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Abstract: Prior  research  shows  that  self-explanation  promotes  understanding  by  helping 
learners  connect  new knowledge with prior  knowledge.  However,  despite  ample evidence 
supporting the effectiveness of self-explanation, an instructional design challenge emerges in 
how best to scaffold self-explanation. In particular,  it  is an open challenge to design self-
explanation  support  that  simultaneously  facilitates  performance  and  learning  outcomes. 
Towards this goal, we designed anticipatory diagrammatic self-explanation, a novel form of 
self-explanation embedded in an Intelligent Tutoring System (ITS). In our ITS, anticipatory 
diagrammatic self-explanation scaffolds learners by  providing visual representations to help 
learners  predict  an  upcoming  strategic  step  in  algebra  problem solving.  A classroom 
experiment  with  108  middle-school  students  found  that  anticipatory  diagrammatic  self-
explanation helped students learn formal algebraic strategies and significantly improve their 
problem-solving  performance.  This  study  contributes  to  understanding  of  how  self-
explanation can be scaffolded to support learning and performance.

Introduction

Self-explanation

Self-explanation is a learning strategy in which learners attempt to make sense of what they learn by generating  
explanations to themselves (Chi et al.,1989; Rittle-Johnson et al.,  2017). A number of studies have provided 
evidence  for the effectiveness  of self-explanation across  domains (Ainsworth & Loizou,  2003;  Bisra et  al., 
2018). From a cognitive perspective, self-explanation helps learners integrate to-be-learned information with 
their prior knowledge, leading to deeper understanding of the content (Bisra et al., 2018). For example, in the 
context of problem solving in mathematics, learners may be asked to provide reasoning for their solved steps in 
order to deepen their conceptual understanding of the procedures. Although self-explanation activities may take 
different  forms (e.g.,  explaining worked  examples,  explaining  while  solving  problems,  and  explaining text 
passages),  they share the core principle of supporting deeper understanding through connecting new content 
with existing knowledge.

Scaffolding self-explanation as a challenging design problem

The demonstrated effectiveness of self-explanation does not guarantee that effective self-explanation activities 
are easily designed. Self-explanation can be a demanding task for learners. It has been reported that scaffolding 
self-explanation  activities  facilitates  learning  (Rittle-Johnson et  al.,  2017).  Prior  studies  have  designed  and 
tested various types of scaffolded self-explanation, such as presenting menu-based, multiple-choice explanations 
(Aleven & Koedinger,  2002; Berthold et al.,  2011; Rau et al., 2015), providing training on self-explanation 
(Hodds et al., 2014), using visual representations (Ainsworth & Loizou, 2003; Nagashima, Bartel et al., 2020), 
using contrasting cases (Sidney et al., 2015), and providing feedback on self-explanation (Aleven & Koedinger, 
2002). 

All of these types of self-explanation  support have been shown to be effective.  Yet, there are still 
challenges in how best to design optimal scaffolding support for self-explanation. A first challenge lies in how 
to design scaffolded self-explanation to promote both conceptual  and procedural knowledge. Acquiring both 
conceptual and procedural  knowledge is fundamental to learning (Rittle-Johnson & Alibali, 1999); however, 
studies on scaffolded self-explanation have typically shown it to be effective for enhancing either conceptual  



knowledge or procedural knowledge, but not both (Berthold et al., 2011; Nagashima, Bartel et al., 2020; Rau et 
al., 2015, but see Aleven & Koedinger, 2002). Rittle-Johnson et al. (2017) explain that this disassociation may 
be due to the unique characteristics of specific forms of scaffolding. Self-explanation scaffolding  designed to 
focus on one aspect  of content may hinder learners’  focus on other important aspects.  For example,  asking 
students to select a correct conceptual explanation from among a list of similar explanations in a multiple-choice 
format would encourage learners to focus on conceptual understanding of the content, but it would not give an 
opportunity for learners to develop their procedural skills (e.g., problem-solving skills). 

A  second  challenge  is  how  to  design  scaffolded  self-explanation  that  enhances  problem-solving 
performance when combined with, or embedded in, problem-solving activities. Self-explanation can be time-
consuming, and because self-explanation requires learners to engage in additional cognitive activities, learners 
who receive  self-explanation  support  may solve fewer  problems in a  limited amount  of  time compared  to 
solving problems without self-explanation support. If scaffolded appropriately during self-explanation, learners’ 
performance on the target task would improve. This would result in efficient learning (i.e., learners with self-
explanation achieve similar learning gains with fewer problems or less time spent compared to those without 
self-explanation).  Most prior  studies  of  self-explanation  do  not  report  measures  of  the  problem-solving 
performance and efficiency of learning with self-explanation, such as time spent on the task (Bisra et al., 2018;  
but see Aleven & Koedinger, 2002). In sum, there are persistent design challenges in how to design effective  
and efficient self-explanation that supports both learning and performance. 

Designing evidence-based self-explanation scaffolding

To approach these challenges, we designed self-explanation support for a web-based educational software called 
an Intelligent Tutoring System (ITS) for algebra problem solving (Long & Aleven, 2014). In our design, self-
explanation is interleaved with problem solving; learners are asked to explain the next strategic problem-solving 
step in the form of a diagram before doing the same step in symbols (Figures 1-3). They receive feedback from 
the ITS both on their explanation and their step using mathematical symbols. We designed the self-explanation 
support following  several  evidence-based  principles  from  cognitive  psychology,  educational  psychology, 
instructional design, and the learning sciences, which we describe below.

Figure 1. The ITS starts by asking a learner to select a correct diagram for the given equation. The ITS gives 
correctness feedback on the learner’s choice of diagram.

Figure 2. Next, the ITS asks the learner to explain (by selecting a diagram) what would be a correct and strategic 
step to take next. The ITS gives feedback on the choice of diagram.



Figure 3. After selecting a correct and strategic step, the learner enters the step in symbols.

Visual representations designed to support students’ conceptual understanding 
Research  has  shown that  visual  representations  can  support  conceptual  understanding  (Rau,  2017).  Visual 
representations can depict information that is difficult to express through verbal means and can make important 
information salient. We chose a visual representation called tape diagrams, which are commonly used in algebra 
classrooms in countries such as Japan, Singapore, and the United States (Booth & Koedinger, 2012; Chu et al., 
2017; Murata, 2008). Prior studies using tape diagrams in algebra problem solving show that tape diagrams help 
students gain conceptual understanding and avoid conceptual errors (Chu et al., 2017; Nagashima, Bartel et al., 
2020). In particular,  our own prior experiment found that diagrammatic self-explanation (in which students, 
after each equation-solving step, are asked to select, from three options, a diagram that corresponds to the step) 
helped learners gain conceptual knowledge in algebra (Nagashima, Bartel et al., 2020).  In the present study, 
students are similarly asked to choose tape diagrams as a way to explain their steps, following the principle of 
anticipatory self-explanation (Bisra et al., 2018; Renkl, 1997), as explained next.

Anticipatory self-explanation to support understanding of problem-solving strategies
Anticipatory self-explanation is a type of self-explanation in which learners generate inferences  about future 
steps. Previously, Renkl (1997) found that, when prompted to talk aloud while studying worked examples that 
provided  solutions  step-by-step,  many successful  self-explainers  predicted  solutions  in  advance.  In  algebra 
problem  solving,  such  anticipatory  self-explanation,  rather  than  post-hoc self-explanation,  can  potentially 
support inference generation about strategic problem-solving steps (e.g., “what would be a good next step for  
the equation, 3x + 2 = 8?”). If students consider the mathematical symbols as the target representation to learn,  
engaging in step-level anticipatory self-explanation could help students understand strategic next steps, which 
would improve both understanding of strategic solution steps and problem-solving performance. On the other 
hand, post-hoc self-explanation might not be particularly effective for helping students take strategic problem-
solving steps.

Contrasting cases that differ on conceptual features and problem-solving strategies
The  use  of  contrasting  cases  is  an  established  instructional  strategy  in  which  learners  are  presented  with  
contrasting examples that differ in meaningful conceptual aspects (Schwartz et al., 2011). Contrasting cases help 
learners  notice  meaningful  differences.  This  instructional  strategy  is typically  used  with  prompts  for  self-
explanation, to encourage learners to cognitively and constructively engage with the cases (Sidney et al., 2015).

In the self-explanation support used in the current study, three options of tape diagrams are displayed, 
which differ in one conceptual aspect and one strategy-related aspect. For example, in Figure 2 the tutor displays 
three diagrams that represent a correct and strategic next step (diagram on the left), an incorrect option (diagram 
on the right, in which the subtraction is done on only one side of the equation) and an option that is correct but  
not strategic (diagram in the middle, in which 2x was added to both sides, which does not get the learner closer 
to the solution). This set of options allows learners to distinguish, not only between correct and incorrect steps, 
but also between correct and strategic steps and correct but not strategic steps. In problem states in which two 
correct and strategic steps are available (e.g., subtracting 2x from 8x = 2x + 6 or dividing both sides by 2), the 
ITS shows those two options and one incorrect option. Engaging with contrasting cases prior to practicing the 
target problem-solving skill with symbols might be particularly meaningful, because students would be able to  
follow the selected diagram option when entering the solution step with symbols and thereby learn to use correct 
and strategic steps.

Present investigation and hypotheses
In the present study, we investigate the effectiveness of scaffolded self-explanation  support on learning and 
performance. We hypothesize that (H1) the anticipatory diagrammatic self-explanation will promote students’ 



conceptual understanding, enhance procedural skills, and help students learn formal algebraic strategies. We 
also hypothesize that  (H2)  the anticipatory  diagrammatic  self-explanation will  enhance  performance during 
problem solving in the ITS; students with the  support will perform better on learning process measures (e.g., 
fewer hint requests and fewer incorrect attempts per step)  while solving symbolic problem-solving steps, and 
they will  solve a similar number of problems as students who do not receive the scaffolded self-explanation 
support.

Method

Participants

We conducted an in vivo experiment (i.e., a randomized controlled experiment in a real classroom context) at 
two private schools in the United States. Participants included 55 6 th graders and 54 7th graders across nine class 
sections taught by four teachers. The experiment was conducted in October 2020, when both schools adopted a  
hybrid teaching mode in which the majority of students (n = 102) attended study sessions in-person and the rest 
of the students attended remotely (n = 7). Teachers reported that they had never focused their instruction on tape 
diagrams, although they indicated that some students might have seen tape diagrams in their learning materials. 

Materials

Intelligent Tutoring System for equation solving
In addition to the anticipatory diagrammatic self-explanation ITS described above,  we used a version that did 
not include tape diagrams (Figure 4) (Long & Aleven, 2014). In this No-Diagram ITS, students learn to solve 
equations  step-by-step,  but  without diagrammatic  self-explanation  steps.  All  other  features  (e.g.,  step-level 
feedback messages and hints) are the same as in the version with tape diagrams. Both ITS versions had four 
different  types of equations, which were chosen in consultation with the teachers  (Table 1).  We only used  
equations with positive numbers since tape diagrams were not found useful for representing negative numbers 
(Nagashima, Yang et al., 2020). Most of the participants in this study, per teachers’ report, had seen or practiced 
Levels 1 and 2 problems, but had not learned Levels 3 and 4 problems.

Figure 4. A version of ITS with no diagrammatic self-explanation.

Table 1: Types of equations the tutor contained and the number of problems in the tutor 

Equation type Example Number of problems in the ITS
Level 1 x + a = b x + 3 = 5 4
Level 2 ax + b = c 2x + 3 = 7 5
Level 3 ax + b = cx 5x = 3x + 2  6
Level 4 ax + b = cx + d 5x +2 = 3x + 8 13

Test instruments
We  developed  web-based  pretest  and  posttest  assessments  to  assess  students’  conceptual  and  procedural  
knowledge of basic algebra.  The tests contained several  items drawn from our previous work (Nagashima,  
Bartel et al., 2020) as well as new items. The conceptual knowledge items consisted of eight multiple-choice  
questions and one  open-ended question,  which  assessed  a wide range  of  conceptual  knowledge constructs, 
including like terms, inverse operations, isolating variables, and the concept of keeping both sides of an equation 
equal. We also included four problem-solving items (e.g., “solve for x: 3x + 2 = 8”), including two items that 
were similar to those included in the ITS and two transfer items involving negative numbers. We developed two 
isomorphic  versions  of  the  test  that  varied  only  with  respect  to  the  specific  numbers  used  in  the  items;  



participants  received  one  form  as  pretest  and  the  other  as  posttest  (with  versions  counterbalanced  across 
subjects).

Procedure

The study took place  during two regular  mathematics  classes.  The classes  were  virtually  connected  to  the 
experimenters and remote learners through a video conferencing system. Students were randomly assigned to 
either the Diagram condition or the No-Diagram condition. In the Diagram condition, students used the ITS with 
anticipatory diagrammatic self-explanation. In the No-Diagram condition, students used the ITS with no self-
explanation  support.  The  only  difference  between  the  Diagram  and  No-Diagram  conditions  was  whether 
students self-explained their solution steps in the form of tape diagrams or not. 

On the first day, all students first worked on the web-based pretest for 15 minutes. Then a teacher or  
the experimenter showed a 5-minute video describing how to use the ITS and what tape diagrams represent to  
all  students.  Next,  students  practiced  equation  solving  using  their  randomly-assigned  ITS  version  for 
approximately  15 minutes. On the second day, students started the class by solving equation problems in the 
assigned ITS for approximately 15 minutes. After working with the ITS, students took the web-based posttest 
for 15 minutes. Students were given access to both ITS versions a week after the study.

Results

Pre-post test results

One 6th grader was absent for the second day and excluded from the analysis; therefore, we analyzed data from 
the  remaining  108  students,  namely,  54  6th-graders  (28  Diagram,  26  No-Diagram)  and  54  7th-graders  (27 
Diagram, 27 No-Diagram). Open-ended items were coded for whether student answers were correct or incorrect  
by two researchers (Cohen’s kappa = .91). Table 2 presents raw pretest and posttest performance on conceptual 
knowledge (CK) and procedural knowledge (PK) items. The maximum scores were 9 and 4, respectively.

Table 2: Means and standard deviations (in parenthes  e  s) for CK and PK on the pretest and posttest  

CK (maximum score: 9) PK (maximum score: 4)
Pretest Posttest Pretest Posttest

Diagram 3.53 (1.56) 3.80 (1.94) 1.51 (1.17) 1.73 (1.39)
No-Diagram 3.42 (2.02) 4.01 (2.27) 1.55 (.92) 1.83 (1.57)

We first tested hypothesis H1 (benefits of anticipatory diagrammatic self-explanation with respect to 
learning  outcomes). We analyzed the data using hierarchical linear modeling (HLM) because  the study was 
conducted in nine classes taught by four teachers at two schools. According to both AIC and BIC, a two-level 
model showed the best fit, in which students (level 1) were nested in classes (level 2). The inclusion of teachers 
(level 3) and schools (level 4) did not improve the model fit. We ran two HLMs with posttest scores on CK and 
PK as dependent variables, type of ITS assigned as the independent variable, and pretest scores (either CK or 
PK given the dependent variable) as a covariate.  For both CK and PK,  there was no significant effect of the 
Diagram/No-Diagram condition (CK: t(99.3) = -1.030, p = .31, PK: t(99.4) = -0.292, p = .77). We also ran two 
additional HLMs, regressing pretest-posttest gains for CK and PK (dependent variables) on type of ITS. There  
was a significant gain from pretest to posttest for CK (t(108) = 2.778, p < .01) but not for PK (t(106) = 1.153, p 
= .26), and no significant effect of ITS type. This suggests that students in both ITS conditions improved in  
conceptual knowledge but not in procedural knowledge.

We then analyzed the strategies that students used to solve the problem-solving items on the pretest and 
posttest. We adopted a coding scheme by Koedinger et al. (2008), which identified both formal (algebraic) and 
informal  (non-algebraic)  ways  of  solving  equations  (Cohen’s  kappa =  .73;  Table  3).  We  were  primarily 
interested in the Algebra strategy because the goal of the ITS was to help students learn the formal algebraic 
strategy. We performed the strategy coding independent of the correctness coding used to calculate students’ 
test scores. On the pretest, 11 students in the Diagram condition and 17 students in the No-Diagram condition 
used the Algebraic strategy on one or more problem-solving items. More students did so on the posttest; 26  
students in the Diagram condition and 23 students in the No-Diagram condition used the Algebraic strategy. We 
used McNemar’s test to compare the frequency of use of the Algebra strategy at pretest and posttest for each  
condition. The increase in frequency was significant (p < .01) for students in the Diagram condition but was not 



significant (p = .11) for students in the No-Diagram condition.  This pattern also held when we limited the 
analysis to problems involving negative numbers (transfer problems); there was a pretest-posttest increase of  
only 1 student in the No-Diagram condition, but 12 students in the Diagram condition (p < .01). These findings 
suggest  that,  although  students  who  learned  with  anticipatory  diagrammatic  self-explanation  did  not  have 
greater  gains  on tests  of  conceptual  and procedural  knowledge,  they were  more likely  to  learn  the  formal 
algebraic strategy and to apply it to problems with no diagram support, even for problem types that they did not 
practice in the ITS (H1 partially supported).

Table 3: Strategies used to solve equations, adapted from Koedinger et al. (2008)

Strategy name Description Example answer for 3x + 2 = 8

Algebra Student uses algebraic manipulations to find a solution
3x = 6
  x = 6/3 = 2

Unwind
Student works backward using inverse operations to 
find a solution

  8 – 2 = 6
  6/3 = 2

Guess and Check
Student tests potential solutions by substituting 
different values

3*2 + 2 = 8
6 + 2 = 8

Other Student uses other non-algebraic strategies
3 + 2 = 5
8/5 = 1.6

Answer Only
Student provides an answer without showing any 
written work

  x = 2

No Attempt
Student leaves problem blank or explicitly indicates 
that she/he does not know how to solve the problem 

 “I don’t know”

Log data analysis on students’ learning processes

Next, we tested hypothesis H2 (benefits of anticipatory diagrammatic self-explanation with respect to learning 
processes),  using log data from the ITS. Specifically,  we looked at “learning curves”,  which plot  students’  
performance  within  the  ITS over  time  (Rivers et  al., 2016).  Figure  5  depicts  learning  curves  for  the  two 
conditions. The y-axis shows the error rate on steps in tutor problems, averaged across students and skills, and 
the x-axis shows the sequence of opportunities for practicing each skill. Learning curve analysis assumes that 
learning occurs when a curve starts with a relatively high initial error rate and gradually goes down as students 
practice  the target  skills.  The curves  are fit  to student performance data using the Additive Factors  Model  
(AFM), a specialized form of logistic regression (Rivers et al., 2016). In our study, students practiced a variety 
of  equation-solving  skills  (e.g.,  subtracting  variable  terms).  We  expected  that  students  who  learned with 
diagrammatic self-explanation support would perform better in the ITS than their peers who did not receive the 
support (H2).  On the symbolic problem-solving steps in the ITS (i.e., excluding the performance on the self-
explanation  steps,  which only occurred in the Diagram condition),  students in the Diagram condition  had a 
lower error rate than students in the No-Diagram condition. Figure 5 shows learning curves averaged across all 
symbolic equation-solving skills students in both conditions practiced. Students in the Diagram condition made 
fewer  errors  than  those  in  the  No-Diagram condition,  especially  on  the  earlier  opportunities.  Both  groups  
improved as they solved more problems (i.e., both curves show a gradual decline). After much practice, the No 
Diagram condition eventually lowered their error rate to the same level as the Diagram condition. 

In parallel to the trend observed in the learning curves, we found that, when restricting the analysis to 
symbolic  steps only  (i.e.,  excluding  diagrammatic  self-explanation  steps),  students  who  received  the  self-
explanation  support trended toward using fewer hints  (t(89.52) = -1.812,  p = .07) and spent significantly less 
time on each symbolic problem-solving step (t(99.51) = -2.238, p = .03) than students who did not receive the 
self-explanation support (Table 4). The average number of problems solved in the ITS during the (fixed amount 
of) available time did not differ significantly across conditions, (t(99.30) = -0.528, p = .60) (Table 4). 

In summary, the students in both conditions practiced a similar number of problems in the ITS in a 
similar amount of time overall, and the anticipatory diagrammatic self-explanation helped students spend less 
time and ask for fewer hints on symbolic steps (H2 partially supported). In addition, the learning curves indicate  
that  students in both conditions learned  equation-solving skills  eventually,  but  the students in  the Diagram 
condition learned them faster and had a smoother experience, with fewer errors.

Table    4  :  Average  number of   problems solved,   number of  incorrect  attempts,  number of  hint  requests,  and   
average time spent on   symbolic     steps   in the ITS (standard   devi  ation)  .   



Average number of 
problems solved

Average number of hints 
requested per step

Average time spent per 
step

Diagram 15.40 (9.02) 0.68 (0.96) 15.99 (9.91)
No-Diagram 16.17 (11.16) 1.02 (1.38) 20.27 (13.95)

Figure 5. Learning curves for the Diagram condition (red) and the No-Diagram condition (green) averaged 
across the skills students practiced during the symbolic problem-solving steps. Dark and light blue lines show 

predicted curves based on the AFM (dark blue: Diagram condition, light blue: No-Diagram condition).

Discussion and Conclusion
Self-explanation has been shown to support student learning in various domains, but it is not easy to design  
appropriately-scaffolded  self-explanation  activities.  Our  study investigated  the  effectiveness  of  anticipatory 
diagrammatic self-explanation as a proposed approach to enhancing both learning and performance. We found 
that  anticipatory  diagrammatic  self-explanation  embedded  in  an  Intelligent  Tutoring  System  (ITS)  helped 
students learn to apply a formal, algebraic problem-solving strategy to problems outside the ITS and to transfer  
problems involving negative numbers (H1). Anticipatory diagrammatic self-explanation also supported student 
performance within the ITS, measured by lower learning curves, less frequent use of hints, and less time spent 
on  each  symbolic  equation-solving  step  (H2).  Anticipatory  self-explanation  did  not  lead  to  differences  in 
posttest  scores,  contrary  to  H1,  but  it  helped  students  learn  more  efficiently;  students  learned  the  formal  
algebraic strategy while solving a similar number of problems with less time and fewer errors and hint requests,  
and they achieved similar gains on conceptual knowledge (H2). 

We  attribute  these  findings  to  the  design  and  learning  principles  used  in  supporting  anticipatory 
diagrammatic  self-explanation.  Specifically,  we  reason  that  the  process  of  selecting  the  next  correct-and-
strategic  problem-solving step,  depicted diagrammatically,  helped students perform better  and faster  on the 
corresponding step with symbols. On steps with symbols, students had a diagrammatic representation of the step 
available to them on the screen. They could refer to this representation as they sought to express the step using  
mathematical  symbols.  Engaging  in  this  cognitive  process  may have  helped  students  understand  step-level  
formal strategies in a visual form (e.g., visually seeing that constant terms are taken out from both sides of an  
equation). Comparing and contrasting the different tape diagrams may have supported students in selecting steps 
that  were both correct  and strategic,  and it may have helped them avoid using informal strategies,  such as 
guessing. It may be, as well, that the better performance resulting from the anticipatory diagrams gave students a 
bit more confidence to take on the challenge of moving towards formal algebra.

An intriguing question is why the ITS with anticipatory diagrammatic self-explanation did not lead to 
greater  gains  in  conceptual  and  procedural  knowledge  than  the  ITS  with  no  diagram  support.  Regarding 
procedural knowledge, students did not make gains from pretest to posttest in either condition. Further, there  
was no difference in solving equations correctly between the conditions at post-test, even though students with 
diagrams exhibited greater use of formal problem-solving strategies. It is possible that students in the Diagram 
condition might need more practice in correctly applying the formal strategy they acquired in the ITS without 
the help of diagrams. In other words, it seems that students in the Diagram condition developed further towards  
formal use of algebra than their counterparts in the No-Diagram condition, but not yet to the extent that the use  
of  the more challenging formal strategies  paid off in terms of improved correctness.  Regarding conceptual 
knowledge, it might be that the anticipatory use of diagrams in the ITS focused students primarily on strategic 
issues, as the diagrams were used in planning problem-solving steps. It may be that students need to engage in 
“principle-based explanation” (Renkl, 1997) to facilitate acquisition of conceptual knowledge (e.g., verbally 
explaining why the selected diagram is correct and strategic). It might also be that students with varying levels 



of prior knowledge benefit from diagrammatic self-explanation differently (Booth & Koedinger, 2012). Future 
studies should examine the effects of anticipatory diagrammatic self-explanation with students having varying 
degrees of prior knowledge and experience in algebra.

Our study has several limitations. First, the study was conducted with one specific type of diagrams, 
tape diagrams, and it focused on one specific task domain, equation solving in algebra. To understand how the 
results could generalize across domains and types of visual representations, more research is needed to examine  
the  effects  of  anticipatory  diagrammatic  self-explanations.  Also,  it  is  possible  that  students  were  not  very 
motivated to work on the posttest, especially given that the study was conducted remotely during the COVID-19 
pandemic. This may have contributed to the absence of pretest-posttest gains in procedural knowledge, even  
though the learning curves suggest that learning occurred.

In summary, we designed a novel self-explanation scaffolding support for students in middle-school 
algebra, namely, anticipatory diagrammatic self-explanation. We investigated the effectiveness of this support  
embedded in an Intelligent Tutoring System, in a classroom study. We found that anticipatory diagrammatic  
self-explanation helped students learn formal algebraic strategies and perform better on problem solving, while  
making similar conceptual  gains as students who did not receive the support.  Our study contributes to the 
theoretical and practical understanding of how visual representations, contrasting cases, and anticipatory self-
explanation can be integrated into scaffolding support that helps students learn and perform effectively and 
efficiently.
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