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Abstract

The problem of handling adaptivity in data analysis, intentional or not, permeates a
variety of fields, including test-set overfitting in ML challenges and the accumula-
tion of invalid scientific discoveries. We propose a mechanism for answering an
arbitrarily long sequence of potentially adaptive statistical queries, by charging a
price for each query and using the proceeds to collect additional samples. Crucially,
we guarantee statistical validity without any assumptions on how the queries are
generated. We also ensure with high probability that the cost for M non-adaptive
queries is O(logM), while the cost to a potentially adaptive user who makes M
queries that do not depend on any others is O(

p
M).

1 Introduction

Consider the problem of running a server that provides the test loss of a model on held out data,
e.g. for evaluation in a machine learning challenge. We would like to ensure that all test losses
returned by the server are accurate estimates of the true generalization error of the predictors.

Returning the empirical error on held out test data would initially be a good estimate of the general-
ization error. However, an analyst can use the empirical errors to adjust their model and improve their
performance on the test data. In fact, with a number of queries only linear in the amount of test data,
one can easily create a predictor that completely overfits, having empirical error on the test data that
is artificially small [5, 12]. Even without such intentional overfitting, sequential querying can lead to
unintentional adaptation since analysts are biased toward tweaks that lead to improved test errors.

If the queries were non-adaptive, i.e. the sequence of predictors is not influenced by previous test
results, then we could handle a much larger number of queries before overfitting–a number exponential
in the size of the dataset. Nevertheless, the test set will eventually be “used up” and estimates of the
test error (specifically those of the best performers) might be over-optimistic.

A similar situation arises in other contexts such as validating potential scientific discoveries. One can
evaluate potential discoveries using set aside validation data, but if analyses are refined adaptively
based on the results, one may again overfit the validation data and arrive at false discoveries [14, 17].

One way to ensure the validity of answers in the face of adaptive querying is to collect all queries
before giving any answers, and answer them all at once, e.g. at the end of a competition. However,
analysts typically want more immediate feedback, both for ML challenges and in scientific research.
Additionally, if we want to answer more queries later, ensuring statistical validity would require
collecting a whole new dataset. This might be unnecessarily expensive if few or none of the queries
are in fact adaptive. It also raises the question of who should bear the cost of collecting new data.

Alternatively, we could try to limit the number or frequency of queries from each user, forbid adaptive
querying, or assume users work independently of each other, remaining oblivious to other users’
queries and answers. However, it is nearly impossible to enforce such restrictions. Determined users
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can avoid querying restrictions by creating spurious user accounts and working in groups; there is no
feasible way to check if queries are chosen adaptively; and information can leak between analysts,
intentionally or not, e.g. through explicit collaboration or published results.

In this paper, we address the fundamental challenge of providing statistically valid answers to an arbi-
trarily long sequence of potentially adaptive queries. We assume that it is possible to collect additional
samples from the same data distribution at a fixed cost per sample. To pay for new samples, users of
the database will be charged for their queries. We propose a mechanism, EVERLASTINGVALIDATION,
that guarantees “everlasting” statistical validity and maintains the following properties:

Validity Without any assumptions about the users, and even with arbitrary adaptivity, with high
probability, all answers ever returned by the database are accurate.

Self-Sustainability The database collects enough revenue to purchase as many new samples as
necessary in perpetuity, and can answer an unlimited number of queries.

Cost for Non-Adaptive Users With high probability, a user making M non-adaptive queries will
pay at most O(logM), so the average cost per query decreases as Õ(1/M).

Cost for Autonomous Users With high probability, a user (or group of users) making M potentially
adaptive queries that depend on each other arbitrarily, but not on any queries made by others,
will pay at most Õ(

p
M), so the average cost per query decreases as Õ(1/

p
M).

We emphasize that the database mechanism needs no notion of “user” or “account” when answering
the queries; it does not need to know which “user” made which query; and most of all, it does not
need to know whether a query was made adaptively or not. Rather, the cost guarantees hold for any
collection of queries that are either non-adaptive or autonomous in the sense described above–a “user”
could thus refer to a single individual, or if an analyst uses answers from another person’s queries, we
can consider them together as an “autonomous user” and get cost guarantees based on their combined
number of queries. The database’s cost guarantees are nearly optimal; the cost to non-adaptive users
and the cost to autonomous users cannot be improved (beyond log-factors) while still maintaining
validity and sustainability (Section 5).

As is indicated by the guarantees above, using the mechanism adaptively may be far more expensive
than using it non-adaptively. We view this as a positive feature. Although we cannot enforce non-
adaptivity, and it is sometimes unreasonable to expect that analysts are entirely non-adaptive, we
intend the mechanism to be used for validation. That is, analysts should do their discovery, training,
tuning, development, and adaptive data analysis on unrestricted “training” or “discovery” datasets,
and only use the protected database when they wish to receive a stamp of approval on their model,
predictor, or discovery. Instead of trying to police or forbid adaptivity, we discourage it with pricing,
but in a way that is essentially guaranteed not to affect non-adaptive users. Further, users will need to
pay a high price only when their queries explicitly cause overfitting, so only adaptivity that is harmful
to statistical validity will be penalized.

Relationship to prior work Our work is inspired by a number of mechanisms for dealing with
potentially adaptive queries that have been proposed and analyzed using techniques from differential
privacy and information theory. These mechanisms handle only a pre-determined number of queries
using a fixed dataset. We use techniques developed in this literature, in particular addition of noise to
ensure that a quadratically larger number of adaptive queries can be answered in the worst case [6, 10].
Our main innovations over this prior work are the self-sustaining nature of the database, as opposed to
handling only a pre-determined number of queries of each type, and also the per-query pricing scheme
that places the cost burden on the adaptive users. To ensure that the cost burden on non-adaptive
users does not grow by more than a constant factor, we need to adapt existing algorithms.

LADDER [5] and SHAKYLADDER [16] are mechanisms tailored to maintaining a ML competition
leaderboard. These algorithms reveal the answer to a user’s query for the error of their model only
if it is significantly lower than the error of the previous best submission from the user. While these
mechanisms can handle an exponential number of arbitrarily adaptive submissions, each user will
receive answers to a relatively small number of queries. Our setting is more suitable for the case
where we want to validate the errors of all submissions or for scientific discovery where there is more
then one discovery to be made.

A separate line of work in the statistics literature on “Quality Preserving Databases” (Aharoni and
Rosset [2] and references therein) has suggested schemes for databases that maintain everlasting
validity, while charging for use. The fundamental difference from our work is that these schemes
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do not account for adaptivity and thus are limited to non-adaptive querying. A second difference is
that they focus on hypothesis testing for scientific discovery, with pricing schemes that depend on
considerations of statistical power, which are not part of our framework. We further compare with
existing methods at the end of Section 4.

2 Model formulation

We consider a setting in which a database curator has access to samples from some unknown
distribution D over a sample space X . Multiple analysts submit a sequence of statistical queries
qi : X ! [0, 1], the database responds with answers ai 2 R, and the goal is to ensure that with high
probability, all answers satisfy |ai � Ex⇠D [qi(x)]|  ⌧ for some fixed accuracy parameter ⌧ . In a
prediction validation application, each query would measure the expected loss of a particular model,
while in scientific applications a single query might measure the value of some phenomenon of interest,
or compare it to a “null” reference. We denote Q the set of all possible queries, i.e. measurable
functions q : X ! [0, 1], and use the shorthand E [q] = Ex⇠D [q(x)] to denote the mean value
(desired answer) for each query. Given a data sample S ⇠ D

n, we use ES [q] = 1
|S|

P
x2S

q(x) as
shorthand for the empirical mean of q on S.

In our framework, the database can, at any time, acquire new samples from D at some fixed cost
per sample, e.g. by running more experiments or paying workers to label more data. To answer a
given query, the database can use the samples it has already purchased in any way it chooses, and
the database is allowed to charge analysts for their queries in order to purchase additional samples.
The price pi of query qi may be determined by the database after it receives query qi, allowing the
database to charge more for queries that force it to collect more data.

We do not assume the queries are chosen in advance, and instead allow the sequence of queries to
depend adaptively on past answers. More formally, we define a “querying rule” Ri : (Q,R,R)i�1

7!

Q as a randomized mapping from the history of all previously made queries and their answers and
prices to the statistical query to be made next:

qi = Ri ((q1, a1, p1), (q2, a2, p2), . . . , (qi�1, ai�1, pi�1)) .

The interaction of users with the database can then be modeled as a sequence of querying rules
{Ri}i2N. The combination of the data distribution, database mechanism, and sequence of querying
rules together define a joint distribution over queries, answers, and prices {Qi, Ai, Pi}i2N. All our
results will hold for any data distribution and any querying sequence, with high probability over
{Qi, Ai, Pi}i2N.

We think of the query sequence as representing a combination of queries from multiple users, but
the database itself is unaware of the identity or behavior of the users. Our validity guarantees do not
assume any particular user structure, nor any constraints on the interactions of the different users.
Thus, the guarantees are always valid regardless of what a “user” means, how “users” are allowed to
collaborate, how many “users” there are, or how many queries each “user” makes—the guarantees
simply hold for any (arbitrarily adaptive) querying sequence.

However, our cost guarantees will, and must, refer to analysts (or perhaps groups of analysts) behaving
in specific ways. In particular, we define a non-adaptive user as a subsequence {uj}j2[M ] consisting
of queries which do not depend on any of the history, i.e. Ruj is a fixed (pre-determined) distribution
over queries, so Quj is independent of all of the history. We further define an autonomous user of
the database as a subsequence {uj}j2[M ] of the querying rules that depend only on the history within

the subsequence, i.e.

Ruj

�
(q1, a1, p1), . . . , (q(uj�1), a(uj�1), p(uj�1))

�
=

Ruj

�
(qu1 , au1 , pu1), . . . , (qu(j�1)

, au(j�1)
, pu(j�1)

)
�
.

That is, Quj is independent of the overall past history given the past history pertaining to the
autonomous user. The “cost to a user” is the total price paid for queries in the subsequence {uj}:P

M

j=1 puj .
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3 VALIDATIONROUND

Our mechanism for providing “everlasting” validity guarantees is based on a query answering
mechanism which we call VALIDATIONROUND. It uses n samples from D in order to answer
exp(⌦(n)) non-adaptive and at least ⌦̃(n2) adaptive statistical queries (and potentially many more).
Our analysis is based on ideas developed in the context of adaptive data analysis [10] and relies
on techniques from differential privacy [9]. Differential privacy is a strong stability property of
randomized algorithms that operate on a dataset. Composition properties of differential privacy
imply that this form of stability holds even when the same dataset is used by multiple algorithms that
can depend on the outputs of preceding algorithms. Most importantly, differential privacy implies
generalization with high probability [4, 10].

VALIDATIONROUND splits its data into two sets S and T . Upon receiving each query, it first checks
whether the answers on these datasets approximately agree. If so, the query has almost certainly
not overfit to the data, and the algorithm simply returns the empirical mean of the query on S plus
additional random noise. We show that the addition of noise ensures that the algorithm, as a function
from the data sample S to an answer, satisfies differential privacy. This can be leveraged to show that
any query which depends on a limited number of previous queries will have an empirical mean on S
that is close to the true expectation. This ensures that VALIDATIONROUND can accurately answer a
large number of queries, while allowing some (unknown) subset of the queries to be adaptive.

VALIDATIONROUND uses truncated Gaussian noise ⇠ ⇠ N (0, �2, [��, �]), i.e. Gaussian noise
Z ⇠ N (0, �2) conditioned on the event |Z|  �. Its density f⇠(x) / exp

⇣
�

x
2

2�2

⌘
|x|� .

Algorithm 1 VALIDATIONROUND(⌧, �, n, S, T )

1: Set I(⌧, �, n) = �

4 exp
⇣

n⌧
2

8

⌘
, �2 = ⌧

2

32 ln(8n2/�)

2: for each query q1, q2, ... do
3: if |ES [qi]� ET [qi]| 

⌧

2 and i  I(⌧, �, n) then
4: Draw truncated Gaussian ⇠i ⇠ N (0, �2, [� ⌧

4 ,
⌧

4 ])
5: Output: ai = ES [qi] + ⇠i
6: else
7: Halt (⌘ = i)

Here, ⌘ is the index of the query that causes the algorithm to halt. If ⌘  I(⌧, �, n), the maximum
allowed number of answers, we say that VALIDATIONROUND halted “prematurely.” The following
three lemmas characterize the behavior of VALIDATIONROUND.
Lemma 1. For any ⌧ , �, and n, for any sequence of querying rules (with arbitrary adaptivity) and

any probability distribution D, the answers provided by VALIDATIONROUND(⌧, �, n, S, T ) satisfy

P
h
8i<⌘

���Ai � E
x⇠D

[Qi(x)]
���  ⌧

i
� 1�

�

2
,

where the probability is taken over the randomness in the draw of datasets S and T from D
n

, the

querying rules, and VALIDATIONROUND.

Lemma 2. For any ⌧ , �, and n, any sequence of querying rules, and any non-adaptive user {uj}j2[M ]

interacting with VALIDATIONROUND(⌧, �, n, S, T ), P
h
⌘  I(⌧, �, n) ^ ⌘ 2 {uj}j2[M ]

i
 �.

Lemma 3. For any ⌧ , �, and n, any sequence of querying rules, and any autonomous user {uj}j2[M ]

interacting with VALIDATIONROUND(⌧, �, n, S, T ), if �2 = ⌧
2

32 ln(8n2/�) and M 
n
2
⌧
4

175760 ln2(8n2/�)

then P
h
⌘  I(⌧, �, n) ^ ⌘ 2 {uj}j2[M ]

i
 �.

Lemma 1 indicates that all returned answers are accurate with high probability, regardless of adaptivity.
The proof involves showing that ET [qi] is close to E [qi] for each query, so any query that is answered
must be accurate since |ES [qi]� ET [qi]| and |⇠| are small. Lemma 2 indicates that with high
probability, non-adaptive queries never cause a premature halt, which is a simple application of
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Hoeffding’s inequality. Finally, Lemma 3 shows that with high probability, an autonomous user who
makes Õ(n2) queries will not cause a premature halt. This requires showing that ES [qi] is close to
E [qi] despite the potential adaptivity.

The proof of Lemma 3 uses existing results from adaptive data analysis together with a simple
argument that noise truncation does not significantly affect the results. For reference, the results we
cite are included in Appendix E. While using Gaussian noise to answer queries is mentioned in other
work, we are not aware of an explicit analysis, so we analyze the method here. To simplify parts
of the derivation, we rely on the notion of concentrated differential privacy, which is particularly
well suited for analysis of composition with Gaussian noise addition [6]. Lemmas 1-3 are proven in
Appendix A.

4 EVERLASTINGVALIDATION and pricing

VALIDATIONROUND uses a fixed number, n, of samples and with high probability returns accurate
answers for at least exp (⌦(n)) non-adaptive queries and ⌦̃(n2) adaptive queries. In order to handle
infinitely many queries, we chain together multiple instances of VALIDATIONROUND. We start with
an initial dataset, answer queries using VALIDATIONROUND using that data until it halts. At this
point, we buy more data and repeat. The used-up data can be released to the public as a “training set,”
which can be used with no restriction without affecting any guarantees.

Algorithm 2 EVERLASTINGVALIDATION(⌧, �)

1: Require initial budget � = 36 ln (8/�) /⌧2

2: N0 = �
2 , �0 = �

2 , t = 0, i = 0
3: Buy datasets S0, T0 ⇠ D

N0

4: loop
5: Pass qi to VALIDATIONROUND(⌧, �t, Nt, St, Tt)
6: if VALIDATIONROUND does not halt then
7: Output: ai
8: Charge 96

⌧2 ·
1
i
, move on to i = i+ 1

9: else
10: Charge 6Nt minus current capital
11: Nt+1 = 3Nt, �t+1 = 1

2�t, t = t+ 1
12: Buy datasets St, Tt ⇠ D

Nt

13: Restart loop with same i

The key ingredient is a pricing system with which we can always afford new data when an instance
of VALIDATIONROUND halts. Our method has two price types: a low price, which is charged for
all queries and decreases like 1/i; and a high price, which is charged for any query that causes an
instance of VALIDATIONROUND to halt prematurely, which may grow with the size of the current
dataset. EVERLASTINGVALIDATION(⌧, �) guarantees the following:
Theorem 1 (Validity). For any sequence of querying rules (with arbitrary adaptivity), EVERLAST-
INGVALIDATION will provide answers such that

P
h
8i2N

���Ai � E
x⇠D

[Qi(x)]
���  ⌧

i
� 1�

�

2

Proof. Consider the sequence of query rules that are answered by the tth instantiation of the VAL-
IDATIONROUND mechanism. By Lemma 1, for any sequence of querying rules, with probability
1� �t

2 , all of the answers during round t are answered accurately. By a union bound over all rounds,
all answers in all rounds are accurate with probability at least 1�

P1
t=0 �t/2 = 1� �/2.

Theorem 2 (Sustainability). For any sequence of queries, the revenue collected can pay for all

samples ever needed by EVERLASTINGVALIDATION, excluding the initial budget of 36 ln (8/�) /⌧2.

Proof. When VALIDATIONROUND halts, we charge exactly enough for the next St, Tt (line 10).
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Lemma 4. If N0 � 18 ln(2)/⌧2 and I(⌧, �t, Nt) = (�t/4) exp
�
Nt⌧2/8

�
queries are answered

during round t, then at least 6Nt revenue is collected.

The proof of Lemma 4 involves a straightforward computation. We find an upper bound, BT , on the
number of queries made before round T begins and then lower bound the revenue collected in round
T with

P
i

96
⌧2(BT+i) . We defer the details to Appendix B.

Theorem 3 (Cost for non-adaptive users). For any sequence of querying rules and any non-adaptive

user indexed by {uj}j2[M ], the cost to the user satisfies

P
X

j2[M ]
Puj 

96

⌧2
(1 + ln(M))

�
� 1� �.

Proof. By Lemma 4, if a round t ends after I(⌧, �t, Nt) queries are answered, then the total revenue
collected from queries in that round is at least 6Nt, so the “high price” at the end of the round is 0.
Consequently, a query quj from the non-adaptive user costs the low price 96/(⌧2uj) unless it causes
an instantiation of VALIDATIONROUND to halt prematurely. By Lemma 2 and a union bound, this
never occurs in any round with probability at least 1�

P1
t=0 �t = 1� �, and the cost to the user is

X
j2[M ]

puj =
X

j2[M ]

96

⌧2uj



X
j2[M ]

96

⌧2i


96

⌧2
(1 + ln(M)) .

Theorem 4 (Cost for adaptive users). For any sequence of querying rules and any autonomous user

indexed by {uj}j2[M ], there is a fixed constant c0 such that the cost to the user satisfies

P
"
X

j2[M ]
Puj  c0 ·

p
M ln2 (M/�)

⌧2

#
� 1� �.

Proof. Ideally, none of the M queries causes a premature halt, and the total cost is at most
96
⌧2 (1 + ln(M)), but the adaptive user may cause rounds to end prematurely and pay up to 6Nt.
However, by Lemma 3, with probability 1� �t if one of the adaptive user’s queries causes a round t
to end prematurely, then the amount of data, Nt, and the number of the user’s queries answered in
that round, Mt, must satisfy

Mt �
N2

t
⌧4

175760 ln2 (8N2
t
/�t)

. (1)

Given M , there is a largest t for which this is possible since Nt = 3tN0 and �t = 2�t�0. That is,

32tN2
0 ⌧

4

175760 ln (18t · 8N2
0 /�0)

 M

which implies tmax 
1
2 ln

⇣
24
p
M ln (144N0/�0)

⌘
. Let T be the set of rounds in which the adaptive

user pays the high 6Nt price, then with probability at least 1 �
P

t2T �t � 1 � �, inequality (1)
holds for all t 2 T . In this case, the total cost to the adaptive user is no more than

X

t2T
6Nt  tmax

2520
p
M ln

�
8M2/�tmax

�

⌧2


1890
p
M ln2

�
16M2/�

�

⌧2
.

Relationship to prior work on adaptive data analysis We handle adaptivity using ideas devel-
oped in recent work on adaptive data analysis. In this line of work, all queries are typically assumed
to be adaptively chosen and the overall number of queries known in advance. For completeness,
we briefly describe several algorithms that have been developed in this context and compare them
with our algorithm. Dwork et al. [10] analyze an algorithm that adds Laplace or Gaussian noise to
the empirical mean in order to answer M adaptive queries using Õ(

p
M) samples—a method that

forms the basis of VALIDATIONROUND. However, adding untruncated Laplace or Gaussian noise to
exponentially many non-adaptive queries would likely cause large errors when the variance is large
enough to ensure that the sample mean is accurate. We use truncated Gaussian noise instead and
show that it does not substantially affect the analysis for autonomous queries.
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THRESHOLDOUT [11] answers verification queries in which the user submits both a query and an
estimate of the answer. The algorithm uses n = Õ(

p
M · log I) samples to answer I queries of

which at most M estimates are far from correct. Similar to our use of the second dataset T , this
algorithm can be used to detect overfitting and answer adaptive queries (this is the basis of the
EFFECTIVEROUNDS algorithm [10]). However, in our application this algorithm would have sample
complexity of n = Õ(

p
M · log I), for M autonomous queries in T total queries. Consequently,

direct use of this mechanism would result in a pricing for non-adaptive users that depends on the
number of queries by autonomous users. This is in contrast to n = Õ(

p
M + log T ) samples that

suffice for VALIDATIONROUND, where the improvement relies on our definition of autonomy and
truncation of the noise variables.

5 Optimality

One might ask if it is possible to devise a mechanism with similar properties but lower costs. We argue
that the prices set by EVERLASTINGVALIDATION are near optimal. The total cost to a non-adaptive
user who makes M queries is O(logM/⌧2). Even if we knew in advance that we would receive only
M non-adaptive queries, we would still need ⌦(logM/⌧2) samples to answer all of them accurately
with high probability. Thus, our price for non-adaptive queries is optimal up to constant factors.

It is also known that answering a sequence of M adaptively chosen queries with accuracy ⌧ requires
⌦̃(

p
M/⌧) samples [15, 19]. Hence, the cost to a possibly adaptive autonomous user is nearly

optimal in its dependence on M (up to log factors). One natural concern is that our guarantee in this
case is only for the amortized (or total) cost, and not on the cost of each individual query. Indeed,
although the average cost of adaptive queries decreases as Õ(1/

p
M), the maximal cost of a single

query might increase as Õ(
p
M). A natural question is whether the maximum price can be reduced,

to spread the high price over more queries.

Finally, an individual who queries our mechanism with M entirely non-adaptive queries will only
pay logM in the worst case; generally, they will benefit from the economies of scale associated
with collecting more and more data. For instance, if there are K users each making M non-adaptive
queries, then the total cost of all KM queries will be logKM so the average cost to each user is only
log(KM)/K ⌧ logM .

6 An Alternative Approach: EVERLASTINGTO

The EVERLASTINGVALIDATION mechanism provides cost guarantees that are, in certain ways,
nearly optimal. The two main shortcomings are that (1) the price is guaranteed only for non-adaptive
or autonomous users–not arbitrary adaptive ones and (2) the cost of an individual adaptive query
cannot be upper bounded. One might also ask if inventing VALIDATIONROUND was necessary in the
first place. Another mechanism, THRESHOLDOUT [11], is already well-suited to the setting of mixed
adaptive and non-adaptive queries and it gives accuracy guarantees for quadratically many arbitrary
adaptive queries or exponentially many non-adaptive queries. Perhaps using THRESHOLDOUT instead
would be better? We will now describe an alternative mechanism, EVERLASTINGTO, which allows
us to provide price guarantees for individual queries, including arbitrarily adaptive ones, but with an
exponential increase in the cost for both non-adaptive and adaptive queries.

The EVERLASTINGTO mechanism is very similar to EVERLASTINGVALIDATION, except it uses
THRESHOLDOUT in the place of VALIDATIONROUND. In each round, the algorithm determines
an overfitting budget, Bt, and a maximum number of queries, Mt, as a function of the tradeoff
parameter p. It then answers queries using THRESHOLDOUT, charging a high price 2Nt+1/Bt for
queries that fail the overfitting check, and charging a low price 2Nt+1/Mt for all of the other queries.
Once THRESHOLDOUT cannot answer more queries, the mechanism buys more data, reinitializes
THRESHOLDOUT, and continues as before.

We analyze EVERLASTINGTO in Appendix D. Theorems 6-9 closely parallel the guarantees of
EVERLASTINGVALIDATION and establish the following for any ⌧, � 2 (0, 1) and any p 2 (0, 2

3 ):
Validity: with high probability, for any sequence of querying rules, all answers provided by EVER-
LASTINGTO are ⌧ -accurate. Sustainability: EVERLASTINGTO charges high enough prices to be
able to afford new samples as needed, excluding the initial budget. Cost: with high probability, any
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Algorithm 3 EVERLASTINGTO(⌧, �, p)

1: Require sufficiently initial budget n = n(⌧, �, p)

2: 8t set Nt = net, �t =
(e�1)�

e
e�t, Bt = ⇥̃

⇣
⌧
4
N

2�2p
t

ln 1/�t

⌘
, Mt =

�t

4 exp (2Np

t
)

3: for t = 0, 1, . . . do
4: Purchase datasets St, Tt ⇠ D

Nt and initialize THRESHOLDOUT(St, Tt, Bt, �t).
5: while THRESHOLDOUT(St, Tt, Bt, �t) has not halted do
6: Accept query q
7: (a, o) = THRESHOLDOUT(St, Tt, Bt, �t)(q)
8: Output: a
9: if o =? then

10: Charge: 2Nt+1

Mt

11: else
12: Charge: 2Nt+1

Bt

M non-adaptive queries and any B adaptive queries cost at most O
⇣
ln1/p(M) +B

1
2�3p

⌘
(ignoring

the dependence on ⌧, �).

Unlike EVERLASTINGVALIDATION, which prioritized charging as little as possible for non-adaptive
queries, EVERLASTINGTO increases the O(logM) cost to O(polylogM) in order to bound the price
of arbitrary adaptive queries. The parameter p allows the database manager to control the tradeoff; for
p near zero, the cost of B adaptive queries is roughly the optimal O(

p
B), but non-adaptive queries

are extremely expensive. On the other side, for p near 2/3, the cost of adaptive queries becomes very
high, but the cost of non-adaptive queries is relatively small, although it does not approach optimality.

Further details of the mechanism are contained in Appendix D. We also provide a tighter analysis
of the THRESHOLDOUT algorithm which guarantees accurate answers using a substantially smaller
amount of data in Appendix C. This analysis allows us to reduce the exponent in EVERLASTINGTO’s
cost guarantee for non-adaptive queries.

7 Potential applications

In the ML challenge scenario, validation results are often displayed on a scoreboard. Although
it is often assumed that scoreboards cannot be used for extensive adaptation, it appears that such
adaptations have played roles in determining the outcome of various well known competitions,
including the Netflix challenge, where the final test set performance was significantly worse than
performance on the leaderboard data set. EVERLASTINGVALIDATION would guarantee that test
errors returned by the validation database are accurate, regardless of adaptation, collusion, the number
of queries made by each user, or other intentional or unintentional dependencies. We do charge a price
per-validation, but as long as users are non-adaptive, the price is very small. Adaptive users, on the
other hand, pay what is required in order to ensure validity (which could be a lot). Nevertheless, even
if a wealthy user could afford paying the higher cost of adaptive queries, she would still not be able
to “cheat” and overfit the scoreboard set, and a poor user could still afford the quickly diminishing
costs of validating non-adaptive queries.

Another feature of our mechanism is that once a round t is over, we can safely release the datasets St

and Tt to the public as unrestricted training data. This way, poor analysts also benefit from adaptive
queries made by others, as all data is eventually released, and at any given time, a substantial fraction
of all the data ever collected is public. Also, the ratio of public data to validation data can easily be
adjusted by slightly amending the pricing.

In the context of scientific discovery, one use case is very similar to the ML competition. Scientists
can search for interesting phenomena using unprotected data, and then re-evaluate “interesting”
discoveries with the database mechanism in order to get an accurate and almost-unbiased estimate
of the true value. This could be useful, for example, in building prediction models for scientific
phenomena such as genetic risk of disease, which often involve complex modeling [7].

However, most scientific research is done in the context of hypothesis testing rather than estimation.
Declarations of discoveries like the Higgs boson [1] and genetic associations of disease [8] are based
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on performing a potentially large number of hypothesis tests and identifying statistically significant
discoveries while controlling for multiplicity. Because of the complexity of the discovery process, it
is often quite difficult to properly control for all potential tests, causing many difficulties, the most
well known of which is the problem of publication bias (cf. “Why Most Published Research Findings
are False” [17]). An alternative, approach that has gained popularity in recent years, is requiring
replication of any declared discoveries on new and independent data [3]. Because the new data is
used only for replication, it is much easier to control multiplicity and false discovery concerns.

Our everlasting database can be useful in both the discovery and replication phases. We now briefly
explain how its validity guarantees can be used for multiplicity control in testing. Assume we have
a collection of hypothesis tests on functionals of D with null hypotheses: H0i : E [qi] = e0i. We
employ our scheme to obtain estimates Ai of E [qi]. Setting ↵ = �/2, Theorem (1) guarantees:P

i
PH0i [maxi |Ai � e0i| > ⌧ ]  ↵, meaning that for any combination of true nulls, the rejection

policy reject if |Ai�e0i| > ⌧ makes no false rejections with probability at least 1�↵, thus controlling
the family-wise error rate (FWER) at level ↵. This is easily used in the replication phase, where an
entire community (say, type-I diabetes researchers) could share a single replication server using the
everlasting database scheme in order to to guarantee validity. It could also be used in the discovery
phase for analyses that can be described through a set of measurements and tests of the form above.

8 Conclusion and extensions

Our primary contribution is in designing a database mechanism that brings together two important
properties that have not been previously combined: everlasting validity and robustness to adaptivity.
Furthermore, we do so in an asymptotically efficient manner that guarantees that non-adaptive queries
are inexpensive with high probability, and that the potentially high cost of handling adaptivity only
falls upon truly adaptive users. Currently, there are large constants in the cost guarantees, but these
are pessimistic and can likely be reduced with a tighter analysis and more refined pricing scheme. We
believe that with some improvements, our scheme can form the basis of practical implementations
for use in ML competitions and scientific discovery. Also, our cost guarantees themselves are
worst-case and only guarantee a low price to entirely non-adaptive users. It would be useful to
investigate experimentally how much users would actually end up being charged under “typical use,”
especially users who are only “slightly adaptive.” However, there is no established framework for
understanding what would constitute “typical” or “slightly adaptive” usage of a statistical query
answering mechanism, so more work is needed before such experiments would be insightful.

Our mechanism can be improved in several ways. It only provides answers at a fixed, additive ⌧ , and
only answers statistical queries, however these issues have been already addressed in the adaptive
data analysis literature. E.g. arbitrary low-sensitivity queries can be handled without any modification
to the algorithm, and arbitrary real-valued queries can be answered with the error proportional to their
standard deviation (instead of 1/

p
n as in our analysis) [13]. These approaches can be combined

with our algorithms but we restrict our attention to the basic case since our focus is different.

Finally, one potentially objectionable element of our approach is that it discards samples at the end
of each round (although these samples are not wasted since they become part of the public dataset).
An alternative approach is to add the new samples to the dataset as they can be purchased. While
this might be a more practical approach, existing analysis techniques that are based on differential
privacy do not appear to suffice for dealing with such mechanisms. Developing more flexible analysis
techniques for this purpose is another natural direction for future work.
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