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Modal analysis in curvilinear coordinates
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Summary Modal analysis techniques have proven useful in understanding and modeling turbulent phenomena [1]. However, these
techniques are more efficient in parallel flows where Fourier transforms can be taken along homogeneous directions. We suggest that
quasi-1D methods can be applied to mildly non-canonical flows by using a curvilinear coordinate system. For a given base flow, we
identify a curvilinear coordinate system that allows the Fourier-transformed equations of motion to be simplified into a quasi-1D system
that can be efficiently analyzed.

When performing reduced-order modeling or stability analysis in parallel flows, significant order reduction is possible
using Fourier-transforms along the homogeneous directions [4, 1]. But when one transitions to a non-parallel flow, these
order reductions are lost, and one instead must do a global analysis [2], requiring more intensive computation. Particularly
for weakly non-parallel flows, the exact solution of modes using 1D analysis techniques may be possible if one changes
the coordinate system within which the equations are written. We aim to formulate local stability and resolvent analyses
using curvilinear forms of the Navier-Stokes equations by iteratively solving for an appropriate coordinate system given
a particular base flow. We seek a coordinate system within which a Fourier transform can be usefully performed.

We define the following transformation between Cartesian coordinates (xi) and orthogonal curvilinear coordinates
(Zi) such that,

Zi = Zi(x1, x2, x3), (1)
xi = xi(Z1, Z2, Z3). (2)

In the curvilinear coordinate system, we write the Navier-Stokes equations as,
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where Ui and U i are the covariant and contravariant components of velocity respectively, ρ is fluid density, P is the scalar
pressure, ν is fluid kinematic viscosity, gij is the metric tensor, and Γi

jk are the Christoffel symbols of the second kind
[3]. The metric tensor and Christoffel symbols are additional variables introduced to keep track of the changing length
and direction of the basis vectors at every point in a curvilinear coordinate system, whereas the basis remains constant
everywhere in Cartesian coordinates.

At this point, a choice of the specific curvilinear coordinate system has not been made. The coordinate transformation
should be chosen such that, when the governing equations are cast in a form appropriate to perform stability analysis
or resolvent analysis, it will allow taking a Fourier transform along at least one of the non-parallel flow directions. To
identify the suitable constraints on such a coordinate system, we decompose the flow as Ui = Ūi + ui and expand the
curvilinear Navier-Stokes equations in these terms. Ūi is the base flow for stability analysis or mean flow for resolvent
analysis, and ui is the fluctuation about the base flow. In equation 4, we show the left hand side of the resulting equation
in the Z1 direction for a two-dimensional flow, without including the terms containing only the base flow for the sake of
compactness. Terms that contain only the base flow can be directly computed.
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Ū1

∂u1
∂Z1

+ u1
∂Ū1
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To efficiently represent the fluctuating velocity field using a Fourier transform in the Z1 direction, Ū1 and Ū2 must
not be functions of Z1. For example, consider the Fourier transform of a term in equation 4,
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does not simplify, if Ū1 is a function of Z1,
(5)

where û1 = û1(k1, Z
2, Z2) is the Fourier transform of u1 in the Z1 direction. When Ū1 is not a function of Z1, the

expression on the left hand side of equation 5 simplifies to an algebraic expression.
To identify the appropriate coordinate system (Z1, Z2) = (T,B) in which ŪT and ŪN are constant along T , we use an

iterative scheme. Given a simple, non-parallel base flow initially defined in (x, y) such that Ū = [Ūx Ūy]
′

(schematically
illustrated in Fig.1), we approximate the appropriate coordinate system (T,N) by defining curves along which Ūx , Ūy are
constant. With the approximate (T,N), we compute the components of our velocity field in the new coordinate directions,
ŪT , ŪN . We iterate between defining the coordinate system (T,N) based on the components of the velocity field ŪT , ŪN

and defining the components of the velocity field based upon the coordinate system (T,N) until the process converges to
a consistent coordinate system.

We will test our algorithm by re-deriving Cartesian and cylindrical coordinate systems for input parallel and axisym-
metric base flows. We will report on the coordinate system found, and / or on the constraints that prevent the identification
of such coordinate systems. We will additionally look for and report any assumptions that could be used to approximately
use such coordinate systems, enabling approximate use of local analysis for non-parallel flows.

Figure 1: Illustration of modes following a curvilinear coordinate system.
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