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Abstract

We design a general framework for answering adaptive statistical queries that focuses on providing
explicit confidence intervals along with point estimates. Prior work in this area has either focused on
providing tight confidence intervals for specific analyses, or providing general worst-case bounds for point
estimates. Unfortunately, as we observe, these worst-case bounds are loose in many settings — often
not even beating simple baselines like sample splitting. Our main contribution is to design a framework
for providing valid, instance-specific confidence intervals for point estimates that can be generated by
heuristics. When paired with good heuristics, this method gives guarantees that are orders of magnitude
better than the best worst-case bounds. We provide a Python library implementing our method.

1 Introduction

Many data analysis workflows are adaptive, i.e., they re-use data over the course of a sequence of analyses,
where the choice of analysis at any given stage depends on the results from previous stages. Such adaptive
re-use of data is an important source of overfitting in machine learning and false discovery in the empirical
sciences [Gelman and Loken, 2014]. Adaptive workflows arise, for example, when exploratory data analysis is
mixed with confirmatory data analysis, when hold-out sets are re-used to search through large hyper-parameter
spaces or to perform feature selection, and when datasets are repeatedly re-used within a research community.

A simple solution to this problem—that we can view as a naive benchmark—is to simply not re-use
data. More precisely, one could use sample splitting: partitioning the dataset into k equal-sized pieces, and
using a fresh piece of the dataset for each of k adaptive interactions with the data. This allows us to treat
each analysis as nonadaptive, permitting many quantities of interest to be accurately estimated with their
empirical estimate, and paired with tight confidence intervals that come from classical statistics. However,
this seemingly naive approach is wasteful in its use of data: the sample size needed to conduct a series of k
adaptive analyses grows linearly with k.

A line of recent work [Dwork et al., 2015¢,a,b, Russo and Zou, 2016, Bassily et al., 2016, Rogers et al.,
2016, Feldman and Steinke, 2017a,b, Xu and Raginsky, 2017, Zrnic and Hardt, 2019, Mania et al., 2019]
aims to improve on this baseline by using mechanisms which provide “noisy” answers to queries rather than
exact empirical answers. Methods coming from these works require that the sample size grow proportional
to the square root of the number of adaptive analyses, dramatically beating the sample splitting baseline
asymptotically. Unfortunately, the bounds proven in these papers—even when optimized—only beat the
naive baseline when both the dataset size, and the number of adaptive rounds, are large; see Figure 1 (left).
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Figure 1: Left: Comparison of various worst-case bounds for the Gaussian mechanism with the sample
splitting baseline. ‘DFHPRR’ and ‘BNSSSU’ refer to bounds given in prior work (Dwork et al. [2015d], Bassily
et al. [2016]). The other lines plot improved worst-case bounds derived in this paper, whereas ‘JLNRSS’
refers to bounds in subsequent work (Jung et al. [2019]). (See Section 2 for the full model and parameter
descriptions.) Right: Performance of Guess and Check with the Gaussian mechanism providing the guesses
(“GnC Gauss”) for a plausible query strategy (see Section 3.1), compared with the best worst-case bounds for
the Gaussian mechanism (“Gauss Bnd”), and the baseline.

The failure of these worst-case bounds to beat simple baselines in practice — despite their attractive
asymptotics — has been a major obstacle to the practical adoption of techniques from this literature. There
are two difficulties with directly improving this style of bounds. First, we are limited by what we can
prove: mathematical analyses can often be loose by constants that are significant in practice. The more
fundamental difficulty is that these bounds are guaranteed to hold even against a worst-case data analyst,
who is adversarially attempting to find queries which over-fit the sample: one would naturally expect that
when applied to a real workload of queries, such worst-case bounds would be extremely pessimistic. We
address both difficulties in this paper.

Contributions In this paper, we move the emphasis from algorithms that provide point estimates to
algorithms that explicitly manipulate and output confidence intervals based on the queries and answers so
far, providing the analyst with both an estimated value and a measure of its actual accuracy. At a technical
level, we have two types of contributions:

First, we give optimized worst-case bounds that carefully combine techniques from different pieces of
prior work—plotted in Figure 1 (left). For certain mechanisms, our improved worst-case bounds are within
small constant factors of optimal, in that we can come close to saturating their error bounds with a concrete,
adversarial query strategy (Section 2). However, even these optimized bounds require extremely large sample
sizes to improve over the naive sample splitting baseline, and their pessimism means they are often loose.

Our main result is the development of a simple framework called Guess and Check, that allows an analyst
to pair any method for “guessing” point estimates and confidence interval widths for their adaptive queries,
and then rigorously validate those guesses on an additional held-out dataset. So long as the analyst mostly
guesses correctly, this procedure can continue indefinitely. The main benefit of this framework is that it
allows the analyst to guess confidence intervals whose guarantees exceed what is guaranteed by the worst-case
theory, and still enjoy rigorous validity in the event that they pass the “check”. This makes it possible to
take advantage of the non-worst-case nature of natural query strategies, and avoid the need to “pay for’
constants that seem difficult to remove from worst-case bounds. Our empirical evaluation demonstrates that
our approach can improve on worst-case bounds by orders of magnitude, and that it improves on the naive
baseline even for modest sample sizes: see Figure 1 (right), and Section 3 for details. We also provide a
Python library containing an implementation of our Guess and Check framework.

)



Related Work Our “Guess and Check” (GnC) framework draws inspiration from the Thresholdout method
of Dwork et al. [2015a], which uses a holdout set in a similar way. GnC has several key differences, which
turn out to be crucial for practical performance. First, whereas the “guesses” in Thresholdout are simply
the empirical query answers on a “training” portion of the dataset, we make use of other heuristic methods
for generating guesses (including, in our experiments, Thresholdout itself) that empirically often seem to
prevent overfitting to a substantially larger degree than their worst-case guarantees suggest. Second, we make
confidence-intervals first-order objects: whereas the “guesses” supplied to Thresholdout are simply point
estimates, the “guesses” supplied to GnC are point estimates along with confidence intervals. Finally, we use
a more sophisticated analysis to track the number of bits leaked from the holdout, which lets us give tighter
confidence intervals and avoids the need to a priori set an upper bound on the number of times the holdout
is used. Gossmann et al. [2018] use a version of Thresholdout to get worst-case accuracy guarantees for
values of the AUC-ROC curve for adaptively obtained queries. However, apart from being limited to binary
classification tasks and the dataset being used only to obtain AUC values, their bounds require “unrealistically
large” dataset sizes. Our results are complementary to theirs; by using appropriate concentration inequalities,
GnC could also be used to provide confidence intervals for AUC values. Their technique could be used to
provide the “guesses” to GnC.

Our improved worst-case bounds combine a number of techniques from the existing literature: namely the
information theoretic arguments of Russo and Zou [2016], Xu and Raginsky [2017] together with the “monitor”
argument of Bassily et al. [2016], and a more refined accounting for the properties of specific mechanisms
using concentrated differential privacy (Dwork and Rothblum [2016], Bun and Steinke [2016b]). Feldman and
Steinke [2017a,b] give worst-case bounds that improve with the variance of the asked queries. In Section 3.1,
we show how GnC can be used to give tighter bounds when the empirical query variance is small.

Mania et al. [2019] give an improved union bound for queries that have high overlap, that can be used to
improve bounds for adaptively validating similar models, in combination with description length bounds.
Zrnic and Hardt [2019] take a different approach to going beyond worst-case bounds in adaptive data analysis,
by proving bounds that apply to data analysts that may only be adaptive in a constrained way. A difficulty
with this approach in practice is that it is limited to analysts whose properties can be inspected and verified —
but provides a potential explanation why worst-case bounds are not observed to be tight in real settings. Our
approach is responsive to the degree to which the analyst actually overfits, and so will also provide relatively
tight confidence intervals if the analyst satisfies the assumptions of Zrnic and Hardt [2019].

In very recent work (subsequent to this paper), Jung et al. [2019] give a further tightening of the worst-case
bounds, improving the dependence on the coverage probability 5. Their bounds (shown in Figure 1 (left)) do
not significantly affect the comparison with our GnC method since they yield only worst-case analysis.

1.1 Preliminaries

As in previous work, we assume that there is a dataset X = (21, ,x,) ~ D™ drawn i.i.d. from an unknown
distribution D over a universe X. This dataset is the input to a mechanism M that also receives a sequence
of queries ¢1, ¢o, ... from an analyst 4 and outputs, for each one, an answer. Fach ¢; is a statistical query,
defined by a bounded function ¢; : X — [0,1]. We denote the expectation of a statistical query ¢ over the
data distribution by ¢(D) = E,p [¢(z)], and the empirical average on a dataset by ¢(X) = 1 3" | é(x;).
The mechanism’s goal is to give estimates of ¢;(D) for query ¢; on the unknown D. Previous work looked
at analysts that produce a single point estimate a;, and measured error based on the distances |a; — ¢;(D)].
As mentioned above, we propose a shift in focus: we ask mechanisms to produce a confidence interval specified
by a point estimate a; and width ;. The answer (a;, 7;) is correct for ¢; on D if ¢;(D) € (a; — 74, a; + 7;).
(Note that the data play no role in the definition of correctness—we measure only population accuracy.)
An interaction between randomized algorithms M and A on dataset X € X™ (denoted M(X) = A)
consists of an unbounded number of query-answer rounds: at round ¢, A sends ¢;, and M(X) replies with
(a;, 7). M receives X as input. A receives no direct input, but may select queries adaptively, based on the
answers in previous rounds. The interaction ends when either the mechanism or the analyst stops. We say
that the mechanism provides simultaneous coverage if, with high probability, all its answers are correct:



Definition 1.1 (Simultaneous Coverage). Given 8 € (0, 1), we say that M has simultaneous coverage 1 —
if, for all n € N, all distributions D on X and all randomized algorithms A,

Pr [Vie[k]:qﬁi(D)eaiiTi]Zl—ﬁ
X~D",
{($irai,m) o —(M(X)=A)

We denote by k the (possibly random) number of rounds in a given interaction.

Definition 1.2 (Accuracy). We say M is (7, §)-accurate, if M has simultaneous coverage 1 — 8 and its
interval widths satisfy m?k)]( 7; < 7 with probability 1.
ic

We defer some additional preliminaries to Appendix A.

2 Confidence intervals from worst-case bounds

Our emphasis on explicit confidence intervals led us to derive worst-case bounds that are as tight as possible
given the techniques in the literature. We discuss the Gaussian mechanism here, and defer the application to
Thresholdout in Appendix B.3, and provide a pseudocode for Thresholdout in Algorithm 4.

The Gaussian mechanism is defined to be an algorithm that, given input dataset X ~ D™ and a query

' 2n2p

analyses for simultaneous coverage (see Dwork et al. [2015d], Bassily et al. [2016]) — but these analyses
involve large, sub-optimal constants. Here, we provide an improved worst-case analysis by carefully combining
existing techniques. We use results from Bun and Steinke [2016a] to bound the mutual information of the
output of the Gaussian mechanism with its input. We then apply an argument similar to that of Russo and
Zou [2016] to bound the bias of the empirical average of a statistical query selected as a function of the
perturbed outputs. Finally, we use Chebyshev’s inequality, and the monitor argument from Bassily et al.
[2016] to obtain high probability accuracy bound. Figure 1 shows the improvement in the number of queries
that can be answered with the Gaussian mechanism with (0.1, 0.05)-accuracy. Our guarantee is stated below,
with its proof deferred to Appendix C.1.

¢ : X — [0,1], reports an answer a = ¢(X) + N (O 1 ), where p > 0 is a parameter. It has existing

Theorem 2.1. Given input X ~ D™, confidence parameter 5, and parameter p, the Gaussian mechanism is

(7, B)-accurate, where T = \/271#3 : /\Ienin (W) + 3= %ln (%)

[0,1)

We now consider the extent to which our analyses are improvable for worst-case queries to the Gaussian
and the Thresholdout mechanisms. To do this, we derive the worst query strategy in a particular restricted
regime. We call it the “single-adaptive query strategy”, and show that it maximizes the root mean squared
error (RMSE) amongst all single query strategies under the assumption that each sample in the dataset is
drawn w.a.r. from {—1,1}**1 and the strategy is given knowledge of the empirical correlations of each of the
first k features with the (k + 1)st feature (which can be obtained e.g. with k non-adaptive queries asked
prior to the adaptive query). We provide a pseudocode for the strategy in Algorithm 5, and prove that our
single adaptive query results in maximum error, in Appendix C.2. To make the bounds comparable, we
translate our worst-case confidence upper bounds for both the mechanisms to RMSE bounds in Theorem C.7
and Theorem B.10. Figure 2 shows the difference between our best upper bound and the realized RMSE
(averaged over 100 executions) for the two mechanisms using n = 5,000 and various values of k. (For the
Gaussian, we set p separately for each k, to minimize the upper bound.) On the left, we see that the two
bounds for the Gaussian mechanism are within a factor of 2.5, even for k = 50,000 queries. Our bounds are
thus reasonably tight in one important setting. For Thresholdout (right side), however, we see a large gap
between the bounds which grows with k, even for our best query strategy!'. This result points to the promise
for empirically-based confidence intervals for complex mechanisms that are harder to analyze.

1We tweak the adaptive query in the single-adaptive query strategy to result in maximum error for Thresholdout. We also
tried “tracing” attack strategies (adapted from the fingerprinting lower bounds of Bun et al. [2014], Hardt and Ullman [2014],
Steinke and Ullman [2015]) that contained multiple adaptive queries, but gave similar results.
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Figure 2: Worst-case upper (proven) and lower RMSE bounds (realized via the single-adaptive query strategy)
with n = 5,000 for Gaussian (left) and Thresholdout (right).

3 The Guess and Check Framework

In light of the inadequacy of worst-case bounds, we here present our Guess and Check (GnC) framework
which can go beyond the worst case. It takes as inputs guesses for both the point estimate of a query, and
a confidence interval width. If GnC can validate a guess, it releases the guess. Otherwise, at the cost of
widening the confidence intervals provided for future guesses, it provides the guessed confidence width along
with a point estimate for the query using the holdout set such that the guessed width is valid for the estimate.

An instance of GnC, M, takes as input a dataset X, desired confidence level 1 — 3, and a mechanism M,
which operates on inputs of size ny < n. M randomly splits X into two, giving one part X, to M,, and
reserving the rest as a holdout Xj,. For each query ¢;, mechanism M, uses X, to make a “guess” (a4, T;) to
M, for which M conducts a validity check. If the check succeeds, then M releases the guess as is, otherwise
M uses the holdout X}, to provide a response containing a discretized answer that has 7; as a valid confidence
interval. This is closely related to Thresholdout. However, an important distinction is that the width of the
target confidence interval, rather than just a point estimate, is provided as a guess. Moreover, the guesses
themselves can be made by non-trivial algorithms.

Depending on how long one expects/requires GnC to run, the input confidence parameter 5 can guide
the minimum value of the holdout size n; that will be required for GnC to be able to get a holdout width
7, smaller than the desired confidence widths 7;,Vi > 1. Note that this can be evaluated before starting
GnC. Apart from that, we believe what is a good split will largely depend on the Guess mechanism. Hence,
in general the split parameter should be treated as a hyperparameter for our GnC method. We provide
pseudocode for GnC in Algorithm 1, and a block schematic of how a query is answered by GnC in Figure 3.

We provide coverage guarantees for GnC without any restrictions on the guess mechanism. To get the
guarantee, we first show that for query ¢;, if function HoldoutT ol returns a (1 — §;)-confidence interval 75, for
holdout answer ay, ;, and GnC’s output is the guess (a4, 7;), then 7; is a (1 — j3;)-confidence interval for ag ;.
We can get a simple definition for HoldoutTol (formally stated in Appendix C.3), but we provide a slightly
sophisticated variant below that uses the guess and holdout answers to get better tolerances, especially under
low-variance queries. We defer the proof of Lemma 3.1 to Appendix C.4.



Algorithm 1 Guess and Check

Require: Data X € X", confidence parameter 3, analyst having mechanism M, with inputs of size ny < n
Randomly split X into a guess set X, of size ny to input into Mg, and a holdout X, of size ny =n — ny

f+<0,¢5 for j > 0 //should just satisfy > ¢; <1
720

6
m2(j+1)2
for i =1 to co do

if f > 0 then Vi ! — (i}l) Hje[f] (%) else Vi find +—1 //Compute # possible transcripts

Bi (B ci—1-cy) Vi frd
Receive query ¢; and guess (ag,;, 7;) < My(Xy, ¢;) from analyst
Qhyi < ¢i(Xn) //holdout answer
Th $— HoldoutTol(,Bi, Qg.iyTis a;m-) //HoldoutTol returns a valid tolerance for ay, ;
if |ag; — ani| < 7 — 7, then

Output (ag,;,7;) to analyst
else

f—f+1

Yf ¢ maxy s.t. 2e=2(Ti=)*nn < B //max. discretization parameter with validity

0,7
if vy > 0 then
Output (|an,i|~,,7:) to analyst, where |y|, denotes y discretized to multiples of

else
Output L to analyst
break //Terminate for loop
r—-—="-—- - -"-"=-" -~" - - - - - --=-=-== |
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Figure 3: A schematic of how query ¢ is answered via our Guess and Check (GnC) framework. Dataset X is
the guess set randomly partitioned by GnC. The dotted box represents computations that are previleged,
and are not accessible to the analyst.



Lemma 3.1. If the function HoldoutTol in GnC (Algorithm 1) is defined as

uE-D\" o 8
< el(u+r") ) < 27
arg min where £ solves if ag > an,
7/€(0,7) 0
—pe _ — 47
’ _ 1+p(ef41) K
HoldoutTol(B', ag, T, an) 1/ - \" 8
QW ) S
arg min where £ solves 0-w.
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et o ’
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where p = ag — 7 and @' = 1—ay, — 7, then for each query ¢; s.t. GnC’s output is (aq;,7;), we have
Pr(lagi — ¢:(D)| > i) < Bi.

Next, if failure f occurs within GnC for query ¢;, by applying a Chernoff bound we get that v, is the
maximum possible discretization parameter s.t. 7; is a (1 — §;)-confidence interval for the discretized holdout
answer |ap;|,. Finally, we get a simultaneous coverage guarantee for GnC by a union bound over the
error probabilities of the validity over all possible transcripts between GnC and any analyst A with adaptive
queries {¢1, ..., ¢r}. The guarantee is stated below, with its proof deferred to Appendix C.3.

Theorem 3.2. The Guess and Check mechanism (Algorithm 1), with inputs dataset X ~ D™, confidence
parameter 3, and mechanism M, that, using inputs of size ng < n, provides responses (“guesses”) of the
form (agq,;,7;) for query ¢;, has simultaneous coverage 1 — 3.

3.1 Experimental evaluation

Now, we provide details of our empirical evaluation of the Guess and Check framework. In our experiments,
we use two mechanisms, namely the Gaussian mechanism and Thresholdout, for providing guesses in GnC.
For brevity, we refer to the overall mechanism as GnC Gauss when the Gaussian is used to provide guesses,
and GnC Thresh when Thresholdout is used.

Strategy for performance evaluation: Some mechanisms evaluated in our experiments provide worst-case
bounds, whereas the performance of others is instance-dependent and relies on the amount of adaptivity
present in the querying strategy. To highlight the advantages of the latter, we design a query strategy called
the quadratic-adaptive query strategy. Briefly, it contains two types of queries: random non-adaptive queries
in which each sample’s contribution is generated i.i.d. from a Bernoulli distribution, and adaptive queries
which are linear combinations of previous queries. The adaptive queries become more sparsely distributed
with time; “hard” adaptive queries ¢;,7 > 1, are asked when i is a perfect square. They are computed in a
similar manner as in the strategy used in Figure 2. We provide pseudocode for the strategy in Algorithm 5.
Experimental Setup: We run the quadratic-adaptive strategy for up to 40,000 queries. We tune the
hyperparameters of each mechanism to optimize for this query strategy. We fix a confidence parameter 8 and
set a target upper bound 7 on the maximum allowable error we can tolerate, given our confidence bound. We
evaluate each mechanism by the number of queries it can empirically answer with a confidence width of 7 for
our query strategy while providing a simultaneous coverage of 1 — 3: i.e. the largest number of queries it
can answer while providing (7, 8)-accuracy. We plot the average and standard deviation of the number of
queries k answered before it exceeds its target error bound in 20 independent runs over the sampled data and
the mechanism’s randomness. When we plot the actual realized error for any mechanism, we denote it by
dotted lines, whereas the provably valid error bounds resulting from the confidence intervals produced by
GnC are denoted by solid lines. Note that the empirical error denoted by dotted lines is not actually possible
to know without access to the distribution, and is plotted just to visualize the tightness of the provable
confidence intervals. We compare to two simple baselines: sample splitting, and answer discretization: the
better of these two is plotted as the thick solid line. For comparison, the best worst-case bounds for the
Gaussian mechanism (Theorem 2.1) are shown as dashed lines. Note that we improve by roughly two orders
of magnitude compared to the tightest bounds for the Gaussian. We improve over the baseline at dataset
sizes n > 2,000.



Boost in performance for low-variance queries: Since all the queries we construct take binary values on
a sample x € X, the variance of query ¢; is given by var(¢;) = ¢;(D)(1 — ¢;(D)), as ¢;(D) = Pr (¢i(z) = 1).
Now, var(¢;) is maximized when ¢;(D) = 0.5. Hence, informally, we denote query ¢, as low-variance if
either ¢;(D) < 0.5, or ¢;(D) > 0.5. We want to be able to adaptively provide tighter confidence intervals
for low-variance queries (as, for e.g., the worst-case bounds of Feldman and Steinke [2017a,b] are able to).
For instance, in Figure 4 (left), we show that in the presence of low-variance queries, using Lemma 3.1 for
HoldoutTol (plot labelled “GnC Check:MGF”) results in a significantly better performance for GnC Gauss as
compared to using Lemma C.9 (plot labelled “GnC Check:Chern”). We fix 7, 8 = 0.05, and set ¢;(D) = 0.9
for ¢+ > 1. We can see that as the dataset size grows, using Lemma 3.1 provides an improvement of almost 2
orders of magnitude in terms of the number of queries k answered. This is due to Lemma 3.1 providing tighter
holdout tolerances 73, for low-variance queries (with guesses close to 0 or 1), compared to those obtained via
Lemma C.9 (agnostic to the query variance). Thus, we use Lemma 3.1 for HoldoutTol in all experiments
with GnC below. The worst-case bounds for the Gaussian don’t promise a coverage of 1 — /3 even for k =1 in
the considered parameter ranges. This is representative of a general phenomenon: switching to GnC-based
bounds instead of worst-case bounds is often the difference between obtaining useful vs. vacuous guarantees.
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Figure 4: Left: Gain in performance for GnC Gauss by using Lemma 3.1 for HoldoutTol (“GnC Check:MGF”),
as compared to using Lemma C.9 (“GnC Check:Chern”). Right: Performance of GnC Gauss (“GnC”), and
the best Gaussian bounds (“Bnd”), for 8 € {0.05,0.005}.

Performance at high confidence levels: The bounds we prove for the Gaussian mechanism, which are
the best known worst-case bounds for the considered sample size regime, have a substantially sub-optimal
dependence on the coverage parameter 8 : y/1/6. On the other hand, sample splitting (and the bounds from
Dwork et al. [2015d], Bassily et al. [2016] which are asymptotically optimal but vacuous at small sample sizes)
have a much better dependence on 5 : In (1/2/3). Since the coverage bounds of GnC are strategy-dependent,
the dependence of T on f is not clear a priori. In Figure 4 (right), we show the performance of GnC Gauss
(labelled “GnC”) when S € {0.05,0.005}. We see that reducing 8 by a factor of 10 has a negligible effect
on GnC’s performance. Note that this is the case even though the guesses are provided by the Gaussian,
for which we do not have non-vacuous bounds with a mild dependence on $ in the considered parameter
range (see the worst-case bounds, plotted as “Bnd”) — even though we might conjecture that such bounds
exist. This gives an illustration of how GnC can correct deficiencies in our worst-case theory: conjectured
improvements to the theory can be made rigorous with GnC’s certified confidence intervals.

Guess and Check with different guess mechanisms: GnC is designed to be modular, enabling it to
take advantage of arbitrarily complex mechanisms to make guesses. Here, we compare the performance of two
such mechanisms for making guesses, namely the Gaussian mechanism, and Thresholdout. In Figure 5 (left),
we first plot the number of queries answered by the Gaussian (“Gauss Emp”) and Thresholdout (“Thresh
Emp”) mechanisms, respectively, until the maximum empirical error of the query answers exceeds 7 = 0.1. It



is evident that Thresholdout, which uses an internal holdout set to answer queries that likely overfit to its
training set, provides better performance than the Gaussian mechanism. In fact, we see that for n > 5000,
while Thresholdout is always able to answer 40,000 queries (the maximum number of queries we tried in
our experiments), the Gaussian mechanism isn’t able to do so even for the largest dataset size we consider.
Note that the “empirical” plots are generally un-knowable in practice, since we do not have access to the
underlying distributions. But they serve as upper bounds for the best performance a mechanism can provide.
Next, we fix 8 = 0.05, and plot the performance of GnC Gauss and GnC Thresh. We see that even
though GnC Thresh has noticeably higher variance, it provides performance that is close to two orders of
magnitude larger than GnC Gauss when n > 8000. Moreover, for n > 8000, it is interesting to see GnC
Thresh guarantees (7, 8)-accuracy for our strategy while consistently beating even the empirical performance
of the Gaussian. We note that the best bounds for both the Gaussian and Thresholdout mechanisms alone
(not used as part of GnC) do not provide any non-trivial guarantees in the considered parameter ranges.

Performance of GnC, t=0.1,8=10.05 Responsive widths with GnC, 8 =0.05
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Figure 5: Left: Performance of GnC with Gaussian (“GnC Gauss”), and Thresholdout (“GnC Thresh”)
mechanisms, together with their empirical error. Right: The accuracy of GnC with Gaussian guesses provides
“responsive” confidence interval widths that closely track the empirical error incurred by the guesses of the
Gaussian mechanism (“GnC Gauss Emp”).

Responsive widths that track the empirical error: The GnC framework is designed to certify guesses
which represent both a point estimate and a desired confidence interval width for each query. Rather than
having fixed confidence interval widths, this framework also provides the flexibility to incorporate guess
mechanisms that provide increased interval widths as failures accumulate within GnC. This allows GnC to be
able to re-use the holdout set in perpetuity, and answer an infinite number of queries (albeit with confidence
widths that might grow to be vacuous).

In Figure 5 (right), we fix n = 30000, 8 = 0.05, 77, = 0.06, and plot the performance of GnC Gauss such
that the guessed confidence width 7;41 = min (1.47;,0.17) if the “check” for query ¢; results in a failure,
otherwise 7,41 = 7;. For comparison, we also plot the actual maximum empirical error encountered by the
answers provided by GnC (“GnC Gauss Emp”). It corresponds to the maximum empirical error of the
answers of the Gaussian mechanism that is used as a guess mechanism within GnC, unless the check for a
query results in a failure (which occurs 4 times in 40000 queries), in which case the error corresponds to
the discretized answer on the holdout. We see that the statistically valid accuracy guaranteed by GnC is
“responsive” to the empirical error of the realized answers produced by the GnC, and is almost always within
a factor of 2 of the actual error.

Discussion: The runtime of our GnC system is dominated by the runtime of the mechanism providing the
guesses. For each guess, the GnC system need only compute the empirical answer of the query on the holdout
set, and a width (for example, from Lemma 3.1) that comes from a simple one-dimensional optimization.
Thus, GnC with any particular Guess mechanism will have an execution time comparable to that of the
Guess mechanism by itself. It is also important to note that GnC can be combined with any guess-generating



mechanism, and it will inherit the worst-case generalization behavior of that mechanism. However, the GnC
will typically provide much tighter confidence bounds (since the worst-case bounds are typically loose).

4 Conclusion

In this work, we focus on algorithms that provide explicit confidence intervals with sound coverage probabilities
for adaptively posed statistical queries. We start by deriving tighter worst-case bounds for several mechanisms,
and show that our improved bounds are within small constant factors of optimal for certain mechanisms. Our
main contribution is the Guess and Check framework, that allows an analyst to use any method for “guessing”
point estimates and confidence interval widths for their adaptive queries, and then rigorously validate those
guesses on an additional held-out dataset. Our empirical evaluation demonstrates that GnC can improve on
worst-case bounds by orders of magnitude, and that it improves on the naive baseline even for modest sample
sizes. We also provide a Python library (Rogers et al. [2019]) implementing our GnC method.
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A Additional Preliminaries

Here, we present some additional preliminaries that were omitted from the main body.

A.1 Confidence Interval Preliminaries

In our implementation, we are comparing the true average ¢(D) to the answer a, which will be the true
answer on the sample with additional noise to ensure each query is stably answered. We then use the following
string of inequalities to find the width 7 of the confidence interval.

Pr[|¢(D) — a| > ] < Pr[|6(D) — 6(X)| + |$(X) — a] > 7]
< Pr[g(D) — $(X)| 2 7 — 7]+ Pr[[6(X) — a| = 7] for 7' > 0 1)

Population Accuracy Sample Accuracy

We will then use this connection to get a bound in terms of the accuracy on the sample and the error in
the empirical average to the true mean. Many of the results in this line of work use a transfer theorem which
states that if a query is selected via a private method, then the query evaluated on the sample is close to the
true population answer, thus providing a bound on population accuracy. However, we also need to control the
sample accuracy which is affected by the amount of noise that is added to ensure stability. We then seek a
balance between the two terms, where too much noise will give terrible sample accuracy but great accuracy
on the population — due to the noise making the choice of query essentially independent of the data — and too
little noise makes for great sample accuracy but bad accuracy to the population. We will consider Gaussian
noise, and use the composition theorems to determine the scale of noise to add to achieve a target accuracy
after k adaptively selected statistical queries.

Given the size of our dataset n, number of adaptively chosen statistical queries k, and confidence level
1 — B, we want to find what confidence width T ensures M = (My,--- , M) is (7, 5)-accurate with respect
to the population when each algorithm M; adds either Laplace or Gaussian noise to the answers computed
on the sample with some yet to be determined variance. To bound the sample accuracy, we can use the
following theorem that gives the accuracy guarantees of the Gaussian mechanism.

Theorem A.1. If{Z; :i € [k]} vrb N(0,02) then for B € (0,1] we have:

Pr [|zi\ > m/21n(2/6)} <B = Pr|dielk] st |Z|> m/zln(%/ﬁ)} < 8. 2)
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A.2 Stability Measures

It turns out that privacy preserving algorithms give strong stability guarantees which allows for the rich
theory of differential privacy to extend to adaptive data analysis [Dwork et al., 2015d,a, Bassily et al., 2016,
Rogers et al., 2016]. In order to define these privacy notions, we define two datasets X = (21, -+ ,2,), X' =

(@h, -, 2) € X™ to be neighboring if they differ in at most one entry, i.e. there is some ¢ € [n] where z; # 27,

rn

but z; = 33; for all j # i. We first define differential privacy.

Definition A.2 (Differential Privacy [Dwork et al., 2006b,a]). A randomized algorithm (or mechanism)
M X" — Y is (e, 0)-differentially private (DP) if for all neighboring datasets X and X’ and each outcome
S C Y, we have Pr(M(X) € §] < ePr[M(X’) € S|+ 6. If 6 = 0, we simply say M is e-DP or pure DP.
Otherwise for § > 0, we say approximate DP.

We then give a more recent notion of privacy, called concentrated differential privacy (CDP), which can
be thought of as being “in between" pure and approximate DP. In order to define CDP, we define the privacy
loss random variable which quantifies how much the output distributions of an algorithm on two neighboring
datasets can differ.

Definition A.3 (Privacy Loss). Let M : X™ — Y be a randomized algorithm. For neighboring datasets

X, X' e X" let Z(y) =In (%). We then define the privacy loss variable PrivLoss (M(X)||M (X))

to have the same distribution as Z(M(X)).

Note that if we can bound the privacy loss random variable with certainty over all neighboring datasets,
then the algorithm is pure DP. Otherwise, if we can bound the privacy loss with high probability then it is
approximate DP (see Kasiviswanathan and Smith [2014] for a more detailed discussion on this connection).

We can now define zero concentrated differential privacy (zCDP), given by Bun and Steinke [2016a] (Note
that Dwork and Rothblum [2016] initially gave a definition of CDP which Bun and Steinke [2016a] then
modified).

Definition A.4 (zCDP). An algorithm M : X™ — Y is p-zero concentrated differentially private (zCDP), if
for all neighboring datasets X, X’ € X™ and all A > 0 we have

E [exp (A (PrivLoss (M (X)||IM(X")) — p))] < e*°°.

We then give the Laplace and Gaussian mechanism for statistical queries.

Theorem A.5. Let ¢ : X — [0,1] be a statistical query and X € X™. The Laplace mechanism My, @ X™ —
R s the following Mrap(X) = %Z?Zl o(x;) + Lap (ein), which is e-DP. Further, the Gaussian mechanism

Mauss : X — R is the following Mgauss(X) = L S ox)+ N (O7 ﬁ), which is p-zCDP.

We now give the advanced composition theorem for k-fold adaptive composition.
Theorem A.6 (Dwork et al. [2010],Kairouz et al. [2017]). The class of € -DP algorithms is (€,8)-DP under
k-fold adaptive composition where § > 0 and

e —1

€= ( / )e'k+e’ 2k1In(1/6) (3)

e +1

We will also use the following results from zCDP.

Theorem A.7 (Bun and Steinke [2016a]). The class of p-zCDP algorithms is kp-zCDP under k-fold
adaptive composition. Further if M is e-DP then M is €2/2-2CDP and if M is p-zCDP then M is

(p+2+/pln(y/7p/d),0)-DP for any 6 > 0.

13



Another notion of stability that we will use is mutual information (in nats) between two random variables:
the input X and output M(X).

Definition A.8 (Mutual Information). Consider two random variables X and Y and let Z(x,y) =

In (%). We then denote the mutual information as I (X;Y) = E[Z(X,Y)], where the ex-
pectation is taken over the joint distribution of (X,Y).

A.3 Monitor Argument

For the population accuracy term in (1), we will use the monitor argument from Bassily et al. [2016]. Roughly,
this analysis allows us to obtain a bound on the population accuracy over k rounds of interaction between
adversary A and algorithm M by only considering the difference |¢(X) — ¢(D)| for the two stage interaction
where ¢ is chosen by A based on outcome M (X). We present the monitor Wp[M, A] in Algorithm 2.

Algorithm 2 Monitor Wp[M, A](X)

Require: X € &A™
We simulate M(X) and A interacting. We write ¢1,- -, ¢r € Qg as the queries chosen by A and write
a1, ,ar € R as the corresponding answers of M.
Let j* = argmax;c [¢;(D) — aj] .

Ensure: ¢;-

Since our stability definitions are closed under post-processing, we can substitute the monitor Wp[M, A]
as our post-processing function f in the above theorem. We then get the following result.

Corollary A.9. Let M = (M, -, My), where each M; may be adaptively chosen, satisfy any stability
condition that is closed under post-processing. For each i € [k|, let ¢; be the statistical query chosen by
adversary A based on answers a; = M;(X),Vj € [i — 1], and let ¢ be any function of (a1,--- ,ax). Then, we
have for 7' >0

(D) —a;| > 7| < ; —a|l > — >7—1
P [maio) - el 27| < Prmaxla) ol 27|+ Py 16D) - 900 277
X~D" X~D" P M(X)

Proof. From the monitor in Algorithm 2 and the fact that M is closed under post-processing, we have

P fmaxio®) -alze] = P ler0) -l 2]
X~D" ¢j% —Wp[M,A|(X)
< P (60D g (X277
60 =W M A(X)
P (X)) —a]| > 7
+ XNII")n7 H(bj( ) a; > 7]

¢ = —Wnp[M,Al(X)

< P — >r—7 ' —a;| >
< (Pr 10D =60l Z 7 =)+ P max|éi(X) —ail 2 7
P+ M(X) X~D"

O

We can then use the above corollary to obtain an accuracy guarantee by union bounding over the sample
accuracy for all k rounds of interaction and then bounding the population error for a single adaptively chosen
statistical query.
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B Confidence Interval Bounds from Prior Work

B.1 Confidence Bounds from Dwork et al. [2015a]

We start by deriving confidence bounds using results from Dwork et al. [2015a], which uses the following
transfer theorem (see Theorem 10 in Dwork et al. [2015a]).

Theorem B.1. If M is (¢,0)-DP where ¢ + M(X) and 7 > w/%ln(ll/ﬁ), €< 7, and d = exp (M),
then Pr [|6(D) — 6(X)| 2 7] < 6.

We pair this together with the accuracy from either the Gaussian mechanism or the Laplace mechanism
along with Corollary A.9 to get the following result

Theorem B.2. Given confidence level 1 — 3 and using the Laplace or Gaussian mechanism for each algorithm
M, then (My, -+, My) is (T, B )-accurate, where

e Laplace Mechanism: We define (1) to be the solution to the following program

min T
48 (8) ,
s.t. 7> —In|—=|+7
n B
1)\’ 16
<TT’4e’k. <Z+1>> (r =) 2 256k In
In (2k
for e'>0and7’:7n( /B)

ne’

e Gaussian Mechanism: We define 7() to be the solution to the following program

min T

48 8 ,
s.t. T>4/—Inl=)+7
n B

16

((r — 7' — 4pk)? — 64pkIn W) (T =) 2 64pkIn

1 1
0 and 7" = — /= In(4k
for p>0and = 5 n(4k/0)

To bound the sample accuracy, we will use the following lemma that gives the accuracy guarantees of
Laplace mechanism.

Lemma B.3. If {Y; :i € [k]} “X" Lap(b), then for B € (0,1] we have:
Pr{lY;| > In(1/B)b] < B = Pr[3Ji € [k] s.t. [Y;| > In(k/B)b] < 5. (4)

Proof of Theorem B.2. We will focus on the Laplace mechanism part first, so that we add Lap (i) noise to

ne’

each answer. After k adaptively selected queries, the entire sequence of noisy answers is (¢,0)-DP where

ezke/-g—l—e/-\/ﬂfln(l/é) (5)

15



Now, we want to bound the two terms in (1) by g each. We can bound sample accuracy as:

, 1 I 2k
T=— —
ne’ 153

which follows from Lemma B.3, and setting the error width to 7/ and the probability bound to g
For the population accuracy, we apply Theorem B.1 to take a union bound over all selected statistical
queries, and set the error width to 7 — 7/ and the probability bound to g to get:

0 = exp (—8h1(16,/6)>’ 7> 4—81n%, and T—71 > 4de (6)
T—T V n

We then use (5) and write € in terms of § to get:

¢ 1 [k1n(1
e=ek S + 4é’ - kIn(16/8) 6//8).
e +1 T—1

Substituting the value of e in Equation (6), we get:

e _ kln 18
T—1'>4 e’k'<e,1>+4e/~ ]
e

T—7

By rearranging terms, we get

, 2
e —1 16
o /74/]{/,. . o >256/2]€1 -
(7’ T € (ef'—i—l)) (r—7")> 15 nB

We are then left to pick ¢ > 0 to obtain the smallest value of 7.

When can follow a similar argument when we add Gaussian noise with variance 2711%. The only modification
we make is using Theorem A.7 to get a composed DP algorithm with parameters in terms of p, and the
accuracy guarantee in Theorem A.1. O

B.2 Confidence Bounds from Bassily et al. [2016]

We now go through the argument of Bassily et al. [2016] to improve the constants as much as we can via
their analysis to get a decent confidence bound on k adaptively chosen statistical queries. This requires
presenting their monitoring, which is similar to the monitor presented in Algorithm 2 but takes as input
several independent datasets. We first present the result.

Theorem B.4. Given confidence level 1 — 3 and using the Laplace or Gaussian mechanism for each algorithm

M;, then (My, -, My) is (1®), B)-accurate.

e Laplace Mechanism: We define 7(? to be the following quantity:

In £ ¢ _
-t inf {ew—1+66 \‘1J+ n,25},wherew—(e, 1)-6/k+6/ 2kln1
- a-pll Gy Bl en e+ Voo

6€(0,1)

-

e Gaussian Mechanism: We define 72 to be the following quantity:
Ink /D
;1 i1>1£ e§—1+66\‘;J+\/:;5 ,where £ = kp + 2 kpln(;rp)
1—(1-58) LEJ 58(0.1) p
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In order to prove this result, we begin with a technical lemma which considers an algorithm W that takes
as input a collection of s samples and outputs both an index in [s] and a statistical query, where we denote
Qs as the set of all statistical queries ¢ : X — [0,1] and their negation.

Lemma B.5 ([Bassily et al., 2016]). Let W : (X™)* — Qgq x [s] be (&,8)-DP. If X = (XM, ... X)) ~
(D™)* then

6(D) = (X )] | < e 1+ 50

X,(¢,t):W(X)

We then define what we will call the extended monitor in Algorithm 3.

Algorithm 3 Extended Monitor Wp[M, AJ(X)
Require: X = (X(l)’ .. ,X(S)) € (x)°

for ¢t € [s] do
We simulate M(X®) and A interacting. We write Ge1, 0, P € Qs as the queries chosen by A and
write a; 1, ,a; € R as the corresponding answers of M.

Let (j*,t") = argmax;e ) se(s) [01.5 (D) — ar ] -
if Q= j* — ¢t*7.j* (D) > 0 then ¢ ¢t*,j*
else ¢ < —¢¢~ ;-

Ensure: (¢*,t*)

We then present a series of lemmas that leads to an accuracy bound from Bassily et al. [2016].

Lemma B.6 ([Bassily et al., 2016]). For each €,§ > 0, if M is (¢,0)-DP for k adaptively chosen queries
from Qgsq, then for every data distribution D and analyst A, the monitor Wp[M, A] is (e, 5)-DP.

Lemma B.7 ([Bassily et al., 2016]). If M fails to be (7, 8)-accurate, then ¢* (D) — a* > 0, where a* is the
answer to ¢* during the simulation (A can determine a* from output (¢*,t*)) and

_ Pr [|¢*(D) —a*| > 7] > 1— (1 - B)°.
Xn(D)e,
(¢*,t*)=Wp [M,A|(X)

The following result is not stated exactly the same as in Bassily et al. [2016], but it follows the same
analysis. We just do not simplify the expressions in the inequalities.

Lemma B.8. If M is (7/, 8')-accurate on the sample but not (7, 3)-accurate for the population, then

_E 7)o" (X©)]| 2 (1= (1= B)") = (' +258).
X~ (D),
(¢".)=Wp[M,A|(X)

We now put everything together to get our result.

Proof of Theorem B.j. We ultimately want a contradiction between the result given in Lemma B.5 and
Lemma B.8. Thus, we want to find the parameter values that minimizes 7 but satisfies the following inequality

T(1-=(1-05)°) — (7" +2s8") > e — 1+ sd. (7)
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1
ne
of each query and then use advanced composition Theorem A.6 to get a bound on e.

€= <e€ — 1) €'k +€'\/2kIn(1/8) = 9.

e +1

We first analyze the case when we add noise Lap (—,) to each query answer on the sample to preserve ¢’-DP

Further, we obtain (7', 8’)-accuracy on the sample, where for 5’ > 0 we have 7" = % We then plug
these values into (7) to get the following bound on 7

1 B’
> / P
7 <1 ( )5) m +286 +e 71+S5

We then choose some of the parameters to be the same as in Bassily et al. [2016], like s = [1/3] and 8’ = 24.
We then want to find the best parameters €, § that makes the right hand side as small as possible. Thus, the
best confidence width 7 that we can get with this approach is the following

k
{2 8
1-1-p)lsl &> B8 e'n

6€(0,1)

Using the same analysis but with Gaussian noise added to each statistical query answer with variance
ﬁ (so that M is pk-zCDP), we get the following confidence width 7,

Ink
1y 65—1—1—66FJ+ A
1-(1-p)lsl o 5 n

6€(0,1)

B.3 Confidence Bounds for Thresholdout (Dwork et al. [2015a])

Theorem B.9. If the Thresholdout mechanism M with noise scale o, and threshold T is used for answering
queries ¢;, i € [k], with reported answers ay,- - ,ar such that M uses the holdout set of size h to answer at
most B queries, then given confidence parameter 3, Thresholdout is (1,3 )-accurate, where

28 _jn(1—
for b = E |(max W; + max Yj)ﬂ + 2T - E [max W; + max Yj} , and £ = min <"2’11(1>\)), where
i€[k] JE€[B] i€[k] JE€[B] A€0,1)
W; ~ Lap(40),i € [k] and Y; ~ Lap(20),j € [B].

Proof. Similar to the proof of Theorem 2.1, first we derive bounds on the mean squared error (MSE) for
answers to statistical queries produced by Thresholdout. We want to bound the maximum MSE over all of
the statistical queries, where the expectation is over the noise added by the mechanism and the randomness
of the adversary.

Theorem B.10. If the Thresholdout mechanism M with noise scale o, and threshold T is used for answering
queries ¢;, i € [k], with reported answers ay,--- ,ay such that M uses the holdout set of size h to answer at
most B queries, then we have

XN]EDn [(G’J* - ¢J*(D))2:| < T2 + /(b + 457]7, + % . (TZ + 'I/J),

i ~WD[M,A|(X)
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2B )
forz/)zE[(maxW +maxY)}+2T-E{maxW +max Y;| and { = min (W),where W; ~
i€[k] j€[B] i€ (k] j€([B] Ael0,1)

Lap(40),i € [k] and Y; ~ Lap(20), j € [B].
Proof. Let us denote the holdout set in M by X}, and the remaining set as X;. Let O denote the distribution
Wp M, Al(X), where X ~ D™. We have:

[(aj- = ¢5+(D)?] = B [(aj — ¢« (Xn) + ¢j-(Xn) — ¢5+(D))?]

¢ O b0

= 0 [(aj+ — b5+ (Xn))?] + o Eo [(¢5+(Xn) — ¢5+(D))?]

+ (2\/¢ng~0 [(aj+ — ¢j=(Xn))?] - \/¢ E., [(¢j+(Xn) — ¢j*(p))2]> 8)

where the last inequality follows from the Cauchy-Schwarz inequality.

Now, define a set Sj, which contains the indices of the queries answered via Xj. We know that for at most
B queries ¢; € Sy, the output of M was a; = ¢; (Xp) + Z; where Z; ~ Lap(c), whereas it was a; = ¢; (X¢)
for at least k — B queries, i € [k\ S}]. Also, define W; ~ Lap(40),i € [k] and Y; ~ Lap(20),j € Sp,. Thus,
for any j* € [k], we have:

*

- — 03 (00) < max { e 101(X) = 640X e 2}

lE[kJ\Sh

< max max T+Y()+W1,maxZ
1€[k\Sh],
J(1)ESK

< max max T +Y; —|—Wl,maXZ

i€[k\Sh],

JESh
< T+ maxW,; + max Y}
1€ (k] j€[B]
Thus,
E Y — b (X2 < E T W, + Y:|
o Eoller =L SB[+ g W+ )
:T2+E[(maXW —l—maxY)]—i—ZT E[maxW + max Y; (9)
ikl €[5l i€[k] jelB]

We bound the 2nd term in (8) as follows. For every i € S}, there are two costs induced due to privacy:
the Sparse Vector component, and the noise addition to ¢;(X}). By the proof of Lemma 23 in Dwork et al.
[2015a], each individually provides a guarantee of (U—lh, O)—DP. Using Theorem A.7, this translates to each
providing a (2 2 h2> zCDP guarantee. Since there are at most B such instances of each, by Theorem A.7 we
get that M is ( 2h2) zCDP. Thus, by Lemma C.5 we have

TM(X0) X0) <

Proceeding similar to the proof of Theorem C.7, we use the sub-Gaussian parameter for statistical queries in
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Lemma C.4 to obtain the following bound from Theorem C.1:

oo [(65-(X0) = 65 (D))*] = <E. [rggx {(6i(Xn) — @(D))Q}}
A

)

M
3
< T (10)

Defining ¢ = E {(max W; + max Yj)ﬂ +2T-E {max W; 4+ max Y]] , and combining Equations (8), (9),
i€[k] J€[B] i€[k] J€[B]

and (10), we get:
3 3

[(aje — ¢5=(D))?] ST? + 9+ = + /> - (T2 + )

$ix~O 4h h

J

O

We can use the MSE bound from Theorem B.10, and Chebyshev’s inequality, to get the statement of the
theorem. O

C Proofs

Here, we provide the proofs that have been omitted from the main body of the paper.

C.1 Proof of Theorem 2.1

Rather than use the stated result in Russo and Zou [2016], we use a modified “corrected” version and provide
a proof for it here. The result stated here and the one in Russo and Zou [2016] are incomparable.

Theorem C.1. Let Q, be the class of queries ¢ : X™ — R such that $(X) — ¢(D™) is o-subgaussian where
X ~D". If M : X" = Q, is a randomized mapping from datasets to queries such that I (M(X); X) < B
then

o5 1600 - e@] <o i (

2B —In (1 — A))
e M(X)

A

In order to prove the theorem, we need the following results.

Lemma C.2 (Russo and Zou [2015], Gray [1990]). Given two probability measures P and @Q defined on a
common measurable space and assuming that P is absolutely continuous with respect to Q, then

Dicr [P)Q] = sup { BLX] - log Exp(x)1 |

Lemma C.3 (Russo and Zou [2015]). If X is a zero-mean subgaussian random variable with parameters o

then N
1
< 1
E[exp<202 ﬂ S A= VA e [0,1)

20



Proof of Theorem C.1. Proceeding similar to the proof of Proposition 3.1 in Russo and Zou [2015], we write
O(X) = (¢(X) : ¢ € Q,). We have:

I
/..a
T
<
=
]
=S
o
5
h
N
=
<
=
]

Pl6(X)]) (11)

where the first inequality follows from post processing of mutual information, i.e. the data processing
inequality. Consider the function f,(x) = 525 (z — ¢(D™))? for A € [0,1). We have

207
Drr[(¢(NIMX) =llo(X)] 2 B [fe(o(X)MX) =6 —In B lexp (fs(¢(X)))]
orM(X)

> e B [600 60 a0 = o] - (L)

where the first and second inequalities follows from Lemmas C.2 and C.3, respectively.
Therefore, from eq. (11), we have

TMERX) 2 25 B (600 - 60 -1 ()
G M(X)
Rearranging terms, we have
2 202 _ 1
b [0 ] <2 (105 41 (=) )

O

In order to apply this result, we need to know the subgaussian parameter for statistical queries and the
mutual information for private algorithms.

Lemma C.4. For statistical queries ¢ and X ~ D", we have ¢(X) — ¢(D"™) is ﬁ—sub—gaussian.

We also use the following bound on the mutual information for zCDP mechanisms:
Lemma C.5 (Bun and Steinke [2016a]). If M : X™ = Y is p-2CDP and X ~ D™, then I (M(X); X) < pn.

In order to prove Theorem C.7, we use the same monitor from Algorithm 2 in which there is a single
dataset as input to the monitor and it outputs the query whose answer had largest error with the true query
answer. We first need to show that the monitor has bounded mutual information as long as M does, which
follows from mutual information being preserved under post-processing.
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Lemma C.6. If I (X; M(X)) < B where X ~ D", then I (X; Wp[M, A|(X)) < B.

Next, we derive bounds on the mean squared error (MSE) for answers to statistical queries produced by
the Gaussian mechanism. We want to bound the maximum MSE over all of the statistical queries, where the
expectation is over the noise added by the mechanism and the randomness of the adversary.

. [max (64(D) — ai)z] <2 E [max {(@-(D) — $i(X))? + (6i(X) — ai)Q}]

X~D", | i€[k] X~D", | i€[k]
AM A M
=2.E {max (¢s(D) — ¢1(X))2} +2. E [max Zf} (12)
i€[k] ZiNN(Ovznlzp) i€[k]

To bound E {maxie[k] (0i(D) — ¢i(X ))2} , we obtain the following using the monitor argument from Bassily
et al. [2016] along with results from Russo and Zou [2016], Bun and Steinke [2016a].

Theorem C.7. For parameter p > 0, the answers provided by the Gaussian mechanism a1, -+ ,a; against
an adaptively selected sequence of queries satisfy:

)2] 1 . <2p/<;n —In(1- )\)) +a. E [max Zf]
A Z,-NN(O ‘12,) i€[k]

‘2nZp

E (D) — a;
E. [gré?lgf(w )—a
M, A

)

1
2pn?

Proof. We follow the same analysis for proving Theorem B.4 where we add Gaussian noise with variance
to each query answer so that the algorithm M is p-zCDP, which (using Lemma C.5 and the post-processing
property of zCDP) makes the mutual information bound B = pkn. We then use Lemma C.6 and the
sub-Gaussian parameter for statistical queries in Lemma C.4 to obtain the following bound from Theorem C.1.

* gk 2 —
B e -eon) =, B
¢ ~Wp[ M, A|(X)

nwx{OmLX)—¢AIDF}ﬂ

i€ k]

1 . 2pkn —In (1 — \)
< . 13
~ 4n )\ren[(lgll) < A (13)
We then combine this result with (12) to get the statement of the theorem. O

Proof of Theorem 2.1. We want to bound the two terms in (1) by g each. We start by bounding the sample
accuracy via the following constraint:

7>

In(4k/8)

SR

1
2n
which follows from Theorem A.1, and setting the error width to 7" and the probability bound to g

Next, we can bound the population accuracy in (1) using Equation (13) and Chebyshev’s inequality to
obtain the following high probability bound,

1 . 2pkn —1In (1 —\)
P X)—-oD)|>7-7< "
CFo 1600 -6 277 < ot i (2
¢+M(X)
which implies that for bounding the probability by g, we get
1 . 2pkn —In (1 — X)
> .
7 —VW i (2
We then use the result of Corollary A.9 to obtain our accuracy bound. O
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C.1.1 Comparison of Theorem 2.1 with Prior Work

One can also get a high-probability bound on the sample accuracy of M (X) using Theorem 3 in Xu and

Raginsky [2017], resulting in
2 (2pkn (4)) 1 N1 (4k>
r= = (= 4log( =) )+ —4/~In[= 14
\/n ( g Te\5)) T\ p T\ B 14

_1_
) 2pn?

Theorem 2.1. If the mutual information bound B = pkn > 1, then the first term in the expression of the
confidence width in Theorem 2.1 is less than the first term in eq. (14), thus making Theorem 2.1 result in a
tighter bound for any 8 € (0,1). For very small values of B, there exist sufficiently small § for which the
result obtained via Xu and Raginsky [2017] is better.

where i.i.d. Gaussian noise N (0 ) has been added to each query. The proof is similar to the proof of

C.2 RMSE analysis for the single-adaptive query strategy

Theorem C.8. The output by the single-adaptive query strategy above results in the maximum possible
RMSE for an adaptively chosen statistical query when each sample in the dataset is drawn uniformly at
random from {—1,1}**1 and M is the Naive Empirical Estimator, i.e., M provides the empirical correlation
of each of the first k features with the (k + 1)** feature.

Proof. Consider a dataset X € X™, where X is the uniform distribution over {—1,1}¥*1. We will denote the
jt" element of x; € X by w;(j), for j € [k + 1]. Now, Vj € [k], we have that:

1+z() z(k+1) _ 14+ Pr(z(j)==z(k+1)) — Pr(z(j) # z(k+1)) .
X 2 2 /

SPr(e()=ak+1) =a;  and  Pra() £e(k+1) =1-a

Now,

In Prx (z(k+ 1) = 1] Ajepy 2(j) = ;) i Prx (z(k+1) = 1A (Ajepz(§) = z;))
Pry (z(k +1) = —1| Ajepy 2(J) = ;) Pry (z(k +1) = =1 A (Ajewa(5) = ;)

B Prx (z(k+1) =1 A2(j) = ;)
= | J] Prx (z(k+1) = -1 A a(j) = z;)

~m | [] (iix (z(k+1) = x(]:)))x,.

=In H (1 ijaj>xj

Thus,

Prx (:L‘(k+1):—1‘/\J€[k]$(]):mJ
2

sign <ln < Prx (’I(kJrl)_lAje[k]ﬁ(i)‘%‘)))) +1
Pr1(z) =

23



As a result, the adaptive query ¢+ in Algorithm 5 (setting input S = {k + 1}) corresponds to a naive
Bayes classifier of z(k + 1), and given that X is the uniform distribution over {—1, 1}*+1  this is the best
possible classifier for z(k + 1). This results answer a1 achieving the maximum possible deviation from the
answer on the population, which is 0.5 as X is uniformly distributed over {—1,1}**1. Thus, a1 results in
the maximum possible RMSE. O

C.3 Proof of Theorem 3.2

We start by proving the validity for query responses output by GnC that correspond to the responses provided
by My, i.e., each query ¢; s.t. the output of GnC is (ay;, ;).

Lemma C.9. If the function HoldoutTol(f', aq,ar) = /8 i GnC (Algorithm 1), then for each query

2np

¢; s.t. the output of GnC is (ag;,T:), we have Pr(lag; — ¢;(D)| > ;) < ;.

Proof. Consider a query ¢; for which the output of the GnC mechanism is (ag4,;, 7;), and let 7, = HoldoutTol(8;, ag.i, an i)
Now, we have

Pr(lag,i — ¢i(D)| > 7i) < Pr(lag,i — ani| + |an: — ¢:(D)| > 7)
= Pr(|ah’i — ¢1(D)| > Th)
< B

where the equality follows since |ag; — an ;| < T7; — 75, and the last inequality follows from applying the
Chernoff bound for statistical queries. O

Next, we provide the accuracy for the query answers output by GnC that correspond to discretized
empirical answers on the holdout. It is obtained by maximizing the discretization parameter such that
applying the Chernoff bound on the discretized answer satisfies the required validity guarantee.

Lemma C.10. If failure f occurs in GnC (Algorithm 1) for query ¢; and the output of GnC is (Lah,ijw,n-),
since we have vy = f(r)la,%v s.t. 227" =1 nn < B’ we have Pr (lag,i — ¢:(D)| > 1) < B;. Here, |y|, denotes

y discretized to multiples of ~y

Proof of Theorem 3.2. Let an instance of the Guess and Check mechanism M encounter f failures while
providing responses to k queries {¢1,...,¢r}. We will consider the interaction between an analyst .4 and
the Guess and Check mechanism M to form a tree T, where the nodes in T' correspond to queries, and
each branch of a node is a possible answer for the corresponding query. We first note a property about the
structure of T":

Fact 1: For any query ¢, if the check within M results in failure f’, then there are %f/ possible responses
for ¢;s. On the other hand, if the check doesn’t result in a failure, then there is only 1 possible response for
@i, namely (ag., Tir).

Next, notice that each node in T' can be uniquely identified by the tuple t = (', f*, {1, ..., jp' }, {Vjr,- - - Vg b,
where 4’ is the depth of the node (also, the index of the next query to be asked), f’ is the number of failures
within M that have occurred in the path from the root to node ¢, and for £ € [f'], the value j, denotes the
query index of the ¢th failure on this path, whereas v;, is the corresponding discretization parameter that
was used to answer the query. We can now observe another property about the structure of 7"

Fact 2: For any ¢ € [k], f’ € [’ — 1], there are (ilf_,l) Hze[f/] (%) nodes in T of type (¢, f/,;,;). This

follows since there are (i,f_,l) possible ways that f’ failures can occur in ¢’ — 1 queries, and from Fact 1 above,

there are ,% possible responses for a failure occurring at query index jg, £ € [f'].
e

24



Now, we have

Pr(Ji€[k]:|¢i(D) —ail >m) < > Pr(|¢u(D) — as| > 1)

node teT

(Z )R DD r(¢w(D)az’/|>ﬁ/lt)>

i'elk] freli =1 {g1, i} Vi }

>y oy oy fewa

. . . . V. Jgr
Z’E[k] f/E[ll—l] {]17--*7.7f’} {—Yh 1'“7'ij/} 1/7f/,,yj1f

(2 ¥ % ())

r—1
ielk] freli’ =1 {gr.-ndpr F {Vi1 s ,'yjf,}(l )Hée

=7 Z Cir—1 - Z Cyr <p Z Cir—1
i’ €[k]

i €[k] frel’—1]
<p

where the second equality follows from Lemma C.9 (equivalently, Lemma 3.1), Lemma C.10, and substituting
the values of §; in Algorithm 1; the last equality follows from Fact 2 above; and the last two inequalities
follow since > j>0¢ < 1. Thus, we have simultaneous coverage 1 — § for the Guess and Check mechanism
M. B O

Lemma C.9 is agnostic to the guesses and holdout answers while computing the holdout tolerance 7.
However, GnC can provide a better tolerance 73 in the presence of low-variance queries. We provide a proof
for it below.

C.4 Proof of Lemma 3.1

Lemma 3.1 uses the Moment Generating Function (MGF) of the binomial distribution to approximate the
probabilities of deviation of the holdout’s empirical answer from the true population mean (instead of, say,
optimizing parameters in a large deviation bound). This is exact when the query only takes values in {0,1}.
To prove the lemma, we start by first proving the dominance of the binomial MGF.

Lemma C.11. Let X1, X, ..., X, be i.i.d. random variables in [0,1], distributed according to D, and let
p=E[X;]. Let S=>"", X;, and B ~ B(n, ju) be a binomial random variable. Then, we have:

Pr(S > 1) < min =17
XS > ) < min =y

Proof. Consider some A > 0. We have

=E [e*P] (15)

where the first equality follows since X1, Xa, ..., X, are i.i.d., and the last equality represents the MGF of the
binomial distribution.
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Now, we get:

E [e*] E [e*P]
Pr(S >t)="Pr (eAS > eM) < o < o
E {eA’B}
= f\r'lg(l) eM't

where the first inequality follows from the Chernoff bound, and the second inequality follows from Equation (15).
O

Proof of Lemma 3.1. Consider a query ¢; for which the output of the GnC mechanism is (ag,,7;). Let 7, =
HoldoutTol(B;, g, an,i). For proving Pr (|ag; — ¢:(D)| > 1) < B;, it suffices to show that if |a, ;—¢(D)| > 7,
then

Bi
> a s — T <
s Pr (g < a9
¢i(D)=ag,i—Ti
and sup Pr (ap;<agi+7—1)< bi (17)
D st Xp~Drn 0TS 2
¢i(D):ag,i+‘ri

When a4; > ap i, we only require inequality 16 to hold. Let B ~ B(n, i) be a binomial random variable.
We have:

P S < E [eAB]

S Py (e 2 et ) S i SREs

$i(D)=p
_ in e[ (7] Anes )

A>0
_ B[]
 etn(utr)
(L (et —1)" 5
T ety (18)
where £ = arg r/\nig edin (E[ew])i)‘n(wﬁ/)}a ie., Wjﬂ) = pu+ 7'. Here, the first inequality follows from
>

Lemma C.11 by setting ¢t = (u+ 7/)n, and the last equality follows from the MGF of the binomial distribution.
Thus, we get that inequality 16 holds for u = a4 ; — 7.

Similarly, when ag; < ap;, we only require inequality 17 to hold. Let ' =1 — p, and B’ ~ B(n, y').
Therefore, we get

sup Pr (ap;<p—71")= sup Pr  (ap;>p' +7")

Dst. Xa~Drh Dst.  Xp~Dmh
#i(D)=p @i (D)=p'
, n
(1 +ul(e” — 1))
<
- el'n(p'+717)
AB ’ ’ ;0
where ¢/ = arg mn(}e{ln( [e Df}m(“ o )}, ie., #ﬁj,ﬂ) 1 + 7. Here, the inequality follows from

inequality 18. Thus, we get that inequality 17 holds for p = ag; + 7.
O
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D Pseudocodes

Algorithm 4 Thresholdout (Dwork et al. [2015a])

Require: train size ¢, threshold 7', noise scale o
Randomly partition dataset X into a training set X; containing ¢ samples, and a holdout set X}, containing
h =n —t samples
Initialize T < T' + Lap(20)
for each query ¢ do
if |¢(Xn) — ¢(Xy)| > T + Lap(4o) then
T + T + Lap(20)
Output ¢(Xp,) + Lap(o)
else
Output ¢(Xy)

Algorithm 5 A custom adaptive analyst strategy for random data

Require: Mechanism M with a hidden dataset X € {—1,1}**(*+1 set S C [k 4 1] denoting the indices of
adaptive queries?
Define j + 1, and success < True
while j < k and success = True do
if j € S then

sign( Z (:E(i)-ln a?'il))+1 .
selim ' 1 fy>0
Define g (¢) = ——iie , where sign(y) ={ o>

—1 otherwise
else

Define ¢;(z) = 71+$(j)'2m(k+1)
Give ¢; to M, and receive a; € [0,1] U L from M
if a; = L then

success = False
else

j—j3+1

2For the single-adaptive query strategy used in the plots in Figure 2, we set S = {k + 1}. For the quadratic-adaptive strategy
used in the plots in Section 3, we set S = {i:1 < i<k and 3¢ € Ns.t. £ < i and £2 =i}.

27



	1 Introduction
	1.1 Preliminaries

	2 Confidence intervals from worst-case bounds
	3 The Guess and Check Framework
	3.1 Experimental evaluation

	4 Conclusion
	A Additional Preliminaries
	A.1 Confidence Interval Preliminaries
	A.2 Stability Measures
	A.3 Monitor Argument

	B Confidence Interval Bounds from Prior Work
	B.1 Confidence Bounds from 
	B.2 Confidence Bounds from 
	B.3 Confidence Bounds for Thresholdout ()

	C Proofs
	C.1 Proof of Theorem ??
	C.1.1 Comparison of Theorem ?? with Prior Work

	C.2 RMSE analysis for the single-adaptive query strategy
	C.3 Proof of Theorem ??
	C.4 Proof of 

	D Pseudocodes

