We have

U1, 1) = Y50 = (X

T 1 T
+/ / 0.8 (u, X\, Yy AZ ) dAZ " du — f Zi" dw,
t 0 .
T

—i—/ gn(u, X0, Y5 0) du.
t

Therefore, by the Girsanov’s theorem, conditions (A3)—(A4) and Gronwall’s inequality we have
[va(t, x)| < kze™ =R forall (r,x)e[0,T] xR

The bounds (3.4) and (3.5) follow by Theorem A.l. Furthermore, since v, is a classical
solution of (3.2), i.e. v, € CH2([0, T] x RY), it is in particular a Sobolev solution, and
va € Wil 010, TT x RY RY) (see definition in Appendix). Moreover, if 4 is Lipschitz
continuous then by definition of (%,,), it holds |, (x) — h,(x")| < k3|x — x'| for every x, x’ € R¢

and all n € N. Therefore, the last claims follow by Theorem A.2.

Step 2: Candidate solution for the forward equation. In this step, we show that the sequence
(X*%m) converges in the strong topology of S*(IRY). We first show existence of a weak limit.
To ease the presentation, we omit the superscript (s, x) and put

X"i= X000 Y=Y and 2= 20
6
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Step 2a: Weak limit. It follows from Step 1 that the process X" satisfies the forward SDE

t t
X7 :x+/ by(u, X, va(u, X},), va,l(u,X;‘)o)du—i—/ odW,. (3.6)

Lemma 3.3. Consider the function En (t,x) > b’z(t,x, vu(t, x), Dyv,(u, X}))o). Under
either of the conditions (B1) or (B2), the function b, is continuously differentiable and
uniformly bounded, i.e. there is a constant C > 0 which does not depend on n such that

|ba(t,x)| < C forall (t,x)€l[0,T]xR.
Proof. That Zn is continuously differentiable follows from the fact that b, is smooth and v,

is twice continuously differentiable. By (A1) and Lemma 3.2, if condition (B1) holds, then for
every (¢,x) € [0, T] x R? we have

b, )| < ki (1 4 |va(z, X))
<ki(1+C).

When condition (B2) holds, it follows by Lemma 3.2 that D,v, is bounded. Thus the result
follows from the linear growth of b, i.e. (Al).

Due to Lemma 3.3, it follows from standard SDE estimates that the sequence (X") satisfies
suan[supte[S’TﬂXflz] < 0.

Therefore (X") admits a subsequence which converges to some X in the weak topology of
S?(RY). This subsequence will be denoted again (X").

Step 2b: Strong limit. Since Z,l is Eipschitz continuous, the solution X” of the SDE (3.6) is
Malliavin differentiable and since b, is a smooth function with compact support, it follows
by [46, Lemma 3.5] that

. . 2 ~ ~
E[|pix; = pixz| ] = Cortiballoole = 1 < Cor(Blo)le = £1° (3.7)

and

2 ~ ~
] < Car([1bnlloo) = Ca,r(lIPlloc) (3-8)

supOS,STE[H D, X}

for a strictly positive constant Cd’T(||En loo) such that C, 7 is a continuous increasing function,
and with @ = «(r) > 0. Whereby, Df X denotes the Malliavin derivative of the random variable
X at time ¢ in the direction of the Brownian motion W' and ||x|| denotes the Euclidean norm
of x irrespective of the dimension. Since the sequence by is bounded (see Eq. (3.6)), it follows
that the bounds on the right hand sides of (3.7) and (3.8) do not depend on n.

Therefore, it follows from the relative compactness criteria from Malliavin calculus of [13]
that the sequence (X') admits a subsequence (X7*) converging to some X, in L2

It remains to show that the choice of the subsequence (X,*); does not depend on r. That is,
for every t € [s, T, (X;*); converges to X, in L. In fact, we will show that the whole sequence
converges. This is done as in the proof of [47, Proposition 2.6]. Assume by contradiction that
for some ¢ € [s, T'], there is a subsequence (ny)x>o such that

X5 — X2 > e. (3.9)
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Since (3.7) is proved for arbitrary n, it for}lows again by the compactness criteria of [13] that
(X)), admits a further subsequence (X, k‘)kl which converges in L? to X,. But since we
showed in Step 2a that the whole sequence of processes (X") converges weakly to the process
X it follows that (X ")k, converges weakly to X, and therefore, by uniqueness of the limit,
X, = X,. Since by (3.9) it holds

X=X, >
[ t t||L2 = €,
we have a contradiction. Thus,
X! — X, in L? for every t € [s, T].

Step 3: Candidate solution for the value process Y and the control process Z. In this part we
show that the sequence (Y”, Z") converges strongly in H>(R!) x H>(R"*?) to some (Y, Z).

First recall that (Y") is a bounded sequence in the Hilbert space H2(R’). Thus, it admits
a subsequence again denoted (Y") which converges weakly in H*(R!) to some Y. We will
show that the convergence is actually strong, provided that we restrict ourselves to a small
enough time interval. Let § € (0, T) be fixed. By Lemma 3.2, the sequence of functions (v,) is
bounded and equicontinuous on [0, T — §] x R4, Thus, by the Arzela—Ascoli theorem, there is
a subsequence again denoted (v,) which converges locally uniformly to a continuous function
v?. Since by Lemma 3.2 the functions v, are Holder continuous with a coefficient that does
not depend on n and with common Hélder exponents & (in x) and «’/2 (in ), we have

E[Jva(t, X = 03, X)) < E[Joa(t, X]) = vat, X0)12] + E[Jva(t, X)) = v, X)I’]

< CE[1X, — X1 ] + E[Jva(t, X)) — v*(t, X)I)] = 0
(3.10)

Therefore, Y/ = v,(t, X") converges to v’(¢, X,) in L? for each ¢ € [0, T — §]. It then follows
by uniqueness of the limit that

Y, =, X,) forall re[0, T —3]. (3.11)

It then follows by Lebesgue dominated convergence (in view of Lemma 3.2) that (Y")
converges to Y in H2(R!) restricted to [0, T — 8], i.e.

T—6
im E[/ |Yt”—Y,|2dt] —0. (3.12)
n—oo 0

Eq. (3.11) further shows that v® does not depend on 8. Thus, we will henceforth write
Y, =v(t,X,) forall re[0,T—6] and forall & > 0.

We now turn to the construction of the candidate control process Z. We want to justify
that under both conditions (B1) and (B2) the sequence b, can be taken uniformly bounded.
In fact, if the function b satisfies (B1), and since (Y") is uniformly bounded (this comes from
the representation v, (¢, X}') = Y;' and Lemma 3.2) it follows by uniqueness of solution that
(X", Y", Z™) also solves the FBSDE (3.1) with b, replaced by its restriction on [0, T'] x RY x
Br(0) x R4, Similarly, if condition (B2) holds, then (Y") and (Z") are bounded, and by
uniqueness, (X", Y", Z") also solves the FBSDE (3.1) with b, replaced by its restriction on
[0, T] x R? x Bg(0) x Bg(0). In particular, we can assume without loss of generality that b,
is uniformly bounded, i.e. |b,(t, x, y, z)| < C for all n, t, x, y, z and for some constant C > 0.
Therefore, it follows by Theorem A.1 that for every § > 0 and « € (0, 1) there is a constant

8
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C;.. independent on the derivatives of the coefficient (which in particular does not depend on
n) such that for every ¢, € [0, T — 8] and x, x’ € R? it holds that

|Deva(t, x) — Dyvy(t', x)| < Cso(lx — x'[< + [t — /[,

Now, let (8%) be a strictly decreasing sequence converging to 0. By Arzela—Ascoli theorem,
there is a subsequence w,; = DXU"'[O.T—(S"]XR , Which converges locally uniformly to some
function wy on [0, T — 8] x RY. Since Z" = D,v,(t, X")o for all t € [0, T] (recall (3.3)) we
then have Zt"’k = wy(t, X!)o foreveryt € [0, T — 8] and every k € N, for some subsequence
of Z". And arguing as in Eq. (3.10), we have

Z'* = Dew, 1 (t, X))o — wi(t, X))o = Z¥ in L* forevery te[0,T — 8.

List (A2) and uniqueness of the limit (wy of the sequence (w, x),) show that wy = wyy; on
[0, T — 8] for every k. Thus, the function

o0
w(t, x) = wi(t, )i g (0 + Y welt, ) p_gi _gisy(0)
k=1
is a well-defined Borel measurable function. In particular, the limit Z* does not depend on k.
In fact, putting

Z; = w(t, X;)o, (3.13)

we have by Lebesgue dominated convergence that Z"* — Z in H?(R'*“) restricted to the
interval [0, T — 8*]. In particular, it follows by It6 isometry that

T3k T—5k
/ zrkaw, — / Z,dW, in L* for every k. (3.14)
0 0

Step 4: Verification. The goal of this step is to show that the triple of processes (X, Y, Z)
constructed above satisfies the coupled system (1.1). This part of the proof will be further
split into 2 steps: We first show that (X, Y, Z) satisfies the forward equation. This step uses the
representations Y; = v(¢, X;) and Z, = w(¢, X;)o in a crucial way. In fact, these representations
allow to obtain a solution X of a decoupled SDE with measurable drift that we can then show
to coincide with the candidate solution X constructed above. In the last part we show that
(X, Y, Z) satisfies the backward equation.

Step 4a: The forward equation. Using either of the conditions (B1) or (B2), we can show
as above that the function x = b(t, x,v(t, x), w(t, x)o) is bounded. Therefore, [46] gives
existence of a unique solution X to the SDE

t t
X,=x+/ bu, X, v(u, X,), w(u,)_(u)o)du+/ odW,.

Hence, in view of (3.11) and (3.13), it remains to show that X, = X, P-a.s. for every t € [s, T]
to conclude that the forward SDE is satisfied, that is, that

t t
X,:x—i—/ b(u,Xu,Yu,Zu)du—}—/ o dW,. (3.15)

To that end, continuity of the paths of X and X and uniqueness of the limit, it suffices to
show that for each fixed ¢ € [s, T'] the sequence (X) converges to X, in the weak topology

9
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of L?(P). For any progressive and square integrable process g, we will use the notation

t 1 t
5(‘] . W)s,z‘ = exp(/ qu qu - E/ |‘Iu|2d14),

for the stochastic exponential of the martingale [ ¢ dW. Since the set
{€@-Whr: ¢ €Cy(0. TLRD)

is dense in L?(P), in order to get weak convergence it is enough to show that (X ,”6 (@u-W)oT)
converges to X +E(@u-W)o.r in expectation, for every ¢ € Cb([O T1, R%). Hereby C b([O T1, R%)
denotes the space of bounded continuously differentiable functions on [0, 7'] with values in RY,
and ¢ is the derivative of ¢. Put X”(a)) = X} (o + ¢) and X,(a)) = X,(w + ¢). It follows by
the Cameron—Martin theorem, see e.g. [60] that X" satisfies the SDE

dX?" = (bu(t, X1, va(t, X1), Dyva(t, Xo) + 0@;) dt +odW,.

In fact, for every H € LX(P; F), using Cameron—Martin—Girsanov (see for example [60]) it
holds

EIXIH] = E[X] H( = 0@ Wy1]

t
= E[ (x4 [ b X2 0,0 XD, D, XD s+ (W, — Wo)

X H(Cl) - fp)g(% . W)S,T]

_ t
=FE (x +f by(u, X', vy (u, X}, Dyv,(u, X))o )w + @) du

N

+ o (W, = W@+ ) H|

_ t
—£[(x+ / b, K2, v, X, Dy, X)0r)

+ oy du+o(W, — Ws)(a)))H],

where the latter equality follows by applying once more the Cameron—Martin—Girsanov
theorem and the fact that Wi(w + ¢) = Wi(w) + ¢, = Wi(w) + fot ¢u du since W is the
canonical process. This proves the claim. That X satisfies

dX, = (b, X,, v(t, X)), w(t, X)o) + 0¢1) di + 0dW,
is proved similarly. Now put

Mn(t7 X) = 0*(00—*)71bn(t3 X, Un(t, -x)a van(ta x)o’) and

u =™ b, x, v(t, x), w(t, x)o).
Recall that the law of X ¢ under the probability measure Q" with density E(uy,(r, X "N+ Wo.r
coincides with the law of x + g W, under P. Similarly, the law of X, under the probability
measure Q with density E(u(r, X,) + ¢, - W)o,r coincides with the law of x 4+ oW, under P.
To show X, = X, P-as. for every t € [s, T] as needed, we will show that (X}) converges

weakly to X, (in the weak topology of L?) and conclude by umqueness of the limit. Thus, it
follows by Girsanov’s theorem and the inequality |e® — e’| < |e® + ¢®||a — b|

E[X]E@u-W)o,r]| — E[XiE(gu - W)o,T]
= E [(x + o W) (€ Qun(r. x + o Wr) + @} - W)o 7 — EQuir, x + o W) + ¢} - Wo 1) ]
10
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1
<CE [|x to- W,|2]2

x E[<g<’“” (r’x + UW’) + (i”] ’ W)O,T +6([u<r,x +0Wr)0,T + ¢’] ' W)O,T>4]

AE[([ (o) =l om)Jaw) ']

+ EI:(/OT{HM,,(r,x oW+ ¢rll2 — lulr, x + o W) + g ||2}dr)4]}

=11 x Iy x (I3 + Iy )% (3.16)

=

Bl

That I; is finite is clear, by properties of Brownian motion. Since b, is bounded, so is u,.
Thus, by boundedness of ¢, it holds that sup, I, is finite.

Now if we show that the sequence (u,) converges to u pointwise, it would follow by
Lebesgue’s dominated convergence theorem, to get that I3, and I, converge to 0 as n goes
to infinity, hence concluding the proof. In fact, there is R > 0 such that |v,| < R and there is
R’ such that* for every ¢ € [0, T), it holds that |D,v,(t, x)| < R’ for all n. Thus, by definition
of u, and u, for almost every (¢, x) € [0, T) x R? we have

lu,(t, x) —u(t, x)| < Clby(t, x, v,(t, x), Dyv,(t, x)o) — b(¢, x, v(t, x), w(t, x)o)|
< Clbu(-, vy, Dyvy0) = b(-, vy, Dxv,0)|(, X)
+ C|b(-, v,, Dyv,0) — b(-, v, wo)|(t, x)
= CsupyeBR(o),zeBR,(o)|bn([a x,y,2)—b(t,x,y,2)|
+ C|b(t, x, v,(t, x), v,(t, x)o) — b(t, x, v(t, Xx), w(t, x)o)|.

The first term converges to zero since b,, converges to b locally uniformly in (y, z) (Lemma 3.1);
and the second term converges to zero because v, and D,v,o converge to v and wo
respectively, and the function b(z, x, -, -) is continuous on the ball Bg(0) x Bg/(0). Therefore,
(X7') converges to X in the weak topology of L2, therefore X = X satisfies the forward
Eq. (3.15).

Step 4b: The backward equation. In this final step of the proof we show that the process
(X, Y, Z) satisfies the backward equation. The argument is very similar to those of the Step 4a
and also rely on the existence of the decoupling fields v and w and Girsanov’s transform.

By Steps 2 and 3 we know that (X") converges to X, in L* and (Y™*, Z"*) converges to
(Y, Z) in HA(R!) x H*(R!*9) (restricted to the interval [0, T — §]), where (Y%, Z™¥) is the
sequence corresponding to (Y", Z") restricted to [0, T — 8*]. Let k be fixed and let X" be a
subsequence corresponding to (Y%, Z"K). For every n, k we have

u

T—5k T -5k
Yk =yt + / gu(u, X ¥k 70Ky du — / zrkaw,. (3.17)
t t

Now, we would like to take first the limit in » and then limit in £ on both sides. By Step 3,

T8k

the sequences of random variables Y,"‘k, Y nfak and ft Z"k dW, respectively converge to

T
sk sk
Y, Yr_s and ftT " Z.dW, in L2. Thus, it suffices to show that ftT ’ gn( X1k ynk znky dy

4 Under the condition (B1) and when t = T, the sequence (Dyv,) might not be bounded and (u,) does not
necessarily converge to u but convergence for almost every ¢ is enough.

11
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ok
converges to ftT s g(u, X,,Y,, Z,)du in L2. To this end, define

Bnk(t, X) = gu(t, X, va(t, X), Dyvy(t, x)0), and

g, x) = g(t, x, v(, x), w(t, x)o).
Observe that g, is uniformly bounded (this can be shown using similar arguments as in
Lemma 3.3) and converges to g almost surely on [0, T — 8] x R?. In fact,

0,78k

18,12, x) — 8(t, )| = |gu(t, x, vs(t, X), Dyvy(t, X)0) — g(t, X, Va(t, x), Dxvy(t, x)0)|
+ |g(t, x, v,(¢, x), Dyv,(t, x)o) — g(t, x, v(t, x), w(t, x)o)|
<=sup, |g.(t, x,y,2) —g(t, x,y,2)|
+ |g(¢, x, v,(¢, x), Dyv,(t, x)o) — g(t, x, v(¢, x), w(t, x)o)| — 0,

where we used Lemma 3.1 and continuity of g in (y, z). Recall the representations Y* =
v, (u, X,’j'k), Z;‘*k = D v"(u, XL‘*k)a and Y, = v(u, X,), Z, = w(u, X,)o. For any m € N, we
have

T-sk
2
E| / guklae, X050, %) = g, Xo, Yo, Zu)[ du
t
7ok )
—E[[ @ X - B X du]
t

78k
~ n ~ n 2 ~ n ~ n 2
e[ [ B X = B XIOP + (B X0~ Bt X2
t
~ " ~ 2
1, X0 — B, X1 du]
N 75k
= El:g(b"(u’ X+ UW”) ’ W)() T{/ |§ﬂ,k(uv X+ GWu) - g("ﬁ x + UWM)|2
’ t
+ 18, x + o W,) — gn(u, x + oWu)Isz”
T8k 5
FE[[ Bt X0~ X du]
t
where the last inequality follows by Girsanov’s theorem and where we used the notation

En(t, x) = 0 (00 bu(t, x, va(t, x), Dyv,(t, x)o). (3.18)

Therefore, using Holder’s inequality the above estimation continues as

75k
" 2
E| / lgklae, Xk, Y, %) = g, Xo, Yo, Z)[ du]
t

T8k

~ 172
< CE[@n v +aw Wi, | B[ [ B oW~ B+ o
- - ' 1/2
+|g(u,x+0Wu)—gm(u,x+chu)|4du]
T8k 5
+ E[/ |8 (ut, X™5) — 8(u, X, du].
t

Since b, is bounded, the quantity E [8 (5,l,k(u, x+oW,)- W)g T] is bounded. Thus, letting m
fixed and taking the limit as n goes to infinity we obtain by Lebesgue dominated convergence

12
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that

T-sk
. 2
lim E[ / g rCats X2%, Y24 705 = gCu, Xa, Yo, Zu) du]
t

n—00

T8k
SCE[/ B0, x + 0 W) = Bt x + 0 W)I* du |
t

T—sk
+ E[/ |§m(uv Xu)_g(uv Xu)lzdu]
t

Letting m go to infinity it follows again by dominated convergence that the right hand side
above goes to zero. (We also used that the normal distribution is absolutely continuous.) Thus

T8k T8k
/ gu(u, XK Yk zmky / g, X, Yy, Z,)du in L%
t t

Hence, (X, Y, Z) satisfies

T—8k T—sk
Y, =Yr s +/ g, X,, Yy, Z,)du — / Z,dW, P-as. for every k.
t 1
Next, we take the limit as k goes to infinity. Since 8 | 0, we only need to justify that (YT,Sk)
converges to Y7 P-a.s. Indeed, since (Y7) converges to Y7 in the weak topology of L?, there
exists a subsequence (Y;) in the asymptotic convex hull of (¥Y7) such that (Y;) converges to
Y7 in L?. Moreover, Y7 satisfies

T
Yp=v" —/ G';du+/ Zrdw,
t t

where (Y” Gy, Z") is the convex combination of (Y, g,(u, X}, Y, Z}}), Z7') corresponding
to Y” If the condition (B1) is satisfied, then |g,(u, X}, Y", Z;’)| is domlnated by |Y}| which
is bounded and if the condition (B2) is satisfied, then Z = D,v"(u, X))o is bounded (by
Lemma 3.2), thus it follows by (A3) that |g,(u, X[}, Y}, Z}})| is bounded. Hence, G/, is bounded

under both conditions. Therefore it follows by triangular inequality that for every k,n € N it
holds that

|Yr st — E[Y7 | Fp_ sk]|
< C(\Yp_se = V2,1 + |EIVI_ — V| Fr_gll + ENYp — Yl | Fr_g)
T
< C(1Wp o — gl + B[ [ 1GUdu ) Fp ]+ EUTE - ¥ 77 40)
T—6
< C(Yp g = Y7 |+ 8" + ENY} — Yr|| Fr_s])

for some constant C > 0. Since (17 ) converges to Yr in L?, (Y " ) converges to Yr_g in
L? and Yy y" s« 18 the convex combination of Y . taking the limit ﬁrst in n and then in k as
they go to mﬁmty shows that |Y;_g — E[Yr | Fr_sc]l = 0 P-as. On the other hand, in our
filtration every martingale has a continuous version. Thus, E[Yr | Fr_s] — Yy P-as. as k
goes to infinity. We can therefore conclude that Y;_gs — Y7y P-a.s. when k goes to infinity,
which yields

T T
YtZYT+/ g(quuaYuaZu)du_/ Zuqu
t t

13
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It finally remains to show that Y7 = h(Xr). Since (Y7}) converges to Y7 in the weak topology
of L? (see the beginning of Step 3) if we show that (Y7) converges to h(X7) in L? then we
can conclude that Y7 = h(Xy7). If (B2) holds, this is clear. In case (B1) holds, this is done
using again a Girsanov change of measure and boundedness of by (recall definition given in
(3.18)). In fact, for every m € N it holds that

Ellh,(X}) = h(X7)I’]
= C(EUmXD) = hXDPT+ EQRD) = hn(XPPT + Elln(X5) = h(X7)])
< C(E[@t.x +oW)- W),
x {IhCe+ 0 Wp) = b + WP + i (x + 0 Wp) — hx + o WP}
+ Ellhn(X}) = h(Xp)I])
< C(E[€@a.x + oW W)ﬁj]]/2
x E[lh(x + OWr) — h(x 4+ o W)* + | (x + 0 Wr) — h(x + UWT)|4]1/2
+ Elhn(Xp) = h(X7)P]).

Since Z;n is bounded, the first term on the right hand side above is bounded. Thus, fix m then
take the limit » — oo and then the limit m — oo to get by dominated convergence

E[|h,(X2) — h(X7)|*] — 0.

This concludes the proof. [

3.2. Regularity of solutions

In this section we investigate regularity properties of the solution (X, Y, Z) of the FBSDE
(1.1). We will consider two types of regularity properties. We start by proving Malliavin
differentiability of the solution. This follows as a direct consequence of the method of proof
of the existence result. Then, we continue to consider smoothness of the solution as function
of the initial position of the forward process. We will show that for each s € [0, T] and ¢ > s,
the mapping x — (X", ¥;") belongs to a weighted Sobolev space for almost every path. The
last result will be central for applications to PDEs.

3.2.1. Malliavin differentiability

Let 0 <s <t <Tand x € RY Let (X, Y, Z) be the solution of FBSDE (1.1) given by
Theorem 2.1. The next result gives the Malliavin differentiability of (X, Y, Z). We additionally
consider the following conditions:

(AS) The function g(¢, x, y, z) = g(¢, x, y) does not depend on z and is Lipschitz continuous
in (x, y).

(A6) The function g(t,x,y,z) = g(t,y,z) does not depend on x and is continuously
differentiable and Lipschitz continuous in (y, z).

14
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Proposition 3.4. Assume that the conditions (Al)—(A4) are satisfied.

(i) If (B1) is satisfied, then X, is Malliavin differentiable for all t € [0, T] and for every
8 > 0, Y, is Malliavin differentiable for all t € [0, T — §].
(ii) If (B2) is satisfied, then (X;, Y;) is Malliavin differentiable for all t € [0, T].
(iii) If (B2) and either of the conditions 3.2.1 or 3.2.1 hold, then (X;,Y:, Z;) is Malliavin
differentiable for all t € [0, T'].

Proof. Consider the sequence (X") constructed in the proof of Theorem 2.1. Recall that under
both (B1) and (B2) we have

X! — X, in L? for every t € [0, T]

and (see Eq. (3.7) with ' = O therein) we have

d
E[ipxi] <Yk [HD;'Xf
i=1

where 5,, is a uniformly bounded sequence. Therefore, by [51, Lemma 1.2.3] we conclude
that X, is Malliavin differentiable for all r+ € [0, T]. In particular, sup, E [|D,Xs|2] < o0. To
deduce the differentiability of Y, recall that for every § > 0 and every ¢ € [0, T —4§] the function
x > v(t, x) is Lipschitz continuous. Thus, it follows by chain rule (see [51, Proposition 1.2.4])
that Y, is Malliavin differentiable for all ¢ € [0, T — §].

When condition (B2) is satisfied, the function x — v(¢, x) is Lipschitz continuous for every
t € [0, T]. In fact, it follows from Lemma 3.2 that v, is Lipschitz continuous with Lipschitz
constant Cs (see Eq. (3.4)) which does not depend on n. Thus, since v, converges pointwise
to v the claim follows. Again by chain rule, Y; is Malliavin differentiable for all ¢+ € [0, T].
Thus, (X,, Y;) is Malliavin differentiable.

If furthermore condition 3.2.1 holds, then in view of the identity

2 ~
] < dCa,r([Ibnlloo)t

T T
/ stwszh(XT)_Yt+/ g(S, XSv Ys)ds’
t t

it follows from the chain rule and [53, Lemma 2.3] that Z, is Malliavin differentiable for
all + € [0, T]. If we rather assume 3.2.1, then since X, is Malliavin differentiable, the
Malliavin differentiability of (Y;, Z,) follows from the chain rule and [30, Proposition 5.3]
since [ E[|Dsh(Xr)*1ds < 0.

3.2.2. Weighted Sobolev differentiable flow
We now investigate differentiability properties of the solution with respect to the initial
variable of the forward process. Let0 < s <f < T and x € R4. We denote by (X5, Y5*, Z5%)

the solution of the FBSDE
!Xt = x + [ bu, Xu, Yu, Z) du + fj 0d W,

3.19
Y, = h(X7) +j;T g(u, Xy, Yy, Z,)du — ftT Z,dW, tels,T] 19

given by Theorem 2.1. The next result gives regularity of the function x — (X**, Y*¥). We
now introduce the Sobolev space where the derivatives will be defined. Let p be a weight
function, that is, a measurable function p : RY — [0, 00) satisfying

/ 1+ [xI")p(x)dx < oo
R4

15



P. Luo, O. Menoukeu-Pamen and L. Tangpi Stochastic Processes and their Applications 144 (2022) 1-22

for some p > 1. Let LP(R?, p) be the weighted Lebesgue space of (classes) of measurable
functions f : RY — R? such that

112 g = /R @I p)dx < oc.

For functions f : RY — IR’ satisfying this integrability property we analogously define
the space L”(R', p). Further denote by W) (R?, p) the weighted Sobolev space of functions
f € LP(R?, p) admitting weak derivatives of first order 0y, f and such that

d
1 Iwsea = 1F o+ D 185 fllra ) < 00

i=1

Proposition 3.5. Assume that the conditions (Al)—(A4) are satisfied.
(i) If condition (B1) holds, then we have
XY e L (2: WyR?, p)) for every 1 € [0, T] (3.20)
and if | = 1, then for every bounded open set U € R? we have
Yi' e LZ(Q; WII(U)) for everyt € [0, T — 8] and every § > 0. (3.2
(ii) If condition (B2) holds and | = 1, then (3.20) and (3.21) hold with § = 0.

Proof. Recall from Theorem 2.1 that the solution (X, Y, Z) of the FBSDE (1.1) satisfies ¥;"* =
v(t, X5¥) and Z;* = w(t, X;"")o for some bounded measurable function v : [0, T] x R? — R!
and a measurable function w : [0, T] x R — R/*4_ Thus, X** satisfies

t
X =x +/ bu, X", v(u, X)), wu, X" )o)du + o (W, — Wy).
N

Under both conditions (B1) and (B2) the function x — b(t, x, v(t, x), w(t, x)o) is bounded
and measurable. Thus, it follows from [50, Theorem 3] that X;"* € LZ(Q; W},(Rd, ,0)).

To deduce differentiability of Y, recall that for every § > 0 and every ¢t € [0,T — §]
the function x +— w(¢, x) is Lipschitz continuous. Let p be the weight function given by
p(x) = 1y(x). There is a measurable N C 2 such that X;" (w) € W},(U) for all w € N°
and P(N) = 0. Thus, since [ = 1 it follows by the chain rule formula of [39, Theorem 1.1]
that for every w € N°¢ the function ¥;"(w) = v(z, X;" (w)) belongs to the Sobolev space
W).

When condition (B2) is satisfied, the function x — v(t, x) is Lipschitz continuous for every
t € [0, T]. The claim (ii) then follows from the same arguments as above.

4. Links to partial differential equations and stochastic control with rough coefficients
4.1. Link to partial differential equation
Since the FBSDE under consideration is Markovian, it can be argued that the solvability to

(1.1) is a direct consequence of existence and uniqueness of solution of the partial differential
equation (PDE)

{B,U(t, x) + Lo, x) + g(t, x, v(t, x), Dov(t, x)o) = 0

u(T, x) = h(x) 1)
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with
1 *
Lv :=b(t,x,v, D,vo)D,v + Etrace(ao D,.v)

in the classical, or Sobolev sense. While such equations with b non-smooth are well-studied, see
e.g. [31,32,34,52], it should be noted that all these references consider the linear case and most
importantly, the terminal condition / is assumed to be smooth and the coefficients integrable
enough.

In the case of semilinear PDEs, the authors in [25] study existence of local solutions for a
wide class of non-smooth initial data and give sufficient conditions which guarantee the global
existence of the solution to the PDE. Let us also mention the work [1] on general nonlinear
non-degenerate parabolic equations. In both of these works, the authors assume that the initial
data is in some suitable L9 space, with ¢ > 1. For the case of nonlinear heat equation with
integrable initial conditions, we refer the reader to [9,22,61,62] and references therein. Using
the notion of stable sets introduced in [57], many authors studied existence of global solution
of semilinear heat and wave equations. For example, in [26], those stable and unstable sets
were characterized by the asymptotic behavior of solutions (as ¢ +— o00) of the semilinear
PDE with non-smooth initial condition (corresponding to terminal condition in the present
case). When the initial condition is a Radon measure there has been a lot of work studying
sufficient conditions on the measure under which the PDE (degenerate or not) has a local or
global solution. See for example [2,27,58,59] and references therein. We also refer the reader
to the work [28] with the non-linear term containing a distribution coefficient in a Besov space.
Observe that the above works differ from ours in many ways: we do not assume any (weak)
differentiability or continuity of the non linear terms in (¢, x). In addition, since the terminal
condition is measurable and bounded and not automatically integrable the above techniques
are not directly applicable to our setup, and perhaps require additional technical localization
arguments.

Some works also consider stochastic PDEs (SPDEs) with irregular coefficients. In [20] an
SPDE corresponding to the PDE studied in the present paper, but with multiplicative Brownian
noise is studied, and existence and uniqueness results are derived (see also [63] for the
LP-theory approach to the existence of such equations) assuming that the coefficients do not
depend on D,v. The above results were generalized in [18] to the quasilinear SPDEs and the
authors prove existence, uniqueness and L7 -estimate for the weak solution. Their method relies
on a version of Moser’s iteration. In [14] quasilinear SPDEs for jump diffusions are investigated
and comparison results are derived. In these works, the initial condition is assumed non-smooth.
See also the work [19] for the case of SPDEs with obstacles. To the best of our knowledge
the case of SPDEs with coefficients satisfying the conditions in the current paper has not been
studied and is beyond the scope of this work. It is possible that combining our ideas with those
introduced in [45] could allow to tackle this problem.

Having a non-smooth terminal condition pauses important difficulties as observed in the
proofs above. Restricting x to a compact space would make the coefficients integrable, but
in that case, boundary conditions should be added to the PDE (4.1) further complicating its
analysis.

As the reader will have observed, PDEs still play an essential role in our argument since after
mollification of the coefficients of the FBSDEs, we derive a decoupling field via the solution
of the second order parabolic equation (3.2). A priori estimates on the gradient of the solution
of this equation were crucial. Notice, however, that since the terminal condition % is not taken
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regular, the gradient of the decoupling field is not necessary bounded on the whole interval
[0, T]. This prevents us from obtaining compactness of the sequence of decoupling fields in
a Sobolev space. For instance, a solution to the PDE (4.1) would be hard to derive by such
direct arguments. Therefore, it is interesting to point-out that our results should allow to prove
existence of (4.1) (under conditions (A1)—(A4) and (B1) or (B2)) at least in the L”-viscosity
sense, and in one dimension.

4.2. Link with stochastic control

In this final subsection, we explain, at least informally, how our results apply to the study
of optimal stochastic control of systems with rough coefficients.
Consider the control problem

inf, E[g(X5) + fy £, X2, @) du]
dX} =bu, X;,0,)du+odW,, Xgi=x,

u’

where the infimum is over R™-valued square integrable progressive processes « and b, f :
[0,T] x R" x R" — R, and g are given Lipschitz continuous functions. In such a setting
where the coefficients b, f, g are not smooth functions, the maximum principle was established
by [6,7,48]. These authors showed that if an admissible control & is optimal, then it holds

&, e argmin H(t, X, ¥,, a),
aeR™

with d)A(, = b(t, )A(t, a;)dt + o dW;, )A(o = x, ()A’, 2) solves the adjoint equation
dY¥, = -D.H(t,X,,Y,,&)dt + Z,dW,, Yr = D,g(Xr)

and the function H is the Hamiltonian given by
H(t,x,y,a)=>b(t,x,a)-y+ f(t,x,a).

Since the functions b, f and g are only Lipschitz continuous, the derivatives D, H and D,g
are to be understood for almost every x. Under standard convexity conditions, it can be showed
that @ = A,()A( P I?,) for some Lipschitz continuous function A. Thus, it orders for an optimal
& to exist, there must be a solution ()A( .Y, 2) of the FBSDE

dj(t = b(t, )A(n At(j(t, i}t))dt +odW,
dY, = =D.b(t, X,, (X, Y)) - ¥y — Do f(1, Xy, Ai(Xy, Yo))dt + Z, dW, (4.2)
YT ZDXg(XT) X():X.

When the drift, generator and terminal value of the above FBSDE are Lipschitz continuous,
then a unique solution exists, see works by Delarue [15], Ma et al. [42]. Lipschitz continuity
of the coefficients of the FBSDE require, in particular, the second derivatives of the functions
b, f and g to exist (at least almost surely) and to be bounded. When the second derivatives
of b and f are only assumed continuous, an existence result for FBSDEs as (4.2) is proved
by Antonelli and Hamadene [4]. However, this paper assumes Y to be one-dimensional and the
generator monotone in y. Our main result requires only the first derivatives if the coefficient of
the control problem to exit and be bounded, Y can be multi-dimensional and non monotonicity
assumptions are needed.
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Appendix. A priori estimations for quasi-linear PDEs

For the reader’s convenience, in this appendix we collect some a priori estimations for quasi-
linear PDEs. These are fundamental for the proofs of our main results. Different versions of
these estimates can be found e.g. in [16,40,43] or [37]. The results we present here are taken
from [16,43].

Recall that the Sobolev space W;:lzoc((O, T) x R?, RY) is the space of all functions u :

0, T) x R? — R! such that for all r > 0,
/ <|u|”+|8,u|”+|Dxu|”+|D”u|”) dxdt < o0
(0,T)x Br(0)

and consider the quasilinear parabolic PDE

o;u(t, x) + Lou(t, x) + g(t, x, v(t, x), Dyv(t, x)o0) =0 A1)
(T, x) = h(x) '

where L is the second order differential operator

1
Lv :=b(,x,v, D,vo)D,v + Etraoe(ao*Dxxv).

Theorem A.1 ([43, Theorem 3.1 & Lemma 6.2]). Assume that the conditions (A1)—(A4) are
satisfied, and further assume that the functions b, g and h are bounded, smooth and with
bounded derivatives. Let v be the unique classical solution of (A.1). Then for any § > 0 there
are o € (0, 1) and constants C, Cs and Cs o depending on ki, ky, k3, A, T, 1, m, and the bound
of b, g and which do not depend on the derivatives of b, g such that

(i) |Dv(t, x)| < Cs for all (t,x) € [0, T — 8] x R?.
(i) for all (¢, x), (t',x") € [0, T — 8] x RY, it holds that

|Du(t, x) = Dev(t', X)) < Cs alx = x| + |t = £'[7).
(iii) for every bounded domain © € R? and p > 2 it holds

T—5
f / (1D, )17 +1Dyv, )17 | dx di < €10,
0 o
where |O| is the Lebesgue measure of O.
If h is twice continuously differentiable with bounded first and second derivatives, then (i), (ii)

and (iii) hold with § = 0 and Cy may depend on ||D.h|l s and || Dyyh|~ as well.

Theorem A.2 ([16, Theorems 1.3 & 2.9]). Assume that the conditions (A1)—(A4) are satisfied
and that h is a-Hdlder continuous. Let v be a solution of (A.1) in the space ijl,loc((o, T)x
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R?, RY). Then there are constants C > 0 and o' € (0, ] depending only on ki, ky, ks, A, T,1
and m such that

u(t, x) — v(t', x)] < C(lx — x| + |t = £'*7%)

for every (t,x),(t',x") € [0, T] x R If a = 1, then it holds that

ID.v(t, x)| < C for every (t,x) € [0, T] x R.
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